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1. Introduction 

Specifying the functional form of a system of demand equations is a central focus of 
empirical economic modeling. Two approaches to this issue are to solve the integrability 
conditions for a chosen set of demand equations to derive the indirect preference function 
or to specify the indirect preference function directly and then use Roy’s Identity or 
Hotelling’s Lemma to generate the demand equations.  

The first approach specifies an attractive set of demand equations ( , )mq p  where q is 
an n–vector of consumption goods, p is the associated price vector, and m is income.1 The 
most common class of demand models of this type has the multiplicatively separable and 
additive form,2 

 
1

( ) ( ), 1,..., ,K
i ik kk

q h m i nα
=

= =∑ p  (1) 

where : ,n
ikα ++ →  :kh ++ → , 1, , , 1, , .i n k K∀ = ∀ =  An important strength 

of this model specification is that it aggregates from micro- to macro-level data. Given a 
distribution function of income, : [0,1],F →+  then we only need K cross-sectional 
moments, 

 ( ) ( ), 1,..., ,k kh h m dF m k K= =∫   

to estimate (1) with aggregate data.3  

                                                 
1 Income is really a nickname for total consumption expenditure. 
2 An important literature on this topic includes: Gorman (1953, 1961, 1965, 1981); Pollak (1969, 1971a, 
1971b, 1972); Burt and Brewer (1971); Diewert (1971); Phlips (1971); Muellbauer (1975, 1976); Cicchetti, 
Fisher and Smith (1976); Howe, Pollak and Wales (1979); Deaton and Muellbauer (1980); Jorgenson, Lau 
and Stoker (1980, 1981, 1982); Lau (1982); Russell (1983, 1996); Jorgenson and Slesnick (1984, 1987); 
Lewbel (1987a, 1988; 1989a, 1989b, 1990, 1991, 2003, 2004); Diewert and Wales (1987, 1988); Blundell 
(1988); Wales and Woodland (1988); Brown and Walker (1989); van Daal and Merkies (1989); Jorgenson 
(1990); Pollak and Wales (1980, 1992); Jerison (1993); Russell and Farris (1993, 1998); and Banks, 
Blundell, and Lewbel (1997). Consistent with this literature, we focus on smooth demand systems with 
interior solutions. 
3 This property extends to Lau’s (1982) Fundamental Theorem of Exact Aggregation, where a vector 

r∈s  of demographic or other demand shifters is included in the income functions, the joint distribution 
function for ( , )m s  is ( , )F m s , and the K cross-sectional moments required for exact aggregation are 

( , ) ( , ), 1,..., .k kh h m dF m k K= =∫ s s  
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Define the n×K matrix of price functions [ ]( ) ( )ikα=A p p . The rank of (1) is the 

column rank of A(p), with n≥K (Gorman, 1981). Full rank systems are important 
because they are parsimonious. In parsimonious systems, for any given degree of 
flexibility in prices and income, the minimum number of parameters needs to be 
estimated. As a result, the main focus in the literature has been on full rank systems. That 
is, A has rank K. 

Assume that the expenditure function, : ,ne ++ ++× →  defined by 

 { }( , ) min : ( )
n

e u u u
+∈

≡ ≥
q

p p q qT ,  

and associated with the demand system (1) exists, is smooth, e ∞∈C , increasing, 1° 
homogeneous, and concave in p, and increasing in u. One difficulty with starting with (1) 
is the problem of integrability to well-behaved preferences (Hurwicz and Uzawa, 1971). 
For this class of models (hereafter a Gorman system), the demand system must satisfy 0° 
homogeneity, adding up, and symmetry and negative semi-definiteness of the Slutsky 
equations,  

 

2

1 1 1

1 1 1

2
, .

K K Kik
k ik k jk k

i j j

K K Kjk
k jk k ik k

i

j i

e h h h
p p p

h h h
p

e i j
p p

α α α

α
α α

= = =

= = =

∂ ∂ ′= +
∂ ∂ ∂

∂
′= +

∂

∂
= ∀ ≠
∂ ∂

∑ ∑ ∑

∑ ∑ ∑  (2) 

Each of these properties leads to restrictions on the number of terms, K, the admissible 
functional forms for the income terms, { }kh , the relationships among the terms in the 

                                                 
The analysis of homogeneity given below can easily be shown to lead to the Gorman class of functional 
forms with respect to income. Moreover, 0º homogeneity implies that the {hk} must be multiplicatively 
separable between income and demographics, i.e., ( , ) ( ) ( ) 1, , .k k kh m g m k K= ⋅ ∀ =s s  In other words, 
0º homogeneity and Lau’s result require that the demand equations are of the form, 

1
( ) ( ) ( ), 1, ,K

i ik k kk
q g m i nα

=
= =∑ p s , 

with each of the { ( )}kg m  a member of the Gorman class of functional forms. Hence, all of the results on 
rank and functional form in Gorman’s theory of aggregation hold in this model specification as well. 
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demand model, and the values of the model’s parameters. Except for curvature, the role 
of each of these properties is discussed in detail below.4 First, two properties are 
developed that are essential to the identification of the model’s parameters during 
econometric estimation. 

2. A Unique Representation 

In this section, we discuss the concept of linear independence of the price and income 
functions used throughout this chapter. Let the n×K matrix of price functions be denoted 
by 1( ) [ ( ) ( )]K=A p p pα α  and let the K×1 vector of income functions be denoted by 

h(m). For the system of demand equations to have a unique representation on n
++ ++× , 

we need two conditions (Gorman, 1981: 358-59; Russell and Farris, 1998: 201-202). 

The first condition needed is that the 1{ ( )}K
k kh m =  are linearly independent with respect 

to the constants in K–dimensional space. That is, there can exist no K∈c  satisfying 
≠c 0  and 1 1( ) 0 ( ) ,m m m ++= ∀ ∈ ⊂c hT N  where ( )mN  is an open neighborhood of an 

arbitrary point in the interior of ,++⊂M  the domain of definition for the ( )mh . If this 

is not satisfied, then for any K–vector, K∈d , adding the n–vector ( ) ( )m ≡A p dc h 0T  to 
the system of demands does not change it, 

 ( )( ) ( ).m= +q A p I dc hT   

We could therefore choose different d vectors to make the matrix ( ) ( )( )≡ +A p A p I dcT  
anything, while each such choice is multiplicatively separable between prices and 
income. That is, the demand system is unidentified and meaningless. 

The second condition needed is that the column vectors of ( )A p  are linearly 
independent with respect to the K–dimensional constants. For this to hold, there can be no 

K∈c  that satisfies ≠c 0  and 1 1( ) ( ),= ∀ ∈A p c p p0 N  where in this case ( )pN  is an 
open neighborhood of any point in the interior of n

++⊂P , the domain of definition for 

the n×K array of functions ( )A p . If this property did not hold, then ,K∀ ∈d  adding 
( ) ( )m ≡A p cd h 0T  to the system does not change it, 

                                                 
4 However, LaFrance and Pope (2008) discuss and analyze the local and global monotonicity and concavity 
properties of the expenditure function for this class of demand models. LaFrance, Beatty, and Pope (2005, 
2006) develop a method to nest aggregable demand models with empirical results that can be economically 
regular on an open set that contains the convex hull of the data. LaFrance (2008) successfully applies this 
methodology to U.S. food demand. 
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 ( )( ) ( )m= +q A p I cd hT .  

We again could choose any K–vector d to make the K–vector ( ) ( ) ( )m m≡ +h I cd hT  
anything while maintaining the multiplicatively separable structure. The demand system 
would thus again be unidentified and make little sense. We therefore assume throughout 
that the dimensions of A and h are such that a unique representation exists in all cases.  

3. The Role of Symmetry 

The symmetry conditions (2) are identical to those discovered by Sophus Lie (1880; 
English translation with commentary in Hermann, 1975) in his seminal study of 
transformation groups. Subtracting 2

j ie p p∂ ∂ ∂  from 2
i je p p∂ ∂ ∂ , the Slutsky symmetry 

conditions can be rewritten in terms of ½n(n–1) vanishing differences,  

 ( )
1 1 1

0 , 2, , .
K K K

jkik
k ik j k k

k j i k
h h h h h j i n

p p
αα α α

= = =

⎛ ⎞∂∂ ′ ′= − + − ∀ < =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
∑ ∑∑  (3) 

In the double sum on the right-hand-side, when k = , the term ik jkα α  is multiplied by 
0k k k kh h h h′ ′− = . On the other hand, when k ≠ , then the term k kh h h h′ ′−  appears twice, 

once multiplied by ik jα α  and once multiplied by i jkα α− . Therefore, we can rewrite (3) 
again as a linear system of ½n(n–1) equations in the ½K(K–1) terms, , ,k kh h h h k′ ′− >  

 ( ) ( )
1

1 2 1
0 , 2, , .

K K k
jkik

k ik j jk i k k
k j i k

h h h h h j i n
p p

αα α α α α
−

= = =

⎛ ⎞∂∂ ′ ′= − + − − < =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
∑ ∑∑  (4) 

Now define the matrices 

 

22 11 12 21 2 1 1 2 2 1, 1 1 2, 1

2 1 2 1 , 1 , 1

2 1,1 1,2 1 1, 1, , 1, 1 1, , 1

,

k k K K K K

i j j i ik j jk i iK j K jK i K

n n n n nk n n k n nK n K n K n K

α α α α α α α α α α α α

α α α α α α α α α α α α

α α α α α α α α α α α α

− −

− −

− − − − − − − −

− − −⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

B  
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11 21 1 2

2 1 2 1

11

,1 1,1 , 1,

1 1

,

K K

j jKi iK

j i j i

n n n K n K

n n n n

p p p p

p p p p

p p p p

α α α α

α αα α

α α α α− −

− −

∂ ∂ ∂ ∂⎡ ⎤− −⎢ ⎥∂ ∂ ∂ ∂
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥∂ ∂∂ ∂⎢ ⎥− −= ⎢ ⎥∂ ∂ ∂ ∂
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂
⎢ ⎥− −
∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

C  

and the vector 5 

 [ ]2 1 2 1 1 1k k K K K Kh h h h h h h h h h h h− −′ ′ ′ ′ ′ ′= − − −h T . 

Note that B is ½ ( 1) ½ ( 1)n n K K− × − , C is ½ ( 1)n n K− × , and h  is ½ ( 1) 1K K − × . These 
definitions allow us to rewrite the symmetry conditions (4) compactly in matrix notation 
as .=Bh Ch  

If we pre-multiply both sides of this system of matrix equations by BT , then we 
obtain .=B Bh B ChT T  The ½ ( 1) ½ ( 1)K K K K− × −  matrix B BT  is symmetric and 
positive semidefinite. Therefore if B has full column rank, then the fundamental rank 
result of Lie (1880) is that ½ ( 1)K K K− ≤ . This is equivalent to the condition 3K ≤  
(Hermann 1975; 143-146). It also can be shown that the rank of B equals the rank of A 
(Hermann 1975: 141). Therefore, since B BT  is of order ½ ( 1) ½ ( 1)K K K K− × −  and has 
the same rank as B, which also equals the rank of A, it follows that 3K ≤  in a full rank 
Gorman system. This establishes that in full rank systems, symmetry leads to demands of 
the form, 

                                                 
5 In differential geometry, the terms ( ) ( ) ( ) ( ), ,k kh m h m h m h m k′ ′− ≠  are called Jacoby brackets. When 
the differential operator, ,m∂ ∂  is appended to the right of a Jacoby bracket, the result is the Lie bracket, 
[ ( ) ( ) ( ) ( )]k kh m h m h m h m m′ ′− ∂ ∂ . The K differential operators, ( ) , 1, , ,kh m m k K∂ ∂ =  forms a finite 
dimensional system of vector fields on the real line and the Lie algebra for these vector fields is the linear 
vector space spanned by the vector fields. The largest Lie algebra on the real line has rank three. The basis 

2{ , , }m m m m m∂ ∂ ∂ ∂ ∂ ∂  spans this vector space. Russell and Farris (1993) is a very useful introduction to 
these concepts and their application to Gorman systems. Guillemin and Pollack (1974), Hydon (2000), 
Olver (1993), and Spivak (1999) are helpful references on differential geometry and applications of Lie’s 
theory to differential equation systems. 
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 3
1

( ) ( ), 1, , .i ij kk
q h m i nα

=
= =∑ p  (5) 

This important insight was originally stated by Russell (1982) and is explained in detail 
in Russell and Farris (1993, 1998) and Russell (1996). 

A further implication of Slutsky symmetry (and symmetry alone; see Section 6 for a 
detailed discussion of this issue) for full rank demand systems with the multiplicatively 
separable and additive structure of Gorman is that 1 2 3{ , , }h h h  in (5) are related to each 
other in a fundamental way. From the theory of Lie transformation groups, any full rank 
demand system with this structure reduces to a special case of a system of Ricatti partial 
differential equations (Russell, 1982, 1996; Russell and Farris, 1993, 1998), 

 2
1 2 3( ) ( ) ( ) ,y y y∂ ∂ = + +p p p pα α α  (6) 

where ( ( , ))y f e u= p  is a smooth and strictly monotonic function of expenditure and the 
n×1 vectors { ( )}k pα  are derived from the n×1 vectors { ( )}k pα  in (1).6 This expression 
is derived explicitly during the proof of proposition 3 below. 

At this point, however, is it worthwhile to show that all full rank three extended PIGL 
systems with ( )f m mκ= , extended PIGLOG systems with ( ) lnf m m= , and Quadratic 
Expenditure Systems (QES) with ( )f m m= , which are studied in Lewbel (1989a, 1990) 
and van Daal and Merkies (1989), can be reduced to the compact form, 

 
2

1 1 3
3

2 2

( ( , )) ( ) ( ( , )) ( ) ( )( ( )) ,
( ) ( )

f e u f e uβ β βθ β
β β

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ − − ∂⎢ ⎥= +⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

p p p p pp
p p p p

 (7) 

where ( ) {ln , }f m m mκ∈ , 1 2 3, , : nβ β β ++ → , :θ → , and 1 2 3, , ,β β β θ ∞∈C .7 This 
is algebraically equivalent to (6) with the following definitions: 

                                                 
6 See Jerison (1993) for an example of a reduced rank system that also has the Gorman structure. 
7 This exhausts the set of full rank three nominal income systems with the multiplicatively separable and 
additive structure of Gorman and real-valued ( )f m . LaFrance, Beatty and Pope (2005) derive (6) for last 

the remaining full rank three case, ( )f m mιτ= . The symmetry arguments of van Daal and Merkies (1989) 
applied to this case also leads to (7). A detailed discussion is presented during the proof of proposition 3 in 
section 6 below. Although the QES is a special case of the extended PIGL model with 1κ = , the complete 
list of implications implied by Slutsky symmetry were first derived in van Daal and Merkies (1989), which 
fixed an error in the solution for the indirect preferences of the QES in Howe, Pollak, and Wales (1979). 
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2
1 2 1 3

1 3 2
2 2

1 3
2

2

3
3

2

( ) 1 ( ) ( ) ( )( ) ( ( )) ( ) ;
( ) ( )

2 ( ) ( )( ) ; and 
( )

1 ( )( ) .
( )

β β β βθ β β
β β

β β
β

β
β

⎡ ⎤∂ ∂ ∂
= + + +⎢ ⎥∂ ∂ ∂⎣ ⎦

∂
= −

∂

∂
=

∂

p p p pp p p
p p p p p

p pp
p p

pp
p p

α

α

α

 

This establishes a fundamental, poorly known and less well-understood, relationship 
among these models. That is, the Linear Expenditure System (LES), QES, Almost Ideal 
System (AIS; Deaton and Muellbauer, 1908), Quadratic Almost Ideal System (QAIS; 
Banks, Blundell, and Lewbel, 1997), aggregable translog (Jorgenson, Lau and Stoker, 
1980, 1981, 1982; Jorgenson and Slesnick, 1984, 1987; Lewbel, 1989b; Jorgenson, 
1990), and most other common empirical models are all special cases of equation (7). 

Throughout the discussion here, a bold subscript p denotes a vector of partial 
derivatives with respect to prices, we use a consistent set of notation to replace the 
various notations employed in the original articles, and we omit arguments of almost all 
functions to simplify the notational burden. 

In van Daal and Merkies (1989), equation (2), group terms in 1
2β
− , 

 ( )1 2 2
2 3 2 1 3 1 3 1 2 1 2 32m m mβ β β β β β β β β β θβ β−= + − + − + +p p p p p p pq . (8) 

Regroup terms in the parentheses, 

 1 2
2 1 3 1 2 1 2 3( ) ( )m mβ β β β β β θβ β− ⎡ ⎤= − + − + +⎣ ⎦p p p pq ,  

gather terms in 3β p , divide by 2β , and isolate the terms involving 3β p  on the right, 

 
2

1 1 2 1
32

2 22

( )m mβ β β β θ β
β ββ

⎡ ⎤− − ⎛ ⎞−⎢ ⎥− = +⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

p p
p

q
. (9) 

To obtain (7), note that the left-hand side of (9) can be written in terms of the expenditure 
function as 

 1 1 21
2

2 2 2

( ( )) ( ( , ) ( )) ( )( , ) ( )
( ) ( ) ( )

e ue u β β ββ
β β β

− −⎛ ⎞∂ −
= −⎜ ⎟∂ ⎝ ⎠

p pq p p p pp p
p p p p

.  
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In Lewbel (1990), case iv, move 1mττ −  to the left-hand side, define 1
2 2( ) ( ) τβ β≡p p  

and 1 1 2( ) ( ) ( )β β β≡p p p , 

 2 32 2
2 1 1 2 3 2 3 1 3

2 2
2 .m m mτ τ τ τ τ τ

τ

τβ β
τ β β β β β θβ β β β

β β
−1 ⎛ ⎞

= + + + − +⎜ ⎟⎜ ⎟
⎝ ⎠

p p
p p p pq  (10) 

Group terms in 3 ,β p  divide by 2 ,τβ  and isolate the terms involving 3β p  on the right, 

 
2

2 1 2
1 31

2 2 2

mm mττ τ τ

τ τ τ

τ βτ β ββ θ β
β β β

−1

+

⎡ ⎤⎛ ⎞−⎢ ⎥− − = +⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

p
p p

q . (11) 

The left-hand side can be written in terms of the expenditure function as 

 2
1 1

2 2 2

( , ) ( )( , ) ( , )( ) ( )
( ) ( ) ( )

e ue u e u ττ τ

τ τ τ

τ βτβ β
β β β

−1

+1

⎛ ⎞∂
− = − −⎜ ⎟∂ ⎝ ⎠

p
p

p pp p qp p
p p p p

. (12) 

Redefine 1( )β p  and 2( )β p  as 1 1 2( ) ( ) ( )τβ β β≡p p p  and 2 2( ) ( ) ,τβ β≡p p  and substitute 
these definitions into (11) and (12) to obtain (7). 

In Lewbel (1990), case v, fix a sign error and typographical error (see Lewbel, 1990, 
p. 297 to see why these minor corrections are needed) and move 1/m to the left, 

3 2 1 2 3 1 32 2
1 1 2 3

2 2 1 2 2

2 ln
(ln ) ln ln (ln ) .m m

m
β β β β β β β

β β θβ β
β β β β β

−⎛ ⎞
= − + + + +⎜ ⎟

⎝ ⎠
p p p p p p

p
q  (13) 

Group terms in 3β p , divide by 2β , and isolate the terms involving 3β p  on the right, 

 
2

1 1 2 1
32

2 1 2 22

ln( ) ln( )m m
m

β β β β θ β
β β β ββ

⎡ ⎤⎛ ⎞
⎢ ⎥− − = +⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

p p
p

q . (14) 

To obtain (7), write the left-hand side of (14) in terms of the expenditure function as 

 [ ] [ ]1 1 21
2

2 2 1 2 2

( ) ln ( , ) ( ) ( )ln ( , ) ( )
( ) ( ) ( , ) ( ) ( ) ( )

e ue u
e u

β β ββ
β β β β β

⎛ ⎞∂
= − −⎜ ⎟∂ ⎝ ⎠

p pp p p pp p q
p p p p p p p

.  

This completes the algebraic derivations that are required to reduce each of these 
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models to the compact form of equation (7). Given this unifying representation, a change 
of variables to [ ]1 2( , ) ( ( , )) ( ) ( )z u f e u β β= −p p p p , simplifies (7) even further to 

 2
3 3( , ) ( ( )) ( , ) ( ) .z u z uθ β β⎡ ⎤∂ ∂ = + ∂ ∂⎣ ⎦p p p p p p  (15) 

This is useful for characterizing the solutions for the indirect preferences of these models. 
We will return to this result, and make extensive use of it, in section 6 below.  

It is worth emphasizing that equation (7) – equivalently, equation (15) – follows 
purely from symmetry. That is, the argument by van Daal and Merkies (1989) leading to 
their equation (2) – equivalently, equation (8) above – hinges only on symmetry. Also, to 
obtain his cases iv and v – equivalently, equations (10) and (13) above – Lewbel (1990) 
appeals directly to the results of van Daal and Merkies (1989). In fact, any demand 
system that reduces to (6) reduces to (15). Hence, the solution to this system of Ricatti 
partial differential equations recovers the indirect preferences for all models with the 
multiplicatively separable and additive structure of Gorman (1981). 

4. The Role of Homogeneity 

Gorman (1981) noted that the class of models he analyzed is somewhat less interesting 
because of the restrictions due to the appearance of nominal income in the { ( )}kh m . In 
fact, it is shown in the next section that symmetry, 0º homogeneity and adding up, and the 
fact that the demands are real-valued imply that ( ) {ln , , }y f m m m mκ ιτ= ∈  in equation 
(6), where ,κ ∈  ,τ +∈  and 1ι = − . This is a severe limitation on the admissible 
choice of functional form for the income variables in a Gorman system. Lewbel (1989a) 
notes in a footnote that the essence of the Gorman (1981) restrictions on functional form 
can be derived purely on the basis of 0º homogeneity. It is worthwhile to demonstrate this 
fact for a single demand equation. 

Proposition 1: Given the single demand equation with Gorman’s multiplicatively 
separable and additive form, 1 ( ) ( )K

k kkq h mα
=

= ∑ p , for K linearly independent 

functions of prices and K linearly independent functions of income; then q is 0° 
homogeneous in ( , )mp  only if each income function is either:  

(i) ,mκ  κ ∈ ; 

(ii) (ln ) ,jm mκ  ,κ ∈  {1,..., }j K∈ ; 

(iii) sin( ln ),m mκ τ  cos( ln ),m mκ τ  ,κ ∈  ,τ +∈  appearing in conjugate pairs 
with the same { , }κ τ  in each pair; or  
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(iv) (ln ) sin( ln )jm m mκ τ , (ln ) cos( ln )jm m mκ τ , ,κ ∈  {1,...,[½ ]},j K∈  K≥4, 
where [½ ]K  is the largest integer ≤½K, and ,τ +∈  appearing in conjugate 
pairs for each { , , }jκ τ  triple.  

Proof: The Euler equation for 0° homogeneity is: 

 
1 1

( ) ( ) ( ) ( ) 0.
K K

k
k k k

k k
h m h m mα α

= =

∂ ′+ =
∂∑ ∑p p p
pT

 (16) 

If K=1 and 1( ) 0h m′ = , this reduces to 1( ) 0α∂ ∂ =p p pT , so that 1( )h m c=  and 1( )α p  is 
0º homogeneous. Absorb the constant c into the price index and set 0κ =  to obtain a 
special case of (i).  

If either K=1 and 1( ) 0h m′ ≠  or K≥2, then neither sum in (16) can vanish without 
contradicting the linear independence of the { ( )}kα p  or the { ( )}kh m . In this case, write 
the Euler equation as 

 1

1

( ) ( )
1.

( ) ( )

K
k kk

K
k kk

h m m

h m

α

α
=

=

′
= −

⎡ ⎤∂ ∂⎣ ⎦

∑
∑

p

p p pT
  

Since the right-hand side is constant, we must be able to recombine the left-hand side to 
be independent of both p and m. In other words, the terms in the numerator must 
recombine in some way so that it is proportional to the denominator, with –1 as the 
proportionality factor. Clearly, if these two functions are proportional, their functional 
forms must be the same. Linear independence of the { ( )}kh m  then implies that each 

( )kh m m′  must be a linear function of the { ( )}kh m  with constant coefficients, 

 ,1( ) ( ), 1, , .K
k kh m m c h m k K

=
′ = =∑  (17) 

This is a complete system of K linear, homogeneous, ordinary differential equations 
(odes), of the form commonly known as Cauchy’s linear differential equation. To prove 
the proposition, first we convert (17) to a system of linear odes with constant coefficients 
through a change of variables from m to lnx m=  (Cohen, 1933, pp. 124-125). Then we 
identify the complete set of solutions for this new system of odes. 

Since ( ) xm x e=  and ( ) ( )m x m x′ = , defining ( ) ( ( )), 1,..., ,k kh x h m x k K≡ =  and 
applying this change of variables yields:  
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 ,1( ) ( ), 1, , .K
k kh x c h x k K

=
′ = =∑  (18) 

In matrix form, this system of linear, first-order, homogeneous odes is ( ) ( )x x′ − =h Ch 0 , 
and the characteristic equation is 0λ− =C I . This is a Kth order polynomial in λ, for 
which the fundamental theorem of algebra (Gauss, 1799) implies that there are exactly K 
roots. Some of these roots may repeat and some may be complex conjugate pairs. Let the 
characteristic roots be denoted by , 1, , .k k Kλ =  

By repeated differentiation and substitution of any one the odes in (18), the system of 
K first-order odes is equivalent to a single linear homogeneous ode of order K. The 
general solution to a linear homogeneous ode of order K is the sum of K linearly 
independent particular solutions (Cohen, 1933, Chapter 6; Boyce and DiPrima, 1977, 
Chapter 5).8 

Let there be 0R ≥  roots that repeat and reorder the income functions as necessary in 
the following way. Label the first repeating root (if one exists) as λ1 and let its 
multiplicity be denoted by M1≥1. Let the second repeating root (if one exists) be the 
M1+1st root. Label this root as λ2 and its multiplicity as M2≥1. Continue in this manner 
until there are no more repeating roots. Let the total number of repeated roots be 

1 .R
kkM M

=
= ∑  Label the remaining 0K M− ≥  unique roots as λk for each 

1, , .k M K= +  Then the general solution to (18) can be written as 

 ( 1)
1 1 1( ) , 1, , .r r

R M Kx x
k k kr Mh x d x e d e k Kλ λ−

= = = +
⎡ ⎤= + =
⎣ ⎦∑ ∑ ∑  (19) 

Substitute (19) into the demand equation for q to obtain 

 

( 1)
1 1 1 1

( 1)
1 1 1 1 1

( 1)
1 1 1

( ) (ln )

( ) (ln ) ( )

( ) (ln ) ( ) .

r r

r r

r kr

K R M K
k k kk r M

R M K K K
k k k kr k M k

R M Kk
kr kr k k M

q d m m d m

d m m d m

m m m

λ λ

λ λ

λλ

α

α α

α α

−
= = = = +

−
= = = = + =

−
= = = +

⎡ ⎤= +
⎣ ⎦

⎡ ⎤ ⎡ ⎤= +
⎣ ⎦ ⎣ ⎦

≡ +

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

p

p p

p p

 (20) 

                                                 
8 Here, linear independence of the K functions, 1{ , , }Kf f  of the variable x means that there is no non-
vanishing K–vector, 1( , , )Ka a  such that 1 1 0K Ka f a f+ + =  for all values of the variables in an open 
neighborhood of any point 1[ , ( ), , ( )].Kx f x f x  Cohen (1933), pp. 303-306, gives necessary and sufficient 
conditions for this property.  
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The terms in the first double sum generate cases (i) and (ii), and by de Moivre’s theorem 
( e cos( ) sin( )x x x xι ι± = ± ∀ ∈ ), case (iv) if K≥4 and a pair of complex conjugate roots 
repeats. The terms in the sum on the far right give case (i) for unique real roots and, again 
by de Moivre’s theorem, case (iii) for unique pairs of complex conjugate roots.          ■ 

Note that this result on the set of admissible functional forms hinges entirely on 0º 
homogeneity – and not on symmetry or adding up. Because only one demand equation is 
analyzed, neither symmetry nor adding up applies to the above argument. This result is 
crucial to understanding one of the key properties of Gorman systems. It is because of the 
multiplicatively separable and additive structure of a Gorman system defined in terms of 
nominal income that 0º homogeneity in ( , )mp  only can be achieved by multiplication 
(via power functions) or addition (via logarithmic functions). 

5. The Role of Adding Up 

Recalling equation (1), applying adding up to a Gorman system implies 

 
1 1

( ) ( ) ( )
K K

k k k k
k k

m h m a h m
= =

= =∑ ∑p pαT ,  

where the 1{ }K
k ka =  are absolute constants, independent of (p,m), because the function on 

the left is identically m for all .∈p P  Linear independence of the { }kh  therefore implies 
that one and only one income function is the identity, ( )kh m m≡ , the associated vector of 

price functions satisfies ( ) 1k ≡p pαT , and all other vectors of price functions must satisfy 

( ) 0, k≡ ≠p pαT . This is a special case of the restrictions on functional form due to 0º 
homogeneity. The reason for this added restriction is that the expenditure function is 1º 
homogeneous in p. This implies both adding up and, by the derivative property of a 1º 
homogeneous function, 0º homogeneity of Marshallian demands in ( , )mp  and Hicksian 
demands in p. Since 0º homogeneity is not sufficient for adding up, one added restriction 
on the functional forms for the income terms is implied when adding up is imposed on 
top of 0º homogeneity. 

A final restriction on the functional forms for the income terms is a consequence of 
Slutsky symmetry, 0º homogeneity, adding up, and the fact that demands are real-valued, 
all taken together. In particular, when income is raised to a power, the exponent either 
must be purely real, mκ , or purely complex, mιτ . To see this, consider a full rank three 
system that has been reduced by symmetry to 

 [ ] [ ] [ ] 2
0 1 0 1 0 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )f m f m f mι ι ι′ = + + + + +q p p p p p pα α β β γ γ , (21) 
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where 0 1 0 1 0 1 : n→α ,α , β , β ,γ ,γ P  and ( )f m mκ ιτ+= .9 

Because ( ) ( ,f m mκ ιτκ ιτ + −1′ = + )  substitute mκ ιτ+  for ( )f m  and ( mκ ιτκ ιτ + −1+ )  for 
( )f m′  in (21) and solve for the vector of quantities demanded to obtain 

 1 ( 1 (0 1 0 1 0 1( ) ( ) ( ) ( ) ( ) ( )m m mκ ιτ κ ιτι ι ι
κ ιτ κ ιτ κ ιτ

− + ) + + )+ + +⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠
p p p p p pq α α β β γ γ .  

Applying de Moivre’s theorem then gives 

 ( )

( )

0 1

1 10 1 0 1

1 10 1 0 1

( ) ( )

( ) ( ) ( ) ( ) cos ln

( ) ( ) ( ) ( ) sin ln .

m

m m m

m m m

κ κ

κ κ

ι
κ ιτ

ι ι τ
κ ιτ κ ιτ

ι ιι τ
κ ιτ κ ιτ

− +

+ −

+⎛ ⎞= ⎜ ⎟+⎝ ⎠

+ +⎡ ⎤⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟⎢ ⎥+ +⎝ ⎠ ⎝ ⎠⎣ ⎦

+ +⎡ ⎤⎛ ⎞ ⎛ ⎞+ −⎜ ⎟ ⎜ ⎟⎢ ⎥+ +⎝ ⎠ ⎝ ⎠⎣ ⎦

p pq

p p p p

p p p p

β β

α α γ γ

γ γ α α

 (22) 

Therefore, for the demands to be real-valued, each vector of price functions in (22) must 
have real elements. 

First, this implies 0 1 ( )ι κ ιτ+ = +β β β  for some : n→β P  such that ( ) 1≡p pβT . 
Second, neither 0 1 ( )ι κ ιτ+ = +α α α  nor 0 1 ( )ι κ ιτ+ = +γ γ γ  can be true for any pair of 

vector-valued functions, , : n→α γ P . Otherwise, the elements in the vector of price 
functions that pre-multiplies ( )sin ln mτ  are complex-valued. Therefore, if 0τ ≠ , then 

0κ = , since sin( ln )mτ  and cos( ln )mτ  are linearly independent 0τ∀ ≠ . Conversely, if 
0κ ≠ , then 0τ = , since 1m κ−  and 1m κ+  are linearly independent 0κ∀ ≠ . Third, if 
0τ ≠  (so that 0κ = ), then since 1 ι ι= −  and 2 1ι = − , it follows that 1 1 0 0( )ι+ − +α γ α γ  

and 0 0 1 1( )ι− + − −α γ α γ  must have real elements, identically in p. This implies 0 0= −γ α  
and 1 1=γ α , so that  

                                                 
9 It is sufficient to consider full rank three for our purposes since complex roots always appear as conjugate 
pairs and the maximum rank of any Gorman system is three. However, Gorman (1981) shows that this 
property holds for all rank three systems, including those with reduced rank and 3K > . The argument here 
can be extended to the reduced rank case through careful attention to several technical details. It also can be 
shown that the specification for the complex-valued vectors of price functions in (21) is without loss of 
generality. 
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 0 1 2( ) ( ) cos( ln ) ( ) sin( ln )m m m m mτ τ= + +q p p pα α α ,  

where 0 ≡α β,  1 12 ,τ=α α  and 2 02 .τ= −α α  This is the trigonometric functional form 
found by Gorman (1981), for which the indirect utility function was obtained by Lewbel 
(1988, 1990). Since the sine and cosine functions are periodic, with a complete period on 
the interval [0,2 ]π , no loss in generality results from restricting τ  to be non-negative. 
However, 0κ =  is possible in the case of a purely real exponent, and nothing 
mathematically precludes either a positive or negative value of κ . 

Summarizing, the following results have been obtained: (1) the reduction of any full 
rank Gorman system to a system of polynomial partial differential equations that is at 
most quadratic in ( )f m  is due to Slutsky symmetry; (2) the restriction on the functional 
form of ( )f m  to logarithmic and power functions is due to 0º homogeneity; (3) the 
restriction that one income function is m is due to adding up; and (4) if ( )f m  is a power 
function, then the restriction that the exponent must be purely real or purely complex is 
jointly due to symmetry, 0º homogeneity, adding up, and real-valued demands. 

5. Deflated Income Systems 

In response to the functional form restrictions found by Gorman (1981), Lewbel (1989a) 
introduced the deflated income Gorman system (hereafter a Lewbel system), 

 
1

( ) ( ( , ) ( )),K
k kk

h e u π
=

= ∑q p p pα  (23) 

with : ,nπ ++ ++→  ,π ∞∈C  strictly positive-valued, increasing, 1° homogeneous, and 
weakly concave in p. This structure maintains exact aggregation in deflated income. That 
is, the real moments of income can be used to estimate aggregate demand functions.  

To relate Lewbel systems to Gorman systems, first note that adding up implies 

 
1

( ) ( ( )).K
k kk

m h m π
=

≡ ∑ p p pαT   

As a result, linear independence of the { }kh  implies that one and only one must be 
( )m π p  and the associated vector of price functions must be ( ) .π∂ ∂p p  WLOG, let this 

be the first one, and bring it to the left-hand side of (23) to obtain, 

 
2

( ) ( ) ( ( ))
( )

K
k kk

m h mπ π
π =

∂
− =

∂ ∑pq p p
p p

α . (24) 

Defining the deflated expenditure function by ( , ) ( , ) ( )e u e u π≡p p p , it follows that 
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2

( , ) ( ) ( ( , ))K
k kk

e u h e u
=

∂ ∂ = ∑p p p pα , (25) 

where , 2, , .k k k Kπ≡ =α α  This is multiplicatively separable between p and e  and 
has the additive structure of a Gorman system. In this system, however, the only issue is 
symmetry because both 0º homogeneity and adding up are satisfied as long as the vectors 
of price functions satisfy ( ) 0k =p pαT  and ( ) ( ) 0k kλ λ≡ ∀ >p pα α , 2, , .k K∀ =  

Hence, applying Lie (1880) to a full rank Lewbel system reduces it to the Ricatti 
equations in (6) but now with ( , ) ( ( , ))y u f e u≡p p , ,f ∞∈C  and ( ) 0f e′ ≠ . A Lewbel 
system can achieve rank four and the restriction on the functional form of ( )f e  now has 
bee eliminated. These properties are discussed in more detail below. 

6. The Common Structure of Gorman and Lewbel Systems 

Ricatti partial differential equations of the form (6) have been studied extensively in the 
mathematical theory of differential equations. Recalling equation (15), a key property of 
all full rank Gorman and Lewbel systems is the following. 

Proposition 2: Let : nz ++ × → , :θ → , and : nη ++ +→ , , , ,z θ η ∞∈C  
satisfy (15) with ( )η∂ ∂ ≠p p 0 . Then ( , ) ( ( ), )z u w uη≡p p , with ( , )w x u  
satisfying the partial differential equation 2( , ) ( ) ( , )w x u x x w x uθ∂ ∂ = + . 

Proof: Differentiate both sides of the system of partial differential equations, 

 2( , ) ( ( )) ( , ) ( ) ,z u z uθ η η⎡ ⎤∂ ∂ = + ∂ ∂⎣ ⎦p p p p p p   

with respect to pT  to obtain, 

 

2

2
2

( , ) ( ) ( )( ( ))

( ) ( , ) ( )( ( )) ( , ) 2 ( , ) .

z u

z uz u z u

η ηθ η

η ηθ η

∂ ∂ ∂′=
∂∂ ∂ ∂

∂ ∂ ∂⎡ ⎤+ + +⎣ ⎦ ∂∂ ∂ ∂

p p pp
pp p p

p p pp p p
pp p p

T T

T T

  

Hence, ( ) ( )z η∂ ∂ × ∂ ∂p p T  is symmetric, which implies ( , ) ( ( ), )z u w uη=p p  (Goldman 
and Uzawa, 1964, Lemma 1). 

Now differentiate the separable function with respect to p to obtain, 
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 2( , ) ( ( ), ) ( ) ( )( ( )) ( ( ), ) ,z u w u w uη η ηθ η η
η

∂ ∂ ∂ ∂⎡ ⎤= ⋅ = +⎣ ⎦∂ ∂ ∂ ∂
p p p pp p
p p p

 

which together with ( )η∂ ∂ ≠p p 0  implies 2( , ) ( ) ( , )w x u x x w x uθ∂ ∂ = + .            

The formal mathematical definition of :w + × →  is 

 ( ) 2
0

, if 1,2,or 3or 4 and ( ) 0,
( ( ), )

[ ( ) ( , ) ] , if 3or 4 and ( ) 0,

u K K x
w u

u x w x u dx K x
η

θ
η

θ θ

′= = =⎧
⎪= ⎨

′+ + = ≠⎪⎩ ∫
pp  (26) 

subject to (0, )w u u=  and 2(0, ) (0)w u x uθ∂ ∂ = + .10 The function w plays an important 
role in the indirect preferences for all Gorman and Lewbel systems. We can now prove 
the following result (LaFrance and Pope, 2008). 

Proposition 3: Let : nπ ++ ++→ , π ∞∈C , be strictly positive-valued, 1° 

homogeneous, increasing, and concave; let : ,nη ++ +→  ,η ∞∈C  be positive-

valued, 0° homogeneous; let , { , , },n x y x yα β γ δ ι++, , : → = + ∈  

,α β γ δ ∞, , ∈C , be 0° homogeneous, satisfying 1αδ βγ− ≡ ; and let :f → , 
f ∞∈C , 0f ′ ≠ . Then the expenditure function for any full rank Gorman or 

Lewbel system exists if and only if it is a special case of 

 1 ( ) ( ( ), ) ( )( , ) ( )
( ) ( ( ), ) ( )

w ue u f
w u

α η βπ
γ η δ

− ⎛ ⎞+
= ⋅ ⎜ ⎟+⎝ ⎠

p p pp p
p p p

, (27) 

where ( ( ), )w uη p  is defined by equation (26) above. 

                                                 
10 The change of variables ( , ) ( , ) / ( , )w x u v x u x v x u= −∂ ∂  converts the Riccati partial differential equation 

in w to a linear second-order differential equation 2 2( , ) ( ) ( , ) 0v x u x x v x uθ∂ ∂ + = . This requires two initial 
conditions. The two chosen here are a convenient normalization for the utility index and guarantee 
smoothness of w at 0x =  for all u. Linear, second-order differential equations with non-constant 
coefficients generally do not have simple solutions. However, a convergent infinite series of simple 
functions can be found in many cases (Boyce and DiPrima, 1977, chapter 4). 

The first line of (26) is a normalization of the utility index that can be made WLOG when 1,2K =  and 
when 3,4K =  and θ  is constant. Note that 0,θ ≠  whether constant or not, only can occur in a Gorman 
system if 3K =  and in a Lewbel system if 4.K =  
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Proof: First consider sufficiency by differentiating (27) and applying Hotelling’s lemma. 
To make the notation as compact as possible, let a bold subscript p denote a vector of 
partial derivatives with respect to prices, and suppress prices and the utility index as 
arguments to yield (after considerable algebra), 

 

2 2

2 2 2

( ) ( ) ( ) ( )

( )

2( ) ( )

( ) ( ) .

f e f e e

f e

f e

π π π

αβ βα α θ β η

βγ γβ δα αδ αγθ βδ η

γδ δγ α θ δ η

′ ⎡ ⎤∂ ∂ = −⎣ ⎦

⎡ ⎤= − + +⎣ ⎦

⎡ ⎤+ − + − − +⎣ ⎦

⎡ ⎤+ − + +⎣ ⎦

p

p p p

p p p p p

p p p

p q

 (28) 

This has precisely the quadratic structure of equation (6) with appropriate definitions for 
each of the vector-valued price functions. Thus, the representation given by the 
proposition generates demand systems that have the multiplicatively separable and 
additive structure of Gorman and Lewbel demand systems. 

Next, make the substitution m eπ =  and rearrange (28) to solve for the vector of 
quantities demanded on the left-hand side to obtain  

 

2 2

2
2 2

1( ) ( )
( )

( )2( )
( )

( )( ) .
( )

m
f m

f m
f m

f m
f m

π π π αβ βα α θ β η
π

πβγ γβ δα αδ αγθ βδ η
π

πγδ δγ α θ δ η
π

⎧⎡ ⎤= × + − + +⎨⎣ ⎦ ′⎩

⎡ ⎤+ − + − − +⎣ ⎦ ′

⎫
⎡ ⎤+ − + + ⎬⎣ ⎦ ′ ⎭

p p p p

p p p p p

p p p

q

 (29) 

Note that there are a total of four income terms on the right-hand side of (29) with 
four associated price function vectors and both groups of four functions can be linearly 
independent. This implies a maximum rank of four. But, defining ,m m π=  whenever 

( ) {ln , , },f m m m mκ ιτ∈  either ( ) ( )f m f m′  or 1 ( )f m′  is proportional to .m  Because 
the first term on the right is automatically proportional to ,m  such a choice for f reduces 
the number of linearly independent income functions by one, resulting in a maximum 
rank of three in a Gorman system. Thus, a Lewbel system has rank equal to one plus the 
rank of an otherwise identical Gorman system if and only if ( ) {ln , , }f m m m mκ ιτ∉ ; that 
is, it is not one of the functional forms found by Gorman. This shows precisely how rank 
can increase by one additional linearly independent vector of price functions and one 
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linearly independent income function in a Lewbel system. Thus, the rank of any demand 
system obtained from the set of expenditure functions defined in the proposition is at 
most four for an arbitrary choice for f, and at most three whenever f is chosen to be a 
member of the Gorman class of functional forms. 

To prove necessity, the representation result for all Gorman systems is derived first, 
followed by all Lewbel systems. 

Gorman systems 

Full rank one systems can always be written as ( , ) ( )e u uπ =p p , ( )π p  positive valued, 
1° homogeneous, increasing, and concave due to adding up and ordinal utility, which 
together imply that ( )f m m= , WLOG. 

From the results of Muellbauer (1975, 1976), we know that any full rank two Gorman 
system must be a PIGL (i.e., ( )f m mκ= ) or a PIGLOG (i.e., ( ) lnf m m= ) demand 
model. For the full rank two PIGL model, we have 

 1 2( , ) [ ( )] ( )v m mκ β β= −p p p ,  

with 1( )β p  and 2( )β p  κ  homogeneous. Rewrite this in terms of deflated expenditure, 

 ( , ) ( ),
( )

e u u
κ

β
π

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

p p
p

  

with 1
2( ) ( ) κπ β≡p p  1° homogeneous, 1 2( ) ( ) ( )β β β≡p p p  0° homogeneous, and the 

implicit definitions 1α δ= =  and 0γ =  to obtain (27). 

For the full rank two PIGLOG model, we have 

 1 2( , ) [ln ( )] ( )v m m β β= −p p p ,  

where 1 1( ) ln ( )β β=p p , with 1( )β p  1° homogeneous, 2( )β p  0° homogeneous. Rewrite 
this in terms of deflated expenditure, 

 2
1

( , )ln ( )
( )

e u uβ
β

⎛ ⎞
=⎜ ⎟

⎝ ⎠

p p
p

.  

Define 2α β= , β γ= = 0 , 21δ β= , and 1π β=  to obtain (27). 
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For a full rank three system, three functional forms, ( ) {ln , , }f m m m mκ ιτ∈ , and four 
cases for θ  must be considered, ( )xθ λ≡ , a positive, zero, or negative constant, and 

( ) 0xθ′ ≠ . When ( ) { , ln }f m m mκ∈ , κ ∈ , and ( )xθ λ≡ , a constant, the van Daal and 
Merkies (1989) and Lewbel (1987, 1990) implicit solution for indirect preferences is 

 
[ ]3 1( ) ( ( , )) ( )

22 ( )
(1 )

f e u dw u
w

β β

β
λ

− −

= +
+

⌠
⎮
⌡

p p p

p . (30) 

Six cases of (30) must be put in the form of the proposition: 0; 0; and 0;λ λ λ> = <  for 
each of ( )f m mκ=  and ( ) lnf m m= . 

Extended PIGL11 

For the extended PIGL and 0λ > , use, 2 1 1
0

(1 ) tan ( ).
x

s ds x− −+ =∫  Let 2 0λ μ= >  and 

s wμ= , so that (30) becomes 

 
3 1( ) [ ( , ) ( )]

1 3
22 2

1

1 ( )tan ( ) ( ).
(1 ) ( , ) ( )

e u dw c u
w e u

κβ β

κ
μβ β

μμ β

− −
− ⎧ ⎫−

= = +⎨ ⎬
+ −⎩ ⎭

⌠
⎮
⌡

p p p p p
p p

 (31) 

The functions 1( )β p  and 3( )β p  are κ  homogeneous while 2( )β p  is 0° homogeneous. 

Define 1/
1 1( ) ( ) κβ β≡p p  and 3 3 1( ) ( ) ( )β β β≡p p p , so that 1( )β p  is 1° homogeneous, 

while 3( )β p  is 0° homogeneous. Apply the normalization 1 1( ) tan ( ),c u uμ− −=  the rule 
for the tangent of the sum of two angles, tan( ) (tan tan ) (1 tan tan )x y x y x y+ = + − , and 
the identities tan( ) sin( ) cos( )x x x= , and tan( ) tan( )x x− = −  to rewrite (31) as  

 [ ] [ ]
[ ] [ ]

2 23

2 21

cos ( ) sin ( )( )
sin ( ) cos ( )[ ( , ) ( )] 1

u
ue u κ

μβ μβμβ
μβ μββ

⋅ +−
=
− ⋅ +−

p pp
p pp p

. (32) 

Rearrange terms to obtain 

 2 3 2 2 3 2

2 21

cos( ) sin( ) sin( ) cos( )
.

cos( ) sin( )
ue
u

κ μβ μβ μβ μβ μβ μβ

μβ μββ

⎡ ⎤ ⎡ ⎤+ ⋅ + −⎛ ⎞ ⎣ ⎦ ⎣ ⎦=⎜ ⎟ ⋅ +⎝ ⎠
 (33) 

                                                 
11 Recall that the QES is a special case of the extended PIGL model with 1κ = . 
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For these implicit definitions of { }α β γ δ, , , , we have 3.αδ βγ μβ− =  Therefore, define 
{ , }α β γ δ π, , ,  as follows: 

 

( ) ( )

( ) ( )

( )

( )

1

2 3 2 3

2 3 2 3

2 3

2 3

( ) ( );

( ) cos ( ) ( )sin ( ) ( ) ;

( ) sin ( ) ( )cos ( ) ( ) ;

( ) cos ( ) ( ) ;  and

( ) sin ( ) ( ) .

π β

α μβ μβ μβ μβ

β μβ μβ μβ μβ

γ μβ μβ

δ μβ μβ

=

⎡ ⎤= +⎣ ⎦

⎡ ⎤= −⎣ ⎦

=

=

p p

p p p p p

p p p p p

p p p

p p p

 

Since 1β  is 1° homogeneous, while 2 3,β β  are 0° homogeneous, π  is 1° homogeneous, 
,α β γ δ, ,  are 0° homogeneous, 1αδ βγ− = , and (33) is equivalent to  

 ( , ) ( ) ( )
( ) ( ) ( )

e u u
u

κ
α β

π γ δ
⎛ ⎞ ⋅ +

=⎜ ⎟ ⋅ +⎝ ⎠

p p p
p p p

. (34) 

Note that the new definitions for {α β γ δ, , , }  simply rescale these price indices with 
no change in the indirect preferences or the demand equations. The normalization for the 
utility index, i.e., the arbitrary constant of integration, also can be freely chosen in any 
way that is most convenient. These properties are exploited as necessary in each of the 
remaining cases. 

For the case where 0λ = , 

 3 1( ) [ ( , ) ( )] 3
2

1

( ) ( ) ( )
( , ) ( )

e u
dw c u

e u

κβ β

κ
β β

β
− − −

= = +
−∫

p p p p p
p p

.  

Define 1( )β p  and 3( )β p  in the same way as above, apply the normalization ( )c u u= , 
and rearrange terms to obtain, 

 2 3

21

( , ) ( ) ( ) .
( )( )

e u u
u

κ
β β

ββ
⎛ ⎞ + −

=⎜ ⎟ +⎝ ⎠

p p p
pp

  

For these implied definitions of { , }α β γ δ, , , i.e., 1,α γ= =  2 3β β β= − , and 2,δ β=  we 

have 3.αδ βγ β− =  Therefore, define { , }α β γ δ π, , ,  as follows: 
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1

3

2 3 3

2 3

( ) ( );

( ) ( ) 1 ( ) ;

( ) [ ( ) ( )] ( ) ;  and

( ) ( ) ( ) .

π β

α γ β

β β β β

δ β β

=

= =

= −

=

p p

p p p

p p p p

p p p

 

Then we again obtain (34). 

Next, let 2 0λ μ= − <  in (30), so that 

 
3 1( ) [ ( , ) ( )]

1 3
22 2

1 3

1 ( , ) ( ) ( )ln ( ) ( ).
2(1 ) ( , ) ( ) ( )

e u dw e u c u
w e u

κβ β κ

κ
β μβ β

μμ β μβ

− − ⎧ ⎫− −
= = +⎨ ⎬

− − +⎩ ⎭

⌠
⎮
⌡

p p p p p p p
p p p

 

Define 1( )β p  and 3( )β p  in the same way as in the previous two cases and apply the 
normalization ( ) ln( ) 2c u u μ=  to rewrite this as 

 22 ( )1 3

1 3

[ ( , ) ( )] 1 ( ) e .
[ ( , ) ( )] 1 ( )

e u u
e u

κ
μβ

κ
β μβ

β μβ

− −
= ⋅

− +
pp p p

p p p
  

Rearranging terms gives 

 
2

2

2 ( )
3 3

2 ( )
1

( , ) [1 ( )]e [1 ( )] .
( ) e 1

e u u
u

κ μβ

μβ
μβ μβ

β
⎛ ⎞ − ⋅ − +

=⎜ ⎟ ⋅ −⎝ ⎠

p

p
p p p

p
 (35) 

For these implicit definitions of {α β γ δ, , , } , we have 22
32 e μβαδ βγ μβ− = . Therefore, 

define { , }α β γ δ π, , ,  as follows: 

 

2

2

2

2

1

( )
3 3

( )
3 3

( )
3

( )
3

( ) ( );

( ) [1 ( )]e 2 ( ) ;

( ) [1 ( )]e 2 ( ) ;

( ) e 2 ( ) ; and

( ) e 2 ( ) .

μβ

μβ

μβ

μβ

π β

α μβ μβ

β μβ μβ

γ μβ

δ μβ

−

−

=

= −

= − +

=

= −

p

p

p

p

p p

p p p

p p p

p p

p p
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Then we once again obtain (34). 

Extended PIGLOG 

The same three cases for λ apply to the extended PIGLOG, except that ln m  replaces mκ  
everywhere, 1 1( ) ln )β β= (p P  with 1( )β p  1° homogeneous, and both 2( )β p  and 3( )β p  
are 0° homogeneous.  

When 2 0λ μ= > , (31) becomes 

 
3 1( ) ln[ ( , ) ( )]

1 3
22 2

1

1 ( )tan ( ) ( ).
ln[ ( , ) ( )](1 )

e u dw c u
e uw

β β μβ β
μ βμ

−
− ⎧ ⎫−

= = +⎨ ⎬
+ ⎩ ⎭

⌠
⎮
⌡

p p p p p
p p

  

Applying the same trigonometric rules and the normalization 1 1( ) tan ( )c u uμ− −= , this 
can be rewritten as  

 [ ] [ ]
[ ] [ ]

2 23

2 21

cos ( ) sin ( )( ) ,
sin ( ) cos ( )ln[ ( , ) ( )]

u
ue u

μβ μβμβ
μβ μββ

⋅ +−
=
− ⋅ +

p pp
p pp p

  

Rearranging terms yields 

 [ ] [ ]
[ ] [ ]

2 2
3

2 21

sin ( ) cos ( )( , )ln ( ) .
cos ( ) sin ( )( )

ue u
u

μβ μβ
μβ

μβ μββ
⎛ ⎞⋅ −⎛ ⎞

= ⎜ ⎟⎜ ⎟ ⋅ +⎝ ⎠ ⎝ ⎠

p pp p
p pp

  

For these implicit definitions for { , , ,α β γ δ} , we have 3αδ βγ μβ− = . Therefore, define 
{ , , , ,α β γ δ π}  as follows: 

 

( )

( )

( )

( )

1

3 2

3 2

2 3

2 3

( ) ( );

( ) ( ) sin ( ) ;

( ) ( ) cos ( ) ;

( ) cos ( ) ( ) ;  and

( ) sin ( ) ( ) .

π β

α μβ μβ

β μβ μβ

γ μβ μβ

δ μβ μβ

=

=

= −

=

=

p p

p p p

p p p

p p p

p p p

 

Then we have  
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 ( , ) ( ) ( )ln ,
( ) ( ) ( )

e u u
u

α β
π γ δ

⎛ ⎞ ⋅ +
=⎜ ⎟ ⋅ +⎝ ⎠

p p p
p p p

 (36) 

with π  1º homogeneous, , , ,α β γ δ  0º homogeneous, and αδ βγ− =1 .  

Similarly, if 0,λ =  then  

 3 1( ) ln[ ( , ) ( )] 3
2

1

( ) ( ) ( )
ln[ ( , ) ( )]

e u
dw c u

e u
β β β β

β
− −

= = +∫
p p p p p

p p
.  

Apply the normalization ( )c u u=  and rearrange terms to obtain 

 3

21

( , ) ( )ln
( )( )

e u
u
β
ββ

⎛ ⎞ −
=⎜ ⎟ +⎝ ⎠

p p
pp

.  

For these definitions for { , , ,α β γ δ} , i.e., ,α = 0  3,β β= −  γ = 1,  and 2,δ β=  we have 

3.αδ βγ β− =  Therefore, define { , , , ,α β γ δ π}  as follows: 

 

1

3

3

2 3

( ) ( );

( ) 0;

( ) ( );

( ) 1 ( ) ;  and

( ) ( ) ( ) .

π β

α

β β

γ β

δ β β

=

=

= −

=

=

p p

p

p p

p p

p p p

 

Then we have (36), π  1º homogeneous, , , ,α β γ δ  0º homogeneous, and αδ βγ− =1 .  

Finally, if 2 0λ μ= − < , then  

 
3 1( ) ln[ ( , ) ( )]

1 3
22 2

1 3

1 ln[ ( , ) ( )] ( )ln ( ) ( ).
2 ln[ ( , ) ( )] ( )(1 )

e u dw e u c u
e uw

β β β μβ β
μ β μβμ

− ⎧ ⎫−
= = +⎨ ⎬+− ⎩ ⎭

⌠
⎮
⌡

p p p p p p p
p p p

 

Apply the normalization ( ) ln( ) 2c u u μ=  to rewrite this as  

 2 ( )1 3

1 3

ln[ ( , ) ( )] ( ) e .
ln[ ( , ) ( )] ( )

e u u
e u

ββ μβ
β μβ

−
= ⋅

+
pp p p

p p p
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Rearranging terms, this is equivalent to 

 
2

2

( )

3 ( )
1

( , ) e 1ln ( )
( ) e 1

e u u
u

β

βμβ
β

⎛ ⎞⎛ ⎞ ⋅ +
= ⎜ ⎟⎜ ⎟ − ⋅ +⎝ ⎠ ⎝ ⎠

p

p
p p

p
. 

For these implied definitions for { }α β γ δ, , ,  we have 2
32 e .βαδ βγ μβ− =  Hence, define 

{ , }α β γ δ π, , ,  as follows: 

 

2

2

2

2

1

½ ( )
3

½ ( )
3

½ ( )
3

½ ( )
3

( ) ( );

( ) ( ) 2 e ;

( ) ( ) 2 e ;

( ) e 2 ( ) ;  and

( ) e 2 ( ) .

β

β

β

β

π β

α μβ

β μβ

γ μβ

δ μβ

−

−

=

= ⋅

= ⋅

= −

=

p

p

p

p

p p

p p

p p

p p

p p

 

Then we have (36), π  1º homogeneous, , , ,α β γ δ  0º homogeneous, and αδ βγ− =1 .  

This completes the proof of necessity for the extended PIGL and PIGLOG models for 
a constant ( )xθ λ≡ . For the extended PIGL and PIGLOG models with 3( ( )) 0θ β′ ≠p , 
write 

 1
3

2

( ( , )) ( )( ( ), )
( )

f e uw u ββ
β

−
=

p pp
p

, (37) 

with 3( ( ), )w uβ p  defined in the second line of (26) and 3( ) ( )β η=p p . If ( )f m mκ= , 
then rewrite (37) as 

 3 1
2

( , ) ( ( ), ) ( ),
( )

e u w u
κ

β β
β

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

p p p
p

  

where 1
2 2

κβ β=  is 1º homogeneous and 1 1 2β β β=  is 0º homogeneous. The implied 

definitions of { , , , ,α β γ δ π}  are 1α δ= = , 1,β β=  0γ = , and 2π β= . 

Similarly, if ( ) lnf m m= , then rewrite (37) as 
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 2 3
1

( , )ln ( ) ( ( ), ),
( )

e u w uβ β
β

⎛ ⎞
= ⋅⎜ ⎟

⎝ ⎠

p p p
p

  

where 1 1lnβ β=  and 1β  is 1º homogeneous. The definitions of { , , , ,α β γ δ π}  that lead to 

the representation given in the proposition are 2α β= , 0β γ= = , 21δ β= , and 

1π β= . This completes the proof of necessity for all full rank three extended PIGL or 
PIGLOG demand systems. 

Trigonometric 

The only remaining case for a full rank three Gorman system is the trigonometric indirect 
utility function found by Lewbel (1988, 1990), 

 
( )

( )
3 1

2
1

( )cos ln ( )
( , ) ( )

1 sin ln ( )
m

v m
m

β τ β
β

τ β
⎡ ⎤⎣ ⎦= +

⎡ ⎤− ⎡ ⎤⎣ ⎦⎣ ⎦

p p
p p

p
, (38) 

with 1β  1º homogeneous and 2 3,β β  0º homogeneous. Apply the definitions of and rules 
for calculating sums and differences of sine and cosine functions (e.g., Abramowitz and 
Stegun 1972, pp.71-74), to rewrite (38) as 

 [ ] [ ]
[ ]

3 2 1 2 3

1

( ) ( ) ( ) ( ) ( )
( , )

1 ( )
m

v m
m

ιτ

ιτ
β ιβ β β ιβ

ι β

− × + −
=

−

p p p p p
p

p
. (39) 

To obtain the representation in the proposition, appropriate transformations of income 
and the price indices must be found. Set ( , )v m u=p  and ( , )m e u= p  and invert (39) to 
yield, 

 2 3

1 3 2

( , ) ( ) ( ) .
( ) ( ) ( )

e u u
u

ιτ
β ι β

β ι β ι β
⎛ ⎞ − + ⋅

=⎜ ⎟ ⋅ + − ⋅⎝ ⎠

p p p
p p p

  

For the implied definitions of { )α β γ δ, , ,  we have 32 ( ).αδ βγ β− = p  Therefore, define 
{ , , , ,α β γ δ π}  as follows: 
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 [ ]

[ ]

1

3

2 3 3

3

3 2 3

( ) ( );

( ) 1 2 ( ) ;

( ) ( ) ( ) 2 ( ) ;

( ) 2 ( ) ;  and

( ) ( ) ( ) 2 ( ) .

π β

α β

β β ι β β

γ ι β

δ β ι β β

=

=

= − + ⋅

=

= − ⋅

p p

p p

p p p p

p p

p p p p

 

This yields  

 ( , ) ( ) ( ) ,
( ) ( ) ( )

e u u
u

ιτ
α β

π γ δ
⎛ ⎞ ⋅ +

=⎜ ⎟ ⋅ +⎝ ⎠

p p p
p p p

  

with π  1º homogeneous, , , ,α β γ δ  0º homogeneous, and 1αδ βγ− = , as required. 

Thus all full rank Gorman systems can be written in the form given in the proposition. 
It is worth emphasizing that in each case, { , , , ,α β γ δ η}  depend on at most two linearly 
independent price indices. It also is important to note that the Gorman functional forms 
are responsible for the property that one 1º homogeneous price index can be extracted to 
deflate income. This is the fundamental role of the Gorman functional forms in a nominal 
income Gorman system. 

Now turn to the proof of necessity for all Lewbel systems.  

Lewbel Systems 

Recall equation (12), 

 
2

( ) ( ).
K

k k
k

e h e
=

∂ ∂ = ∑p pα   

1K =  repeats the homothetic, full rank one case, and does not require additional proof. If 
K≥2, then linear independence of the 2{ , , }Kh h…  implies that at least one of these 
functions cannot vanish. WLOG, let it be 2h  and define the map ( )y f e=  by 

 
( , )

2
( , ) ( ( , ))

( )

e u dxy u f e u
h x

= = ⌠⎮
⌡

p

p p .  

Then by Leibnitz’ rule, we have 
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2

2
23

2
3

( , ) 1 1 ( )( , )
( ( , )) ( )

( ( , ))( ) ( )
( ( , ))

( ) ( ) ( ( , )),

K
k

k
k

K

k k
k

y u e u
h e u

h e u
h e u

h e u

π
π

=

=

⎡ ⎤∂ ∂
= × −⎢ ⎥∂ ∂⎣ ⎦

= +

= +

∑

∑

p pq p
p p p p

pp p
p

p p p

α α

α α

  

where 2( ( , ) ( ( , )) ( ( , )) , 3, ,k kh e u h e u h e u k K= =p p p . Since 2( ) 0h x ≠ , 1( )f y−  exists, 
so that  

 4
2 3

ˆ( , ) ( ) ( ) ( ( , ))k kk
y u h y u

=
∂ ∂ = +∑p p p p pα α , (40) 

where 1ˆ ( ( , )) ( ( ( , )))k kh y u h f y u−≡p p , ˆ :kh → , ˆ , 3, ,kh k K∞∈ =C . These steps 

reduce the demand system to one in which the first income term on the right-hand-side is 

the constant function, i.e., 2
ˆ ( ) 1h y ≡ , maintaining the additive structure of Gorman, but 

now with multiplicative separability between p and y, rather than p and e . 

From the results of Lewbel (1989a) and Lie (1880), we know that K≤4 in any full 
Lewbel rank system. Hence, all solutions to (40) for K=2,3,4 must be found. To simplify 
the notational burden, drop all of the ~s and ^s and rewrite (40) as 

 2 3
( , ) ( ) ( ) ( ( , )).K

k kk
y u h y u

=
∂ ∂ = +∑p p p p pα α   

K=2: 2( , ) ( )y u∂ ∂ =p p pα . (41) 

This implies 2
2 ,y∂ ∂ ∂ = ∂ ∂p p pαT T  so that 2∂ ∂pα T  is symmetric. This is necessary 

and sufficient for the existence of a 0º homogeneous function, : nβ ++ → , β ∞∈C , 
such that 2( ) ( )β∂ ∂ =p p pα . Integrating (41) then yields  

 ( , ) ( )y u u β= +p p ,  

with an obvious normalization for u. The implied definitions 1α δ= =  and 0γ =  yield 
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the representation given in the proposition. 

K=3: 2 3 3( , ) ( ) ( ) ( ( , ))y u h y u∂ ∂ = +p p p p pα α .  

This implies 

 
2

2 3 2 3
3 3 2 3 3 3 3 3 3 2 3 3 3 3 3 3.y h h h h h h h h∂ ∂ ∂ ∂ ∂′ ′ ′ ′= + + + = + + +

∂ ∂∂ ∂ ∂ ∂ p pp p p p
α α α αα α α α α α α α

T T
T T T T

T T T
  

Subtracting the far right expression from the middle one implies, 

 ( ) 2 2 3 3
3 2 2 3 3 3h h

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂′− = − + −⎜ ⎟ ⎜ ⎟∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠p pp p
α α α αα α α α

T T
T T

T T
. (42) 

Since 2 3{ , }α α  are linearly independent, 3 2c≠α α  for any c∈ . Hence, 3 2α α T  is not 
symmetric. Since 3{1, ( )}h y  are linearly independent, 3 0h′ ≠ . Premultiply (42) by 3α

T , 

postmultiply by 2α , and divide by 2
3 3 2 2 3 2( ) 0− >α α α α α αT T T  (by the Cauchy-Schwartz 

inequality) to obtain 

 3 1 2 3( ) ( ),h y c c h y′ = +  (43) 

where 1c  and 2c  are absolute constants since 3( )h y  and 3( )h y′  are independent of p. In 
other words, the solution to this differential equation, which is 3( )h y  by definition, is not 
a function of prices. 

If 2 0c ≠ , the solution to this linear, first-order, ode is 2
3 1 2 3( ) ( ) e ,c yh y c c c= − +  

where c3 is a constant of integration. Plugging this into (42) then implies that the n×n 
matrix equation, 

 ( ) 2 22 2 3 3
3 2 2 3 2 3 1 2 3e ( ) ec y c yc c c c c

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ⎡ ⎤− = − + − − +⎜ ⎟ ⎜ ⎟ ⎣ ⎦∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠p pp p
α α α αα α α α

T T
T T

T T
,  

holds identically in ( , )yp . But this implies that 3 0c = , which contradicts the linear 

independence of 2
3 1 2 3{1, ( )} {1, ( ) e }c yh y c c c= − + . 

Therefore, it must be that 2 0c =  and the complete solution to (43) is 3 1( )h y c y b= +  
for some constant of integration b. WLOG, absorb the constants 1c  and b into 2( )pα  and 

3( )pα  by linear transformations, tacitly normalizing so that 2( ) 1h y =  and 3( )h y y= , 
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which are linearly independent. The system of demand equations then is 

 2 3( , ) ( ) ( ) ( , )y u y u∂ ∂ = +p p p p pα α . (44) 

As a result, symmetry reduces to  

 
2

2 3 2 3
3 2 3 3 2 3 3 3 .y y y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂
= + + + = + + +⎜ ⎟ ⎜ ⎟∂ ∂∂ ∂ ∂ ∂ ⎝ ⎠⎝ ⎠ p pp p p p

α α α αα α α α α α α α
T T

T T T T

T T T
  

Equating like powers in y, 3∂ ∂pα T  is symmetric. This is necessary and sufficient for a 

0º homogeneous function, : nϕ + → , to exist such that 3( ) ( )ϕ∂ ∂ =p p pα . 
Substituting this into (44) gives 

 2
( , ) ( )( ) ( , )y u y uϕ∂ ∂

= +
∂ ∂
p pp p
p p

α  (45) 

Symmetry now reduces to 

 2 2
2 2 ,ϕ ϕ∂ ∂ ∂ ∂

+ = +
∂ ∂∂ ∂p pp p

α αα α
T

T
T

T
  

which implies that 2 2 ϕ∂ ∂ − ∂ ∂p pα αT T is symmetric.  

Therefore, applying the integrating factor e ϕ−  to (45) gives 

 ( ) ( ) ( )
2

( , ) )( , )e ( , ) e ( )e .y uy u y uϕ ϕ ϕϕ− − −⎡ ⎤∂ ∂ ∂ (⎡ ⎤ = − =⎢ ⎥⎣ ⎦∂ ∂ ∂⎣ ⎦
p p pp pp p p

p p p
α   

Differentiating this with respect to pT  then implies 

 
2

( ) ( )2
2

( ) ( )( , )e ( ) e .y u ϕ ϕϕ− −⎡ ⎤∂ ∂ ∂⎡ ⎤ = −⎢ ⎥⎣ ⎦∂ ∂ ∂ ∂⎣ ⎦
p pp pp p

p p p p
α α

T T T
  

Symmetry of the n×n matrix on the right-hand side implies that a 0º homogeneous 
function, :ρ →P , exists such that ( )

2( ) ( )e ϕρ −∂ ∂ = pp p pα  and 

 ( )( , )e ( )y u uϕ ρ− = +pp p ,  
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with an obvious normalization for u. Solve this for ( , )y up  and define ½ ( )( ) e ϕα = pp , 
½ ( )( ) e ( )ϕβ ρ= pp p , ( ) 0γ =p , and ½ ( )( ) e ϕδ −= pp  to obtain the representation given by 

the proposition. 

K=4: 2 3 3 4 4( , ) ( ) ( ) ( ( , )) ( ) ( ( , ))y u h y u h y u∂ ∂ = + +p p p p p p pα α α .  

We have  

 

2 4 4 4
2

2
3 3 3

24 4 4
2

2
3 3 3

 

, .

i ik
k ik k j j

i j j jk k

j jk
k jk k i i

i i j ik k

y h h h
p p p p

yh h h i j
p p p p

α α α α α

α α
α α α

= = =

= = =

⎛ ⎞∂ ∂ ∂ ′= + + +⎜ ⎟∂ ∂ ∂ ∂ ⎝ ⎠

∂ ∂ ⎛ ⎞ ∂′= + + + = ∀ ≠⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∑ ∑ ∑

∑ ∑ ∑
  

Rewrite this in terms of ½n(n–1) vanishing differences,  

 

2 3 42 3 4
3 4

3 2 2 3 3 4 2 2 4 4

4 4

3 3

0

( ) ( )

( ), 2, , .

j j ji i i

j i j i j i

i j i j i j i j

ik j k k
k

h h
p p p p p p

h h

h h h h j i n

α α αα α α

α α α α α α α α

α α
= =

⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ∂ ∂
= − + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

′ ′+ − + −

′ ′+ − ∀ < =∑∑

  

If k =  in the double sum, then ik jkα α  is multiplied by 0k k k kh h h h′ ′− = , while if 
k ≠ , then k kh h h h′ ′−  is multiplied once by ik jα α  and once by i jkα α− . Thus, 

 
2 3 42 3 4

3 4 3 2 2 3 3

4 2 2 4 4 4 3 3 4 3 4 3 4

0 ( )

( ) ( )( ), 2, , .

j j ji i i
i j i j

j i j i j i

i j i j i j i j

h h h
p p p p p p

h h h h h j i n

α α αα α α α α α α

α α α α α α α α

⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ∂ ∂ ′= − + − + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

′ ′ ′+ − + − − ∀ < =

  

Now define the matrices 
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23 12 22 1 24 12 22 14 24 13 23 14

33 1 32 1 34 1 32 14 34 13 33 14

,3 1,2 ,2 1,3 ,4 1, ,2 1 ,4 1,3 1,3 ,4n n n n n n n n n n n n

α α α α α α α α α α α α
α α α α α α α α α α α α

α α α α α α α α α α α α

3

2 3 2

− − − 2 − 3 − −

− − −⎡ ⎤
⎢ ⎥− − −⎢ ⎥=
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

B ,  

 

22 12 23 13 24 14

2 1 2 1 2 1

,2 1,2 ,3 1,3 ,4 1,4

1 1 1

n n n n n n

n n n n n n

p p p p p p

p p p p p p

α α α α α α

α α α α α α− − −

− − −

∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤− − −⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥
= ⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥− − −
⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

C ,  

and the vectors [ ]3 41 h h=h T  and [ ]3 4 3 4 3 4h h h h h h′ ′ ′ ′= −h T  (recall that 2( ) 1h y ≡ , so 
that 2( ) 0h y′ ≡  and 2( ) ( ) ( ), 3,4j jh y h y h y j′ ′≡ = ). B is ½ ( 1) 3n n − × , C is ½ ( 1) 3n n − × , h 

is 3×1, and h  is 3×1. As before, symmetry can be written in compact matrix notation as 
=Bh Ch . Premultiply both sides by BT  to obtain =B Bh B ChT T . The 3×3 matrix B BT  

is symmetric, positive definite, so that 1( )−= ≡h B B B Ch DhT T . 

The vectors h  and h depend on y but not on p, while the matrix D can only depend on 
p and not on y. It follows that all of the elements of D must be constants independent of p 
and y. That is, the solution to this constrained system of odes can only be a function of y 
and not p. The implications of symmetry on the income functions can now be written as, 

 

3 11 12 3 13 4

4 21 22 3 23 4

3 4 3 4 31 32 3 33 4

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( ),

h y d d h y d h y

h y d d h y d h y

h y h y h y h y d d h y d h y

′ = + +

′ = + +

′ ′− = + +

 (46) 

where the {dij} are constants that cannot all be zero in any given equation (again, by full 
rank of the demand system). The first two equations form a complete system of linear 
odes with constant coefficients. This system is constrained by the third equation, which 
restricts the {dij}.  

To solve this system of odes, differentiate the first equation and substitute out 4( )h y′  
and then 4( )h y , 
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[ ]

[ ]

3 12 3 13 4

12 3 13 21 22 3 23 4

13 21 12 3 13 22 3 23 3 11 12 3

13 21 22 11 11 22 3 13 22 23 12 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ).

h y d h y d h y

d h y d d d h y d h y

d d d h y d d h y d h y d d h y

d d d d d d h y d d d d h y

′′ ′ ′= +

′= + + +

′ ′= + + + − −

′= − + + + −

  

The homogeneous part is, 

 3 11 22 3 13 22 23 12 3( ) ( ) ( ) ( ) ( ) 0h y d d h y d d d d h y′′ ′− + − − = ,  

with characteristic equation, 

 2
11 22 13 22 23 12( ) ( ) 0d d d d d dλ λ− + − − = ,  

and characteristic roots 

 2
11 12 11 12 13 22 23 12½ ( ) 4( )d d d d d d d dλ ⎡ ⎤= + ± + + −⎢ ⎥⎣ ⎦

.  

If 0λ =  is the only root, then the complete solution is 

 
2

3 1 1 1

2
4 2 2 2

( ) ,

( ) .

h y a b y c y

h y a b y c y

= + +

= + +
  

We prove that this is the only possibility. 

With distinct non-vanishing roots, the complete solution for the odes is 

 
1 2

1 2

3 1 1 1

4 2 2 2

( ) ,

( ) .

y y

y y

h y a b e c e

h y a b e c e

λ λ

λ λ

= + +

= + +
  

The second income function, 2( ) 1,h y ≡  hence, WLOG set 1
3( ) yh y eλ=  and 2

4( ) yh y eλ=  

by the linear independence of 1 2
1 2{1, , }, 0y ye eλ λ λ λ∀ ≠ ≠ . The equation for 3 4 3 4h h h h′ ′−  

then is 

 1 2 1 2( )
2 1 31 32 33( ) y y ye d d e d eλ λ λ λλ λ +− = + + ,  
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where 2
2 1 11 12 13 22 23 124( ) 0( )d d d d d dλ λ− = + + − ≠  and 1 2 11 12 1 2d dλ λ λ λ+ = + ≠ ≠ , a 

contradiction of the linear independence of 1 2 1 2( ){1, , , }y y ye e eλ λ λ λ+  1 2( , ) (0,0)λ λ∀ ≠ . 

Hence, the characteristic roots must be equal, 11 12½( )d dλ = + . If 0λ ≠ , then the 
complete solution is 

 
3 1 1 1

4 2 2 2

( ) ,

( ) .

y y

y y

h y a b e c ye

h y a b e c ye

λ λ

λ λ

= + +

= + +
  

Set 3( ) yh y eλ=  and 4( ) yh y yeλ= , WLOG, by the linear independence of {1, , }y ye yeλ λ  
0λ∀ ≠ . Then the equation for 3 4 3 4h h h h′ ′−  is 

 2
31 32 33

y y ye d d e d yeλ λ λ= + + ,  

which is a contradiction of the linear independence of 2{1, , , }y y ye ye eλ λ λ  0λ∀ ≠ .  

Hence, only a repeated vanishing root is possible and  

 2
2 3 4y y y∂ ∂ = + +p α α α ,  

again, where ( , ) ( ( , ))y u f e u=p p . This has exactly the same form as a nominal income 
full rank QES. Consequently, the symmetry argument of van Daal and Merkies (1989) 
applies in tact, which implies 

 
2

1 1 3
3

2 2

( ( , )) ( ) ( ( , )) ( ) ( )( ( )) ,
( ) ( )

f e u f e uβ β βθ β
β β

⎡ ⎤⎡ ⎤ ⎛ ⎞∂ − − ∂⎢ ⎥= + ⎜ ⎟⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

p p p p pp
p p p p

  

for some 1 2 3, , : nβ β β ++ → , and some :θ → . As before, the change of variables 
to 1 2( , ) [ ( ( , )) ( )] ( )z u f e u β β= −p p p p  reduces this further to  

 2
3 3( , ) ( ( )) ( , ) ( ) .z u z uθ β β⎡ ⎤∂ ∂ = + ∂ ∂⎣ ⎦p p p p p p   

which leads again to the separable function 3( ( ), )w uβ p  defined in equation (26) above. 
Hence, the solution for indirect preferences of all full rank Lewbel systems is precisely 
the same as that obtained for all full rank Gorman systems, but with no restriction on the 
functional form for ( )f e .                  
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Thus, every Gorman and Lewbel demand system is a special case of a GQES. It is 
useful to emphasize that, in all full rank Lewbel systems, { , , , , }α β γ δ η  will depend on no 
more than three linearly independent, 0º homogeneous price indices, implying that the 
maximum rank is four. 

In general, the rank and structure of a GQES depends on choices for the function f, 
the price indices { , , , , , }α β γ δ η π , and the function .θ  Given specific choices for up to 
three (four) price indices in a Gorman (Lewbel) system, the function f, and when 3K =  
( 4K = ) the function θ  (or equivalently, the implicit function w), the demand system and 
associated indirect preferences are completely specified without any need to ever revisit 
integrability.12 This complete characterization accommodates the calculation of exact 
welfare measures, both in the aggregate and for specific consumer groups of interest, as 
well as many other valuations that are typically of interest in applied research. It is worth 
emphasizing the fundamental implication of this result: The only relevant difference 
between a full rank Gorman and a Lewbel system is the choice of functional form for f. 

7. Conclusions 

Common reasons for the choice of functional form for demand analysis include 
parsimony, ease of estimation and interpretation, generality, flexibility, aggregation, and 
consistency with economic theory. Since the path-breaking papers of Gorman, flexibility 
and aggregation have guided much of the development and application of applied 
demand analysis. The rank of Engel curves is a central feature of this research. It is a 
routine practice to impose the theoretical properties associated with Slutsky symmetry 
and negativity, homogeneity, and adding up. This chapter shows how to construct any 
GQES demand system, without the need to revisit questions of integrability of the 
demand equations or the structure and functional form of the implied indirect preference 
functions. 
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