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Abstract 

The hypothesis of induced innovation is tested for U.S. agriculture using a high-quality 

state-level panel data set and three disparate testing techniques – time series, direct 

econometric, and nonparametric. We find little support for the hypothesis. That 

conclusion is robust across testing techniques. However, as with all empirical tests of this 

hypothesis conducted to date, ours focus only on the demand side of the hypothesis.  The 

hypothesis could have been rejected simply because the marginal cost of developing and 

implementing input-saving technologies for the relatively expensive inputs is greater than 

for the relatively cheap inputs.  
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Induced Innovation in U.S. Agriculture: 

Time-series, Direct Econometric, and Nonparametric Tests 

 

Productivity in nearly all industries and throughout most of the world has experienced 

rapid growth for many decades. This is particularly true of U.S. agriculture. Measured as 

the ratio of total outputs to total inputs, the average annual rate of total factor productivity 

growth was two percent for the period 1960-1993 (Ball et al. 1997) and three percent for 

the period 1980-1999 (Huffman and Evenson 2003). This productivity growth has been 

achieved through development and implementation of output-augmenting and input-

saving technologies and through economic decisions that substituted relatively cheap 

inputs for expensive ones. It clearly is a result of choices and decisions made both by 

researchers who discover new technologies and by producers who choose technologies to 

implement from among those currently available. 

The processes by which output-augmenting and input-saving technologies are 

developed are varied and diffuse. They include both fortuitous discoveries and planned 

research and development activities. Their implementation also includes both fortuitous 

and planned elements.   

The theory of price-induced innovation has been particularly important in 

focusing attention of economists on technological innovation. This theory asserts that 

changes in relative prices of factors are expected to induce development and 

implementation of new technology to save the relatively more expensive inputs.  

First proposed by Hicks in 1932, this theory has been extensively examined 



 2

during the last four decades. Based on the microeconomic foundations of induced 

innovation theory proposed by Ahmad (1966),1 Hayami and Ruttan (1970) conducted the 

first formal test of the induced innovation hypothesis (IIH) and concluded that the 

evolution of relative input demand “represents a process of dynamic factor substitutions 

accompanying changes in the production function induced by changes in relative factor 

prices” (p. 1135). Since that time it has been tested in a wide variety of countries and 

industries using various analytical tools and data. 

Using a four-factor econometric model, Binswanger (1974) extended the Hayami- 

Ruttan methodology to the measurement of technical change bias with many factors of 

production. He incorporated a linear time trend variable in a translog cost function to 

measure the bias of factor usage. He found support for the IIH in U.S. agriculture for 

labor and fertilizer, but not for machinery.  Modifications of Binswanger’s econometric 

approach were used by Antle (1984), Hayami and Ruttan (1985), Thirtle (1985), 

Kawagoe, Otsuka, and Hayami (1986), and Huffman and Evenson (1989). All of these 

couched their tests within a static framework and concluded that their findings were 

consistent with the IIH for U.S. agriculture.  

Based on the overall consistency of these test results, a stylized fact had 

developed by the early 1990s that technical change in U.S. agriculture was generally 

consistent with the induced innovation theory. The hypothesis faced its first serious 

challenge in this industry by the work of Olmstead and Rhode (1993). Their historical 

analysis of important regional and national technological developments as well as a 

subsequent econometric test (Olmstead and Rhode 1998) failed to support the IIH. They 
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provided strong evidence that “the lessons of the induced innovation literature need to be 

reconsidered” (Olmstead and Rhode 1993, p.116).   

Despite repeated testing, a stylized fact has not re-emerged from the empirical 

tests of the last 15 years.  Using a broader and superior array of testing procedures and 

data, empirical evidence has rejected the hypothesis for U.S. agriculture as often as it has 

rendered support. Thus, current evidence relative to the hypothesis is highly ambiguous.   

Most analytical tools that have been used to test the IIH can be broadly grouped 

into three methodological classes: direct econometric, time series, and nonparametric 

methods.2 Direct econometric models have been used most frequently. While most have 

built on the modeling approach of Binswanger, important variants include tests using a 

dynamic econometric model (Lin 1998) and input demand equations jointly estimated 

with the innovation possibility frontier (Armanville and Funk 2003). Lin rejected the IIH 

for U.S. agriculture, and Armanville and Funk found that support was sensitive to the 

specification of the innovation possibility frontier. Several have tested the hypothesis 

using time series procedures. Lambert and Shonkwiler (1995) and Thirtle, 

Schimmelpfennig, and Townsend (2002) concluded their evidence confirmed the IIH in 

this industry, while Machado (1995), Tiffin and Dawson (1995), and Liu and Shumway 

(2006) failed to find clear evidence supporting the hypothesis.3  The most recently 

developed and least-used procedures for testing the IIH have involved nonparametric 

economic models. Chavas, Aliber, and Cox (1997) found evidence supporting the IIH for 

actively traded inputs but not for land and farm labor in the U.S.  

Because the IIH has such strong theoretical and intuitive underpinnings, many 
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regard the recent failures to consistently support the hypothesis as data or methodological 

inadequacies.4  

 To shed light on both of these issues, the objectives of this paper are to conduct 

comprehensive tests of the IIH for U.S. agriculture using a rich state-level panel data set 

and three state-of-the-art testing procedures. They include time-series, direct econometric, 

and nonparametric tests. The high-quality, 40-year panel data set permits tests to be 

conducted that have higher power than those previously used. Consequently, this is the 

most comprehensive analysis of the IIH to be conducted in any country for any industry 

using a single high-quality data set. 

Methodology 

In this section we sequentially describe the three procedures we use to test the IIH for 

U.S. agriculture over the period 1960-1999. 

Time-series Approach 

The procedure used in our time-series method follows the testing logic developed by 

Thirtle, Townsend, and van Zyl (1998), Oniki (2000), and Thirtle, Schimmelpfennig, and 

Townsend (2002). Thirtle, Schimmelpfennig, and Townsend (2002) argue that each of 

five requirements must be satisfied for the IIH to be supported via time-series properties: 

(a) the affected series must have time-series properties allowing for cointegration, (b) 

cointegration must exist among the series, (c) the correlation between factor price ratios 

and the factor quantity ratios must be negative, (d) the change in factor quantity ratios 

cannot be fully explained by factor substitution, and (e) causality must run 

unidirectionally from factor prices to factor quantity ratios. Although this method is 
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appealing both because of its logic and its rigor, it has only been applied using standard 

time-series procedures to one aggregate country-level data set. Application of the method 

to state-level panel data using panel time-series techniques will provide a more robust test 

for the IIH.  

 We maintain one of the common assumptions in the induced innovation literature, 

i.e., that the production technology can be approximated by a two-level CES functional 

form (e.g., de Janvry, Sadoulet, and Fafchamps 1989; Thirtle, Schimmelpfennig, and 

Townsend 2002). Letting A, M, L, K represent the quantities of land, materials, labor, and 

capital, respectively, and explicitly incorporating efficiency augmenting variables of 

research and extension investments, the logarithms of the first-order conditions of profit 

maximization can be expressed as: 5 

(1)  0 1 2 3 4ln ln ln ln ln ,   / , / ,i i i i i pri i pub iR P R R Ext i A M L Kα α α α α= + + + + =  

where Ri and Pi, are the factor quantity and price ratios, respectively;  Rpri is stock of 

private research investment, Rpub is stock of public research investment, Ext is stock of 

public extension investment; α are parameters. In this model, the land-material ratio and 

the labor-capital ratio are explained by the own-price ratio and four efficiency 

augmenting variables. The agricultural private and public research and public extension 

stocks were constructed based on the weighting procedure of Huffman and Evenson 

(1989).6 This specification provides a straightforward approach for directly testing the 

IIH. Hereafter, we refer to equation (1) as the time-series model.  

We begin our analysis by testing the time-series properties of the panel data. In 

small or moderate sized samples, failure to reject unit roots or cointegration may often be 
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due to the low power of traditional time-series tests. The current research employs recent 

developments in time-series econometrics designed for panel unit roots (Hadri 2000) and 

panel cointegration tests (Pedroni 1999).  

If a cointegrated relationship exists among nonstationary variables in the input 

demand equations, the short-run and long-run relationships of the variables are estimated 

by an error correction model (ECM) in the second step of the analysis. Our ECM is based 

on a re-parameterization of an autoregressive distributed lag model (ARDL) of the input 

demand equations defined in (1). The pooled mean group estimation procedure (PMGE) 

developed by Pesaran, Shin, and Smith (1999) is used for this purpose.7 The structure of 

the ARDL model is:   

(2)    1ln (ln ) ,    /  and / , −
′ ′Δ = + − + + =iht i i iht i iht i i ihtR R i A M L Kμ λ εθ x β Z   

where , ,(ln , ln , ln , ln )′=iht iht pri ht pub htht
P R R Extx ; Zi is a vector of the lagged terms of lnRiht 

and xiht where the optimal number of lags is selected based on the Akaike Information 

Criterion (AIC); h identifies the state; t is time; Δ is the differencing operator; θ is a 

vector of long-run parameters accounting for the long-run equilibrium relationship 

between factor quantity ratio and the explanatory variables; λ is the error correction 

coefficient; μ and β are parameters; ε is a disturbance term. 

Since all the variables are in logarithms, the absolute values of long-run 

coefficients are estimates of long-run elasticities of substitution, and the short-run 

elasticities of substitution are estimated by the associated absolute value of short-run 

parameters. The short-run elasticities of substitution are curvature measures along the 
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isoquant, while the long-run elasticities are curvature measures along the innovation 

possibility curve (IPC). Induced innovation requires the estimated long-run elasticities of 

substitution to be significantly greater than the estimated short-run elasticities (Oniki 

2000).  It implies that part of the factor ratio changes are induced by lagged effects of 

relative prices, which cause technology-induced substitution around the IPC. From 

estimation of the ECM, short-run and long-run elasticities are used to decompose the 

factor ratio changes into those that are technology-induced by lagged effects of relative 

price changes and those that are factor substitutions due to changes in current prices 

(Thirtle, Schimmelpfennig, and Townsend 2002). 

The final step of the time series analysis is to examine whether the factor price 

ratio Granger causes factor-saving technical bias. To do that, we use Nair-Reichert and 

Weinhold’s (2001) mixed fixed and random coefficients estimation algorithm for the 

dynamic panel model.  

Direct Econometric Approach 

The direct econometric model also relies on the same two-level CES production 

technology and builds upon the work of Funk (2002) and Armanville and Funk (2003). In 

contrast to other empirical literature that implicitly assumes a specific form for the 

efficiency augmenting variables,  Armanville and Funk (2003) explicitly include the 

innovation possibilities frontier (IPF) which specifies the feasible technical change set as 

a constraint to the profit maximization problem. This frontier captures the innovative 

decisions that researchers and producers can make to achieve a higher rate of factor-

augmenting technical change for one input by accepting a lower rate of augmentation for 
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other inputs.  

The first-order conditions of this maximization problem imply that the profit 

maximizer will choose the set of factor augmentations that equates the slope of the IPF to 

the market relative shares measured in efficiency units (Funk 2002; Armanville and Funk 

2003). Armanville and Funk argue that it is the market relative shares (in efficiency units) 

rather than the relative prices per se that play the essential role in determining direction 

of technical change. They develop two tests of the IIH – a “weak” test that innovative 

decisions move in the direction predicted by the IIH, and a “strong” test that innovation 

decisions satisfy the first-order conditions for profit-maximizing choices.  

In our empirical application, we extend Armanville and Funk’s (2003) procedure 

by formalizing the relationship between productivity changes and research and extension 

investments rather than treating productivity changes as a function only of time. We 

estimate the following relative demand equations:  

(3) 

1 2 2 1 , 2 , 3
1 1 1

ln( )= ln( ) ( 1) 2 ln( ) 2 ln( ) 2 ln( )
t t t

iht i i iht i i iht i pri s i pub s i s
s s s

R P F R R Extτ τ τ γ δ δ δ
= = =

⎛ ⎞+ − + + + +⎜ ⎟
⎝ ⎠

∑ ∑ ∑
 

where Fiht = Piht Riht; Rpri,s, Rpub,s, and Exts are investments in year s for private research, 

public research investment, and extension, respectively;  τ, γ, δ are parameters. As with 

the stock variables used in the time series procedure, the maximum number of lags is 27 

for public research investment, 20 for private research investment, and nine for extension 

investment. 

By estimating equation (3), all the parameters concealed in the production 
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function and the IPF can be recovered. With this specification, a strong test of the IIH is 

equivalent to testing the null hypothesis that 1iγ =  for i = A/M, L/K. The null was tested 

by the equivalent hypothesis that the sum of the coefficients on the price ratio and Fiht, i = 

A/M, L/K, equals negative one. The null hypothesis for the weak test is dependent on the 

magnitude of the elasticity of substitution. If the elasticity of substitution between A and 

M or between L and K is less than 1, the hypothesis is 0iγ > . Testing this hypothesis is 

equivalent to testing whether the ratio of the coefficient on Fiht and the negative of (1 plus 

the coefficient on the price ratio) is significantly positive.  If the elasticity of substitution 

is greater than 1, 0iγ <  and the equivalent test is to determine whether this ratio is 

significantly negative. This model not only provides a simple specification for joint 

estimates of the production function and IPF but an empirically tractable approach for 

directly conducting strong and weak tests of the IIH. Additional details of the 

econometric estimation equations and hypothesis tests are in Appendix A (Liu and 

Shumway 2008).  

Nonparametric Approach  

The nonparametric testing procedure follows Chavas, Aliber, and Cox (1997) who 

extended earlier work by Afriat (1972) and Varian (1984) to both account for technical 

change and examine evidence relative to induced innovation. A main benefit of this 

method is that it allows production technology changes to be examined without requiring 

any parametric representation of the production or profit function. Assuming (a) profit 

maximizing behavior, (b) a closed, convex, and monotonic technology set, and (c) factor 

augmentation, we define actual netputs at observation t by an 1m×  
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vector 1, ,( ,..., )′=t t m tX XX  with associated price vector 1, ,( ,..., )′=t t m tP PP . In our case, the 

netput vector is 5x1: , , , ,( ,  - ,  - ,  - ,  - )=t t A t M t L t K tY X X X XX . The feasible netput choices 

satisfy ∈t FX , where F is the feasible technology set.  

Allowing for technical change, the technology-constant “effective” netput vector 

at observation t is denoted 1, 5,( ,..., )′=t t tx xx , which is a function of actual netput levels 

and their augmentations, Bi,t: 

 (4) , , ,( , ),     , , , , ,   = = ∈i t i t i tx g X B i Y A M L K t T . 

We follow Chavas, Aliber, and Cox (1997) in treating ( , )⋅g X  as a reversible function, 

specifying augmentation following the translating hypothesis, i.e., = +i i iX x B , and in 

specifying three augmentation restrictions needed to implement nonparametric testing of 

the IIH.8   

The first augmentation restriction is that the relationship between innovation 

investments and input augmentation is presumed to take the following form:9 

(5) { }, , , , ,
0

[ ( 1) ] ,  , , , ,   − −
=

= + + − = ∈∑i t i t i j i t j i j t j
j

B p i A M L K t Tα
r

β γ R , 

where r is a vector of the maximum number of lags on innovation investments, j is the 

lag number, pi,t-j is the price of the ith input relative to a Tornqvist index of all input prices 

at time t-j (so it equals 1 if the ith input price moves in proportion to the index of all input 

prices), the 1k ×  vector , ,( , , )− − − − ′=t j pri t j pub t j t jR R ExtR , αi,t is a scalar that measures the 

impact of exogenous shocks on augmentation in the absence of innovation investments, 

βi,j is a 1 k×  parameter vector measuring the marginal effect of Rt-j on Bi,t for constant 
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relative prices (i.e., pi,t-j = 1); the 1xk parameter vector γi,j measures the interaction effect 

of pi,t-j and  Rt-j on Bi,t. The maximum number of lags on each innovation variable is the 

same in this model as in the others. Thus, the βi,j’s and γi,j’s are allowed to be nonzero for 

3 28j< <  for public research, 2 21j< <  for private research, and 2 10j< <  for 

extension. The IIH is corroborated by , , 0>i j kγ  for some j with no , , 0<i j kγ ; this 

constitutes the critical test via this nonparametric method.  

The second restriction smoothes output augmentation variables to maintain the 

hypothesis of nonregressive technical change subject to random weather effects that can 

alter productivity in individual years. The third restriction maintains the hypothesis that 

the marginal effect of innovation activities on augmentation indices is nonnegative. 

To test the IIH, we determine the minimum weighted values of α, β, and γ 

required to be consistent with WAPM under the three augmentation restrictions. 

Following Chavas, Aliber, and Cox (1997), we solve the following quadratic 

programming problem: 

(6) 

2
1 , 2 , , 3 , ,, ,

, ,

, ,

min ( ) :

      ( ) 0, ;  

      ( ) 0,  , , , ;   ;  
      WAPM; the three augmentation restrictions

∈ ∈

⎡ ⎧ ⎫
′ ′+ +⎢ ⎨ ⎬

⎢ ⎩ ⎭⎣
− ≥ =

− ≤ = ∈ ⎤
⎥
⎦

∑ ∑ ∑i t i j i j i j i jB i N t T j

i t i t

i t i t

w w w

X B i Y

X B i A M L K t T

α
α

β,γ
β β γ γ

 

where w1, w2, w3 are positive weights.10 Equation (6) minimizes the weighted sum of 

squared parameters measuring varied sources of impact on technical change over time. 

The intuition is to make the augmentation indices “as close to the data as possible” by 

searching for the smallest absolute values for the α’s, β’s, and γ’s that satisfy the WAPM 
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(Chavas, Aliber, and Cox 1997). Thus, with observed data on actual netputs and 

associated prices, we seek to reveal the nature of technical change. Additional details of 

the nonparametric test are in Appendix B (Liu and Shumway 2008). 

For economy of computation, we conducted the nonparametric tests for only nine 

states.  A broad cross-section of major agricultural states was selected.  They represent all 

regions of the United States and include Florida, North Carolina, and New York in the 

east, Texas, Iowa, Kansas, and Michigan in the center, and California and Washington in 

the west.   

Data 

Panel data on input quantities and prices for the 48 contiguous states for the  

period 1960-1999 come from Ball, Hallahan, and Nehring (2004). This high-quality 

aggregate data set includes a comprehensive price and quantity inventory for three 

categories of agricultural outputs (crops, livestock, and secondary outputs) and four 

categories of inputs (capital, land, labor, and materials).11 They were compiled using 

theoretically and empirically sound procedures which preserve the economic integrity of 

national and state production accounts and are consistent with a gross output model of 

production.  

Deflated annual agricultural public research investment data for the period 1927-

1995 were compiled for each state by Huffman.  Agricultural extension investments for 

the U.S. for the period 1951-1996 are from Huffman, Ahearn, and Yee (2005).  They are 

total cooperative extension investments in current dollars divided by the price index for 

agricultural research. 
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 The number of private patents is used as a proxy for private research investments.  

The data are from Johnson’s (2005) inventory of patents by state and by industry as the 

primary user of the patent for the period 1883-1996.  The panel data set was prepared by 

multiplying the percent of patents granted by state each year by the number of patents 

granted in the U.S. for use in agriculture.  Johnson’s patent classification since 1976 

follows the international protocol, and the Yale Technology Concordance (Johnson and 

Evenson 1997) was used to calculate industries of manufacture and sectors of use.  Prior 

to 1976, the Wellesley Technology Concordance (Johnson 1999) was followed to classify 

patents.  

In order to fully utilize the 40 years of state-level input and output price and 

quantity data, it was necessary to have state-level data on research and extension 

investments for many years prior to 1960. As noted above, they (or reasonable proxies) 

were available for at least 28 prior years for research investments and for 9 years for 

extension investments. However, state-level data on the input prices that created 

incentive to develop input-saving technologies prior to 1960 were not available.12 

Consequently, we created state-level input price proxies for the period 1932-1959 using 

Ball et al.’s (1997) U.S. input price data, which were developed using the same 

procedures as the state-level data for the period 1948-1999 and Thirtle, Schimmelpfennig, 

and Townsend’s (2002) U.S. input price data for earlier years.  Details of the construction 

of state-level input price proxies in this data set are provided in the linked Appendix C 

(Liu and Shumway 2008).  

Empirical Results 
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The empirical results from each estimation procedure are presented sequentially in this 

section. All test statistics are reported for a 0.05 significance level. 

Time-Series Test Results 

The Hadri stationarity test results for all variables are reported in Table 1. Accounting for 

heteroskedastic errors across units, the associated p-values for all series imply that 

stationarity was rejected for each series in levels.  Three variables were found to be 

stationary in first differences, i.e., they followed I(1) processes. Two series were found to 

be I(2) processes and two were I(3) processes.  

Based on the integration order of the time series, we analyzed the long-run 

relationship between the factor ratios and associated explanatory variables in equations (1) 

for the time-series model. If the data are cointegrated for a factor ratio equation, the 

factor ratio can be formulated using the original (i.e., undifferenced) data for I(1) series, 

first differences for I(2) series, and second differences for I(3) series to capture the long-

run relationships in the data for both time-series and direct econometric models. If the 

data are not cointegrated, we will fail to support the IIH from a time series perspective 

since a long-run relationship is a necessary condition for induced innovation to occur 

(Oniki 2000). 

The results of the cointegration tests are reported in the last four rows of Table 1. 

Pedroni’s (1999) seven test statistics are reported for each cointegration test. Weak 

evidence was found to support cointegration for the land-material equation. Three of the 

test statistics rejected the hypothesis of no cointegration for this equation. For the labor-

capital equation in the time-series model, all statistics but one supported rejection of the 
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hypothesis of no cointegration. Thus, based on the preponderance of test evidence, it is 

concluded that a long-run relationship exists for the labor-capital equation but is 

inconclusive for the land-material equation. 13  

We next estimated the error correction model (ECM) for each factor ratio. Based 

on the stationarity test results, the dynamic form of the ECM was specified by using first 

differences for each of the I(2) variables and second differences for each I(3) variable.  

Using the Hausman test, we failed to reject the hypothesis of long-run 

homogeneity for either equation. Thus, it was concluded that the pooled mean group 

estimator (PMGE) was the appropriate method for estimating the ECM. The lag orders 

for dependent and independent variables were chosen by minimizing the AIC subject to a 

maximum lag length of 3. In this application, an ARDL(3,3,3,3,3,3) was chosen by this 

process for each factor ratio equation.  

The Pesaran PMGE parameter estimates of the ECM are reported in Table 2. 

Consistent with the IIH, the own-price parameter is negative both in the short-run and the 

long-run for each factor ratio equation. The error correction term, λi, is negative and 

significant in each equation which indicates that the system adjusts toward equilibrium. 

However, in the labor-capital equation, the estimated value is -1.290, significantly 

different from -1.0, and implies that the error correction over-adjusts towards the long-

run equilibrium. As a result, the short-run direct elasticity of substitution between labor 

and capital (0.062) is significantly larger than the long-run elasticity (0.048).14 Failure of 

the long-run elasticity (along the IPF) to exceed the short-run elasticity (along the 

isoquant) implies that changes in the labor-capital quantity ratio can’t be separated into 
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two parts, which is a crucial inconsistency with the IIH (Thirtle et al. 2002; Oniki 2000). 

Based on requirement (d), the IIH is rejected for labor and capital inputs.  

The estimated value of the error correction term in the land-material equation is -

0.131, which implies that, when the system is not in equilibrium, there is a 13.1% 

correction towards the long-run equilibrium in the current period. Thus, its long-run 

elasticity of substitution (0.053) is larger than its short-run elasticity (0.007), which is 

consistent with the IIH.   

Two of the innovation variables (private and public research investments) have 

significantly negative long-run and short-run effects on the land-material ratio. The 

significantly negative coefficients on these two innovation variables imply that increased 

research investments lead to land-saving technical change both in the long run and short 

run. The significantly positive coefficients on extension investments imply that this 

innovation variable increases both the short-run and long-run bias toward material-saving 

technical change.  

The final time-series test of the IIH was conducted to determine whether causality 

ran unidirectionally from the factor price ratio and innovation variables to the factor 

quantity ratio for both equations. We estimated a dynamic model in which the factor 

quantity ratio was modeled as a function of its lags, lags of the hypothesized causal 

variables (i.e., the own-price ratio and the three types of innovation investment) and other 

explanatory variables. Following Lütkepohl (1993, p. 306), maximum lag length was set 

equal to the integer of T1/3, i.e., 3 in our application. Based on the AIC, optimal lag length 

was 2 for all the causal variables in the land-materials equation and 1 in the labor-capital 
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equation. Lagged terms of the dependent variable were included to proxy omitted 

variables (Nair-Reichert and Weinhold 2001). Although a shorter lag structure was 

chosen as optimal by the AIC, causality test inferences can be sensitive to the number of 

lags, so we estimated the model using lags ranging from 1 to 3. The Nair-Reichert and 

Weinhold mixed-fixed-and-random-coefficients estimates are reported in Table 3 for all 

three lag lengths.  

In none of the estimated results did we reject the causality relation from the own-

price ratio to the quantity ratio for land-materials. In this equation, all but one of the 

lagged own-price ratio for lags 1 to 3 were negative as expected and statistically 

significant. However, evidence of reverse causality was also found for each lag option 

(see Appendix Table D.1 in Liu and Shumway 2008). Thus, the bidirectional causality 

results are robust to lag length and imply rejection of the IIH for land and materials by 

time-series procedures based on requirement (e). Evidence of causality running from 

public research and extension to the land-materials quantity ratio implies that investments 

in public research tended to induce land-saving technical change and investments in 

extension induced materials-saving technical change. However, reverse causality was 

found for public research such that land-saving technical change stimulated additional 

public research investment. No causal evidence was found running from private research 

to the land-materials quantity ratio.   

We rejected the causality relation from the own-price ratio to the quantity ratio for 

labor-capital for at least one lagged variable in each lag option. Only two of the six 

coefficients on lagged own-price ratios were significantly negative. These results imply 
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rejection of the IIH for labor and capital by time-series procedures based on requirement 

(e). Evidence of causality from all three innovation variables to the labor-capital quantity 

ratio was found and was robust to lag length. Reverse causality was found in public 

research. These findings imply that extension and private research investments tended to 

induce labor-saving technical change. Public research investments were found to induce 

capital-saving technical change, and capital-saving technical change stimulated public 

innovation policy that further increased research investment.  

Thus, none of the inputs fully satisfied the necessary conditions for supporting the 

hypothesis of induced innovation using this robust, panel time-series testing procedure. 

Land and materials were ambiguous in supporting the hypothesis at the second step 

(existence of a cointegrated relationship), and capital and labor failed to support it at the 

fourth step (long-run elasticity of substitution greater in absolute value than the short-run 

elasticity).  All four inputs failed to support the hypothesis at the fifth step (causality 

running unidirectionally from the own-price ratio to the quantity ratio). Despite evidence 

supporting the IIH at other steps, these violations necessitate rejection by time series 

methods of the IIH for both pairs of inputs. 15 

Direct Econometric Model Results 

Before estimating the direct econometric model, we first tested for AR(1) and 

heteroskedasticity in each equation’s residuals.16 Finding evidence of both 

autocorrelation and heteroskedasticity in the residuals of the land-material and labor-

capital equations specified in equation (3), we estimated both equations using a 

heteroskedasticity- and autocorrelation-consistent covariance matrix estimator 
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(HACCME).17 This estimator computes the coefficients using a least-squares approach. 

The parameter estimates and test statistics are reported in Table 4.  

The estimated coefficient associated with the factor price ratio had the expected 

sign in both equations. The estimates of partial elasticities of substitution (i.e., the 

negative of the coefficients on the price ratios) are both less than 1 (0.6167 and 0.1422 

respectively). Thus, the weak test of the IIH is that γi > 0 for i = A/M, L/C, which is 

tested by determining whether the alternate hypothesis that γi = 0 is rejected by a one-

sided test.  The test results for the weak and strong hypotheses are reported in the last two 

rows of Table 4. The weak hypothesis was accepted (i.e., the tested null hypothesis was 

rejected) only for the land-material equation but not for the labor-capital equation. The 

strong hypothesis that γi = 1, i= A/M, L/C, was soundly rejected for both equations. Thus, 

our econometric test results provided support for the weak version of the IIH in only one 

input pair but no support for the strong version in either pair.  

Generalized Model Results  

To determine whether test conclusions were sensitive to the restrictive CES 

functional form, all time-series and direct econometric model tests were repeated using a 

generalization of the two-stage CES. The generalization included three additional 

explanatory variables – two more price ratios and output level, all in logarithms. Each 

equation included three price ratios (PA/M, PL/K, and PA/L), output level, and the three 

efficiency variables (Rpri, Rpub, Ext). This generalization was treated only as an 

approximation to an unknown but more general functional form. Conclusions from both 

models were qualitatively unaffected by this generalization.  
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Nonparametric Test Results 

The nonparametric findings regarding the validity of the IIH are reported in Table 5 for 

each input for each of nine states. To provide nonparametric support for the IIH, we 

required that , 0i jγ >  for some j with no , 0<i jγ . With four inputs, three innovation 

investments, and nine states, there were 108 individual tests of the hypothesis. Of these 

tests, 79 rejected the hypothesis and 29 supported the hypothesis.  The only input that 

received support by a majority of the tests was materials. Land received the least support, 

followed in succession by labor and capital. Frequent rejections of the hypothesis in the 

less actively traded inputs (land, labor, and capital) were consistent with the findings of 

Chavas, Aliber, and Cox (1997). In no state did a majority of the tests support the 

hypothesis, and in one state all tests rejected the hypothesis. For each innovation 

investment types, about one-quarter of the tests supported the hypothesis and three-

quarters rejected it. 

Thus, nonparametric test results were consistent with both the time series and 

direct econometric model test results.  Findings from all approaches imply that relative 

input prices failed to play a major role in inducing development and implementation of 

new technologies for U.S. agriculture that saved relatively expensive inputs. Our 

conclusion that the IIH is not supported in U.S. agriculture is consistent with the findings 

of Liu and Shumway (2006), Olmstead and Rhode (1993, 1998), Machado (1995), and 

Tiffin and Dawson (1995). However, it is counter to the conclusions of Hayami and 

Ruttan (1970, 1985), Binswanger (1974), Antle (1984), Thirtle (1985), Kawagoe, Otsuka, 

and Hayami (1986), Huffman and Evenson (1989), Lambert and Shonkwiler (1995), and 
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Thirtle, Schimmelpfennig, and Townsend (2002). 

Conclusions 

The hypothesis of induced innovation (IIH) is that technology is developed and 

implemented in ways that facilitate replacement of relatively scarce and expensive 

production factors by abundant and cheap factors. This hypothesis has been empirically 

tested in many ways, using a wide variety of data for many industries in many countries.  

U.S. agriculture has been the most tested of all industries. During the first two decades of 

testing, a stylized fact emerged that supported this highly intuitive hypothesis in U.S. 

agriculture as well as in many other industries and countries. However, while most early 

tests supported the hypothesis, recent tests with a wider variety of testing methods and 

data have resulted in nearly even support for and against the IIH. Thus, no stylized fact 

on induced innovation in this industry currently exists.  

Possible reasons for the recent conflicting test results are inadequate data, low 

power of traditional testing methods, and inflexibility of specification. In this paper, we 

sought to overcome each of these limitations by using a high-quality, 40-year, state-level, 

panel data set for U.S. agriculture rather than time series data. We also employed testing 

procedures that are both more powerful and more comprehensive than those previously 

used to formally test the IIH. The test procedures included time series, direct econometric, 

and nonparametric methods.  

With the exception of the weak direct econometric test for land-materials, our 

empirical finding was robust to test procedures and to functional specification. The IIH 

proved inadequate to explain input-saving technologies developed and implemented in 
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U.S. agriculture between 1960 and 1999. The hypothesis was rejected by all test 

procedures. This finding cautions against the efficacy of policies based on the premise 

that price signals alone induce efficient technical change. Although research and 

extension investments impacted development and implementation of factor-saving inputs, 

they were not exclusively motivated by relative prices. 

However, it should be clearly noted that all empirical tests conducted to date, 

including ours, focus only on the demand side of the hypothesis.  A possible and very 

plausible explanation for rejecting the hypothesis is that the marginal costs of developing 

and implementing input-saving technologies for the relatively expensive inputs are 

greater than for the relatively cheap inputs. All the tests impose the assumption that the 

marginal cost of developing and implementing input-saving technologies are the same for 

each input, so we cannot definitively rule out this possibility. It begs for data that would 

permit the supply side of technology development to be explicitly incorporated into 

future tests of the hypothesis.18  
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Footnotes

 
1 Ahmad (1966) developed the microeconomic foundations for this theory by proposing 

the concept of an innovation possibility curve (IPC).  The IPC is the envelope of all 

isoquants of potential production processes which firms might develop given the research 

and development budget. 

2 These three categories are not all-inclusive; e.g., they don’t capture the notable work of 

Olmstead and Rhode (1993). 

3 Liu and Shumway (2006) rejected the IIH for the U.S. but not for the state of 

Washington or two western regions. 

4 For example, an anonymous reviewer suggested that rejection of the IIH by Machado 

(1995) and Tiffin and Dawson (1995) may have been due to the use of low quality data. 

5 For the derivations and detailed discussion, see de Janvry et al. (1989). 

6 We used a trapezoidal stock variable for public research starting in year 4 with 

increasing weights for 7 years, constant for 5, and declining for 12 to year 27; a 

trapezoidal stock variable for private research starting in year 3 with increasing weights 

for 6, constant for 5, and declining for 7 to year 20; and a stock variable for extension 

with half the weight in year 3 and declining geometrically to year 9. 

7 The PMGE allows short-run coefficients and error variances to vary across groups. This 

weak homogeneity assumption is preferable to traditional procedures such as fixed 

effects, instrumental variables, and generalized method of moments which presume 

strong homogeneity across groups (Pesaran et al., 1999). 
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8 Another augmentation specification maintained in analysis of technical change relies on 

the scaling hypothesis: i i ix X B= . We don’t use this specification because it renders the 

weak axiom of profit maximization (WAPM) nonlinear in B.  

9 Since we use an aggregate index for outputs, the following specification, which allows 

for both exogenous shocks and investment-induced augmentation, applies to output 

augmentation: , , ,0
, −=

∈= + ∑y t y t y t t jj
B t Tα

r
β R . 

10 Following Chavas, Aliber, and Cox (1997), we use unit weights on all three 

parameters. That is, each of the terms in equation (5) is treated as being equally important 

to the augmentation indices. 

11 The capital input category includes machinery, equipment, buildings, and inventories; 

land includes land and land improvements, labor includes family and hired labor, 

materials includes chemicals, energy, seed, feed, and other operational inputs. Prices of 

capital and land are rental rates.  One could argue that buildings and livestock 

inventories, which are included in the capital category, are misplaced for our tests 

because they are more likely to be land-enhancing than labor-substituting. The 

seriousness of such a possible misplacement is not entirely clear. The combined portion 

of capital rents represented by these inputs is typically about one-quarter. Many buildings 

are indeed labor-substituting (e.g., milking parlors, machine storage, and even livestock 

barns). As a further caution, an anonymous reviewer noted that constructed price ratio 

data often fare poorly in time series tests. 
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12 Some input prices are available prior to 1960, but data such as marketing and 

inventories that are required to construct input aggregates consistent with those used in 

this study are not available. 

13 We also ran state-specific tests. In 26 of the 48 states, the hypothesis of no long-run 

relationship was not rejected for the land-materials equation. Thus, the IIH would be 

rejected in 26 states by these individual tests for these inputs. The hypothesis of no long-

run relationship was rejected in all states for the labor-capital equation. 

14 In the state-specific analyses, only 3 states exhibited larger long-run than short-run 

elasticities of substitution for labor and capital.  

15 If the micro units underlying the aggregated data are heterogeneous, their time series 

characteristics can differ significantly from that of the aggregate data (Granger, 1980). 

Therefore, possible inappropriateness of pooling all 48 states in the sample may bias the 

results. To determine whether test conclusions were sensitive to the sample used for land 

and materials, we re-ran all tests using the sub-sample of 22 states for which a long-run 

relationship could not be rejected (i.e., each had a significant error correction coefficient 

estimated by the PMGE).  Their results were not qualitatively different than reported for 

the entire sample.  

16 We first attempted to specify the direct econometric model to be consistent with the 

non-rejected time-series properties of the variables. Unfortunately, the use of differenced 

data as required for some of the variables resulted in severe multicollinearity. 

17 The Durbin-Watson and Breusch-Pagan test statistics were 0.134 and 47.814, 

respectively, in the land-materials equation and 0.171 and 20.835 respectively, in the 
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labor-capital equation.  

18 See Appendix E (Liu and Shumway 2008) for additional insights. 
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Table 1. Stationarity and Cointegration Test Results a 

Stationarity Test Results 

 Levels 1st Differences 2nd Differences 3nd Differences 

Data Series b Statistic P-value Statistic P-value Statistic P-value Statistic P-value 

LnRA/M 64.045 0.000 -2.294 0.960     

LnRL/K 101.568 0.000 6.006 0.000 -7.130 1.000   

LnPA/M 78.049 0.000 -3.776 1.000     

LnPL/K 51.773 0.000 -3.735 1.000     

LnRpri 93.761   0.000 62.009     0.000 25.940    0.000 -4.802     1.000 

LnRpub 95.863   0.000 66.692     0.000 55.960    0.000 -2.675   0.996     

LnExt 87.589   0.000 16.567     0.000 -6.519    1.000   

Cointegration Test Results c

Test Statistic 
Land-Materials  Labor-Capital 

Panel Group Panel Group 

v-statistic      1.905*  0.137 

ρ-statistic 2.187 3.121 -14.739* -12.678* 

t-statistic (nonparametric)       -2.142* -2.538* -41.239* -45.998* 

t-statistic (parametric) -0.773 -0.321 -25.637* -28.260* 

a A time trend was included when testing for stationarity in levels and in testing for 

cointegration.  

b Codes: Ln is logarithm, A is land, M is materials, L is labor, K is capital, Pi is price of 
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input i, Rpri is private research investments, Rpub is public research investments, Ext is 

extension investments. 

c Critical 1-tailed test values for rejecting the hypothesis of no cointegration is 1.645 for 

the panel v-statistics and -1.645 for the other statistics at the 0.05 significance level 

(Pedroni 1999). Significant cointegration test coefficients are identified by an asterisk. 
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Table 2. Estimated Error Correction Model a 

 Land-Materials Labor-Capital 

Variable b Coefficient 
Standard 

Error  
Coefficient 

Standard 

Error  

Long-run effects: 

Ln(own-price ratio)t -0.053* 0.018 -0.048* 0.006 

Δ2LnRpri,t 
 -7.802* 2.489 -1.388* 0.546 

Δ2LnRpub,t  -7.699* 1.791 2.764* 0.336 

ΔLnExtt  0.944* 0.219 -0.312* 0.044 

Error correction coefficient   -0.131* 0.024 -1.290* 0.059 

Short-run effects: 

Ln(own-price ratio)t -0.007* 0.001 -0.062* 0.003 

Δ2LnRpri,t -1.021* 0.184 -1.790* 0.083 

Δ2LnRpub,t -1.008* 0.182 3.565* 0.164 

ΔLnExtt 0.124* 0.022 -0.402* 0.019 

ΔLn(own-quantity ratio)t-1 
c -0.113* 0.032 0.114* 0.038 

ΔLn(own-quantity ratio)t-2 
c -0.011 0.016 0.036* 0.017 

ΔLn(own-price ratio)t 0.010 0.008 -0.108* 0.019 

ΔLn(own-price ratio)t-1 0.026* 0.007 0.028* 0.013 
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ΔLn(own-price ratio)t-2 0.009 0.005 0.007 0.012 

Δ3Ln Rpri,t 0.148 1.041 0.869 1.318 

Δ3Ln Rpri,t-1 -0.275 0.806 -0.670 1.742 

Δ3Ln Rpri,t-2 0.242 0.551 -0.603 0.892 

Δ3LnRpub,t 1.249* 0.315 -1.645* 0.577 

Δ3Ln Rpub,t-1 0.970* 0.337 -1.334* 0.400 

Δ3Ln Rpub,t-2 -1.194* 0.362 -0.732* 0.353 

Δ2LnExtt -0.150* 0.039 0.309* 0.084 

Δ2LnExtt-1 -0.033 0.018 0.041 0.029 

Δ2LnExtt-2 0.004 0.025 -0.051 0.031 

Constant -0.070* 0.018 -0.035* 0.003 

2R  0.373 0.611 

 

a The critical t-values for these 2-tailed tests are 1.96 at the 0.05 significance level. 

Significant coefficients are identified by an asterisk. 2R is an average of state-specific R-

square values. 

b LnRpri,t, LnRprub,t and LnExtt are respectively stock of private research, public research, 

and extension investments.  

c These variables are twice differenced and the dependent variable is first differenced in 

the labor-capital equation. 
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 Table 3. Causality Test Results a 

 Land-Materials Labor-Capital 

Number of 

lags  
Variable 

Estimated 

Coefficient 

Standard 

Error 

Estimated 

Coefficient 

Standard 

Error 

Causal variable: own price ratio 

1 Ln(own-price ratio)t-1 -0.0358* 0.0063 0.0065 0.0111 

2 

 

Ln(own-price ratio)t-1 -0.0147* 0.0058 0.0149 0.0133 

Ln(own-price ratio)t-2 -0.0307* 0.0084 -0.0374* 0.0204 

3 

 

 

Ln(own-price ratio)t-1 -0.0031 0.0088 0.0421 0.0194 

Ln(own-price ratio)t-2 -0.0313* 0.0102 -0.0290 0.0250 

Ln(own-price ratio)t-3 -0.0240* 0.0094 -0.0489* 0.0227 

Causal variable: private research 

1 LnRpri,t-1 0.5829 1.4011 -4.0540* 0.9939 

2 

 

LnRpri,t-1 -0.8454 0.8987 -4.7723* 1.2665 

LnRpri,t-2 0.6916 1.3183 -2.1179 1.9874 

3 

 

 

LnRpri,t-1 -0.0124 1.5889 -4.9388* 1.9722 

LnRpri,t-2 1.1583 1.9445 -1.6823 2.4355 

LnRpri,t-3 -0.2782 1.7463 1.9072 2.1079 

Causal variable: public research 

1 LnRpub,t-1 -3.3452* 0.8242 1.7046* 0.5831 

2 

 

LnRpub,t-1 -1.7290* 0.6522 2.0240* 0.7456 

LnRpub,t-2 -1.2715 0.7267 0.8604 0.8889 
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3 

 

 

LnRpub,t-1 -1.8976* 1.6589 2.5874* 0.9068 

LnRpub,t-2 -2.3474* 1.0176 1.8282 1.0809 

LnRpub,t-3 1.3269 0.9375 1.7781 0.9965 

Causal variable: extension 

1 LnExtt-1 0.2246* 0.0738 -0.3485* 0.0567 

2 

 

LnExtt-1 0.1935* 0.0552 -0.3906* 0.0721 

LnExtt-2 0.1050 0.0597 -0.1502* 0.0759 

3 

 

 

LnExtt-1 0.1920* 0.0834 -0.4043* 0.0735 

LnExtt-2 0.0430 0.1343 -0.1566* 0.0775 

LnExtt-3 0.0720 0.1320 -0.0110 0.0753 

 

a The critical values at the 0.05 significance level are -1.645 for the 1-tailed tests on price 

ratios and 1.96 for the 2-tailed tests on innovation variables. Significant coefficients are 

identified by an asterisk.  



 38

Table 4: Estimated Direct Econometric Model a 

Land-Materials Equation Labor-Capital Equation 

Variable Coefficient 
Standard 

Error  
Variable Coefficient Standard Error  

Constant -1.4467* 0.0900 Constant 0.8118* 0.0332 

LnPA/M -0.6167* 0.0446 LnPL/K -0.1422* 0.0405 

F1 0.00013* 0.000031 F2 0.0227* 0.0021 

,
1
ln( )

t

pri s
s

R
=

∑  -0.0045* 0.0007 ,
1
ln( )

t

pri s
s

R
=

∑  0.00025 0.00039 

,
1

ln( )
t

pub s
s

R
=

∑  0.0042 0.0027 ,
1

ln( )
t

pub s
s

R
=

∑  0.0034* 0.0012 

1
ln( )

t

s
s

Ext
=

∑  -0.0031 0.0027 
1
ln( )

t

s
s

Ext
=

∑  -0.0047* 0.0013 

2R  b 0.488 2R  0.357 

Hypothesis Tested Null  Statistic Hypothesis 
Tested 

Null 
Statistic  

Weak Test, γA/M >0 γA/M  ≤ 0 3.677* Weak Test, γL/K > 0 γL/K ≤ 0 -9.664 

Strong Test, γA/M = 1 γA/M = 1 73.838* Strong Test, γL/K = 1 γL/K = 1 473.041*

 
a Critical values at the 0.05 significance level are 1.96 for the 2-tailed t-ratios on the 

coefficients, 1.65 for the 1-tailed standard normal statistics for the weak test, and 3.84 for 

the 1-tailed Wald chi-square statistics for the strong test. Significant coefficients are 

identified by an asterisk.   
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b 2R  is an average of state-specific adjusted R-square values.   
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 Table 5. Nonparametric Tests of the Induced Innovation Hypothesis, Selected 

States a  

 Land Materials Labor Capital 

State Rpri Rpub Ext Rpri Rpub Ext Rpri Rpub Ext Rpri Rpub Ext 

CA R R A R A A R R R R R R 

FL R R R A A A R R R A R R 

IA R R R R R A R R R R A R 

KS R R R A A A R R R R A R 

MI R R R R R A R R A R R R 

NC R R R A A A A R R R A R 

NY R R R R R R R R R R R R 

TX R R R A A A R R R R R R 

WA R R R A A A A R R A R A 

 

a Codes: Rpri is stock of private research investments, Rpub is stock of public research 

investments, Ext is stock of extension investments. A means accept the IIH, R means 

rejected the IIH. 


