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Abstract 

Data envelopment analysis (DEA) is among the most popular empirical tools for 
measuring cost and productive efficiency.  Because DEA is a linear programming 
technique, establishing formal statistical properties for outcomes is difficult. We show 
that the incidence of inefficiency within a population of Decision Making Units (DMUs) 
is a latent variable, with DEA outcomes providing only noisy sample-based 
categorizations of inefficiency. We then use a Bayesian approach to infer an appropriate 
posterior distribution for the incidence of inefficient DMUs based on a random sample of 
DEA outcomes and a prior distribution on the incidence of inefficiency. The 
methodology applies to both finite and infinite populations, and to sampling DMUs with 
and without replacement, and accounts for the noise in the DEA characterization of 
inefficiency within a coherent Bayesian approach to the problem. The result is an 
appropriately up-scaled, noise-adjusted inference regarding the incidence of inefficiency 
in a population of DMUs.   
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1.0 Introduction 

 Data envelopment analysis (DEA) is among the most popular tools for measuring 

productive and cost efficiency.  Originally developed by Charnes et al (1978) to 

empirically quantify the distance functions posited by Debreu (1951) and Farrell (1957), 

DEA uses a linear programming algorithm to evaluate the efficiency of decision-making 

units (DMUs) on a 0  - 1 interval.  An efficiency score of 0 implies that a particular DMU 

is completely inefficient, while a DMU with a score of 1 indicates that the DMU is 

producing at a point on the efficient frontier (whether the frontier is defined as an 

isoquant or a production possibilities frontier), and thus completely efficient. 

 Using DEA to characterize efficiency is advantageous for several reasons.  First, 

DEA, in general, does not have stringent data requirements; the researcher need only 

collect data on the relevant inputs and outputs for each DMU.  Additionally, DEA is 

“non-parametric” in that it does not require the researcher to make stringent functional 

assumptions about the technology underlying the production function.  Instead, the 

technology set is inferred using the observed input-output relationships within the data.  

Third, unlike other alternatives, such as stochastic frontier analysis (SFA), DEA more 

easily generates efficiency estimates when DMUs produce multiple outputs.  Finally, 

DEA does not force the researcher to make assumptions about the scale (either constant 

or variable returns to scale) of the production process.  As with the technology, scale 

economies are deduced using observed input-output relationships. 

 Unfortunately, DEA also has at least two major drawbacks.  First, DEA estimates 

tend to mismeasure efficiency in finite samples, and in particular to over-predict 
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efficiency because the randomly collected samples may not contain enough truly efficient 

DMUs to accurately characterize the efficient production frontier.1  As such, the frontier 

calculated by DEA will be above (below) the true efficient isoquant (production 

possibilities frontier), because the most efficient DMUs in the sample (against which the 

estimated frontier is calculated) may not lie on the true production frontier.   

 Several solutions to the small sample mismeasurement problem have been 

proposed.  One “apparently obvious” solution suggested in the literature is to apply DEA 

only when the sample size is very large, especially relative to the number of inputs and 

outputs included in the analysis.  This approach is often not practically viable because 

researchers frequently do not have access to extensive data sets. Moreover, we note as a 

consequence of the analysis we present ahead that even a census of the population may 

not suffice to solve the DEA mismeasurement problem, which appears to be an 

underappreciated property of DEA.   

 Secondly, and arguably the most important drawback to DEA, is that its statistical 

foundation is complex (Schmidt 1985).  This is problematic for researchers aiming to 

determine the relationship between efficiency and a set of exogenous policy variables.  A 

common use of DEA is in a two-stage empirical analysis, where the first step entails 

calculating DEA estimates, and the second step uses these estimates as outcomes of the 

dependent variable in a regression analysis to determine how exogenous policy variables 

influence efficiency (Simar and Wilson 2005).  Unfortunately, the two stage approach 
                                                 
1 In the DEA literature the mismeasurement is usually referred to as “bias” and the nature of DEA makes it 
possible to overestimate but not underestimate DMU efficiency.  To avoid confusion with the statistical 
property of bias, we do not use bias to refer to DEA mismeasurement.  The mismeasurement problem is 
exacerbated when the number of inputs and outputs is large relative to the sample size (the well-known 
“curse of dimensionality”).   
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forces the researcher to make additional assumptions that may lead to detrimental 

statistical consequences.  One possibility is to assume that DEA scores follow a particular 

distribution, which allows the researcher to employ standard maximum likelihood 

regression techniques.  Past studies have made a number of different distributional 

assumptions, including the normal distribution (estimated via OLS) (Ray 1991; Chirkos 

and Sears 1994; Stanton 2002) the truncated normal, or Tobit distribution (Chilingerian 

1995; Rosenman and Friesner 2004), the Beta distribution (Sengupta 1998) and the Beta-

Binomial distribution (Sohn and Choi 2006).  A drawback to this approach is 

specification bias; if one assumes an incorrect distribution, which appears rather likely in 

this complex statistical context, any coefficient estimates generated by this approach will 

be generally biased and inconsistent.  Moreover, as Simar and Wilson (2005) note, 

because the efficient frontier is calculated relative to the DMUs in the data, DEA scores 

are serially correlated in an unknown and complicated manner.  Thus, even if the 

distributional choice is correct, any coefficient estimates may be substantially inefficient 

unless the distributional choice accounts explicitly for this correlation. 2 

An alternative espoused by Simar and Wilson (2005) is to employ semiparametric 

regression techniques to estimate the second stage model.  The authors suggest 

supplementing an MLE-based regression with a specific form of bootstrapping to adjust 

for any potential mismeasurement and serial correlation.  However, one must still identify 

an appropriate distribution for the likelihood function, which allows for the possibility of 

                                                 
2 Two studies (Hirschberg and Lloyd 2002; Xue and Harker 2002) adjust their regression estimates for 
serial correlation.  However, Simar and Wilson (1999a, b) indicate that their approach still leads to 
inconsistent estimates.    
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specification bias.  Moreover, as we already noted, a census of DMUs does not 

necessarily fully remove mismeasurement and thus bootstrap methods cannot solve these 

problems fully.3   

Recent research has attempted to avoid these issues by deriving specific 

asymptotic distributions for DEA scores, as well as the asymptotic rate of convergence at 

which randomly sampled DEA scores converge to these distributions.  Banker (1993) 

proved that a distribution of DEA scores exists, and established the consistency of DEA 

scores for the single output case.  Kneip, Park and Simar (1998) identified the asymptotic 

rate of convergence for DEA estimates, while Gijbels et al. (1999) derived the asymptotic 

distribution for DEA scores involving a single output and a single input.  Kneip, Simar 

and Wilson (2003) extended Gijbels’ findings to the multiple input, multiple output case, 

while Jeong (2004) derived a more empirically tractable version of Kneip, Simar and 

Wilson’s distribution. All of this work has depended on specific regularity conditions, 

with none of this work dealing with the empirically realistic case of relatively small finite 

population sizes and random sampling of DMUs without replacement. 

Jeong’s (2004) work not withstanding, the asymptotic distributions derived in past 

studies are not easily implemented because they do not belong to traditional parametric 

families, and nonparametric methods, numerical integration or other approximation 

techniques are generally required in order to construct confidence intervals for DEA 

scores. Another shortcoming is that the assumptions necessary to derive these 

distributions do not necessarily apply to a wide range of empirical DEA studies.  For 

                                                 
3 Wilson (2005) has released FEAR 1.0, a statistical package that not only calculates DEA scores, but also 
implements the bootstrapping mechanism outlined above. 
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example, virtually all studies mentioned above assume that the inputs and outputs are iid 

random vectors.  However, if researchers are sampling from finite populations without 

replacement, this assumption will clearly not literally hold.  Additionally, studies such as 

Gijbels et al. (1999) and Kneip, Simar and Wilson (2003) assume that the production 

frontier is smooth and twice continuously differentiable.  In the absence of these 

assumptions the distributions and rates of convergence identified in these studies will 

generally not apply. 

In this paper we treat the true incidence4 of inefficiency in a population of DMUs 

as a latent variable and the sample DEA estimates as a collection of sample observations 

that provide useful but noisy information relating to the value of the latent variable. 

Together with a prior distribution relating to the incidence of inefficiency, which can be 

either informative or uninformative, we derive a posterior distribution for the incidence 

of inefficiency that accounts for inherent DEA noise, and provides a means for inferring 

the incidence of inefficiency as well as testing hypotheses relating to it. The approach 

places little a priori structure on the nature of the production process being studied so 

that inferences are applicable in very general problem contexts such as cases where the 

efficient frontier is not (twice) continuously differentiable or even in cases where the 

technology is not representable via a parametric functional form. Moreover, the geneses 

of the probability distributions used in the statistical model emanate directly from the 

                                                 
4 One implication of our analysis is that it may be impossible to accurately characterize the distribution of 
DEA scores.  Thus, our focus on the incidence of inefficiency may represent the most statistically coherent 
context in which an analysis can be performed. 
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sampling methods and the prior information employed, and thus errors in distributional 

specification are fully mitigated. 

The remainder of this paper proceeds as follows.  First, we identify an appropriate 

posterior probability distribution for the true incidence of inefficiency in a population of 

DMUs based on random samples of DEA estimates under the idealized assumption that 

sample outcomes categorize DMUs correctly as to whether they are truly inefficient. 

While the empirical relevance of this model is limited, analysis of this case provides 

results that are relevant to the existent DEA literature, and allows the analysis to focus 

initially on only the issue of sampling variability, and abstract from the issue of 

mismeasurement in the DEA information. A posterior distribution is derived using both a 

general and an uninformative Bayesian prior relating to the proportion of inefficiency in 

the population. We then turn to the empirically more relevant case where the DEA 

estimates are known to not necessarily characterize DMU inefficiency accurately.  A 

posterior distribution for the incidence of inefficiency that accounts for both sampling 

variability and potential mismeasurement in the DEA estimates is derived.  We then 

provide a brief numerical example to illustrate implementation of the methodology to the 

most empirically relevant case of random sampling, without replacement, from a finite 

population of DMUs. The penultimate section of the paper discusses implications of our 

results for the DEA literature, and we conclude the paper by discussing some limitations 

of our findings and as well as suggestions for future extensions of the work.           
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2.0 General Problem Context 

 Consider a population of DMUs all of which operate in the same industry.  Each 

of these DMUs utilizes a 1p×  vector of inputs to produce a 1q× vector of outputs.  

Following the notation of Fare and Primont (1995) and Simar and Wilson (2005), let w ∈ 

Rp
≥0 denote the vector of inputs and y ∈ Rq

≥0 denote the vector of outputs.  The 

conceptual set of feasible production possibilities, which subsumes all of the production 

technologies of the DMUs in the population under study, is defined by:  

 T = {(w, y): w ∈ Rp
≥0, y ∈ Rq

≥0: w can produce y}    (1) 

The definition of the set T is generally unknown and is to be approximated by sample 

observations on the behavior of DMUs in the population (Coelli et al., p. 134, footnote 

3). 

 Following Farrell (1957), we measure the amount of inefficiency using the 

(output-oriented) distance function, d: Rp
≥0 x Rq

≥0 → R≥0 ∪ {+∞}.5 Thus, for any input-

output combination (w, y), d can be defined as 

}),(|{inf),( Tywywdd ∈≡=
θ

θ
θ

          (2) 

Assuming non-zero input and output vectors, any input-output combination for which 

distance is equal to 1, i.e. 1θ = , is efficient, while distances less than 1 indicate 

inefficiency with values closer to zero indicating increasing levels of inefficiency.  Our 

goal is to draw inferences about the incidence of inefficiency in the population of DMUs 

                                                 
5 While our focus is on output measures of efficiency, we note that analogous results can easily be obtained 
for input distance functions by re-defining the distance function in (2) to recover the minimum amount of 
inputs required to produce a given level of output.  
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through a statistical analysis of a randomly selected sample of n DMUs (either with or 

without replacement). 

2.1  General Assumptions  

 Our analysis proceeds under a series of general assumptions that have close 

precedents in the literature (Kniep, Simar and Wilson 2003; Jeong 2004 and Simar and 

Wilson 2005).  

Assumption 1. Each DMU chooses an input vector pRw 0≥∈  such that w > 0, which 

results in an output vector qRy 0≥∈  such that y > 0. 

Assumption 2. If (w, y) ∈ T and (w*, y*) ∈ T, then (αw + (1-α)w*, αy + (1-α)y*) ∈ T for 

all α ∈ [0,1]. 

Assumption 3. If (w, y) ∈ T, then (w*, y*) ∈ T for w*  ≥ w and y*  ≤ y.  

Assumption 1 states that each DMU in the population being analyzed is operating at 

some level of production, using one or more inputs to produce one or more outputs.  This 

assumption is only slightly stronger than Kneip, Simar and Wilson (2003) who assume 

that the input vector is non-empty (i.e., operation requires positive input usage, even if no 

outputs arise from that process).  Assumption 2 is fundamental to the application of DEA 

methodology, and implies that the production possibilities set is convex.  Assumption 3 

ensures that the technology exhibits free disposability of outputs.  The latter two 

assumptions are standard in the distance function literature (for example, see Fare and 

Primont 1995; and Jeong 2003).   
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2.2  Data Envelopment Analysis Overview 

 Data envelopment analysis (DEA) attempts to represent the true production 

frontier by first identifying those DMUs in the sample that produce the most output for a 

given set of inputs.6  Figure 1 presents an illustrative example of an output-oriented, two-

output production process (the outputs are y1 and y2).  Two DMUs (A and B) produce 

maximal output for a given amount of inputs.  These DMUs are characterized as 

“efficient” and assigned efficiency scores equal to one.  DEA then “fills in” the (sample) 

technological frontier by examining all possible convex combinations of these DMUs 

(also known as “virtual DMUs”).  For each DMU operating below the frontier, DEA 

projects a ray from the origin, through the inefficient DMU to the constructed frontier.  

The proportion of the ray length that lies between the inefficient DMU and the origin is 

the efficiency score of that DMU.  By construction, DMU C’s efficiency score is given 

by the ratio *0 / 0 vC C  where C*v is the virtual reference point for C, even if there is a 

more efficient possibility, for example C+, not in the sample. 

 Computationally, the DEA sample frontier and efficiency scores can be defined 

through a linear programming algorithm.  Define W as the p n×  vector of inputs and Y 

as the q n× vector of outputs for the entire sample of n DMUs.  Then for each DMU (and 

assuming variable returns to scale), DEA chooses λ and ρ to solve the following linear 

programming problem: 

                                                 
6 We are adopting the output-oriented DEA method. One can also apply DEA based on an input-oriented 
method whereby a given level of outputs is produced with most efficient combination of inputs (Coelli et 
al. 1998). 
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0
0

max . .
1 ' 1

0
n

y Y
w W

s t

ρ λ
λ

ρ
λ

λ

− + ≥⎧ ⎫
⎪ ⎪− ≥⎪ ⎪
⎨ ⎬=⎪ ⎪
⎪ ⎪≥⎩ ⎭

     (3) 

where 1n  is an 1n×  vector of 1’s; λ is an 1n×  vector of convexity weights; and ρ is the 

inverse of the sample efficiency score.  In this case the convex combinations of the n 

observations on output and input vectors, defined respectively by Yλ and Wλ, represent 

the vectors of outputs and inputs for the virtual DMU(s).  An efficient DMU uses the 

same levels of inputs to produce the same levels outputs as a virtual DMU, with the first 

two inequality conditions in (3) actually holding with equality.  Inefficient DMUs 

produce lesser levels of outputs using the same or higher levels of inputs, and thus one or 

both of the first two inequality constraints in (3) hold as strict inequalities.  

2.3 Prior Distributions on Incidence of Inefficiency 

 The proportional incidence of inefficiency in the population of DMUs, which we 

henceforth represent by π , is contained a priori in the interval [ ]0,1∈π , which 

represents the maximal admissible support of any prior distribution on π . Under the 

idealization that the population of DMUs is infinite in size, any prior distribution is 

admissible that has a continuous support of[ ]0,1 , or any subset thereof. However, if the 

population is finite, then the support for π cannot possibly be the continuum [ ]0,1  or any 

continuous subset, since the support of π  is then clearly discrete in nature. Given that 

there are K inefficient DMUs contained within the finite population of N DMUs, and 
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given that the value of π is clearly equal to K
N

π = , the support for π is precisely equal to 

the finite set  , 0,1,...,for N
N
γπ γ⎧ ⎫∈ =⎨ ⎬

⎩ ⎭
,  or any subset thereof.7 

 For concreteness henceforth, we adopt the Continuous and Discrete Beta 

distributions8 for representing prior information on πwhen one is sampling from infinite 

and finite populations of DMUs, respectively. These distributions are well known to be 

highly flexible and capable of representing an extremely wide range of distributional 

patterns over the appropriate supports for the value of π . However, the general inference 

methodology that we outline in this and later sections applies equally well to whatever 

prior distributions an analyst wishes to utilize. We state our prior distribution 

assumptions below. 

 

Assumption 4.    Prior information on the incidence of inefficiency, π , in a population of 

N DMUs is represented by some member of the Continuous or Discrete Beta family of 

probability distribution functions, as follows:  

 N = ∞ : 11 )1(
)()(
)(),|( −− −

ΓΓ
+Γ

= βα ππ
βα
βαβαπf  for 0 1≤ π ≤                     (4) 

N < ∞ : 

1
2

1

1
2

( | , , ) ( | , ) , 1,..., 1
N

d d d

N

f N f d for for N
N

+

−

−

⎧ ⎫= ∈Ω = = −⎨ ⎬
⎩ ⎭∫

π

π

γπ α β τ π α β π π γ  (5) 

                                                 
7 Sohn and Choi (2006, p. 553) explicitly assume a finite population.  As such, their use of the beta-
binomial is not literally defensible. 
8 The Discrete Beta distribution has not appeared frequently in the Economics literature. Additional details 
relating to this distribution can be found in Mazzuchi and Soyer (1996) and Juang and Anderson (2004). 
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where α, β > 0, ( ) 1

0

zz e dzαα
∞

− −Γ = ∫  is the gamma function, and 

11
2

1
2

( | , )
N

d d

N

f d
−

= ∫τ π α β π . 

 Note we have assumed that the probability of the events that all DMUs are 

efficient and all DMUs are inefficient is each a priori zero.9  Following Pearson (1925) 

and Skellam (1948), if one were to assume no prior knowledge exists regarding the 

appropriate value of π, i.e. the prior belief is one of “ignorance”, then the uniform 

distribution would be appropriate, which is given in the continuous and discrete cases by 

(4) and (5) with  α = β = 1.  The beta distribution is sufficiently flexible to allow for a 

myriad of different distributional shapes.   For example, Beta densities are skewed to the 

left when α > β, skewed to the right when α < β, J-shaped when ((α-1)(β-1) < 0), and U 

shaped when 1α <  and 1β < .  

 

3.0 Inferring the Incidence of Non-Latent Inefficiency  

 In this section we operate within an idealized setting where sample DEA 

estimates correctly categorize a DMU as to whether it is efficient, and so the true 

proportion of inefficient DMUs in the sample is observable and non-latent. This is 

tantamount to the presumption that DEA estimates are being calculated with reference to 

the true production frontier.  The functional form of the posterior distribution of π will 

depend on whether random sampling of DMUs is with or without replacement, and 

                                                 
9 The only change that would be required in the discrete case is for one or both end points to be 
accommodated with nonzero probability in the support of the discretized beta distribution by reassigning 
interval probabilities appropriately. In the continuous case all elementary events have probability zero, and 
a mixed continuous-discrete distribution would need to be employed if probability masses were to be 
assigned to one or more of the elementary events. 
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whether the population of DMUs is assumed to be finite or infinite. We develop these 

cases ahead. 

3.1 Sampling with Replacement 

 Assume that random sampling is with replacement, in which case one can view 

the random sample of efficient and inefficient DMUs as iid outcomes of a Bernoulli 

process with the probability of an inefficient observation being equal toπ . This 

interpretation holds whether the population of DMUs is finite or infinite.  The probability 

that X of these DMUs are inefficient (given π and n) is then necessarily determined by 

the binomial probability distribution: 

 ( | , ) (1 )x n xn
f x n

x
π π π −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

       (6) 

Utilizing Bayesian inferential methodology, we now seek the posterior 

distribution of π . Factoring the joint density of X and π  into the product of a 

conditional and marginal distribution yields the following representation: 

 ( , | , , ) ( | , ) ( | , )f x n f x n fπ α β = π π α β      (7) 

At this point, derivation of the posterior distribution of π  is differentiated by whether the 

population is infinite or finite, and thus whether priors of the form (4) or (5) are used to 

represent the ( | , )f π α β distributional component of (7).  

 

3.1.1  N = ∞  

 Integrating out π from the joint distribution in (7) using the prior distribution in 

(4) yields the marginal probability distribution of X, as 
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)()()(

)()()(),,|(
βαβα

βαβαβα
++ΓΓΓ

+−Γ+Γ+Γ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

n
xnx

x
n

nxf .    (8) 

which is recognized as the beta-binomial distribution (e.g., Schuckers, 2003 and Phillips, 

2001).  Its first two moments are given by: 

 ( ) ( ) 1E X n and Var X n Cα α α
α β α β α β

⎛ ⎞⎛ ⎞
= = −⎜ ⎟⎜ ⎟+ + +⎝ ⎠⎝ ⎠

  (9) 

where 
1++

++
=

βα
βα nC  .The value of C is contained in the interval ( )1, n  and depicts the 

variability in the observed frequency of inefficiency that is not accounted for in the pure 

binomial model.  If C is close to 1, then over-dispersion is not a problem, and one can use 

the simpler binomial distribution as the model for the data generating process and the 

basis for a traditional binary model.  Larger values indicate the appropriateness of a 

mixed continuous distribution representation such as the beta-binomial. 

 The posterior of π given x is given by the ratio of (7) over (8), 

( ) ( )
( )

( )
( ) ( )

1 1, | , ,
| , , , (1 )

| , ,
x n xf x n n

f x n
f x n x n x

+ − − + −Γ + +
= = −

Γ + Γ − +
α βπ α β α β

π α β π π
α β α β

  (10)   

which is recognized as a ( )* *,Beta α β distribution with parameters * xα α= +  and 

* n xβ β= − + . The posterior expected value of π  and the value of π  associated with the 

highest posterior density (HPD) weighting are two alternative Bayesian estimates of π, 

the former being the minimum posterior quadratic risk (MPQR) estimator and the latter 

being the estimate that receives the maximum posterior density weighting.  Given that the 

posterior distribution of π is Beta, the estimator that minimizes posterior expected 

quadratic loss is clearly  
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  ( ) xE
n

απ
α β

+
=

+ +
       (11) 

  while the HPD estimate, which maximizes (10), is: 

  1
2HPD

x
n

απ
α β

+ −
=

+ + −
       (12) 

Credible regions for the HPD can be generated based on the tails of the posterior in (10). 

 If an uninformative prior is used, so that α = β = 1, the beta prior reduces to a 

continuous uniform density.  Applying this restriction to (8) and noting that n and x are 

integers, the marginal distribution of X reduces to 

 ( )( !) ( )!( 1) ( 1)( |1,1, )
( 2) ( 1)!

n n x n xx n xf x n
x xn n

−⎛ ⎞ ⎛ ⎞Γ + Γ − +
= =⎜ ⎟ ⎜ ⎟Γ + +⎝ ⎠ ⎝ ⎠

.   (13) 

The posterior distribution for π  can then be expressed as 

( ) ( )
( ) ( )

1

0

2 ( 1)!| ,1,1, (1 ) (1 )
1 1 !( )!

(1 )

(1 )

x n x x n x

x n x

x n x

n nf x n
x n x x n x

π π π π π

π π

π π

− −

−

−

Γ + +
= − = −
Γ + Γ − + −

−
=

−∫

 (14) 

from which the corresponding MPQR and HPD estimates for π can be derived yielding 

  ( ) 1
2 HPD
x xE and

n n
π π+

= =
+

     (15)    
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  3.1.2  N < ∞  

 We now consider analyzing the incidence of inefficiency within a finite 

population of firms when random sampling is with replacement. The probability that X of 

these DMUs are inefficient (given π and n), ( | , )f x n π , continues to be the binomial 

probability distribution of (6).  Given the finiteness of the population, we adopt the 

Discrete Beta distribution in (5) for the prior on π . A difficulty with (5) is that it does not 

lead to closed form algebraic solutions for the probabilities unless andα β are integer 

valued, in which case the integrand is a polynomial in x. In any case, the integrals in (5) 

are easily calculated numerically, and the numerical values of the probabilities are 

straightforward to define.  

 The general expression for the joint distribution of and Xπ can be defined via a 

factorization similar to (7), yielding 

 ( , | , , , ) ( | , ) ( | , , )df x n N f x n f N for= ∈Ωπ α β π π α β π    (16) 

The posterior for π , given the data x, is then obtained by first deriving the marginal 

distribution of X from (16) as 

 ( | , , , ) ( | , ) ( | , , )df x n N f x n f N
∈Ω

= ∑
π

α β π π α β     (17) 

and then forming the ratio of (16) and (17) to yield 

 ( | , ) ( | , , )( | , , , , )
( | , , , )

df x n f Nf x n N for
f x n N

= ∈Ω
π π α βπ α β π

α β
   (18) 

 To provide a concrete example analogous to that used in the previous subsection, 

we utilize the ignorance prior case of (5) where α=β=1,  
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 1( |1,1, )
1df N for

N
π π= ∈Ω

−
 .      (19)  

which is the discrete uniform distribution. The joint distribution of X and π is then 

( ) ( )1( , |1,1, , ) ( | , ) ( |1,1, ) 1
1

x n x
d

n
f x n N f X x n f N

xN
π π π π π −⎛ ⎞

= = = −⎜ ⎟− ⎝ ⎠
  (20)  

Summing over all possible values of π yields the marginal distribution of X 

 ( ) ( )1( |1,1, , ) 1
1

x n xn
f x n N

xN π
π π −

∈Ω

⎛ ⎞
= −⎜ ⎟− ⎝ ⎠

∑     (21) 

and the posterior of π given X is the ratio of (21) and (20), as 

 ( ) ( )

( ) ( )

1
( | ,1,1, , )

1

x n x

x n x
f x n N for

π

π π
π π

π π

−

−

∈Ω

−
= ∈Ω

−∑
    (22) 

which is recognized as the direct discrete analog to the continuous posterior distribution 

defined in (14). The MPQR estimator of π is equal to the mean of the distribution in (22), 

as 

( )
( ) ( )

( ) ( )

1 1

1

x n x

x n x
E π

π

π π
π

π π

+ −

∈Ω

−

∈Ω

−
=

−

∑

∑
       (23) 

Unconstrained maximization of (22) with respect to π  yields max
x
n

=π , and it can be 

shown that (22) is increasing in π so long as xN K N
n

π ⎛ ⎞= < ⎜ ⎟
⎝ ⎠

, and decreasing thereafter.  

Then defining  
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( )Largest Integer K τ− = ≤  and ( )Smallest Integer K τ+ = ≥ , where xN
n

τ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (24) 

the HPD estimate of π is given by 

  max ,HPD
K K
N N

π
− +⎧ ⎫

= ⎨ ⎬
⎩ ⎭

.      (25) 

Credible regions for π can be generated in a straightforward manner using appropriate 

subsets of the support of (22) that have prescribed posterior probability. 

 Even though the preceding methodology provides a procedure for making 

inferences about π when sampling from finite populations with replacement most 

applications of DEA do not allow firms to be selected multiple times in the same sample. 

Thus, it is of interest to identify a parametric family of densities that characterize the 

number of inefficient and efficient firms when sampling without replacement from a 

finite population, holding other assumptions constant.  The next section investigates this 

issue.   

 

3.2 Random Sampling without Replacement  

In analyzing the case of random sampling without replacement, we now focus 

exclusively on the empirically relevant case of a finite population. Given that random 

sampling is without replacement, the incidence of inefficiency is now characterized by 

the hypergeometric density.  In particular, let K be the number of inefficient DMUs in the 

population, let x be the number of inefficient DMUs in a random sample of size n drawn 
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from the population without replacement, and note that K
N

π = .  Then the probability of 

selecting x inefficient DMUs is given by: 

( )

[ ] [ ]

1

max 0, ( ) min ,
( | , , )

0

NN
xn x

n N K x n K
f x N n N

n
otherwise

⎧ ⎫π⎛ − π ⎞⎛ ⎞
⎪ ⎪⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠⎪ ⎪− − ≤ ≤⎪ ⎪π = ⎛ ⎞⎨ ⎬

⎜ ⎟⎪ ⎪⎝ ⎠⎪ ⎪
⎪ ⎪⎩ ⎭

   (26) 

While the support for π  is contained in the unit interval, the support is not continuous, 

and we again adopt the Discrete Beta distribution (5) for the prior distribution on π. The 

joint distribution of X and π  can be represented as 

( )1
1( , |1,1, , ) ( | , , ) ( |1,1, )

1d

NN
xn x

f x N n f x N n f N
NN
n

⎛ ⎞⎛ − ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠⎜ ⎟= = ⎜ ⎟− ⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

ππ

π π π   (27) 

where for concreteness we have assumed an ignorance prior for π , and we are henceforth 

suppressing and leaving implicit the definition of the supports for the functional 

definitions of the probability distributions.  Summing the joint density over π  yields the 

marginal distribution of X. As before, this marginal distribution is a mixture (overπ ) of 

the conditional distributions of X, as 

( )11 1( |1,1, , )
1

NN
f x N n

N xN n x
n

π

ππ

∈Ω

⎛ ⎞
⎜ ⎟ ⎛ − ⎞⎛ ⎞⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− ⎛ ⎞ −⎝ ⎠ ⎝ ⎠⎝ ⎠⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑    (28) 

Equation (28) is a compound hypergeometric distribution. 
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 The conditional posterior of π given X can be found by taking the ratio of (27) to 

(28): 

 ( ) ( )
( )

( )

( )

1
, |1,1, ,

| ,1,1, ,
|1,1, , 1

NN
xf x N n n x

f x N n
Nf x N n N
xn xπ

ππ
π

π
ππ

∈Ω

⎛ − ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠= =
⎛ − ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

∑
  (29) 

The expectation, and thus the MPQR estimator of π  is defined by calculating  

 ( )

( )

( )

1

1

NN
xn x

E
NN
xn x

π

π

ππ
π

π
ππ

∈Ω

∈Ω

⎛ − ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠=
⎛ − ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

∑

∑
      (30) 

The posterior density for π  can be maximized to determine the HPD estimate ofπ . This 

is equivalent to maximizing the numerator of (29) as 

  ( )1
arg maxHPD

NN
xn xπ

ππ
π

∈Ω

⎧ ⎫⎛ − ⎞⎛ ⎞⎪ ⎪= ⎨ ⎬⎜ ⎟⎜ ⎟−⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭
    (31) 

Some tedious but straightforward algebra demonstrates that the bracketed expression in 

(31) is increasing in π  so long as ( )1 1xN K N
n

π ⎡ ⎤= < + −⎢ ⎥⎣ ⎦
. Then defining 

( )Largest Integer K τ− = ≤ and ( )Smallest Integer K τ+ = ≥ , where ( )1 1xN
n

τ ⎡ ⎤= + −⎢ ⎥⎣ ⎦
 (32) 

the HPD estimate of π is given by 

  max ,HPD
K K
N N

π
− +⎧ ⎫

= ⎨ ⎬
⎩ ⎭

      (33) 



 22

 Credible regions for π can be generated in a straightforward fashion using appropriate 

subsets of the support of (29) having prescribed posterior probability. 

 

4.0 Inferring the Incidence of Latent Inefficiency  

In empirical analyses, the production frontier is generally unknown, and using the 

sample-based DEA procedure to categorize DMUs as inefficient results in a potentially 

downward-biased count of inefficient firms in the sample which can then bias the 

estimate of the proportion of inefficient firms in the population.10  However, it is possible 

to extend the analysis in the previous section to provide an appropriate Bayesian 

adjustment to the posteriors that accounts for the uncertainty and bias and leads to 

corrected inferences relating to the incidence of inefficiency.  

We concentrate here on the case of random sampling without replacement from a 

finite population since it is this case that is most relevant for empirical work.  We begin 

by illustrating the extension for a simple production technology in which outputs are 

produced in a single fixed proportion. We then extend the analysis to more complicated 

contexts, and it will be seen that the definitions of the posterior distributions remain 

similar to the case of the simpler technology, except that the supports of the distributions 

become more involved.  

                                                 
10 Firms on the true efficiency frontier can never be falsely categorized as inefficient, but firms below the 
frontier can be falsely categorized as efficient if more efficient firms are not in the sample.  Thus, the count 
of inefficient firms can only be biased downward.  What this means for the estimate of the proportion of 
inefficient firms depends on how many efficient firms are missed in the sample and how many inefficient 
firms are falsely categorized as efficient. 
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4.1 Sampling without Replacement for a Simple Technology 

Assume that the finite population of N DMUs produces only two outputs y1 and 

y2 in a single fixed ratio.  Then retaining all other assumptions for the case of random 

sampling without replacement from a finite population, the population of DMUs all lie on 

a single ray through the origin, as illustrated in Figure 2.  Conceptually, we assume that 

N-K of these DMUs are truly efficient, and thus lie on the single point G at the end of the 

ray, and the remaining K DMUs are dispersed at various points between the origin and 

the N-K efficient DMUs.   

Now suppose that a random sample of n DMUs is drawn from the population, and 

DEA is used to estimate the true efficient frontier (which in this case is, of course, a 

single point). The fundamental problem that needs to be addressed is the “incomplete ray 

problem”, i.e., the true end point of the ray is unknown and not necessarily revealed when 

analyzing a random sample of DMUs from the population.  If at least one of the N-K 

truly efficient DMUs producing at point G are included in the sample, then the sample 

DEAs correctly reflect the true efficient frontier, and all DMUs are classified correctly as 

to whether they are inefficient or efficient.  On the other hand, if none of the N-K 

efficient DMUs appear in the sample, then any DMUs categorized as inefficient are, in 

fact, inefficient, but any DMUs categorized as efficient are incorrectly categorized.  For 

example, if no DMUs producing at G are in the sample, but at least one DMU producing 

at H is in the sample, the DMUs at H will be mischaracterized as efficient while all other 

DMUs in the sample, at points on the ray below H, are correctly characterized as 

inefficient.  
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Let the number of truly inefficient DMUs in the sample be represented by 

*x x e= +  where x continues to represent the number of DMUs categorized as inefficient 

based on the sample DEA methodology, and e represents the unobserved error in 

categorization. In this framework, *x  is an unobservable latent variable, and x is an 

observable sample-based estimate related to the latent variable as *x x≥ .  If one or more 

of the N-K truly efficient DMUs appear in the random sample, then 0e = and *x x=  

whereas if the sample contains only inefficient DMUs, then the most efficient DMUs in 

the sample will be incorrectly categorized as efficient, and all other DMUs will be 

correctly categorized as inefficient so that Ee n=  and *x x> , where En  denotes the 

number of DMUs incorrectly categorized as efficient by the sample DEA analysis.  In 

this simple technology, e is, by definition, a binary random variable that can take either 

the value 0 or En . 

 Our objective is to derive an appropriate posterior distribution for the unknown π  

that depends on only observable data. We begin with the joint probability distribution of 

the unobservable *x  and π , and for simplicity we assume at the outset that the prior on π  

is the uniform ignorance prior so that 

 

( )
**

*

1
1( , | , )

1

NN
xn x

f x N n
NN
n

⎛ ⎞−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠⎜ ⎟= ⎜ ⎟− ⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

ππ

π      (34) 

where we have suppressed the notation indicating 1α = β =  in the discrete Beta density.  

This joint density is, of course, simply a copy of (27) except that it is now the 
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unobservable *x , rather than the observable x , that represents the number of truly 

inefficient DMUs in the sample.  

 Now suppose that we observe { }, Ex n as the outcome of the sample DEA analysis, 

so there are x DMUs categorized as inefficient, and there are En DMUs located at the end 

point of the sample ray and thus categorized as efficient by the DEA analysis. Note that 

conditional on observing{ }, Ex n , it must necessarily be the case that 

either * *or Ex x x x n= = + . Then the joint probability distribution of{ }*,x π , conditional 

on{ }, Ex n , can be defined as 

( )

( ) { }

* *

***
* *

*
**

1
( , | , )( , , , , ) ,

1( , | , )
E

x x

NN
xn xf x N nf x N n x n for x

NNf x N n
xn x∈Ψ ∈Ω ∈Ψ ∈Ω

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠= = ∈Ψ×Ω

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

∑ ∑ ∑ ∑
π π

ππ
ππ π

πππ
   (35) 

where { }, Ex x nΨ = + and Ω  is as defined in (5). 

 The posterior distribution of π , conditioning on only observables by 

marginalizing out the unobservable latent variable *x  from (34), is given by  

( )

( )
*

*

*

**
*

**

1

( , , , ) ( , , , , )
1E E

x

x

x

NN
xn x

f N n x n f x N n x n
NN
xn x

∈Ψ

∈Ψ

∈Ψ ∈Ω

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠= =

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

∑
∑

∑ ∑
π

ππ

π π
ππ

  (36) 

This posterior could then be used to derive the MPQR estimate, ( )E π , or the HPD 

estimate, { }arg max ( , , , )Ef N n x n
π

π of the true proportion of inefficient DMUs in the 

population, π , as well as generate credible regions for the value of π . 
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4.2 Sampling without Replacement for More General Technologies 

 Allowing for more general technologies complicates the relationship 

between x and *x .  In this case the DMUs can lie on a number of rays, and the number of 

ways in which x can misrepresent *x  expands concomitantly.  We first extend the results 

to the two ray case, which is illustrative of some of the additional complications that arise 

in the multiple ray case. We then proceed to generalize the results to an arbitrary finite 

number of rays. 

4.2.1  The Two Ray Case 

We now assume that the outputs can be produced in two different fixed ratios, as 

was illustrated in Figure 1, where for now we ignore ray 0C+.  We do not assume that 

additional information is available beyond what has already been assumed, e.g., we do 

not assume that it is known how many DMUs in the population reside on each ray.11  All 

of the N DMUs lie on one of two rays 0A or 0B through the origin.  There are 

conceptually N-K of these DMUs that are truly efficient, and these DMUs lie on one of 

the two ray endpoints, and the remaining K DMUs are dispersed at various points, for 

example D, E and F, along the two rays between the origin and the N-K efficient DMUs.   

 The sample outcome of DEA can be such that one ray is dominated by the other 

in the sample representation of the production frontier, or else both rays contribute to the 

                                                 
11  A refinement in the analysis could be pursued if such information were in fact available whereby the 
proportions of inefficient DMUs residing on each ray, say iπ , could be considered in the analysis. 
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definition of the frontier boundary.12 If one of the sample rays is dominated, then the 

single ray analysis in the previous subsection applies based on the dominating ray, where 

all of the DMUs sampled from the dominated ray would be included in the total number, 

x, of DMUs designated as inefficient by the sample DEA. Letting En denote the number 

of DMUs categorized as efficient by DEA, and thus residing at the endpoint of the 

dominating ray, the actual number of inefficient DMUs is either *x x= or * Ex x n= + , as 

in the single ray case.   

If neither ray is dominated, and if one or more truly efficient DMUs are at the 

endpoints of each of the two rays, then all of the sample DMUs are categorized correctly 

by DEA regarding whether they are inefficient or not, and thus 0e = and *x x= . If the 

sample contains only truly inefficient DMUs, then the most efficient of these will be 

incorrectly categorized by DEA as efficient, and all other DMUs will be correctly 

categorized as inefficient so that Ee n= and * Ex x n= + .   

There are two additional possibilities regarding errors in categorizing truly 

inefficient firms as efficient. In order to delineate these events, let A B
E En and n  be the 

number of sampled DMUs residing on the endpoints of rays 0A and 0B, respectively, 

where A B
E E En n n= + . It could be the case that the A

En  DMUs at the end of ray 0A are 

classified incorrectly as efficient while the B
En  DMUs at the end of ray 0B are correctly 

                                                 
12 For example, if the sample include DMUs at B, E and F but not DMUs at D or A only DMUs at B would 
be deemed efficient and only ray 0B contributes to the definition of the efficient frontier.  If the sample also 
included DMUs at D, both rays 0A and 0B would contribute to the definition of the efficient frontier even 
though sample ray 0D would be an incomplete ray. 
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classified as efficient, or vice versa. The set of possible events regarding the relationship 

between *andx x is then  

  { }* , 0, , ,A B
E E Ex x e e Unique n n n= + ∈     (37)  

where { }Unique i is the uniqueness operator returning only the unique items within any 

listing { }i . Note that if A B
E En n= , then there are only three distinct error values that are 

possible, and one of the redundant values will be removed from the list of possibilities by 

this operator. 

 Continuing to assume an ignorance prior, the joint distribution of { }*,x π is given 

by (34) as before. Once the outcome { }, ,A B
E Ex n n  of the DEA analysis is observed one can 

proceed to define the joint density of { }*,x π , conditional on { }, ,A B
E Ex n n , i.e. 

*( , , , , , )A B
E Ef x N n x n nπ , by the right hand sides of (35), except the support of that density 

in the *x  dimension is now given by { }, , ,A B
E E EUnique x x n x n x nΨ = + + + . Finally, the 

posterior distribution of π , conditioned entirely on observable data, can be defined as in 

(36) but again using the immediately preceding definition of the support Ψ . Estimators 

and credible regions could be defined accordingly. 

4.2.2  The Multiple Ray Case 

 We now consider the case where the technology is characterized by 2m >  rays, 

and we label them sequentially as { }1, 2,..., m . We continue to make the same 

assumptions as previously, and in particular do not assume that any additional 

information is available about the problem other than the fact that DMUs can potentially 
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reside on any of m rays. Of the population of N DMUs, N-K of these DMUs are truly 

efficient, and thus lie on one of the endpoints of the m rays, and the remaining K DMUs 

are dispersed at various points along the m rays, and between the origin and the N-K 

efficient DMUs.  

 The joint distribution of { }*,x π , continuing to assume an ignorance prior, is again 

given by (34) as before. Once the sample outcome of the DEA analysis is observed, it is 

revealed which of the m rays have observations that place them on the sample production 

frontier. Let { }1, 2,...,EI m⊂  be the index set identifying the rays whose endpoints lie on 

that frontier, yielding the observations{ }and ,i
E Ex n i I∈ , where i

En  denotes the number 

of DMUs on ray i that are designated as efficient by the sample DEA. One can then 

proceed to define the joint density of { }*,x π , conditional on{ }and ,i
E Ex n i I∈ , i.e., 

*( , , , , and , )i
E Ef x N n x n i I∈π , by the right hand sides of (35), except that now the 

support of that density in the *x  dimension is given by     

  ,i
E E

i J

Unique x n for J I
∈

⎧ ⎫Ψ = + ⊂⎨ ⎬
⎩ ⎭

∑      (38) 

Note that Ψ contains x as before, since one of the index subsets EJ I⊂  is J = ∅ . Finally, 

the posterior distribution of π , conditioned entirely on observable data, would be defined 

by (36) using the preceding definition of the supportΨ . Estimators and credible regions 

could be defined accordingly. 
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5. An Illustrative Numerical Example 

 As an illustration of how the preceding methodology can be applied, assume there 

are 150N =  DMUs in a population under study, the DMUs produce two outputs, and the 

technology for producing those outputs is categorized by 8 distinct rays. Characteristics 

of the population, including the number of efficient and inefficient firms along each ray, 

are displayed in Table I.  

Table I. Illustrative Population of N = 150 DMUs 

Ray 1 2 3 4 5 6 7 8 Total 
# DMUs 20 15 19 16 25 12 22 21 150 

# inefficient 15 13 17 14 21 10 17 15 122 
Proportion 
Inefficient 

.75 .867 .895 .875 .840 .833 .773 .714 .813 

. 
Random samples, without replacement, of 25 50n and=  DMUs were extracted (via 

simulation) from the population described in Table I, resulting in the DEA 

categorizations given in Table II.  When n=25 five of the DMUs (from rays 2, 4, 5, 6 and 

7) measured as efficient were actually inefficient.  In the sample of 50, only 2 DMUs 

(from rays 6 and 7) were mischaracterized as efficient. 

Table II: Simulated Outcomes of DEA Analysis 

 n=25 n=50 
Ray Efficient Inefficient Efficient Inefficient

1 1 4 2 5 
2 1 4 1 8 
3 2 3 5 5 
4 1 0 1 5 
5 1 0 1 3 
6 1 2 1 2 
7 1 2 1 6 
8 2 0 2 2 

TOTAL 10 15 14 36 
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 Now consider inferring the incidence of inefficiency from the observed DEA 

sample outcomes.  Simply using the unadjusted sample means from the DEA analysis 

would produce the estimates 15ˆ .6
25

π = =  and 36ˆ .72
50

π = =  for the samples of 25 and 50 

DMUs, respectively, which represent sample DEA estimates for the true underlying 

proportion of inefficiency, .813.  

 For the sake of illustration, we adopt a uniform ignorance prior on the incidence 

of inefficiency in the population, and we consider the various Bayesian approaches for 

inferring π . Assuming (incorrectly) that the population is infinite and that sampling was 

with replacement, and treating the incidence of inefficiency as non-latent, the estimates in 

(15) would be employed, whereby the MPQR estimates would be 16ˆ .593
27

= =π and 

37ˆ .712
52

= =π , and the HPD estimates would be identical in numerical value to the 

sample mean DEA estimates of .6 and .72 for sample sizes 25 and 50, respectively.  If 

one instead proceeds in the context of the population being finite, but continues to 

mistakenly assume that sampling was done with replacement, and also assumes that the 

incidence of inefficiency is non-latent, the MPQR and HPD estimates would be given by 

(23) and (25), respectively. The symmetry of the posterior distributions (14) and (22) 

under the current problem conditions leads to MPQR and HPD estimates that are 

identical to those above, these being .593 and .712, and .60 and .72, respectively for 

samples of sizes 25 and 50. 
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 Next consider proceeding in the context of a finite population, and random 

sampling without replacement, while continuing to assume that the incidence of 

inefficiency is non-latent. The calculation of the MPQR and HPD estimates would then 

be based on (30) and (31). The MPQR estimates are .594 and .718 for n = 25 and 50, 

respectively. The HPD estimates are given by .60 and .72. 

 Finally, consider the most appropriate approach in which the correct assumptions 

are made that the population is finite, random sampling is without replacement, and 

observations on inefficiency are latent. We continue to assume an ignorance prior on π . 

In this case, the posterior distribution of π  defined in (36) is appropriate, and the MPQR 

and HPD estimates of π  are defined based on that posterior distribution. The MPQR 

estimates for sample sizes n = 25 and 50, i.e., the expected values of the posterior in (36), 

are given by .778 and .847, respectively, which are both closer to the true value of .813 

than any of the other estimates examined heretofore. The HPD estimates that maximize 

(36) are given by .933 and .906 for sample sizes n = 25 and n = 50, respectively.  

 

6. Implications for the DEA Literature   

 The results of this analysis have important implications for the DEA literature that 

can be separated into two main categories – those dealing with the statistical foundation 

of DEA for estimating the incidence of inefficiency among DMUs and those dealing with 

the empirical implementation of DEA for measuring inefficiency among DMUs.  
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6.1 Implications for the Statistical Foundation of DEA  

Regarding the statistical foundation of DEA, first note that the functional 

definition of the posterior distribution of the proportion of inefficient DMUs need not be 

assumed, ad hoc, as is done in Sohn and Choi (2006). Instead, Bayesian methods provide 

an internally consistent and defensible statistical specification.  A related contribution is 

the delineation of specific problem conditions under which a beta-binomial distributional 

assumption, which has recently been employed in the DEA literature, is appropriately 

implemented in the analysis.  Unfortunately, under most empirical circumstances, the 

conditions would seem to preclude the use of the distribution, despite its flexibility.  The 

assumption that the population is infinite is clearly false in any empirical application and 

given that most empirical studies do not allow the same DMU (in a given time period) to 

appear multiple times in a data set and sample randomly without replacement13 the 

observations cannot be viewed as iid outcomes of a Bernoulli process. Thus it is literally 

inappropriate to assign binomial probabilities to the number of inefficient firms observed.  

This, in turn, contradicts the assumptions of the beta-binomial, since it is, by definition, a 

mixture of a beta and a binomial density. 

 Perhaps the most important contribution with respect to providing a statistical 

foundation for the incidence of inefficiency in DEA estimates is that we provide an 

                                                 
13 Some researchers argue that binomial probabilities can be used to approximate random sampling without 
replacement (whose probabilities are given by the hypergeometric distribution) as long as N is infinite or as 
long as n <<N.  While the former is true in theory, in reality an instance where N is large enough to be 
considered practically infinite is quite rare.  Additionally, the latter assumption is problematic because it 
prevents the researcher from using the usual limiting arguments to derive the consistency of one’s 
estimates.  In particular, for a sample’s estimates to be consistent, one must demonstrate that the sample 
estimate converges to the population parameter in probability as n approaches N.  However, as n 
approaches N the binomial distribution is a very poor approximation of the hypergeometric.   



 34

appropriate characterization of the nature of the posterior distribution of inefficiency 

when sampling is without replacement from a finite population, which is in fact the most 

relevant case for empirical work.  Unlike previous studies, such as Gijbels et al. (1999), 

Jeong (2004) and Simar and Wilson (2005), the results are obtained without making 

specific assumptions about the smoothness of the production function.  More importantly, 

we are able to account for the mismeasurement (DEA bias which results from the latency 

of the incidence) in the incidence of inefficiency that is likely to occur when DEA is 

applied to small samples. The method becomes computationally more involved as one 

allows for more general production technologies and/or as one allows the support for the 

error in the relationship between the latent number of truly inefficient firms and the 

number indicated by DEA to expand.  However, any such computation remains relatively 

straightforward on a computer. 

We note that while the approach makes probabilistically coherent use of available 

sample and prior information when making inferences about the true proportion of 

inefficient firms, the distribution of the DEA scores themselves has not been defined.  

Our results therefore do not directly address the  critique of Simar and Wilson (2005) 

who argue that the majority of the two-stage DEA literature, in which DEA scores are 

regressed on explanatory factors, has mischaracterized the distribution of DEA scores, 

and thus generated biased and inconsistent parameter estimates of the effects of 

explanatory factors.  At the same time, we do provide a proper statistical basis for tests 

relating to the proportion of efficient and inefficient DMUs based on posterior odds 

ratios.   
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6.2 Implications for the Implementation of DEA  

 Our analysis of the small sample efficiency mismeasurement problem of DEA 

provides an additional perspective on the potential for DEA to eventually (in the limit, as 

sample size increases) generate fully accurate estimates of the incidence of inefficiency, 

as well as fully accurate efficiency scores.  In particular, our conceptualization suggests 

that even if the researcher has a census of the population of DMUs, DEA bias may still 

persist, which is a perspective that appears to have been underappreciated in the DEA 

literature.  Consider Figure 1 once again, this time including the full ray 0C+, so the 

production context is one of a three-ray technology.  Assume that DMU A is the truly 

efficient firm on the first ray, DMU B is the truly efficient firm on the second ray,  while 

C+ is the theoretically efficient outcome for a DMU operating on the middle ray, but we 

assume that no firm in the population of DMUs has actually achieved that level of 

efficiency.   

 First recall that even if all potential production technologies have DMUs in the 

population that achieve true efficiency, some DEA scores will always be in error 

(regarding both incidence of inefficiency, and efficiency score) unless the researcher has 

a large enough sample to ensure that all of the endpoints for the rays that compose the 

true efficiency frontier are represented in the sample.  For example, if a sample of n 

DMUs does not include point C+, but instead indicates that the end of the ray is at some 

point below C+, then the estimate for the number of inefficient DMUs (as well as the 

magnitude of the efficiency scores for firms operating along the ray) generated by DEA 

will be in error.  This result is a primary reason why the literature suggests only applying 
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DEA to large samples.  However, the ability to collect and analyze even a census of data 

may not be sufficient to eliminate the error.  If no DEA in the population operates at C+ 

(i.e., no firm along this ray is truly efficient) all DEA scores along this ray will be inflated 

because DEA will either compare them to the DMU furthest from the origin (if it lies 

between C*v and C+), or construct a linear combination of DMU A and DMU B to 

identify a “virtual” efficient point for comparison.  Thus, either all DMUs along this ray 

will be categorized as inefficient relative to C*v, or at least one (between C*v and C+) will 

be falsely categorized as efficient, in both cases causing errors in both the number of 

inefficient DMUs in the sample, and the efficiency scores.  It follows that in such cases 

there can be an upper bound to the accuracy of the results (whether incidence or scores) 

generated by DEA, regardless of sample size.14   

 Summarizing conditions under which DEA produces correct sample proportions 

of inefficiency and correct efficiency scores, all sampled DMUs must lie on rays that 

have true production frontier endpoints defined by DMUs in the sample.  In order for 

increasing sample size n N→ to be sufficient for DEA to generate, in the limit, the 

correct (true) proportion of inefficient DMUs in the population, as well as to generate 

accurate efficiency scores, the previous condition must hold and there must be a DMU in 

the population that resides on the true efficient point of every ray in the production 

possibilities set.   

 

                                                 
14 The magnitude of this error is increased if both of these scenarios occur; that is, when the production 
frontier has multiple rays, and where one ray’s true endpoint is excluded from the sample (but not the 
population), and the other ray’s endpoint is not identified in the population or the sample. 
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7. Conclusions   

 In this paper, we used Bayesian methods to derive posterior distributions for the 

incidence of inefficient DMUs based on information calculated by DEA when sampling 

from either an infinite or a finite population.  Our findings suggest that the functional 

forms of these distributions are quite sensitive to the sampling procedure (with or without 

replacement) employed.  Moreover, it is through interpreting the true incidence of 

inefficiency as a latent variable that the noise and potential mismeasurement of efficiency 

inherent in the DEA scores can be effectively integrated, and properly accounted for, in 

the definition of posterior distributions.  

 Our analysis extrapolates to the implication that not only is it generally incorrect 

to use DEA estimates of inefficiency as dependent variables in regression analyses, but 

also that bootstrapping or nonparametric methods do not necessarily mitigate DEA 

mismeasurement problems.  The failure derives from viewing the actual incidence of 

inefficiency as a latent variable susceptible to mismeasurement by DEA, and noting that 

DEA calculations may be wrong even if one applies DEA to the entire population of 

DMUs.  Moreover, our analysis provides some initial insights into how to characterize 

and adjust DEA-based calculations for this error, and offers an approach that can improve 

the accuracy of the estimate of incidence.  The distribution for the proportion of truly 

inefficient DMUs based on DEA information can provide the researcher with additional 

information that can be incorporated into a subsequent analysis of institutional and 

market factors that might influence the incidence of a firm being efficient or not. The 

authors are currently researching this extension of the current work. 
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Figure 2: DEA with a Single Ray Production Technology
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