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The Structure of U.S. Food Demand 
1. Introduction 
Over the past several years, farm and food policy in the United States has undergone a 
continuous transformation. The 1996 farm bill replaced farm-level price and income sup-
ports with decoupled payments. Welfare, Food Stamps, Women, Infants and Children 
(WIC), Aid to Families with Dependent Children (AFDC), and School Lunch programs 
also were reduced in scope and replaced with block grants. Federally subsidized crop in-
surance has increased from 28 crops on 26 million acres with total liability of $6 billion 
in 1980 to more than 100 crops on over 220 million acres with total liability in excess of 
$46 billion in 2006. A current proposal is to expand this program to all forage on public 
and private grazing land – a net addition of more than 800 million acres. Subsidies for 
corn ethanol were $7 billion in 2006, leading to significant diversions of wheat, soybean, 
and other crop acres to corn production in 2007, and rapidly increasing prices for crops 
and the foods they produce.  

These policies and programs and changes in them all influence retail food prices, food 
quantities consumed, nutrition, food expenditures, and the net incomes of consumers and 
taxpayers. But we understand poorly their joint effects on the economic well being, food 
consumption, and nutrition for U.S. consumers. This calls for a coherent, internally con-
sistent model of the demand for food and nutrition. Developing and implementing one 
such model is the focus of this paper. 

As one motivating example among many possible alternatives, consider the joint in-
centive effects of food stamps and the dairy program. Food stamps provide subsidies for 
food consumption in an effort to increase the nutritional status of the poor. In contrast, 
price discrimination in milk marketing orders increase prices paid for fresh milk and 
lower prices paid for manufactured dairy products (Heien, 1978; Ippolito and Masson, 
1978; LaFrance and de Gorter, 1985). These relative price effects cause households to 
substitute away from fresh milk and towards processed dairy products. Nutritionists and 
healthcare professionals argue that processed foods containing relatively high levels of 
fat, cholesterol, salt, sugar, and additives are considerably less healthy than fresh foods 
that do not contain these factors and are high in fiber, vitamins, and minerals. The upshot 
is that many farm-level price and income support programs and policies create incentives 
in direct opposition to those created by food subsidy programs targeting consumers. 

The next section of the paper analyzes the theoretical and econometric issues associ-
ated with modeling U.S. food consumption and the implied demand for nutrients. Section 
three characterizes the econometric model and its properties. Section four discusses the 
data, empirical results, hypothesis tests, and model diagnostics. The fifth section summa-
rizes and concludes. 

2. Modeling Food Demand 
A central focus of a great deal of research on farm and food policy and consumer choice 
has been an attempt to forge the links between food consumption choices and nutrition. 
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Almost all of the research in this area uses aggregate data, although limited attention has 
been paid to the implications of aggregation on the structure of economically consistent 
demand systems. A limited but important and influential subset of the literature on the 
theory of exactly aggregable demand systems includes: Gorman (1953, 1961, 1965, 
1981); Muellbauer (1975, 1976); Deaton (1975, 1986); Howe, Pollak and Wales (1979); 
Deaton and Muellbauer (1980); Jorgenson, Lau and Stoker (1980, 1982); Russell (1983, 
1996); Jorgenson and Slesnick (1984, 1987); Lewbel (1987a, 1988;, 1989a, 1989b, 1990, 
1991, 2003, 2004); Diewert and Wales (1987, 1988); Blundell (1988a, 1988b); Wales and 
Woodland (1983); Brown and Walker (1989); van Daal and Merkies (1989); Jerison 
(1993); Russell and Farris (1993, 1998); Stoker (1993); Banks, Blundell, and Lewbel 
(1997); LaFrance, Beatty, Pope and Agnew (2000, 2002); LaFrance (2004); and La-
France, Beatty, and Pope (2005, 2006).1 

In this section, I present a method to identify and estimate the impacts of policies on 
food consumption, nutrition, and consumer welfare using market data by developing and 
analyzing an exactly aggregable model of U.S. food demand. The purposes of this ap-
proach are to derive and implement a theoretically consistent empirical model of house-
hold food consumption which: (1) nests the number (i.e., the rank of the demand system) 
and the functional form of the income terms, and the functional form of the price terms in 
food demand; (2) admits consistent, asymptotically efficient estimation of the food de-
mand parameters with aggregate data; and (3) allows us to draw inferences on the nutri-
tional and welfare effects of farm and food policies on consumers – both in the aggregate 
and for specific income and other demographic categories. 

We first require a fairly large amount of notation. Let qn
++∈p  be the nq–vector of 

market prices for foods, qn
+∈q , let qn

++∈p  be the qn –vector of market prices for other 
goods, qn

+∈q , let m ++∈  be income, let 0s m= = − >p q p qT T  be expenditure on 
other goods, let K∈z  be a vector of demographic variables and other demand shifters, 
let ( )π p  be a known, positive-valued, 1° homogeneous, increasing, and weakly concave 
function of other goods prices, let [ ]1 1( / ( )) ( / ( )) ( / ( ))n ng p g pπ π π= ≡…x p p g p pT  
be a vector of twice continuously differentiable, strictly increasing functions of deflated 
prices of foods, and let ( / ( ))y f m π= p  be a twice continuously differentiable, strictly 
increasing transformation of deflated income. 

Second, we will make extensive use of the real-valued functions, 

 ( ) 2 1ϕ = + +x x Bx xγ TT , (1) 

 0( , , ) ( , ) ( , )θ α= +x p z p z p z xα T , (2) 

                                                 
1 LaFrance and Pope (2008) synthesize this class of models and extend it to full rank rational demand sys-
tems of arbitrary rank in a manner that admits nesting and testing for aggregation, rank, functional form, 
flexibility, and global regularity of the system of demand equations. Appendix A of the expanded version 
of this paper discusses the extension of this class of models to incomplete demand systems. 
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where ( , )p zα  is a vector of functions of other prices and demographics, 0( , )α p z  is a 
scalar function of other prices and demographics (Pollak and Wales, 1981), both ( , )p zα  
and 0( , )α p z  are 0° homogeneous in p , B is an nq×nq matrix of parameters, and γ  is an 
nq-vector of parameters. Due to 0° homogeneity of ( , )p zα  and 0( , )α p z  in p , without 
any loss in generality, we can (and from this point forward, do) assume that ( , , )mp p  are 
deflated by ( )π p . From this point forward, I abuse notation slightly and absorb the defla-
tor into the symbols for the price and income variables, so that ( , , )mp p  denote deflated 
prices and income. 

The starting point for the econometric model of U.S. food demand is the class of full 
rank three exactly aggregable indirect utility functions derived in LaFrance, Beatty, and 
Pope (2005, 2006) and defined by  

 
[ ]

( )( , , , ) , ,
( , , ) ( , )

v y
y

ϕψ
θ ϕ

⎧ ⎫⎪ ⎪= − −⎨ ⎬−⎪ ⎪⎩ ⎭

x xx p z p z
x p z x p

δ T

. (3) 

Useful choices for the functions ( )f ⋅  and ( )⋅g  are translated Box-Cox transformations, 
( 1 )y mκ κ κ= − +  and ( 1 ) , 1, ,i i qx p i nλ λ λ= − + = . Note that 1κ =  implies that 

y m=  and 0κ =  implies that 1 lny m= + . Analogous relations apply to λ . Thus, this 
choice produces a demand system that nests the extended price independent generalized 
linear (PIGL) and the price independent generalized logarithmic (PIGLOG) functional 
forms (Muellbauer, 1975, 1976). That is, if 0κ λ= = , then we have a full rank three ex-
tended translog model (Christensen, Jorgenson and Lau, 1975), while if 1κ λ= = , then 
we have a full rank three extended quadratic expenditure system (Howe, Pollak, and 
Wales, 1979; van Daal and Merkies, 1989). For all values of (κ,λ), we obtain a full rank 
three quadratic price independent generalized linear (QPIGL) or price independent gener-
alized logarithmic (QPIGLOG) demand system. I call this the generalized quadratic 
price independent generalized linear incomplete demand system (GQ-PIGL-IDS). 

A full rank two version of the demand system results when = 0δ , while if 0θ ≡  and 
= 0δ  then we have a rank one (homothetic) version. Thus, we are able to simultaneously 

nest rank and functional form of the income terms within a single framework.  

Applying Roy’s identity gives the demand equations for foods as 

 
2

1 1 ( ) ( )( ) ,y ym κ λ θ θ
ϕ ϕ ϕ

− − ⎧ ⎫⎡ ⎤⎛ ⎞− − + −
= + + +⎨ ⎬⎜ ⎟ ⎢ ⎥

⎝ ⎠ ⎣ ⎦⎩ ⎭

I Bx xq P Bx γα γ δ
T

 (4) 

where 1 1 .ipλ λ− −⎡ ⎤= ⎣ ⎦P diag   

This model is nonlinear in income and the demand equations do not aggregate across 
individuals to per capita income. However, the Gorman class of Engel curves generates 
theoretically consistent, exactly aggregable models of demand with a small number of 
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statistics concerning the income distribution. In the present case, we need three moments 
of the income distribution – the cross-section means of 1 1{ , , },m m mκ κ− +  

 { }1 1
1 2 3( , ) ( , ) ( , )m m mλ κ κ− +≡ = + +e Pq P A x z A x z A x z , (5) 

where 
2

1
1 1 ( )( , ) ( ) ,κθ κθ

κ κ ϕ
⎡ ⎤+ + − +⎛ ⎞ ⎛ ⎞= − + +⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦

I Bx xA x z Bx γα γ δ
T

 

 2 2

1( , ) 2 [ ( ) ]κθ
κϕ κ ϕ

⎛ ⎞ ⎛ ⎞+ +
= − − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

BxA x z I Bx xγ γ δT , and 

 3 2

1( , ) [ ( ) ]
κ ϕ

= − +A x z I Bx xγ δT . 

LaFrance, Beatty, and Pope (2005, 2006) show that 1 ( ) 0y θ ϕ− − >xδ T , 0y θ− < , 
0ϕ > , and = +B LL γγT T , where L is lower triangular, are necessary and sufficient for 

the Slutsky matrix to be symmetric, negative semi-definite in an open neighborhood of 
κ λ= = 1 . The first three conditions are satisfied without imposition for this data set. I 
impose the system of nonlinear constraints on = +B LL γγT T  during estimation (Lau, 
1978; Diewert and Wales, 1987).  

In the empirical application reported below, the estimated lower triangular matrix L 
has a reduced rank due to the fact that the symmetric – but not negative semidefinite – 
version of the model has an estimated B  with seven negative Eigen values. I use the fol-
lowing steps to estimate the curvature restricted model. First, I calculate the Eigen-
vector/Eigen-value decomposition =B UDU T  for the symmetric model. Second, I re-
place the seven negative Eigen values in D  with zeroes, say D , and find the nearest 
neighbor (in qn –dimensional Eigen value space) of the symmetric B  that is positive 

semidefinite, say =B UDU T . Third, I construct the lower triangular Choleski factoriza-
tion =B LLT . In this Choleski factor, L, the last ½ 7 8 28× × =  lower triangular elements 
all vanish, so I fix them as constants.2 Last, I gradually increase the lower seven main di-
agonal elements of L to 0.03, which does not impact the nonlinear least squares criterion 
in any observable fashion to six significant digits, in order to ensure that the restricted 
matrix B̂  is symmetric, negative definite. This generates a 22×22 matrix  

                                                 
2 In analyzing curvature restrictions with this and other data sets, and for other model specifications, these 
steps for obtaining starting values lead to convergence in a relatively short amount of computational time 
for this type of highly nonlinear curvature restricted demand model. In the present case, I use a conditional 
grid search and simulated annealing to confirm that the estimates are a global minimum of the nonlinear 
least squares criterion. Also note that one can use either an upper or a lower triangular L with no loss in 
generality in this sequence of steps. 
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ˆ ˆ ˆ ˆˆˆ ˆ ˆ( )

ˆ ˆ1 1 1
⎡ ⎤ ⎡ ⎤ ⎡ ⎤+

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

LL L L 0
0

γγ γ γ
γ γ

T T T

T T T
 

with positive Eigen values, the smallest of which is 5.93×10–7. These steps produce an 
estimated Slutsky matrix that is negative semidefinite at all data points.3 

2.1 Estimating the U.S. Income Distribution 

The U.S. Bureau of the Census publishes annual quintile ranges, intra-quintile means, the 
top five-percentile lower bound, and mean income in the top five-percentile for all U.S. 
families. This data is available annually beginning in 1947 and in several (although not 
all) earlier years going back to 1910. In previous work, LaFrance, Beatty, Pope and 
Agnew (2000, 2002) and Beatty and LaFrance (2005) estimated a system of regression 
equations to predict these missing data early in the 20th century, and constructed several 
continuous annual income distributions for all U.S. families, including the log-normal,  

 2
2

1 1( ; , ) exp [ln( ) ]
22FMf m m

m
μ σ μ

σπσ
⎧ ⎫= − −⎨ ⎬
⎩ ⎭

. (6) 

Their results suggest that the log-normal distribution works well in applied food demand 
analysis – in fact, better than all other alternatives considered. Their empirical results ap-
pear to be quite invariant to the choice for the income distribution.  

The log-normal distribution is particularly convenient in the present case. Given year-
to-year values for { , }μ σ , I can calculate a closed-form expression for the moments of the 
income distribution using the formula 

 ( ) 2 2 2( ) /2 /21
2F

z z
ME m e e dz eβ β μ σ βμ β σ

π

∞
+ − +

−∞

= =⌠
⎮
⌡

. (7) 

Hence, I use the log-normal parameters for the income distribution across families 
calculated by Beatty and LaFrance (2005). I convert the income distributions for all US 
families to individuals with the linear change of variables, ( )F F P Pm m m m= , where Fm  
is annual average family income, Pm  is per capita disposable personal income in that 
year, which is obtained from annual issues of the Economic Report of the President, and 

Fm  and Pm  are annual incomes for an individual family or person, respectively. This 
generates a log-normal income distribution across individuals with the density function, 

 ( ) 2

2

1 1( ; , ) exp ln( ) ln ,
22PM P Ff m m m m

m
μ σ μ

σπσ
⎧ ⎫= − − −⎡ ⎤⎨ ⎬⎣ ⎦⎩ ⎭

 (8) 

i.e., the mean of the log-normal distribution changes from μ  to ( )ln P Fm mμ +  and the 

                                                 
3 As a result, the standard errors reported in this paper are potentially biased (Andrews, 1998, 1999). 
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variance is unaffected.  

In the empirical application, mean incomes for families and individuals and the esti-
mated parameters for the income distributions are treated as data, while the parameter κ 
is estimated jointly with the other parameters in the demand model. Figure 1 presents the 
time path of the per capita real income distribution parameters and a 3-dimensional plot 
of the U.S. income distribution for the period 1910-2005. 

A large body of empirical evidence exists from cross-sectional studies supporting the 
hypotheses that the age and ethnic makeup of households have significant effects on con-
sumption choices. To reflect this stylized fact with aggregate US food consumption data, 
I construct annual measures of the US age and race distribution from several secondary 
data sources. Age distribution data are available for the entire sample period in eight age 
intervals: <5; 5-14; 15-24; 25-34; 35-44; 45-54; 55-64; and ≥65 years of age. An analysis 
of these age data suggests that there are at most four linearly independent categories. 
Hence, I construct the proportions of the US population in each of the age groups <5, 5-
14, 15-24, 25-54 and ≥565, and normalize on the closest approximation to working age 
adults available, 25-54 years of age since the sum across categories is one in each year.  

With respect to the changing distribution of the US population by race, the most re-
fined data available are the percentages of the US population that are White, Black, or 
Other (neither White nor Black) races. In this case, I normalize on the percent of the 
population that is White, and include the percentages that are Black or Other as demand 
shifters along the lines of Pollak and Wales (1981).  

Figure 2 presents the time paths of these data for the US population’s distribution by 
race (Figure 2a) and age group (Figure 2b). 4 From the Figure, it is clear that the ethnic 
makeup of the US population – at least up until the 21st Century – follows a smooth and 
gradual nonlinear trend from white toward both black and other races. Similarly, the time 
paths of the US population’s age distribution display the birthrate declines during the 
Great Depression and World War II, with the Baby Boom immediately following the end 
of the second world war. This trough and bubble ripple through each of the age groups, 
from youngest to oldest, at predictable time intervals. It is clear from the bottom panel of 
figure 2 that the upper tail of the US age distribution has increased throughout the century 
as a nonlinear, smooth and monotonic trend. 

                                                 
4 I analyzed the data for unit roots. With two exceptions – the percentage of the population that is neither 
white nor black and the proportion of the population that is ≥55 years old – I did not find strong evidence of 
integration and found no evidence of cointegration. But with only 77 time series observations, tests for in-
tegration and cointegration have very low power. The explanatory variables are quite correlated, as is gen-
erally the case when one uses aggregate time series data. This has a significant and deleterious effect on the 
statistical precision of the model estimates, especially with respect to the parameters entering 0 ( )tα z . This 
problem is similar to 0α  in the Almost Ideal Demand System (Deaton and Muellbauer, 1980). 
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2.2 Elasticities for the Full Rank 3, GQ–PIGL–IDS 

It often is useful to calculate price and income elasticities associated of the demands for 
food items, q. Define the three diagonal matrices [ ],ip= diagP  [ ],iq= diagQ  and 

[ ]i ip q m= diagW . Plugging in the translated Box-Cox transformations of normalized 
food prices and incomes, the nq–vector of income elasticities is 

 1 1 ( )(1 ) 2 ,m
ym

m
λ θκ

ϕ ϕ ϕ
− − ⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞∂ + + −

= = − + + −⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭

γ γε ι δq q Bx Bx xQ W P I
T

 (9) 

where [1 1]=ι T  is an nq–vector of ones. Similarly, the nq×nq matrix of ordinary price 
elasticities for q is 

 

1 1

2

( )( 1)

( )( ) ( )2 2

( )( )( ) 4 .

m

y

y

κ λ

λ

λ
ϕ

θ
ϕ ϕ ϕ

θ
ϕ ϕ

− − −
⎧∂ +⎪= = − + −⎨∂ ⎪⎩

⎡ ⎤⎛ ⎞ ⎛ ⎞+ + + −
+ − − −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎣ ⎦

⎫⎡ ⎤⎛ ⎞ ⎛ ⎞+ + − ⎪− + + − ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎣ ⎦ ⎪⎭

q
p

q BxQ P I W P
p

Bx Bx Bx xB I

Bx BxBx x B P

γ αΕ

γ γ γ δα

γ γγ δ δ

T

T

T T
T

T
T T

 (10) 

2.3 The Derived Demand for Nutrition 

Nutritional intake can be thought of as the result of a production process that uses foods 
as inputs. The total amount of nutrients consumed is a linear function of the amount of 
food ingested. Thus, let N denote the nz×nq matrix of nutrient content per unit of food. 
The ijth entry represents the amount of nutrient i per unit of food j. Given information on 
(or an estimate of) N, we can analyze the policy effects on nutritional intakes using the 
previously described demand model, since 

 =h Nq , (11) 

where h is an hn –vector of nutrients important to the household (Lancaster, 1966, 1971; 
Michael and Becker, 1973; Muth, 1966).  

Linearity is justified on the following grounds. If one eats two (identical) eggs, then 
twice as much protein and twice as much cholesterol is obtained relative to one egg. This 
proportionality applies to any combination of foods and nutrients. Hence, the relationship 
between food consumed and nutrient intake is 1° homogeneous. Moreover, if one eats an 
egg and a steak, the total protein (cholesterol) obtained is the sum of the protein (choles-
terol) from the egg plus the protein (cholesterol) from the steak. Hence, the relationship 
between food consumed and nutrient intake is additive. As in the case of homogeneity, 
additivity applies to any combination of foods and nutrients. These two properties define 
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linearity; hence, (11) is an identity showing precisely how nutritionists and other public 
health professionals calculate nutrient intake from food consumption. 

An important element in inferring the effect of policies on nutrient intake is to calcu-
late both the ordinary and uncompensated price elasticities of nutrient i. It is straightfor-
ward to show that these elasticities satisfy  

 
1

q
ji

k k

n
qh

p ij p
j

sε ε
=

= ∑ , (12) 

where, ( ) ( )i

k

h
p k i i kp h h pε ≡ ⋅ ∂ ∂  is the (ordinary or compensated) price elasticity of nutri-

ent i with respect to the price of food k, ( ) ( )j

k

q
p k j j kp q q pε ≡ ⋅ ∂ ∂  is the corresponding 

(ordinary or compensated) price elasticity of food j with respect to the price of food k, 
and ij ij j is n q h≡  is the proportion of nutrient i that is contributed by food item j. Simi-
larly, the income elasticity of nutrient i satisfies 

 
1

q
ji

n
qh

m ij m
j

sε ε
=

= ∑ , (13) 

where ( ) ( )jq
m j jm q q mε ≡ ⋅ ∂ ∂  is the income elasticity of food j. The empirical results and 

data set compiled for this study can be used to estimate both [ ]i

k

h
pε  and [ ]ih

mε . Because the 
demand equations are exactly aggregable, so are the implied demands for nutrients by the 
linearity of (11), as are the price and income elasticities for nutrient intakes. In addition, it 
is easy to see that, so long as the column rank of N is at least 3, the rank of the derived 
demands for nutrients is the same as that of the demands for foods.5 

3. Data 
The data set consists of annual time series observations for the period 1919-2000 for all 
variables. However, I persistently found a significant structural break corresponding to 
World Ward II for the years 1942-1946. Hence, throughout the paper, the sample period 
is 1919-1941 plus 1947-2000. Annual observations on the per capita consumption of 
twenty-one food items can be broken down into four general categories: (1) dairy prod-
ucts – milk, butter, cheese, ice cream and frozen yogurt, and canned and powdered milk; 
(2) meats, fish, and poultry – beef, pork, lamb and other red meat, fish and shellfish, and 
poultry; (3) fruits and vegetables – fresh citrus fruit, fresh non-citrus fruit, fresh vegeta-
bles excluding potatoes, potatoes, processed fruit, and processed vegetables; and (4) mis-
cellaneous foods – margarine and cooking fat and oil, eggs, pasta and cereal grains, sugar 
and caloric sweeteners, and coffee, tea and cocoa. Average retail prices for these foods 

                                                 
5 The expanded version of this paper, available at http://www.ses.wsu.edu/People/lafrance.html, contains a 
complete set of time series data and graphs for the ordinary and compensated price elasticities and the in-
come elasticities for this demand model 1919-41 and 1947-2000, including those for nutrients. 
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were constructed from several USDA and BLS sources. The consumer price index (CPI) 
for all nonfood items is used to measure the cost of nonfood expenditures and as the 
common deflator in the demand equations. 

With the generous assistance of the USDA’s Human Nutrition Information Service 
(HNIS), I also compiled annual estimates of the availability of the following seventeen 
nutrients: (1) macronutrients – protein, energy, fat, carbohydrates, and cholesterol; (2) 
vitamins – A, B6, B12, C, niacin, riboflavin, and thiamin; and (3) minerals – calcium, iron, 
magnesium, phosphorous, and zinc, for each of the twenty-one foods. As outlined in the 
previous section, the relationship =h Νq  links prices, incomes, demographics, and gov-
ernment policies to the demand for nutrition derived from the demand for food. 

It is by now well-understood that prices and quantities are jointly determined, and that 
disposable income is measured with error and endogenous to the life cycle consumption 
decisions of consumers (Attfield, 1985, 1991; Blundell, 1988a, 1988b). Addressing this 
during the estimation process requires a set of valid instruments for retail food prices and 
for the moments of the income distribution. The instruments that I use for each retail food 
price include: a constant term; the demographic variables (proportions of the population 
that are black and that are neither white nor black, and proportions of the population that 
are in age groups less than 5 years, 5-14 years, 15-24 years, and 55 years or older); real 
prices received by farmers in the most recent past marketing year – including the value of 
government payments – for 22 commodities (wheat, barley, corn, oats, rice, rye, flax, 
beans, peanuts, potatoes, sweet potatoes, cotton, hay, beef calves, beef cattle, hogs, 
lambs, sheep, milk cows, milk, eggs, and broilers), the unemployment rate, the real rate 
of return on 30-year AAA corporate bonds, the manufacturing wage rate, producer price 
indices for materials and components and for fuels, energy and power, a post-World War 
II dummy equal to 0 in 1919-1941 and 1 in 1947-2000; and the lagged food price. The 
unemployment rate is treated as a static shock with a common factor in all of the dynamic 
first-stage regression equations (Harvey, 1990, 1993; Hendry, 1995). 

For the income distribution, a useful instrument is the predicted value of per capita 
disposable personal income. The first stage instrument for the moments of the income 
distribution is the predicted value from a time series regression equation for per capita 
disposable personal income with a constant term, the above list of demographic variables, 
the unemployment rate, the rate of return to 30-year corporate bonds, the manufacturing 
wage rate, producer price indices for materials and components and for fuels, energy and 
power, the post-World War II dummy; and lagged real income. As in the first-stage price 
equations, the unemployment rate is treated as a static shock with a common factor in the 
dynamic regression equation. 

As is common in NL3SLS and GMM estimation, I use the same instruments in all of 
the empirical demand equations: the predicted value from each first-stage price equation 
is an instrumental variable for that price; the predicted value of per capita personal dis-
posable income is an instrument for the moments of the income distribution; and a con-
stant term plus the age and race variables listed above. Under standard assumptions on 
the weak exogeneity of the instruments (Engel, Hendry, and Richard, 1983), these are 
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known give consistent, asymptotically normal parameter estimates (Amemiya, 1985; 
Hansen, 1982; Malinvaud, 1980).  

The error terms in demand equations are likely to be heteroskedastic (Brown and 
Walker, 1989), so I estimated standard errors that are robust to heteroskedasticity of an 
unknown form (White, 1980). However, this correction does not appear to affect the 
model inferences in this data set. Hence, I only report classical standard errors here. I also 
tested for serial correlation in the errors, but found no evidence of this in this data set. 

4. Specification Errors and Parameter Stability Tests 
As stated in the previous section, the original sample period for the empirical application 
is19-2000.6 This period includes the Great Depression, World War II, the OPEC Oil Em-
bargo, and Iran-Iraq War. Ex post, it stretches the imagination to suppose that the struc-
ture of U.S. food demand remained constant throughout this period. On the other hand, 
this is an interesting empirical question, especially given recent empirical work on struc-
tural change in the demand for food and individual food groups. 

Many diagnostic procedures for testing parameter stability and model specification 
errors have been developed (e.g., Brown, Durbin and Evans, 1975; Ploberger and 
Krämer, 1992). Few of these are designed for large systems of nonlinear simultaneous 
equation systems with a small sample size. In the present case, the data set provides 
roughly five degrees of freedom per estimated structural parameter. This precludes the 
use of recursive-forecast residuals or Chow tests based on sequential sample splits to ana-
lyze model specification and/or parameter stability. Even so, it is desirable to have at 
least some reasonable idea of the degree to which the data are consistent with the model’s 
specification and the hypothesis of constant parameters over time. In this section, I pre-
sent a set of model specification and parameter stability diagnostic statistics using in-
sample estimated residuals. These statistics have power against a range of local alterna-
tives, including nonstationary parameters, model specification errors, or the restrictions 
on preference heterogeneity that are required for exact aggregation. 

The main ideas are simple and straightforward. If the model is stationary and the er-
rors are innovations, then consistent estimates of the model parameters can be found in 
any number of ways. Given consistent parameter estimates, the estimated errors converge 

in probability, hence in distribution, to the true errors, ˆ P
t t→ε ε . For each 1, , ,qi n=  by 

the central limit theorem for stationary Martingale differences, we have  

 
1

1 (0,1)
T D

it
ti

N
T

ε
σ =

→∑ , (14) 

                                                 
6 In this study, and in substantial previous work with this data, I have found consistent strong statistical 
evidence of a structural break during the World War II period using the methods developed in this section. 
Hence, the sample period used throughout this paper is, 1919-1941 and, 1947-2000. The test results I report 
below are for this sample period. 
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where 2 2( )i itEσ ε=  is the variance of the residual for the ith demand equation. If we use a 
fixed proportion of the sample to construct a partial sum of the model’s error terms, then 
we have, uniformly in [0,1],z ∈  

 
[ ]

1

1 (0, )
zT D

it
ti

N z
T

ε
σ =

→∑ , (15) 

where [ ]zT  is the largest integer that does not exceed zT. The variance is z because we 
are summing [zT] independent terms each with variance 1/T. Multiplying (14) by z and 
subtracting from (15) then gives 

 ( )
[ ]

1

1 ( ) (1) ( )
zT D

it i
ti

W z zW B z
T

ε ε
σ =

− → − ≡∑ , (16) 

where W(z) is a standard Brownian motion on the unit interval, with ( ) ~ (0, )W z N z , and 
( )B z  is a standard Brownian bridge, or tied Brownian motion. For all z ∈ [0,1], B(z) has 

an asymptotic Gaussian distribution, with mean zero and standard deviation (1 )z z−  
(Bhattacharya and Waymire, 1990). For a given z – that is, to test for a break point in the 
model at a fixed and known date – an asymptotic 95% confidence interval for B(z) is 

1.96 (1 )z z± − . To check for an unknown break point, the statistic 

 
[0,1]

sup ( )T T
z

Q B z
∈

=  (17) 

has an asymptotic 5% critical value of 1.36 (Ploberger and Krämer, 1992). 

We can use consistently estimated residuals and consistently estimated standard er-
rors to obtain sample analogues to these asymptotic Brownian bridges. This gives 

 
[ ]

1

1 ˆ ˆ( ) ( ) ( )
ˆ

zT D

iT it i
ti

B z B z
T

ε ε
σ =

≡ − →∑ , (18) 

also uniformly in [0,1]z ∈ , so long as the model specification is correct and the parame-
ters are constant across time periods. This statistic is a single equation first-order specifi-
cation/parameter stability statistic since it is based on the first-order moment conditions, 

( ) 0 ,itE i tε = ∀ .7 A system-wide first-order specification/parameter stability statistic can 
be defined by 

                                                 
7 Subtracting the residual sample means is innocuous when each equation includes a free intercept term. 
Integrable demand systems generally do not include independent intercepts due to Slutsky symmetry. In 
such a case, the statistics ˆ ˆ/ (0,1)

D

i iT Nε σ →  can be used to check the first-order moment condition of 
each demand equation. Both single equation sample mean and Brownian bridge statistics are reported be-
low. 
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[ ]

1 1

1 1 ˆ ˆ( ) ( ) ( )
qnzT D

T it
t iq

B z B z
T n

ξ ξ
= =

⎡ ⎤
≡ − →⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ , (19) 

where ½ˆ ˆ ˆt t
−=ξ Σ ε  is the tth estimated standardized error vector and 1 1

ˆ ˆqT n
it qt i n Tξ ξ= =≡ ∑ ∑ . 

Similar methods can be applied to test for second-order nonstationarity. I focus on the 
system wide test statistic. Let Σ  be factored into LLT , where L is lower triangular and 
nonsingular. Define the random vector tξ  by t t= Lε ξ . In addition to the assumptions 
above, add 4

,
sup ( )it

i t
E ε < ∞ . Estimate the within-period average sum of squared standard-

ized residuals by 

 11 1ˆ ˆ ˆˆ ˆˆ
q qt t t t tn nυ −= =ξ ξ ε Σ εT T , (20) 

where t̂ε  is the vector of consistently estimated residuals in period t and 1
ˆ ˆ ˆT

t tt T== ∑Σ ε ε T  
is the associated consistently estimated error covariance matrix. The mean of the true tυ  
is one for each t, and the martingale difference property of tε  is inherited by 1.tυ − 8 A 
consistent estimator of the asymptotic variance of tυ  is  

 2 2

1

1 ˆˆ ( 1)
T

t
tTυσ υ
=

= −∑ . (21) 

A system wide second-order specification/parameter stability test is obtained by cal-
culating centered and standardized partial sums of ˆtυ ,  

 
[ ]

1

1 ˆ( ) ( 1) ( )
ˆ

zT
D

T t T
t

B z B z
T υ

υ
σ →∞

=

= ⋅ − ⎯⎯⎯→∑ , (22) 

uniformly in [0,1]z ∈ , where the limiting distribution on the far right follows from the 
identity 1ˆ ˆ 1T

tt Tυ υ=≡ ≡∑ . 

5. Empirical Results 
The empirical model has per capita real food expenditures as the dependent variables and 
specifies linear functions for 0( )tα z  and ( )tzα , 

 1 1
1 2 3( , ) ( ) ( , ) ( ) ( , ) ( ) ,t t t t M t t t M t t t M t tE m E m E mλ κ κ− +⎡ ⎤= + + +⎣ ⎦e P A x z A x z A x z ε  (1.23) 

                                                 
8 In particular, ( ) ( )1

1 1 1
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ tr 1.T T T T

t t t q t t qt t t
T n T T T nτ ττ

υ υ
−

= = =1 =

⎡ ⎤= = = =⎢ ⎥⎣ ⎦
∑ ∑ ∑ ∑ξ ξ ε ε ε εT T T  



 14 

where 
2

1 10
1 1 ( )( , ) ( ) ,t t t t

t t t t
t

κθ κθ
κ κ ϕ

⎡ ⎤+ + − +⎛ ⎞ ⎛ ⎞= + − + +⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦

I Bx xA x z Az Bx γα γ δ
T

 

 2 2

1( , ) 2 [ ( ) ]t t
t t t t

t t

κθ
κϕ κ ϕ

⎛ ⎞ ⎛ ⎞+ +
= − − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

BxA x z I Bx xγ γ δT , 

 3 2

1( , ) [ ( ) ]t t t t
tκ ϕ

= − +A x z I Bx xγ δT , 

 00 01 10( )t t t tθ α= + + +z Az xα αT T , 

 2 1t t t tϕ = + +x Bx xγT T , 

 1( ( ,
qt t n tp pλ λλ λ λ λ⎡ ⎤= + −1) + −1)⎣ ⎦x

T

 

 5, 5 14, 15 24, 55,, , ,t t t t t tage age age age black other< − − ≥= ⎡ ⎤⎣ ⎦z
T
, 

and . . . ( , ) .t i i d t∀0ε Σ 9  

This demand model is estimated with nonlinear three-stage least squares (NL3SLS). 
The high degree of nonlinearity in the parameters, especially the Box-Cox exponents, 
implies that one needs to carefully check whether a global minimum of the generalized 
residual sum of squares criterion has been found. Figure 3 presents the results of an effort 
to conduct a comprehensive analysis of this issue. I condition the second-stage NL3SLS 
objective function on ( )κ λ,  and the estimated error covariance matrix Σ̂  and search 
over ( , ) [0,1¼] [0,1¼]κ λ ∈ × . The upper left panel displays the results of this search for 
an open neighborhood of the optimal point estimates. The objective function is well-
behaved throughout this neighborhood, although it is clear from the upper right panel that 
the level curves are not elliptical except in a smaller neighborhood of the optimal point 
estimates. The NL3SLS criterion is continuous but not differentiable over the full range 
of parameter values ( , ) [0,1¼] [0,1¼]κ λ ∈ × .  

I find estimating small values of λ  to be most difficult, particularly as κ  decreases 

                                                 
9 I normalize the 22×22 matrix 

 
22,22

*
b

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

B
B

γ
γ T  

so that 22,22 1b = . This identifying normalization accounts for the fact that the demand system (4) is 0° ho-
mogeneous in the elements of *B . Therefore, one and only one element of *B  must be fixed to identify 
the other model parameters. I normalize on the last diagonal element because nonfood expenditure is >90% 
of per capita disposable personal income in the sample. 
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below roughly 0.2. Hence, I condition the NL3SLS criterion on κ  only and estimate λ  
jointly with the other model parameters, while searching over [0,1¼]κ ∈ . The results for 
the conditional sum of squares criterion are depicted in the lower left panel of figure 3, 
while the conditional estimates for ( )λ κ  and the associated conditional standard errors 
are shown in the lower right panel. These results suggest that I am recovering the global 
minimum sum of squares in the results presented below.10 

Table 1 presents the equation summary statistics for the first-stage instrumental vari-
ables regression equations. Table 2 contains summary statistics and model diagnostics for 
the nonlinear three-stage least squares estimates of the structural demand model, which is 
estimated with deflated food expenditures as dependent variables. In this table, the R2 is 
the squared correlation between the observed and predicted dependent variable, ˆ ˆi iT ε σ  
is asymptotically a standard normal under the hypothesis that the means of the error terms 
are zero, [ ]

1
ˆ ˆ ˆ ˆ( ) ( )zT

iT it i iitB z Tε ε σ== −∑  is the single equation asymptotic Brownian 
bridge test statistic, and the Durbin-Watson statistic is based on the estimated errors from 
the nonlinear three stage least squares estimates of each demand equation. Based on these 
criteria, it is notable that there is little evidence of specification errors, nonconstant pa-
rameters, or serial correlation in the errors. This is unusual in that the imposition of pa-
rameter restrictions such as symmetry and curvature usually introduces substantial serial 
correlation. 

These conclusions carry over to the system-wide hypothesis tests in the same class. 
The results of these hypothesis tests are .383 and 1.084, respectively, both of which are 
well within the 95% asymptotic confidence level of 1.36 for a tied Brownian motion 
(Bhattacharya and Waymire, 1990). A demand systems test for a common autocorrelation 
coefficient returns an estimate of ˆ .00793ρ =  with an estimated asymptotic standard error 
of .025 (resulting in a p-value of .752). Asymptotically standard normal test statistics for 
skewness and excess kurtosis are –.223 and 1.374, respectively, yielding a Jarque-Bera 

2(2)χ  test statistic for the null hypothesis that the errors are jointly normal that is equal 
to 1.937, with an associated p-value of .380. Thus, I conclude that this is a stable and sta-
tistically adequate empirical model of aggregate U.S. food demand. 

Table 3 presents the estimated parameters for constant terms, demographics, main di-
agonal elements of B*, Box-Cox parameters (κ,λ), and rank three parameters, δ, for each 
food demand equation.11 The main diagonal elements of B* strongly dominate the re-
                                                 
10 I search jointly over ( ,κ λ)  throughout the entire rectangle in very small increments and a large number 
of iterations for each ( ,κ λ)  pair. At times more than 5,000 iterations in TSP© version 4.5 are needed per 
parameter pair in the lower areas of this rectangle. Each step at times requires several hours on a 3.8GHz 
Pentium IV workstation with 4GB of RAM. I find no alternative minima and the graph of the NL3SLS 
surface over this range of values does not lead to any additional insights or information beyond those con-
veyed here, and looks ragged and unappealing compared to figure 3. 
11 Details in the expanded version of this paper at http://www.ses.wsu.edu/People/lafrance.html, are freely 
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maining elements of this matrix and few off-diagonal terms are statistically different from 
zero at any of the usual significance levels.  

As should be expected, the high degree of multicollinearity both among the right-
hand-side variables in the demand equations and among the instrumental variables, espe-
cially the demographics, has a negative effect on the precision of the parameter estimates. 
For example, in each demand equation, in most cases one or two of the coefficients in the 
functions ( )i tα z  are statistically significant at the 5% level of better. However, a few 
equations – beef, eggs, and nonfood expenditures – have three estimated coefficient esti-
mates on the demographic variables and constant terms that are highly significant, and 
almost all equations have two or more coefficients on these variables that are significant 
at the 10% level or better. 

As a result, it could be that this model is somewhat over-parameterized. For example, 
one could consider restricting the price coefficients matrix B* to be diagonal, and only 
including those demographic variables that appear to be statistically significant in the 
empirical model. However, this kind of modeling approach leads to pre-test biases and is 
conditional on the chosen sequence of restrictions introduced to simplify the econometric 
model. Therefore, I only present the empirical results for the general specification here. 
Moreover, the fact that the individual parameter estimates have wide distributions is use-
ful and informative since this indicates a corresponding degree of uncertainty that one 
should attach to policy analyses and inferences generated with this data set.  

I test the following four hypotheses of interest using Wald tests: (1) functional form: 
0 : 1H κ λ= = , 2 (2) 44.04χ = , p-value = 2.7×10–10; (2) full rank two, 0 :H = 0δ , 
2 (21) 67.67χ = , p-value = 8.3×10-7; (3) the non-separable quadratic utility function, 

0 : 1,H κ λ= = = 0δ , 2 (23) 106.87χ = , p-value = 9.0×10–13; and (4) the separable quad-
ratic utility function,12 0 : 1,H κ λ= = = = 0γ δ , 2 (44) 185.54χ = , p-value = 0.0. Clearly, 
the data has the ability to discriminate against these restrictions, the extensions to func-
tional form and rank, and the common assumption of separability of foods from all other 
goods in consumer preferences. 

6. Conclusions 
This paper presents results on an econometric model of per capita food consumption and 
nutritional intake for the United States. The model is consistent with economic theory, 
exact aggregation, and attains the maximal rank of three with this data set. Parameter re-
strictions for monotonicity and curvature over an open convex hull of the data are derived 
and implemented. The empirical application estimates a system of demands for twenty-
one food items using annual U.S. per capita time series data for 1919-1941 and 1947-
 
available for download, along with the complete data set and supplemental Appendices. 
12 It can be shown that this null hypothesis is the only way that foods can be weakly separable from all 
other goods in this class of demand systems. 
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2000. The results suggest that this empirical model is a reasonable and coherent econo-
metric framework for studying the aggregate consumer effects of changes in farm and 
food policies in the United States. Ongoing work includes estimating the consumer im-
pacts of US farm and food policies on food demand and nutrition using the empirical re-
sults of this model and data set, as well as the distributional effects of taxing the fat and 
sugar content of foods. 
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Table 1. First-Stage Instrumental Variable Regressions Summary Statistics.   

* indicates statistically different from zero at the 5% significance level; ** at the 1% significance level. 

  Standard   Durbin LM Coeff. of Excess 
 Mean Deviation ˆ u

2σ  R2 Watson Heter. Skewness Kurtosis 
————————————————————————————————————————————————————————————— 
Per Capita Income 2600.8 1259.3 1648.3 .9991 1.889 6.016* 0.132 1.012 

Fresh Milk & Cream .1185 .0175 4.403×10–6 .9855 2.449 4.920* 0.195 –0.170 

Butter .7675 .1900 6.675×10–4 .9813 2.072 0.048 0.789* 2.427** 

Cheese .7672 .1353 3.262×10–4 .9819 2.315 0.476 0.308 –0.251 

Frozen Dairy .2038 .0449 2.584×10–5 .9870 2.203 0.596 –.290 1.028* 

Canned & Powdered Milk .1699 .0234 1.559×10–5 .9712 2.327 0.015 0.377 0.703 

Beef .9739 .2195 1.425×10–3 .9700 1.990 0.109 0.189 0.515 

Pork .6097 .1184 8.899×10–4 .9357 1.864 5.22×10–3 0.464 1.583** 

Other Red Meat .7470 .1299 6.608×10–4 .9603 1.986 3.87×10–3 0.697* 0.582 

Fish .6881 .2218 2.4637×10–4 .9949 1.931 6.978* 0.087 –0.342 

Poultry .4766 .1873 2.745×10–4 .9921 2.386 0.167 0.750** 0.931 

Fresh Citrus Fruit .1607 .0434 2.126×10–4 .8855 2.396 12.83** 0.951** 2.407** 

Fresh Non-citrus Fruit .1661 .0266 3.937×10–5 .9438 1.801 1.533 0.086 0.943 

Fresh Vegetables .1834 .0317 5.234×10–5 .9470 2.184 4.93×10–4 0.354 1.095* 

Potatoes .0713 .0178 2.693×10–5 .9136 2.143 3.32×10–4 0.123 –0.121 

Processed Fruit .5099 .0595 3.770×10–4 .8921 2.425 0.1199 0.110 –0.574 

Processed Vegetables .1945 .0235 1.711×10–5 .9687 2.206 0.0172 0.797** 1.236** 

Margarine, Fats & Oils .3244 .0964 1.573×10–4 .9829 1.893 4.74×10–5 0.047 1.030 

Eggs .3753 .1571 2.989×10–4 .9877 2.379 1.008 0.248 0.434 

Pasta & Cereal Grains .1168 .0134 3.686×10–6 .9794 1.934 1.250 –.103 0.223 

Caloric Sweeteners .2227 .0440 7.496×10–5 .9608 2.038 0.853 0.178 0.132 

Coffee, Tea, & Cocoa .8839 .2512 9.223×10–3 .859 2.148 15.97** 1.053** 3.013** 

————————————————————————————————————————————————————————————— 



Table 2. Demand Model Summary Statistics and Diagnostics. 

 

 R2 ˆ ˆi iT ε σ  
0 1

ˆ
≤ ≤

max ( )iTz
B z  D–W 

———————————————————————————————————— 

Milk & Cream .9856 .0134 .312 2.121 

Butter .9923 .0069 .406 1.084** 

Cheese .9946 .0128 .339 2.134 

Frozen Dairy .9670 -.0036 .543 1.526 

Other Dairy .7244 -.0192 .291 2.214 

Beef .9910 -.0007 .557 1.331* 

Pork .9668 .0057 .491 1.384* 

Other Red Meat .9598 4.9×10–5 .415 1.895 

Fish .9922 -.0110 .557 1.619 

Poultry .9876 .0059 .606 1.131** 

Fresh Citrus Fruit .7286 -.0025 .574 1.818 

Fresh Non-citrus Fruit .9451 -.0149 .399 2.846 

Fresh Vegetables .9906 -.0062 .222 2.599 

Potatoes .9446 .0121 .644 2.046 

Processed Fruit .9888 -.0165 .517 1.689 

Processed Vegetables .9767 -.0153 .346 1.905 

Fats & Oils .9622 -.0133 .488 1.374 

Eggs .9977 -2.4×10–4 .487 1.779 

Pasta & Cereal Grains .9843 5.3×10–4 .577 1.509 

Sugar & Sweeteners .9931 -.0065 .426 2.590 

Coffee, Tea, & Cocoa .9738 .01824 .377 1.767 

———————————————————————————————————— 
 
R2 is the squared correlation of the observed and predicted dependent variable; ˆ ˆ ~ (0,1)a

i iT nε σ  is an 

asymptotic test statistic for zero means of the demand residuals; 
0 1

ˆmax ( )iTz
B z

≤ ≤
 is a single equation tied 

Brownian bridge test; D-W is the Durbin-Watson test statistic for serial correlation in the error terms. * 
indicates statistically different from the null hypothesis at the 5% significance level; ** at the 1% signifi-
cance level 
 



Table 3. Constants, demographics, main diagonal of B*, Box-Cox, and rank 3 parameters. 

  Asymptotic 
  Standard Asymptotic Asymptotic 
Parameter Estimate Error t–ratio P–value 
Dairy Products 
Milk & Cream 
Constant 400.4516 167.0079 2.397801 .016 
Age<5 –385.3338 430.3245 –.895449 .371 
Age5-14 861.7038 747.7986 1.152321 .249 
Age15-24 –268.2246 290.2010 –.924272 .355 
Age>54 1091.170 819.8913 1.330872 .183 
Black –49.00172 39.87195 –1.228977 .219 
Not White or Black –1.171513 27.22329 –.043034 .966 
Own price b1,1 2.398551 1.029731 2.329299 .020 
Butter 
Constant 27.56409 8.613418 3.200134 .001 
Age<5 –5.864814 19.97749 –.293571 .769 
Age5-14 19.90548 36.44433 .546189 .585 
Age15-24 15.60141 14.13944 1.103397 .270 
Age>54 –1.758622 32.55507 –.054020 .957 
Black –2.788001 1.959402 –1.422883 .155 
Not White or Black 1.300108 1.566214 .830096 .406 
Own price b2,2 .2986517x10–2 .1283688x10–2 2.326513 .020 
Cheese 
Constant –4.221629 9.813378 –.430191 .667 
Age<5 –10.63126 30.35714 –.350206 .726 
Age5-14 78.59921 51.25275 1.533561 .125 
Age15-24 –2.684196 21.86788 –.122746 .902 
Age>54 120.4936 60.81435 1.981336 .048 
Black –2.306349 2.653786 –.869079 .385 
Not White or Black 1.997360 1.988838 1.004285 .315 
Own price, b3,3 .6855164x10–2 .3665781x10–2 1.870042 .061 
Frozen Dairy 
Constant 16.62731 23.63151 .703607 .482 
Age<5 172.4398 94.52512 1.824275 .068 
Age5-14 169.7919 118.9071 1.427938 .153 
Age15-24 117.6385 65.39845 1.798797 .072 
Age>54 249.1209 125.5670 1.983968 .047 
Black –11.42917 6.839709 –1.671002 .095 
Not White or Black 10.30628 5.645212 1.825668 .068 
Own price, b4,4 .0352694 .0231841 1.521275 .128 
Canned & Powdered Milk 
Constant 77.02498 58.30862 1.320999 .187 
Age<5 172.5077 178.1571 .968290 .333 
Age5-14 –250.5331 238.7480 –1.049362 .294 
Age15-24 41.47852 117.4864 .353050 .724 
Age>54 –355.3721 276.5997 –1.284788 .199 
Black .9626987 13.54746 .071061 .943 
Not White or Black 5.514632 10.28109 .536386 .592 
Own price, b5,5 .3047675 .1294329 2.354637 .019 



Table 3, continued. 

 

  Asymptotic 
  Standard Asymptotic Asymptotic 
Parameter Estimate Error t–ratio P–value 
Meats, Fish, and Poultry 
Beef 
Constant –98.71441 25.39640 –3.886946 .000 
Age<5 –13.25319 40.70461 –.325594 .745 
Age5-14 35.92908 81.73154 .439599 .660 
Age15-24 –54.77663 32.14665 –1.703961 .088 
Age>54 59.69787 79.72590 .748789 .454 
Black 12.18492 4.146443 2.938643 .003 
Not White or Black –10.83663 3.367013 –3.218469 .001 
Own price, b6,6 .0305656 .8244024x10–2 3.707607 .000 
Pork 
Constant 70.80908 21.72403 3.259482 .001 
Age<5 98.57318 69.29915 1.422430 .155 
Age15-24 103.0047 95.40777 1.079626 .280 
Age15-24 44.34759 47.89064 .926018 .354 
Age>54 115.6786 96.41663 1.199779 .230 
Black –9.921528 5.758482 –1.722942 .085 
Not White or Black 3.383852 4.227421 .800453 .423 
Own price, b7,7 .0458794 .0126597 3.624049 .000 
Other Red Meat 
Constant 13.81569 8.957978 1.54227 .123 
Age<5 –16.22974 24.98670 –.649535 .516 
Age5-14 27.38998 38.15348 .717889 .473 
Age15-24 –8.048191 17.77640 –.452746 .651 
Age>54 7.480517 39.55528 .189116 .850 
Black –1.009080 2.072770 –.486827 .626 
Not White or Black –.1877308 1.579160 –.118880 .905 
Own price, b8,8 .0156278 .5855231x10–2 2.669028 .008 
Fish & Shellfish 
Constant 17.14271 11.91130 1.439197 .150 
Age<5 16.01230 37.58487 .426030 .670 
Age5-14 71.29501 47.99914 1.485340 .137 
Age15-24 19.72345 27.77379 .710146 .478 
Age>54 32.51503 44.13425 .736730 .461 
Black –3.476629 2.797261 –1.242869 .214 
Not White or Black 3.993370 2.303270 1.733783 .083 
Own price, b9,9 .4395113x10–2 .2102867x10–2 2.090057 .037 
Poultry 
Constant 9.424577 19.41054 .485539 .627 
Age<5 25.86903 59.61720 .433919 .664 
Age5-14 112.7465 93.17606 1.210037 .226 
Age15-24 –1.192216 43.57236 –.027362 .978 
Age>54 34.94146 80.64696 .4332644 .665 
Black –2.948940 4.892394 –.602760 .547 
Not White or Black 10.53016 4.991436 2.109646 .035 
Own price, b10,10 .0181704 .5140193x10–2 3.534961 .000 
  



Table 3, continued. 

 

  Asymptotic 
  Standard Asymptotic Asymptotic 
Parameter Estimate Error t–ratio P–value 
Fruits and Vegetables 
Fresh Citrus Fruit 
Constant 151.0950 42.01749 3.596002 .000 
Age<5 –180.4505 87.20089 –2.069366 .039 
Age5-14 –222.5962 140.6704 –1.582395 .114 
Age15-24 –106.4208 61.22153 –1.738291 .082 
Age>54 –115.9288 123.5834 –.938061 .348 
Black –4.129310 7.170613 –.575866 .565 
Not White or Black –6.175232 5.902981 –1.046121 .296 
Own price, b11,11 .0563934 .0200630 2.810819 .005 
Fresh Non-citrus Fruit 
Constant 153.7503 73.62322 2.088340 .037 
Age<5 138.1371 193.4211 .714178 .475 
Age5-14 –136.8518 262.7964 –.520752 .603 
Age15-24 95.30952 126.8364 .751437 .452 
Age>54 –438.7356 286.0211 –1.533927 .125 
Black –5.940248 15.88149 –.374036 .708 
Not White or Black 10.75254 12.71678 .845540 .398 
Own price, b12,12 .1718975 .1015319 1.693039 .090 
Fresh Vegetables 
Constant 225.0974 61.53353 3.658126 .000 
Age<5 –146.0028 117.4012 –1.243622 .214 
Age5-14 122.4797 160.5392 .762927 .446 
Age15-24 –17.89469 82.24098 –.217589 .828 
Age>54 178.0454 175.4719 1.014666 .310 
Black –22.40083 10.86436 –2.061862 .039 
Not White or Black 14.74307 8.446066 1.745554 .081 
Own price, b13,13 .1162223 .0571378 2.034071 .042 
Potatoes 
Constant 159.8164 68.42335 2.335700 .020 
Age<5 –71.66518 176.5486 –.405923 .685 
Age5-14 –104.1668 242.9075 –.428833 .668 
Age15-24 41.54775 132.3913 .313825 .754 
Age>54 –428.2641 250.0232 –1.712897 .087 
Black –2.260539 15.15755 –.149136 .881 
Not White or Black –1.981753 11.94165 –.165953 .868 
Own price, b14,14 .4476947 .1747796 2.561481 .010 
Processed Fruit 
Constant –31.29244 25.11612 –1.245911 .213 
Age<5 –98.26029 83.44195 –1.177589 .239 
Age5-14 199.1655 128.8688 1.545490 .122 
Age15-24 –70.18885 62.04413 –1.131273 .258 
Age>54 215.4645 121.9345 1.767051 .077 
Black .0759863 6.138067 .012380 .990 
Not White or Black 4.631180 5.387631 .859595 .390 
Own price, b15,15 .0231164 .7450056x10–2 3.102843 .002 



Table 3, continued. 

 

  Asymptotic 
  Standard Asymptotic Asymptotic 
Parameter Estimate Error t–ratio P–value 
Processed Vegetables 
Constant 51.82672 33.75945 1.535177 .125 
Age<5 34.91193 101.2193 .344914 .730 
Age5-14 65.53713 148.6315 .440937 .659 
Age15-24 80.31124 77.52784 1.035902 .300 
Age>54 79.09137 158.9078 .497719 .619 
Black –6.974044 8.805015 –.792054 .428 
Not White or Black 7.289670 7.169072 1.016822 .309 
Own price, b16,16 .1067930 .0504515 2.116744 .034 
Miscellaneous Foods 
Margarine, Fats & Cooking Oils, Excluding Butter 
Constant 8.809842 15.57483 .565646 .572 
Age<5 –7.119928 45.23274 –.157407 .875 
Age5-14 4.398767 79.31484 .055460 .956 
Age15-24 17.53647 33.01583 .531153 .595 
Age>54 –6.224789 78.23397 –.079566 .937 
Black .2162304 4.254941 .050819 .959 
Not White or Black 3.446176 3.602691 .956556 .339 
Own price, b17,17 .0174848 .7435984x10–2 2.351374 .019 
Eggs 
Constant 58.21888 17.25044 3.374922 .001 
Age<5 148.8485 56.92159 2.614974 .009 
Age5-14 58.48786 84.66879 .690784 .490 
Age15-24 73.39627 34.02838 2.156914 .031 
Age>54 136.1283 85.93384 1.584106 .113 
Black –10.10603 4.827193 –2.093562 .036 
Not White or Black 4.587329 3.698107 1.240453 .215 
Own price, b18,18 .0165967 .6470346x10–2 2.565036 .010 
Bread, Cereal Grain & Pasta 
Constant 260.0493 98.41350 2.642414 .008 
Age<5 –347.3041 180.6362 –1.922672 .055 
Age5-14 –274.3420 276.1288 –.993529 .320 
Age15-24 –194.5826 129.3603 –1.504191 .133 
Age>54 –1153.038 375.7599 –3.068550 .002 
Black 10.90580 17.09694 .637880 .524 
Not White or Black 4.202203 11.59157 .362522 .717 
Own price, b19,19 .3584566 .2843467 1.260632 .207 
Sugar and Caloric Sweeteners 
Constant 118.5841 33.34448 3.556334 .000 
Age<5 –53.61066 67.72584 –.791584 .429 
Age5-14 16.68190 100.3731 .166199 .868 
Age15-24 56.35774 58.10219 .969976 .332 
Age>54 –71.84597 94.95358 –.756643 .449 
Black –6.877342 6.466937 –1.063462 .288 
Not White or Black 5.834398 5.500398 1.060723 .289 
Own price, b20,20 .0782676 .0242628 3.225819 .001 



Table 3, continued. 

 

  Asymptotic 
  Standard Asymptotic Asymptotic 
Parameter Estimate Error t–ratio P–value 
Coffee, Tea, & Cocoa 
Constant 36.71345 9.086131 4.040603 .000 
Age<5 –8.313453 18.27687 –.454862 .649 
Age5-14 29.30088 29.54195 .991840 .321 
Age15-24 –2.610791 14.29012 –.182699 .855 
Age>54 59.27300 32.86510 1.803524 .071 
Black –4.343055 1.946413 –2.231312 .026 
Not White or Black 1.183474 1.318227 .897778 .369 
Own price, b21,21 .2820930x10–2 .7931703x10–3 3.556525 .000 
Nonfood Expenditure 
Constant 520.8642 1205.295 .432147 .666 
Age<5 4825.422 5299.583 .910529 .363 
Age5-14 16187.01 6824.572 2.371872 .018 
Age15-24 5094.378 3966.541 1.284338 .199 
Age>54 16626.07 6503.471 2.556491 .011 
Black –667.722 355.6175 –1.877641 .060 
Not White or Black 752.4342 323.6012 2.325190 .020 
Own price, b22,22 1.000000 ––– ––– ––– 
Box-Cox Parameters 
κ .8584773 .0285454 30.07414 .000 
λ 1.088438 .0332934 32.69235 .000 
Quadratic Rank 3 Parameters 
δMilk –.7979284×10–05 .1231113×10–04 –.648136 .517 
δButter .6516140×10–06 .6331848×10–06 1.029105 .303 
δCheese –.8400016×10–07 .7822616×10–06 –.107381 .914 
δIce Cream .2378841×10–05 .1707076×10–05 1.393518 .163 
δOther Dairy .5046246×10–05 .4725501×10–05 1.067875 .286 
δBeef –.4663525×10–05 .1707923×10–05 –2.730524 .006 
δPork –.4274155×10–05 .1552887×10–05 –2.752392 .006 
δOther Meat .3891047×10–06 .7430648×10–06 .523648 .601 
δFish .8892863×10–06 .5139223×10–06 1.730390 .084 
δPoultry .1273841×10–05 .1347266×10–05 .945501 .344 
δFresh Citrus –.6101568×10–05 .2460191×10–05 –2.480120 .013 
δFresh Noncitrus –.8740211×10–06 .4697163×10–05 –.186074 .852 
δFresh Vegetables –.2427044×10–05 .2756051×10–05 –.880624 .379 
δPotatoes –.9658178×10–05 .4938488×10–05 –1.955696 .051 
δProcessed Fruit .5092494×10–05 .2000672×10–05 2.545392 .011 
δProcessed Vegetables .2361664×10–05 .2700797×10–05 .874432 .382 
δFats & Oils .8415340×10–06 .1300952×10–05 .646860 .518 
δEggs –.8110274×10–06 .1335823×10–05 –.607137 .544 
δCereas .5792619×10–05 .5098581×10–05 1.136124 .256 
δSugar –.1684004×10–05 .1846147×10–05 –.912172 .362 
δCoffee –.1364496×10–05 .4766596×10–06 –2.862622 .004 
 



  

 

Figures 
 

Figure 1: U.S. Income Distribution. 

Figure 2: U.S. Race and Age Distributions. 

Figure 3: NL3SLS Grid Search over κ  and λ . 
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Figure 1a. US per Capita Real Income Distribution Parameters.
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Figure 1b. Distribution of U.S. Real Family Income, 1910-2000.
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Figure 2a. US Population Percentages by Race.
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Figure 2b. US Population Proportions by Age Group.
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Figure 3. Conditional NL3SLS Search over κ and λ. 

Surface Plot

1 1ˆ ˆ( , ) ( ) ( ) ( )φ κ λ κ λ κ λ− −
• •⎡ ⎤= , ⊗ ,⎣ ⎦S Z Z Z Zε εT T T

  

0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92
κ

1.05

1.10

1.15

λ

Contour Plot

1 1ˆ ˆ( , ) ( ) ( ) ( )φ κ λ κ λ κ λ− −
• •⎡ ⎤= , ⊗ ,⎣ ⎦S Z Z Z Zε εT T T

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2
κ

300

400

500

600

700

800

900

1000

.86
.94

1.06

.18

1 1ˆ ˆ( ) ( ) ( ) ( )φ κ κ κ− −
• •⎡ ⎤= ⊗⎣ ⎦S Z Z Z Zε εT T T

( )φ κ

  

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

κ

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Conditional estimate of λ
Conditional 95% interval

.18 .86

.94
1.06

ˆ( )λ κ

ˆ( )λ κ

 


