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Abstract

This paper analyzes the e¤ects of players� relative comparisons in complete information

simultaneous-move games. In particular, every individual is assumed to evaluate the kindness

she infers from other players�choices by comparing these choices with respect to a given refer-

ence level. Speci�cally, this paper identi�es under what conditions the introduction of relative

comparisons leads players to be more cooperative than in standard game-theoretic models. I

show that this result holds under certain conditions on the speci�c reference point that players

use in their relative comparisons, and on whether players�relative comparisons leads them to

regard each others� actions as more strategic complementary or substitutable. The model is

then applied to di¤erent examples in public good games which enhance the intuition behind the

results. Finally, I show that some existing models in the literature of intentions-based reciprocity

and social status acquisition can be rationalized as special cases.
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1 Introduction

During the last decade several elements have been separately suggested to explain agents�behavior

in experimental settings: from individuals�inequity aversion, as in Fehr and Schmidt (1999) and

Bolton and Ockenfels (2000), to agents�preference for social status, as in Hopkins and Kornienko

(2004) and Du¤y and Kornienko (2005). Despite their ability to rationalize human conduct in

speci�c economic environments, there is a substantial controversy about what particular facet most

generally drives individuals�behavior in unrestricted environments. Or in other words, about the

possibility to identify a common element connecting most of these experimental observations.

In this paper, I examine a model describing individual behavior that embeds many of these

approaches as special cases of a broader explanation of human conduct in strategic settings. Specif-

ically, this model is based on the common observation that people�s choices are usually a¤ected by

the �kindness�they infer from the actions of the individuals they interact with, such as their neigh-

bors, friends and relatives. Of course, the particular measure of �kindness� that each of us uses

to evaluate other individuals�actions might be di¤erent. For instance, some people compare other

agents�choices with respect to their own. Other individuals may instead evaluate other agents�ac-

tions with respect to some speci�c action they deem as �kind.�Indeed many other examples abound;

yet, they share a common pattern: in all of them individuals evaluate other agents�choices with

respect to a particular reference action, which they use as a reference point for comparison.

Using this general de�nition of kindness, this paper examines the e¤ects of social comparisons

on strategic interaction. In particular, this study identi�es under what conditions one can predict

that individuals playing simultaneous-move games become more cooperative when they assign a

positive importance to kindness, relative to when they do not. Particularly, this result holds under

certain conditions on the reference point they use for comparison � which determines when a

particular action by other agent is considered to be relatively kind or unkind� and on whether

these considerations about kindness lead players to regard each others�actions as more strategically

substitutable or complementary.

Speci�cally, I show that when players consider other players� choices as relatively kind and

players�actions become more strategically complementary, both players increase their equilibrium

strategies beyond the equilibrium level in standard models. Similarly, this result is also applicable

to the case in which players consider other agents� strategies as relatively unkind but actions

become more strategically substitutable. Finally, I demonstrate that these results are not only

valid for games where players�actions are regarded as strategic complements, but also for those in

which these actions are strategic substitutes. Hence, this paper identi�es under what conditions

players�relative comparisons (evaluating other players�kindness) act as a device for cooperation

that triggers higher strategy choices by both players.
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Therefore, this paper�s main contributions can be divided into two. First, from a general

perspective, this paper shows that, under certain conditions, agents�consideration of relative com-

parisons may lead them to become more cooperative than in standard models. Importantly, this

result applies even when players are not concerned about other players�material payo¤s. Indeed,

unlike models with inequity averse individuals where players do care about other individuals�pay-

o¤s (social preferences), this paper analyzes conditions under which agents cooperate more than

in standard models without the need to assume that they care about other players�payo¤s, i.e.,

even when agents�preferences can be regarded as �strictly individualistic.�Second, I show that the

model this paper describes embeds as special cases existing behavioral models: from models on

intentions-based reciprocity to those analyzing social status acquisition.

The paper is organized as follows. In the next section, I introduce the measure of kindness

that players use and as how it enters into individuals�preferences. Sections three and four analyze

players�equilibrium strategies when either both or only one of the parties assigns a positive weight

to kindness in these simultaneous-move games. Then, in section �ve, I apply this model to di¤erent

examples of public good games in which donors simultaneously contribute to a charity. Section six

summarizes the main contributions of the paper.

2 Model

Let us consider complete information simultaneous-move games in which every player i chooses an

action from her strategy space Si 2
�
si; si

�
� R+. This strategy may represent, for example, player

i�s voluntary contribution to a public good, or in the context of oligopoly games, its production

decision in a Cournot model. In particular, let us use UNCi � UNCi (si; sj) to refer to player i�s

utility function when she is not concerned about relative comparisons. Since this utility function

does coincide with those in the standard game-theoretic models, I alternatively refer to UNCi as

player i�smaterial payo¤ , where the superscript NC denotes the fact that player i is �not concerned�

about relative comparisons. On the other hand, let UCi (si; sj) be player i�s utility function when she

is �concerned�about relative comparisons. In the following subsection, I describe how players make

their comparisons, and in subsection 3.2 how every player introduces the result of this comparison

into her utility function.

2.1 How players measure kindness

Let us now describe how players evaluate the kindness behind other players�actions. In particular,

we assume that player i measures kindness through the following distance function, Di(si; sj), and

that he infers kindness when the outcome of this distance function is positive, and unkindness

otherwise (see assumption 1 below).

Di(si; sj) = �i

h
sj � sRij (si; sj)

i
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for any �i 2 R. Thus, player i evaluates player j�s kindness by comparing the di¤erence between the
action that player j�s chooses in equilibrium, sj , and a particular reference action that player i uses

for comparison, sRij (si; sj) 2 Sj , among player j�s available choices, as de�ned below.1 I believe
that this reference-dependent measure is a natural way for player i to assess player j�s actions,

which is yet general enough to embed di¤erent behavioral models as special cases. In particular,

this distance function is similar to that in the literature on reference-dependent preferences, such as

Köszegi and Rabin (2006). However, their model analyzes individual decision making, unlike this

paper where we examine strategic e¤ects. On the other hand, the distance function suggested in this

paper di¤ers from that in Rabin (1993) for simultaneous-move games and that in Dufwenberg and

Kirchsteiger (2004) for sequential-move games. Indeed, these studies assume that player i compares

his actual payo¤ with respect to the �equitable�payo¤ (his equitable share in the Pareto-e¢ cient

payo¤s). In contrast, I allow player i to compare the action that player j�s chooses in equilibrium

with respect to any feasible action, sRij (si; sj) 2 Sj , leading to equitable or non-equitable payo¤s.
Let us next de�ne the concept of reference action, sRij (si; sj), which player i uses as a reference

point in order to evaluate the kindness that he perceives from player j�s chosen action, sj .

De�nition 1. Player i�s reference point function sRij : Si � Sj ! Sj , maps the pair (si; sj) of

both players�chosen actions, into a reference action sRij 2 Sj from player j�s set of available choices.
In addition, sRij (si; sj) is weakly increasing in si and sj, and twice continuously di¤erentiable in

si and sj.

Hence, player i can use any of player j�s available actions in Sj as a reference point.2 That

is, sRij (si; sj) is allowed to be above/below/equal to player j�s chosen action, sj , which leads

to negative/positive/null distances, respectively. Obviously, the particular sign of such distance

a¤ects player i�s utility function, UCi (si; sj), as we describe below. Additionally, note that when

both players�strategy spaces are identical, Si = Sj = S, player i�s reference point function becomes

sRij : S2 ! S. In this context, the reference point function can be, for instance, sRij (si; sj) = si for

all sj . In such case, the distance function becomes Di(si; sj) = �i [sj � si], and player i compares
the action that player j chooses in equilibrium, sj , with respect to her own action, si.

In particular, note two speci�c examples of this distance function. First, when �i > 0, it may

represent the case in which players� equilibrium actions satisfy sj > si, and player i interprets

kindness from player j�s choices (e.g., her commitment to contribute high donations to the public

good), whereas sj < si is evaluated by player i as a sign of unkindness by her opponent (e.g.,

1For simplicity, this distance function was chosen to be linear. Nonetheless, from a more general perspective,
player i�s distance function could be nonlinear, as long as it increases in player j�s actually chosen strategy, sj , and
decreases in the reference action that player i uses for comparison. Note that in such setting, Bolton and Ockenfels�
(2000) model (whereby agents�utility increases in their share of total income) could be embedded as a special case.
For the sake of clarity, however, I henceforth use the above linear distance function.

2For simplicity, I restrict the range of reference points to player j�s available choices, Sj . More generally, s
Ri
j (si; sj)

could take values outside Sj . I believe, however, that it is more natural to assume that player i compares player j�s
actions with respect to her foregone options than to actions which were not even available to her.
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free-riding). The second example is related to players�concerns for status acquisition. Particularly,

when �i < 0, player i makes the same comparison, but introduces the outcome of Di(si; sj) into

her utility function negatively, i.e. Di(si; sj) = ��i [sj � si] = �i [si � sj ] In these cases, player
i may evaluate sj > si negatively because the action space might represent the consumption of a

given positional good that enhances social status.

Furthermore, we allow player i to modify the reference action he uses to compare player j�s

chosen action, i.e., sRij (si; sj) is not restricted to be constant for all sj . In particular, we assume

that, for a given increase in player j�s action, sj , the reference point that player i uses, s
Ri
j (si; sj),

does not increase as fast as player j�s action, i.e., 1 � @sRij (si; sj) =@sj . Intuitively, this condition

makes higher values of player j�s action meaningful for player i, since they increase the outcome

of his distance function, i.e., @Di(si; sj)=@sj = 1 � @sRij (si; sj) =@sj . And as we describe below,

positive distances ultimately raise player i�s utility level.

2.2 How kindness enters into players�preferences

After examining how players evaluate other players�actions through the construction of a distance

Di, let us next analyze how this distance enters into players� utility function. First, I consider

how a player prefers, for a given pair of chosen actions si and sj , those pairs (si; sj) associated to

positive rather than negative distances.

Assumption 1. Kindness. For any actions si 2 Si and sj 2 Sj ,

UCi (si; sj) � UNCi (si; sj) for all Di (si; sj) � 0

UCi (si; sj) < UNCi (si; sj) for all Di (si; sj) < 0

Therefore, this assumption determines that player i interprets kindness from player j�s chosen

actions when the outcome of her distance function is positive, and infers unkindness otherwise.

That is, when player i is concerned about social comparisons and she interprets kindness from

player j�s actions, Di (si; sj) � 0, her utility level is higher than when she is not concerned about
these comparisons; and it is lower when she infers unkindness. Let us �nally de�ne when a player�s

relative comparisons are considered as relatively �demanding�with respect to other players�actions,

and when they can be regarded as �not-demanding�.

De�nition 2. Player i�s relative comparisons are de�ned as �demanding� if and only if she
infers unkindness (negative distance) from player j�s equilibrium action when players are not con-

cerned about social comparisons, sNCj . That is, DNCi � �i
h
sNCj � sRj

i
< 0. Otherwise, player i�s

relative comparisons are denoted as �not-demanding.�

Intuitively, player i would be regarded as �demanding,�DNCi < 0, if the reference level she

uses to compare player j�s actions is above sNCj , i.e., she sets a high standard to assess player j�s
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actions (demanding). On the contrary, player i would be regarded as �not-demanding,�DNCi > 0,

if the reference level she uses to compare player j�s actions is below sNCj , setting a low standard to

evaluate player j�s choices.

3 Best response function

The previous section described the structure behind players�preferences, how they use the distance

function to evaluate other players�actions, and how this distance enters into players�utility function.

In this section, I characterize players�best response function in this class of simultaneous-move

games.

Let sCi (sj) 2 argmax
si

UCi (si; sj) denote player i�s best response function when she assigns a

positive importance to relative comparisons, and let sNCi (sj) 2 argmax
si

UNCi (si; sj) represent her

best response function when she does not assign any weight to such comparisons. For simplicity,

both UNCi (si; sj) and UCi (si; sj) are assumed to be strictly concave in every player i�s own strategy,

si, which guarantees that best response functions are uniquely de�ned. Additionally, in order to

have a unique equilibrium in pure strategies, we consider the usual su¢ cient condition for best

response functions to intersect only once.

Assumption 2. For any given strategy pair (si; sj), every player i�s best response function
satis�es

���@sKi (sj)@si

��� < 1 where K = fC;NCg, i.e.,
���@2UKi@s2i

��� < ��� @2UKi@si@sj

���, for all i 6= j.
That is, for players with positive concerns about relative comparisons, sCi (sj) crosses s

C
j (si)

from below, and similarly for players without concerns about comparisons. Let us henceforth

denote by single (double) subscripts in the utility and distance functions their �rst (and second)

order derivatives. Next, I start by specifying some properties about the level of the best response

function, whereas lemma 2 determines properties about its slope. Thereafter, all proofs can be

found in the appendix.

Lemma 1. Player i�s best response function when she assigns a value to relative comparisons
is above that when she does not, sCi (sj) � sNCi (sj), for all sj, if and only if the distance function

that player i uses to evaluate kindness is increasing in her own strategy, si, for all si and sj, i.e.,

Dsi � 0 for all si and sj .

Therefore, lemma 1 determines a necessary and su¢ cient condition (Dsi � 0) which guarantees
that player i�s best response function when she is concerned about relative comparisons is above

that when she is not, sCi (sj) � sNCi (sj), for any actions of player j. Graphically, lemma 1 can be

interpreted as an upward shift in player i�s best response function, as �gure 1 illustrates below.
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si

sj

sNC
i(sj)

sC
i(sj)

Figure 1

Intuitively, if an increase in player i�s strategy raises the outcome of her distance function (i.e.,

if Dsi � 0 for all sj) then player i�s best response function when she assigns a positive importance
to relative comparisons is above that when she does not, i.e., sCi (sj) � sNCi (sj) for all player j�s

strategies. Interestingly, the case that lemma 1 describes is applicable, for instance, to games where

players are concerned about status acquisition. Speci�cally, note that the distance function players

use as a measure of the status they acquire, Di(si; sj) � ��i(sj � si) = �i(si � sj), should clearly
satisfy Dsi > 0.

Finally, let UNCsisj represent the cross-derivative between player i and j�s strategies when players

does not assign a value to social comparisons, and UCsisj be that when they do. Intuitively, an

increase in this cross-derivative when players become concerned about social comparisons, from

UNCsisj to U
C
sisj , implies that players� actions become more strategic substitutable. In contrast, a

decrease in this cross-derivative means that players�actions become more complementary to each

other.

Lemma 2. If �i =
UCsisj
UCsisi

�
UNCsisj

UNCsisi

� 0, then the slope of player i�s best response function

increases when she assigns a value to social comparisons relative to when she does not; and decreases

otherwise. That is,

If �i � (<) 0 then
@sCi (sj)

@sj
� (<) @s

NC
i (sj)

@sj
for all sj

Thus, lemma 2 speci�es that, when player i�s utility function satis�es condition �i > 0, her

best response function experiences a anticlockwise rotation from sNCi (sj) to sCi (sj); whereas this

rotation is clockwise in the case that �i < 0, as the �gures below illustrate.
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si

sj

sNCi(sj)

sCi(sj)

Figure 2(a). �i < 0, Clockwise rotation,

�Compensating�type of player.

si

sj

sNC
i(sj)

sC
i(sj)

Figure 2(b). �i > 0, Anticlockwise rotation,

�Reciprocating�type of player.

Graphically, when player i�s best response function is negatively sloped, these results imply

that sCi (sj) is steeper than s
NC
i (sj) when �i < 0, as �gure 2(a) illustrates; while it determines the

opposite when �i > 0 as �gure 2(b) indicates. (In contrast, when player i�s best response function

is positively sloped, lemma 2 speci�es that sCi (sj) is �atter than s
NC
i (sj) when �i < 0 is satis�ed;

and steeper otherwise.) In the above �gures, note that �sj 2 Sj represents the level of player j�s
strategy for which sCi (sj) = s

NC
i (sj).3

Intuitively, a clockwise rotation can be understood in terms of a greater necessity to compensate

player j�s actions as �gure 2(a) illustrates: when sj < �sj player i chooses equilibrium levels of si
above those in the game without concerns for relative comparisons, whereas when sj > �sj player i

chooses lower levels of si in equilibrium. This is the case of the public good games presented in the

example of section �ve, where player i considers her contributions to the charity more �necessary�

when player j does not reach a minimum level, �sj , but her contributions are less necessary when

player j exceeds this level.

An opposite argument is applicable to anticlockwise rotations of player i�s best response func-

tions (i.e., when �i < 0) where player i can be interpreted to reciprocate player j�s actions. Indeed,

player i reduces her strategy choice below that in standard models when player j does not reach

threshold �sj . In contrast, when sj > �sj player i �rewards�player j for exceeding such level. Because

of this underlying intuitive reasoning, I de�ne the reciprocating and compensating types of players

as follows.4

3Note that in the case of a clockwise rotation, if �sj takes a su¢ ciently high value, then sCi (sj) � sNCi (sj) for all
sj , leading to a similar result to that of lemma 1, illustrated in �gure 1. Similarly, in the case of an anticlockwise
rotation, if �sj takes a su¢ ciently low value, then sCi (sj) � sNCi (sj) for all sj .

4These intuitions also hold when players�best response functions are positively sloped. Indeed, when �i < 0 one
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De�nition 3. Player i�s behavior is de�ned as �compensating� if and only if her best response
function rotates clockwise (i.e., �i < 0 holds). Otherwise, her behavior is �reciprocating�.

4 Equilibrium analysis

From our previous analysis, one can anticipate that player i�s equilibrium strategies in this model,

sCi , are higher than in models without concerns about distances, s
NC
i , when sCi (sj) > s

NC
i (sj) for

all sj , i.e., when Dsi � 0 is satis�ed as speci�ed in lemma 1. Indeed, in such cases the consideration
of distances shifts upwards player i�s best response function along all player j�s strategies, what

leads player i to choose higher equilibrium strategy levels. The following proposition con�rms this

result.

Proposition 1. If condition Dsi � 0 holds for all si 2 Si and sj 2 Sj, then sCi � sNCi , for

any reciprocating or compensating behavior of players i and j.

Hence, proposition 1 determines that player i�s equilibrium strategy when she is concerned about

relative comparisons is weakly higher that when she is not, if Dsi � 0 holds. In that case, player
i�s Nash equilibrium strategy increases for any type of player (compensating or reciprocating), and

for any distance function players might use (demanding or not-demanding). This is indeed a useful

result, since it allows for a prediction about the ranking between equilibrium strategies sCi and

sNCi just by checking whether condition Dsi � 0 holds. As commented above, condition Dsi > 0 is
specially relevant in the case of those players who are concerned about status acquisition. Indeed,

as the example of section �ve illustrates, sCi � sNCi is satis�ed for any parameter values when

players assign a positive importance to status, con�rming the above result of proposition 1.

One may ask, however, if the above result still holds when condition Dsi � 0 is not satis�ed

for all sj , i.e., when the best response function sCi (sj) is above s
NC
i (sj) for some values of sj but

below for others. Indeed, Dsi � 0 is a relatively strong condition, which we henceforth relax. (In
particular, we assume that Dsi � 0 holds only for some values of si, whereas Dsi < 0 is satis�ed
for others, which leads to best response function sCi (sj) to be above s

NC
i (sj) for some values of sj

but below for others). For expositional clarity, let us �rst analyze the case in which both players

are concerned about relative comparisons. Then, section 4.2 examines the case where player i is

the only individual who assigns a value to these comparisons.

4.1 Both players are concerned about comparisons

In this section I examine how the above ranking of equilibrium strategy choices varies when both

players assign a positive importance to the outcome of their distance function. For simplicity, let

can interpret sCi (sj) being �atter than s
NC
i (sj) as that player i �compensates�player j�s actions. On the contrary,

when condition �i > 0 holds, and sCi (sj) becomes steeper than s
NC
i (sj), one can infer that player i �reciprocates�

player j�s strategy.
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us assume that both players�relative comparisons are symmetric: �i ��j > 0, i.e., both players
are relative reciprocators or compensators, although the �intensity�of these e¤ects does not need

to coincide �i 6= �j .

Proposition 2. Every player i�s equilibrium strategy satis�es sCi � sNCi if player i is either:

1. a compensator using a demanding distance function; or

2. a reciprocator using a not-demanding distance function.

In addition, this result holds both for strategic substitutes and strategic complements.

The �gures below illustrate the results behind proposition 2 analyzing the ranking of players�

equilibrium strategies. In particular, the type of player is represented in rows and the kind of

distance function she uses is in columns. Speci�cally, �gure 3(a) describes the results for negatively

sloped best response functions (strategic substitutes), while 3(b) summarizes proposition 2 for the

case that players�best response functions have a positive slope (strategic complements).

si
C<si

NC

sj
C<sj

NC

sj
C<sj

NC

si
C<si

NC

Compensators

Reciprocators

DemandingNot demanding

0<∆

0>∆

DNC<0DNC>0

si
C>si

NC

si
C>si

NC

sj
C>sj

NC

sj
C>sj

NC

Figure 3(a). Strategic substitutes.

si
C<si

NC

sj
C<sj

NC

sj
C<sj

NC

si
C<si

NC

Compensators

Reciprocators

DemandingNot demanding

0<∆

0>∆

DNC<0DNC>0

si
C>si

NC

si
C>si

NC

sj
C>sj

NC

sj
C>sj

NC

Figure 3(b). Strategic complements.

Interestingly, for the case of strategic complements but also for strategic substitutes, sCi > s
NC
i

and sCj > sNCj are satis�ed either when: (1) players are compensators with relatively demanding

distance functions; or (2) when players are reciprocators with not-demanding distance functions.

Intuitively, in the �rst case player i evaluates player j�s actions as relatively low given that she uses a

demanding distance function. Additionally, since she is a compensating type of player, she increases

her equilibrium strategy. In contrast, in the second case, player i evaluates player j�s actions as

relatively high, given that she uses a not-demanding distance function. Since, in addition, she is a

reciprocating type of player, she raises her strategy in equilibrium.

10



Note an interesting implication of these results. In particular, if players compare each others�

actions with respect to the highest choice available to each other (i.e., both players are extremely

�demanding�), then further cooperation among the players can only be predicted when individuals

are regarded as compensators, e.g., they compensate each others�lack of contributions to the public

good. In contrast, if players compare each others�actions with respect to the lowest available choice

of the other player (and players can then be regarded as �not-demanding�), stronger cooperation

occurs only when players are reciprocators.

4.2 Only player i is concerned about comparisons

Let us now analyze the case in which player i is the only individual concerned about the outcome

of her distance function, i.e. �i 6= 0 and �j = 0.

Proposition 3. Consider that �i 6= 0 and �j = 0 for all j 6= i, then

1. Player i�s equilibrium strategy satis�es sCi � sNCi if and only if he is either: (1) a compensator

using a demanding distance function; or (2) a reciprocator using a not-demanding distance

function. This result holds both for strategic substitutes and complements.

2. Player j�s equilibrium strategy satis�es sCj � sNCj if and only if sCi < sNCi in the case of

strategic substitutes, and if sCi > s
NC
i in the case of strategic complements.

sj
C<sj

NC

si
C<si

NC

sj
C<sj

NC

si
C<si

NC

Compensator

Reciprocator

DemandingNot demanding

0<∆i

0>∆i

DNC
i<0DNC

i>00=∆j

sj
C>sj

NC

sj
C>sj

NC

si
C>si

NC

si
C>si

NC

Figure 4(a). Strategic substitutes.

sj
C<sj

NC

si
C<si

NC

sj
C<sj

NC

si
C<si

NC

Compensator

Reciprocator

DemandingNot demanding
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Figure 4(b). Strategic complements.

The above two �gures describe the results of proposition 3, emphasizing the ranking of player

i and j�s equilibrium strategies when only player i is concerned about relative comparisons. In

particular, note that the ranking of equilibrium strategy choices for the concerned individual (player

i) coincides with that when both players assign a positive value to relative comparisons. That is,
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sCi � sNCi holds in the same contexts regarding player i for �gures 3(a) and 4(a) in the case of

strategic substitutes, and for �gures 3(b) and 4(b) in the case of strategic complements.

On the other hand, player j�s equilibrium strategy moves in the opposite direction of player

i�s when actions are strategic substitutes, whereas it moves in the same direction when they are

strategic complements. Intuitively, when players�actions are strategic substitutes, player j decreases

her equilibrium strategy when she knows that player i increases hers, as �gure 4(a) indicates. In

contrast, when players�actions work as strategic complements (as in �gure 4b), player j raises her

strategy choice when she predicts that player i increases hers in equilibrium.5

We can extract two main conclusions from the above results. First, a single individual with

positive concerns about social comparisons su¢ ces for higher strategy choices in equilibrium sCi �
sNCi (at least for that player) under certain contexts; and it is valid for both players if their actions

are strategic complements. Second, when both individuals assign a positive importance to social

comparisons, players� equilibrium strategies move in the same direction, i.e., they experience a

�coordinating e¤ect.�Importantly, this result is not only valid when players�actions are strategic

complements, but also when they are strategic substitutes.

4.3 Connection with the literature

In this section, I analyze how the model presented in this paper encompasses certain models on

social preferences and intentions-based reciprocity as special cases, as the following proposition

shows.

Proposition 4. Assume sRij (si; sj) = si for all sj. Then, the player i�s preferences over

player j�s actions can be represented by

UCi (si; sj) = 
iU
NC
i (si; sj) + 
jU

NC
j (si; sj) where 
i; 
j 2 R

In particular, the above proposition speci�es that when player i compares player j�s chosen

action, sj , with that chosen by her, si, her utility function UCi (si; sj) can be represented as a

weighted average of her material payo¤s and those of player j. Therefore, in such context our

model captures players� concerns for inequity aversion (or altruism) as a special case, such as

in Fehr and Schmidt (1999) and in Bolton and Ockenfels (2000). In addition, this model also

captures certain concerns about intentions-based reciprocity as a special case. For example, the

5Finally, note that these results can be easily generalized to simultaneous-move games with N players. In such
settings, however, every player measures the kindness he infers from the actually chosen strategies of each of the
other N � 1 players. The outcome of each of these individual comparisons can then be added up (or even scaled in
a weighted average), in order to evaluate player i�s distance function. Despite the greater generality of such model,
nonetheless, its results and intuition are already captured by the two-player setting I consider in this paper.

12



above utility representation embodies Charness and Rabin�s (2002) model6 for the case that player

i infers misbehavior from player j�s actions, and for 
i = 1� � and 
j = ��. That is,

UCi (si; sj) = (1� �)UNCi (si; sj)� �UNCj (sj ; si)

= UNCi (si; sj) + �
�
UNCi (si; sj)� UNCj (sj ; si)

�
Finally, note that the model presented in this paper also encompasses contexts in which players

care about social status. Indeed, as commented in section 3, this occurs when players compare

others�actions with respect to her own and they introduce the outcome of this comparison negatively

into her utility function. In particular, the distance function becomes Di(si; sj) � ��i(sj � si) =
�i(si � sj), where player i�s utility increases when si > sj and decreases otherwise.

5 Application to public good games

In this section, I construct a simple example in which the above general model is applied to a public

good game (PGG). Speci�cally, let us �rst assume that player i�s utility function coincides with

those in standard public good games,

UNCi (si; sj) = [w � si]0:5 + [m(si + sj)]0:5

where w represents the amount of money available for contributions to the public good, si 2 R+.
Hence, w� si denotes the remaining units of money which have not been contributed and that can
be used for consumption of private goods. Finally, let m 2 R+ be the (constant) return from the

total contributions to the public good, si+sj . Let us now introduce players�concerns about relative

comparisons. In order to be consistent with the above model, let us �rst construct an example of

a distance function that increases in player i�s strategy, i.e., Dsi > 0 for all sj , as in the case in

which players care about status acquisition. Second, I analyze an example of a distance function

that is not increasing for all player i�s strategy, i.e., Dsi > 0 does not hold for all sj .

5.1 An example about status acquisition

Let us �rst consider that players increase their perception of social status when their contribution to

the public good is above that of the other donor, i.e., when si > sj . For simplicity, let us construct

a linear distance function Di � ��i(sj � si) = �i(si� sj), where player i compares her equilibrium
contribution , si, with that of player j�s , sj . Therefore, player i�s utility function becomes

UCi (si; sj) = [w � si]
0:5 + [m(si + sj) + �(si � sj)]0:5

6Clearly, this representation of player i�s utility function does not capture Charness and Rabin�s (2002) complete
model, since they analyze other facets of individuals�behavior, such as inequity aversion, in addition to reciprocity.
However, when restricted to intensions-based reciprocity alone, and when player i infers misbehavior from player j�s
actions, the above utility function coincides with that in Charness and Rabin (2002).
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where �i = �j = � for simplicity. The next proposition describes player i�s equilibrium contribution

in this context, and below I compare it with respect to hers in the standard PGG.

Proposition 5. In the simultaneous PGG game where players assign a value to status, every

player i = f1; 2g submits a Nash equilibrium contribution of sCi =
(�+m)2w

2m+(�+m)2
:

Speci�cally, the following corollary shows that, indeed, player i�s equilibrium contribution in

this model is strictly higher than when she is not concerned about status acquisition (and generally

about distances such that Dsi > 0 for all sj).

Corollary 1. Every player i�s equilibrium contribution in the simultaneous PGG game, sCi ,

when all players assign value to status, � > 0, is (strictly) higher than her contribution when they

do not, � = 0.

Interestingly, this result could be anticipated by directly using proposition 1. Indeed, since

player i can increase the outcome of the distance function by increasing her own strategy (i.e.,

Dsi > 0 for all sj as in this case) then the ranking result s
C
i > s

NC
i could be predicted without the

need to �nd reduced form solutions for the players�equilibrium contributions.

5.2 An example where comparisons are de�ned over sj

Let us now construct a similar example in order to gain a clearer intuition about proposition 2�s

results. Particularly, let us assume that player imakes relative comparisons with a distance function

that is not increasing in player i�s own strategy choice, i.e., Dsi > 0 does not hold for all sj . For

example, if player i wants to evaluate player j�s commitment with the provision of the public good,

she might use distance function Di � �i(sj � srefj ), where sj represents player j�s equilibrium

contribution, and srefj 2 (0; 1) denotes a particular contribution to the public good that players
may have agreed upon before the beginning of the game, and that player i uses as a reference point

to compare sj . Thus, player i�s utility function in this model becomes,

UCi (si; sj) = [w � si]
0:5 + [m(si + sj) + �(sj � srefj )]0:5

Speci�cally, note that player i�s utility level increases when player j contributes to the public

good above her reference level sj > srefj (for example, more than what she committed to), since

player i might infer that player j�s chosen strategy is a signal of a strong commitment with the

provision of the public good. Let us next analyze player i�s best response function.

Proposition 6. In the simultaneous PGG game, where every player i = f1; 2g assigns a value
to the distance sj � srefj , player i�s best response function, sCi (sj), is given by

sCi (sj) =

8><>:
�srefj +m2w

m(1+m) � �+m
m(1+m)sj if sj 2

�
0;
�srefj +m2w

�+m(2+m)

�
0 if sj >

�srefj +m2w

�+m(2+m)
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Comparing it with player i�s best response function when she assigns no importance to distances,

sNCi (sj) =

(
mw
1+m �

1
1+msj if sj 2

h
0; mw2+m

i
0 if sj > mw

2+m

one can clearly observe two main di¤erences between these best response functions, from which

we can conclude that player i is a �compensator�. First, the vertical intercept of sCi (sj) is higher

than that of sNCi (sj) for any � > 0 and srefj > 0, i.e.,
�srefj +m2w

m(1+m) > mw
1+m . And second, s

C
i (sj) is

steeper than sNCi (sj), i.e., �+m
m(1+m) >

1
1+m . Therefore, player i�s best response function experiences

a clockwise rotation from sNCi (sj) to sCi (sj) similar to that �gure 2(a) illustrates. In contrast, when

� < 0 player i becomes a �reciprocator.�Indeed, the vertical intercept of sCi (sj) is now lower than

that of sNCi (sj) for any � < 0; in addition, sCi (sj) is now �atter than s
NC
i (sj) since m��

m(1+m) <
1

1+m .

Hence, when � < 0 player i�s best response function experiences an anticlockwise rotation from

sNCi (sj) to sCi (sj) similar to that illustrated in �gure 2(b). Given the above results about player

i�s best response function, let us now determine player i�s equilibrium contribution to the public

good for any value of �.

Proposition 7. In the simultaneous PGG game, every player i�s contribution when both players

assign a value to the distance sj � srefj is given by sCi =
�srefj +m2w

�+m(2+m) .

Let us �nally compare, alike in the previous example, every player i�s donation in this model

with respect to hers in the (standard) case when she assigns no value to distances.

Corollary 2. In the simultaneous PGG game, every player i�s Nash equilibrium contribution

when she assigns a value to the distance sj � srefj , sCi , is strictly higher than hers when she assigns

no weight to such distance, sNCi , if

1. players are �compensators�using a demanding distance function, i.e., conditions � > 0 and

sNCj < srefj hold; or

2. players are �reciprocators� using a not-demanding distance function, i.e., conditions � < 0

and sNCj > srefj hold.

This result con�rms proposition 2 in the general description of the model. Indeed, it speci�es an

alternative procedure to check whether sCi > s
NC
i without the need to �nd reduced form solutions

for player i�s equilibrium contribution level. In particular, one just needs to check the conditions

it describes: when players can be regarded as �compensators,�sCi > s
NC
i holds if these players use

demanding distance functions, sNCj < srefj . Otherwise, when players are regarded as �reciproca-

tors,� sCi > s
NC
i is satis�ed only if players use not-demanding distance functions, sNCj > srefj ; as

proposition 2 showed.
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6 Conclusions

This paper analyzes the e¤ect of players� relative comparisons on their equilibrium strategies in

simultaneous-move games. In particular, I show that when players relative comparisons lead them

to regard each others�actions as more strategically complementary (players are regarded as �recip-

rocators�), and when they are not-demanding on the actions that they expect from each other,

predicted levels of cooperation among the players are higher when they care about these compar-

isons than when they do not. Similarly, when players�considerations for relative comparisons lead

their actions to become more strategically substitutable (players are regarded as �compensators�),

and they demand high actions from each other, players�cooperation is stronger than when they do

not. Interestingly, these results are not only valid for games where players�actions are regarded as

strategic complements, but also for those in which they are strategic substitutes. Therefore, this

paper shows the role of social comparisons as devices of cooperation in a relatively general class

of simultaneous-move games. Speci�cally, these results explain why individuals choose to cooper-

ate even when they do not assign any value to each others�payo¤s; a common assumption in the

literature predicting cooperation, which this paper does not consider.

Furthermore, I demonstrate that the results of this paper embed some existing behavioral

models: from intentions-based reciprocity and status acquisition. Hence, this paper furthers our

understanding of the facets explaining players�observed cooperation in multiple experiments. Let

us �nally remark some of the several extensions to the model introduced in this paper. Particularly,

note that the action space was exogenously determined before the beginning of the game. However,

it would be interesting to allow players to strategically select their available choices (their action

space) before the game starts, given that the kindness other players perceive from their own choices

depends on which actions are not chosen. This strategic selection of available choices is observed

in di¤erent contexts, where a player uses one of her unchosen alternatives as an excuse to support

her actual behavior. Further research in the e¤ect of relative comparisons in individuals�strategic

interaction will indeed improve our understanding of economic behavior in a greater variety of

settings.

7 Appendix

7.1 Proof of Lemma 1

I �rst show that player i�s best response functions when she is concerned about distance Di(�) and
when she is not, respectively, sCi (sj) 2 argmax

si
UCi (si; sj), and sNCi (sj) 2 argmax

si
UNCi (si; sj),

contain a single point. Then, I show the result stated in lemma 1.

Note that player i�s utility function when she is concerned about distance Di(�), UCi (si; sj), is
strictly concave in si and it is de�ned over a strictly convex domain Si � Sj . This guarantees that
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player i�s best response function

sCi (sj)2 argmax
si

UCi (si; sj)

contains a single point. A similar argument is also applicable for player i�s utility function when

she does not assign any relevance to distance Di(�), UNCi (si; sj), since it is also strictly concave in

si and it is de�ned over a strictly convex domain Si � Sj . Hence,

sNCi (sj)2 argmax
si

UNCi (si; sj)

also contains a single point.

Next, I want to show that UCsi (si; sj) � U
NC
si (si; sj) holds if and only if sCi (sj) � sNCi (sj) for

all sj . First, suppose by contradiction, that UCsi (si; sj) � UNCsi (si; sj) but sCi (sj) < sNCi (sj) for

all si and sj . Let us then take a linear combination ŝi(sj) of these two best response functions,

sCi (sj) and s
NC
i (sj), such that

ŝi(sj) = �s
C
i (sj) + (1� �) sNCi (sj) for all sj , where � 2 (0; 1)

When UNCsi (si; sj) is evaluated at ŝi(sj), we must have UNCsi (ŝi(sj); sj) > 0. However, if sCi (sj) <

sNCi (sj), then UCsi (ŝi(sj); sj) < 0. Therefore,

UCsi (ŝi(sj); sj) < U
NC
si (ŝi; sj) , which is a contradiction.

Hence, if UCsi (si; sj) � U
NC
si (si; sj) for all si and sj then sCi (sj) � sNCi (sj) for all si and sj . Let us

next show that if sCi (sj) � sNCi (sj) for all si and sj , then UCsi (si; sj) � U
NC
si (si; sj) for all si and

sj . Suppose by contradiction that sCi (sj) � sNCi (sj) for all sj , but UCsi (si; sj) < U
NC
si (si; sj) for

some si and sj . Then, sCi (sj) < s
NC
i (sj) would hold for some si and sj , which is a contradiction.

Thus, UCsi (si; sj) � U
NC
si (si; sj) holds if and only if sCi (sj) � sNCi (sj) for all sj .

Applying this condition to player i�s utility function, we have UNCsi (si; sj) = Usi and U
C
si (si; sj) =

UCsi
�
UNCi ; Di

�
. Hence, UCsi (si; sj) = Usi +UDiDsi . Thus, U

C
si (si; sj) � U

NC
si (si; sj) in this context

means Usi+UDiDsi � Usi , which reduces to UDiDsi � 0. Finally, since UDi � 0 given that positive
distances increase players�utility level (kindness assumption), condition UDiDsi � 0 can be reduced
to Dsi � 0. Hence, sCi (sj) � sNCi (sj) is satis�ed for all sj if and only if condition Dsi � 0 holds
for all si and sj . �

7.2 Proof of Lemma 2

Let us �rst �nd the slope of player i�s best response function in the standard game without concerns

about distances. Applying the implicit function theorem, we have

@sNCi (sj)

@sj
= �

UNCsisj
UNCsisi
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Let us now compare it with the slope of player i�s best response function when player i is

concerned about distances. Applying the implicit function theorem again,

@sCi (sj)

@sj
= �

UCsisj
UCsisi

Comparing the absolute value of both slopes, @sCi (sj)
@sj

>
@sNCi (sj)
@sj

holds if and only if �i =
UCsisj
UCsisi

�
UNCsisj

UNCsisi

> 0. �

7.3 Proof of Proposition 1

From Lemma 1 we know that if Dsi � 0 holds for all sj , then sCi (sj) > sNCi (sj) for all sj .

Now we want to show that if sCi (sj) � sNCi (sj) for all sj , then sCi � sNCi . Suppose by contra-

diction that sCi (sj) � sNCi (sj) for all sj , but sCi < s
NC
i . Since this counterpositive statement must

be true for any slopes of player i and j�s best response functions, it must also be true when sCi (sj)

and sNCi (sj) are both negatively sloped, and when player j is not concerned about distances, i.e.,

sCj (sj) = s
NC
j (sj). In this case, if sCi < s

NC
i then, either

1. sCi (sj) < s
NC
i (sj) for all sj , and

���@sKi (sj)@sj

��� < 1 for all i 6= j and K = fC;NCg, or

2. sCi (sj) � sNCi (sj) for all sj , and
���@sKi (sj)@sj

��� > 1 for all i 6= j and K = fC;NCg,

which are both a contradiction. Thus, if sCi (sj) � sNCi (sj) for all sj , then sCi � sNCi . �

7.4 Proof of Proposition 2

Let us �rst �nd an useful result about player i�s best response functions when evaluated at sj = sNCj .

Lemma A. If assumptions 1 and 2 are satis�ed, then for every player i = f1; 2g,

�
�i �DNCi

�
�
�
sCi (s

NC
j )� sNCi (sNCj )

�
> 0

Proof of Lemma A:

We want to show that if �i �DNCi > 0 then sCi (s
NC
j ) > sNCi (sNCj ). Notice that:

1. If �i < 0 and DNCi < 0, then sCi (sj) rotates clockwise and s
NC
j < �sj . Then, sCi (sj) > s

NC
i (sj)

for all sj < �sj , including sNCj (see �gure 1a).

2. If �i > 0 and DNCi > 0, then sCi (sj) rotates anticlockwise and s
NC
j > �sj , as in �gure 1b

Then, sCi (sj) > s
NC
i (sj) for all sj > �sj , including sNCj .
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Therefore,
�
�i �DNCi

�
�
h
sCi (s

NC
j )� sNCi (sNCj )

i
> 0. �

Thus, lemma A speci�es a ranking for player i�s best response functions when evaluated at

sj = sNCj . In particular, it determines that sCi (s
NC
j ) > sNCi (sNCj ) if either: (1) player i is a

compensator using a relatively demanding distance function, �i < 0 and DNCi < 0; or if (2) player

i is a reciprocator using a not-demanding distance function, �i > 0 and DNCi > 0. With this

result, we can now prove Proposition 2.

First result

From the above Lemma A we know that

�i �DNCi > 0 =) sCi (s
NC
j ) > sNCi (sNCj ) = sNCi

Let us now show that, for a given player j�s best response function, sCj (si) = s
NC
j (si),

sCi (s
NC
j ) > sNCi =) sCi > s

NC
i

In order to show the above result, assume by contradiction that for a given sNCj (si), sCi (s
NC
j ) >

sNCi implies sCi < sNCi . First, take two negatively sloped best response functions, and assume

sCi < sNCi . Then, when evaluated at sj = sNCj , player i�s best response function must satisfy

sCi (s
NC
j ) < sNCi (sNCj ) = sNCi , which is a contradiction. Thus, if sCi (s

NC
j ) > sNCi then sCi > s

NC
i .

Therefore, for a given sNCj (si), and using Lemma A we have that

�i �DNCi > 0 =) sCi (s
NC
j ) > sNCi =) sCi > s

NC
i

Second result

From Lemma A we know that

�j �DNCj < 0 =) sCj (s
NC
i ) < sNCj (sNCi )

Then, we now want to show that if sCj (s
NC
i ) < sNCj (sNCi ) is satis�ed, then

sCi > s
NC
i when sNCi (sj) is negatively sloped

and sCi < s
NC
i otherwise. Then, assume that sCj (s

NC
i ) < sNCj (sNCi ) and that sCj (si) is negatively

sloped. Therefore, sCj (si) < sNCj (si) for all si > �si, including sNCi . Since, in addition, sCj (si)

must cross sNCi (sj) from below by assumption 3, then sCi > s
NC
i . Similarly, when �j �DNCj > 0

holds and players�best response functions have positive slope,
UCsisj
UCsisi

< 0, then we have an analog

reasoning,

�j �DNCj > 0 =) sCj (s
NC
i ) > sNCj (sNCi ) from Lemma A
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Therefore, sCj (s
NC
i ) > sNCj (sNCi ) for all si < �si, including sNCi . Finally, assumption 2 for the

context of positively sloped best response functions implies that sCj (si) must cross s
NC
i (sj) from

above. Hence, sCi > s
NC
i . �

7.5 Proof of Proposition 3

From Lemma A above we know that

��DNC > 0 =) sCi (s
NC
j ) > sNCi (sNCj ) for all i 6= j

Now we want to show that,

sCi (s
NC
j ) > sNCi for all i 6= j =) sCi > s

NC
i for all i = f1; 2g

In order to show the above claim, assume by contradiction that sCi (s
NC
j ) > sNCi (sNCj ) holds for

all i 6= j but sCi < sNCi for at least some i. For simplicity, let us take two best response functions

with negative slopes, and consider that sCi < sNCi . Then, when evaluated at sj = sNCj , sCi (s
NC
j )

must be below sNCi (sNCj ). Applying the same reasoning to player j, we conclude that

sCi (s
NC
j ) < sNCi (sNCj ) and sCj (s

NC
i ) < sNCj (sNCi )

which is a contradiction. Therefore, if sCi (s
NC
j ) > sNCi (sNCj ) for all i 6= j, then sCi > sNCi for all

i = f1; 2g. Thus, using Lemma A we have that

��DNC > 0 =) sCi (s
NC
j ) > sNCi =) sCi > s

NC
i �

7.6 Proof of Proposition 4

Using Segal and Sobel (1999), we know that the second mover�s preferences over the �rst mover�s

actions can be represented by

UCsi (si; sj) = 
iU
NC
i (si; sj) + 
jU

NC
j (si; sj) where 
i; 
j 2 R

if preferences satisfy continuity and independence, as well as Segal and Sobel�s (1999) condition

(F) which states that

if UNCi
�
s0i; sj

�
= UNCi (si; sj) , then s0i �i si (F)

which are all satis�ed in our model. �
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7.7 Proof of Proposition 5

Both players are asked to simultaneously submit their voluntary contributions to the public good.

Fixing subject j�s contribution, sj , we have that

si(sj) =

8>><>>:
�+m
1+�+mw if sj = 0

�+m
1+�+mw +

��m
(�+m)(1+�+m)sj if sj 2

�
0; (�+m)

2

m��

i
0 if sj 2

�
(�+m)2

m�� ;+1
�

if � < m. In contrast, when � > m si(sj) does not become zero or negative for any value of sj .

The corresponding best response function for player i in this case is

si(sj) =

(
�+m
1+�+mw if sj = 0

�+m
1+�+mw +

��m
(�+m)(1+�+m)sj if sj > 0

Regarding the equilibrium contributions, note that symmetry eliminates corner solutions in this

case. Hence, the only equilibrium contribution is that resulting from the crossing point of player

i�s and j�s best response functions (interior solution). Solving for si and sj in a system of two

equations, we obtain sCi =
(�+m)2w

2m+(�+m)2
, as the interior Nash equilibrium contribution level.

Finally, if both players are equally not concerned about status, �i = �j = 0, we obtain the inte-

rior solution in standard public good games, where every player i�s Nash equilibrium contribution

level is given by sNCi = mw
2+m . �

7.8 Proof of Corollary 1

Recall that player i�s equilibrium contribution in the model without status acquisition is sNCi =
mw
2+m . Comparing it with the equilibrium contribution level in the model with status considerations,

sCi =
(�+m)2w

2m+(�+m)2
,

sCi � sNCi =
(�+m)2w

2m+ (�+m)2
� mw

2 +m
=

2�(�+ 2m)w

(2 +m)
h
2m+ (�+m)2

i
which is positive for any � > 0, re�ecting that sCi > s

NC
i . �

7.9 Proof of Proposition 6

In this public good game, both players are asked to simultaneously submit their contributions.

Fixing player j�s contribution, sj , player i�s utility maximization problem becomes

max
si

[w � si]0:5 +
h
m(si + sj) + �

�
sj � srefj

�i0:5
And the argument that maximizes this utility function gives us

21



sCi (sj) =

8>>>><>>>>:
�srefj +m2w

m(1+m) if sj = 0
�srefj +m2w

m(1+m) � �+m
m(1+m)sj if sj 2

�
0;
�srefj +m2w

�+m(2+m)

�
0 if sj >

�srefj +m2w

�+m(2+m)

Since
�srefj +m2w

m(1+m) � �+m
m(1+m)sj = 0 at exactly sj =

�srefj +m2w

�+m(2+m) . Hence, s
C
i (sj) becomes

sCi (sj) =

8><>:
�srefj +m2w

m(1+m) � �+m
m(1+m)sj if sj 2

�
0;
�srefj +m2w

�+m(2+m)

�
0 if sj >

�srefj +m2w

�+m(2+m)

7.10 Proof of Proposition 7

By symmetry, player i and j�s best response functions can only cross each other at interior points.

Therefore, there must be a unique and interior Nash equilibrium contribution level for every player,

which we can obtain by plugging player j�s best response function into player i�s. In particular,

sCi =
�srefj +m2w

m(1 +m)
� �+m

m(1 +m)

 
�srefj +m2w

m(1 +m)
� �+m

m(1 +m)
sCi

!

Solving for sCi , we have s
C
i =

�srefj +m2w

�+m(2+m) . �

7.11 Proof of Corollary 2

Recall that player i�s equilibrium contribution in the model where players do not assign value to

distances is sNCi = mw
2+m . On the other hand, by comparing the equilibrium contribution level when

distances are considered, sCi , obtained in the above proposition 7 with respect to s
NC
i ,

sCi � sNCi =
�srefj +m2w

�+m(2 +m)
� mw

2 +m
=
�
h
srefj (2 +m�mw)

i
(2 +m) [�+m (2 +m)]

and this di¤erence is positive if and only if sNCj = mw
2+m < srefj . Hence, sCi > sNCi if and only if

DNCi � �
�
sNCj � srefj

�
< 0, which is satis�ed for any srefj such that sNCj = mw

2+m < s
ref
j

Otherwise, if sNCj = mw
2+m > s

ref
j holds, then this di¤erence is negative. However, if mw

2+m > s
ref
j

and � < 0 are simultaneously satis�ed, then this di¤erence is positive, and sCi > s
NC
i . �
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