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Abstract:  
For over the last thirty years the multinomial logit model has been the standard in choice 
modeling.  Development in econometrics and computational algorithms has led to the 
increasing tendency to opt for more flexible models able to depict more realistically 
choice behavior.  This study compares three discrete choice models, the standard 
multinomial logit, the error components logit, and the random parameters logit.  Data 
were obtained from two choice experiments conducted to investigate consumers’ 
preferences for fresh pears receiving several postharvest treatments. Model comparisons 
consisted of in-sample and holdout sample evaluations.  Results show that product 
characteristics hence, datasets, influence model performance. We also found that the 
multinomial logit model outperformed in at least one of three evaluations in both datasets.  
Overall, findings signal the need for further studies controlling for context and dataset to 
have more conclusive cues for discrete choice models capabilities.  
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I. Introduction 

Modeling choice behavior has been utilized in fields as diverse as agricultural economics, 

environmental economics, marketing, and transportation, especially when eliciting 

consumers’ willingness-to-pay (WTP) and preferences for goods and services or 

estimating welfare changes for alternative policies and market structures (e.g., see Boxall 

et al., 2003; Brownstone et al., 2000; Lusk and Schroeder, 2004).  Such popularity has 

led to extensive development in the econometrics of discrete choice models and its 

applications.  For over the last thirty years, the multinomial logit (MNL) model has been 

the standard in discrete choice models, which assumes independently and identically 

distributed (IID) stochastic components with type I extreme value in the random utility 

function, leading to the independence of irrelevant alternatives (IIA) assumption.   

Such requirement provides ease of estimation in terms of calculation of 

probabilities and interpretation of results, yet it has provoked criticisms mainly on 

deficient representation of real behavior.  Concerns about MNL limitations have resulted 

in a range of competing discrete choice models mostly generalizing the MNL by 

including preference heterogeneity (see the reviews in Louviere et al., 2000; Train, 2003).  

Such advanced models aim to increase the accuracy of real world behavior by relaxing 

the IIA assumption and IID condition.  Among such models, the random parameter (or 

mixed) logit (RPL) has been largely applied because of its flexible specification and 

behavioral richness by complete relaxation of the IID and IIA conditions (McFadden and 

Train, 2000; Greene and Hensher, 2003; Jones and Hensher, 2007).  The RPL 

incorporates mean and standard deviation of random parameters estimates allowing for 
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observed and unobserved heterogeneity across individuals. Yet, RPL probability setting 

needs to be solved by simulations in most cases not ensuring a globally optimal solution.   

Another extension of the MNL is the error component multinomial logit (EMNL) 

model.  This model has been introduced about a decade ago (Brownstone et al., 2000), 

but is seldom applied.  Similar to random effects for panel data analysis, error 

components are simply included in the utility function to capture unobserved individual 

specific random effects.  Although the model specification is straightforward compared 

with RPL, it is also necessary to integrate the model to estimate by simulations.     

With the increasing popularity of MNL alternatives, a growing branch of 

literature in discrete choice modeling is focused on comparing results and predictability 

power across models.  Performance of discrete choice econometric functions has been 

typically analyzed through in-sample statistics or out-of-sample criteria (Greene and 

Hensher, 2003; Jones and Hensher, 2007; Chang et al., 2009; Shen, 2009).  However, it is 

well known that as more complexity is added to a model the better will the model fit the 

data in-sample, while the contrary tends to be true out-of-sample.  This suggests the need 

to incorporate both in-and out-of-sample criteria to proof validity of advanced models’ 

results.  

In this study, we utilize two choice experiment datasets to compare the 

performance of three discrete choice models - the MNL, the RPL, and the EMNL, 

measured in terms of WTP valuations, market share estimates and the prediction success 

index within sample.  Moreover, this study compares the models’ ability to predict 

holdout sample choices.  Our results show that estimates for WTP and market share are 
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significantly different across models and overall predictive performance is different 

between in-sample and holdout sample tests.       

 

II. Background 

Several studies have compared the performance of generalized alternatives to the MNL 

by considering model-fit statistics, direct estimates for choice elasticity, and prediction 

accuracy.  Among such generalizations, RPL has been most often tested because it has 

been referred as the most flexible model.  Revelt and Train (1998) used the likelihood 

ratio index to compare RPL with MNL results to estimate households’ choices between 

appliances under rebates and loans on high-efficiency appliance programs.  They found 

that RPL index was higher implying a superior explanatory power when comparing with 

MNL.  Brownstone et al. (2000) compared market share predictions for cars with three 

different fuel types.  They found that RPL market share estimates were larger than MNL.  

Also they concluded that RPL yielded more reasonable market share predictions based on 

how market share proportions changed when a new alternative was introduced.  Greene 

and Hensher (2003) compared and contrasted MNL, RPL, and latent class (LC) model to 

elicit preferences for three road types.  They analyzed the mean WTP, choice elasticities, 

choice probabilities, and absolute shares in response to a change in the level of attributes 

across samples.  They concluded that RPL and LC offered more robust results when 

compared to MNL, but observed that these results are conditioned to a single dataset 

under specific behavioral assumptions.  More recently, Shen (2009) utilized two transport 

choice surveys to compare WTP for time savings, choice elasticities, predicted choice 
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probabilities, and prediction success indexes between LC and RPL.  Results showed that 

LC generates superior statistical accuracy than RPL.    

Overall previous findings imply that RPL performs better than MNL when 

looking at model statistics.  Nonetheless Train (1998) claims no significant differences 

between RPL and MNL when comparing compensating variation associated with anglers’ 

preferences for fishing sites, advocating for MNL robust results.  He argued that model 

performance depends on the context of specific situations and data sources.  Such 

findings prove the need to further investigate the ability of various model specifications 

under different conditions.    

 It is noteworthy that most past research compared MNL performance with other 

models by relying mostly on in-sample fit.  Yet much of discrete choice modeling is used 

for predicting real behavior when decision making and out-of-sample tests shall be given 

equal attention.  Only few studies have utilized out-of-sample data to compare across 

discrete choice models to make inferences on market behavior.  Jones and Hensher (2007) 

investigated the prediction performance of the nested logit, RPL, and LC and found that 

these models had a high level of consistency on holdout sample outperforming MNL.  

Chang et al. (2009) compared the ability of MNL, the independent availability logit (AIL) 

and RPL to predict actual retail shopping behavior in three different products.  They 

proved RPL’s superior predictive performance and high level of external validity; 

interestingly they also found that MNL predictions were equally accurate to RPL under 

some circumstances.  This suggests that more flexible models improve out-of-sample 

predictions, but this may not always hold true.  Indeed, it is often observed that more 

parsimonious models outperform when forecasting (Chatfield, 1995). 
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 Interestingly, the EMNL model has been rarely compared for its explanatory and 

predictive ability.  Only Hensher et al. (2007) compared EMNL performance with MNL 

and showed that the former was superior over the latter, in terms of model-fit statistics, 

direct elasticities, and hold out sample.  They concluded that overall the EMNL provided 

better explanatory power but “more limited additional predictive performance” than 

MNL. 

 To our knowledge none study has compared the statistical accuracy and external 

validity of EMNL with RPL compared to MNL.  In this study we use two choice 

experiment data sets on consumers’ preferences for fresh pears quality that were 

conducted in two different time periods.  Criteria to make comparisons include in-sample 

statistics such as WTP, market share estimates, and McFadden’s prediction success index; 

and to compare the predictive ability we conduct twenty repetitions of holdout sample 

choice tests.    

 

III. Procedures and Methods 

Choice Experiments 

We utilized response datasets from two choice experiments on preferences for fresh pears.  

The experiments were part of sensory tests conducted in December 2008 and March 2009, 

at the Food Innovation Center, Oregon State University in Portland.  The purpose of the 

sensory tests was to gather general information on consumer preferences for fresh pears 

and to elicit perceptions on eating quality resulting from different post-harvest treatments. 

Taste test participants were recruited using an online screening questionnaire sent to 

about 5,000 consumers in Portland.  A planned sample size of 120 consumers was 
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selected and the criteria used for recruitment was based on the Pear Bureau Northwest 

depiction of fresh pears’ consumers (Moffit, 2002).   

 During both sensory tests, participants were asked to taste pears under different 

treatments and to answer a questionnaire.  Postharvest treatments differed across trials, 

given differences in time length in cold storage and fruit maturity.  In December, there 

were four treatments consisting of fruit exposure to ethylene for one, two, and four days, 

and no ethylene.  Whereas pears used in March were applied five treatments consisting of 

two days with ethylene, one day with ethylene, one day with ethylene plus one day in 

warm air, two days in warm air, and no ethylene.   

Having tasted the pears, respondents were asked to answer choice experiment 

questions where they indicated which sample, linked to a randomly assigned price, was 

the most preferred.  Choice experiment scenarios also included a “none” option.  For the 

December trial, prices were obtained from grocery stores in Portland during the first 

week of December 2008 and ranged from $1.49/lb to $1.99/lb.  To obtain different 

combinations of treatments and prices, a fractional factorial design was used and yielded 

thirty-two questions which were divided into four groups of eight questions each, 

randomly assigned to respondents.   In March 2009, there were six options corresponding 

to ripening treatments and a “none” option.  This time, prices were also obtained from 

Portland grocery stores during the first week of March 2009 and ranged from $1.39 to 

$2.19/lb.  Twenty-five questions were generated by a fractional factorial design and 

divided randomly into two groups of 12 and 13 questions each.  Figure 1 shows an 

example of choice experiment questions used in both trials.   

 



7 

The multinomial logit model 

A random utility function for consumer i choosing option j is defined by  

, (1) 

where αj is the estimated constant parameter for ripening treatment j, β is the marginal 

utility of price, and Pij is the price.  Assuming the stochastic term (εij) is IID with type I 

extreme value distribution yields the standard MNL model.  The choice probability of an 

individual i choosing alternative j out of a set J is expressed as 

∑  
. (2) 

 

The random parameter logit model 

The RPL posits preference heterogeneity by specifying individual-specific coefficients of 

the utility function to be continuously distributed.  In this application, the alternative-

specific constant terms are assumed as variant parameters across individuals and 

expressed as: 

   (3) 

where  is the mean alternative-specific constant for alternative j, σj is the standard 

deviation of the distribution of αij around , and ωij is a normally distributed random 

disturbance with mean zero and standard deviation one.  The price coefficient β, however, 

is assumed as a fixed parameter. 

The probability that individual i choose alternative j is the integral over all values 

of αij weighted by the density of αij, 

∑  
,  (4) 



8 

where f(αij) is the density function.  Because the density function does not have a close 

form, it is calculated by approximation using simulation procedures, such as maximum 

simulated likelihood (Train, 2003).   

While the RPL’s open form probability distribution offers detail in understanding 

consumer heterogeneity in choice behavior, and flexibility in producing individual 

specific parameters, it implies computational burden and induces estimation issues 

associated with identification and normalization (Ben-Akiva and Bolduc, 1996; Ben-

Akiva et al., 1997; McFadden and Train, 2000).   

 

The error component multinomial logit model 

The ECMNL describes the fact that the unobserved portion of utility is comprised by 

several components introducing more parsimonious distributions across random factors 

allowing flexible substitution patterns and correlation across alternatives (Revelt and 

Train, 1998).  As in Brownstone et al. (2000), the ECMNL model captures alternative-

specific unobserved variation by specifying the random parameters in equation (1) as 

, (5) 

where γij is a alternative-specific random error component which is distributed normally 

with zero mean and standard deviation one and θj is the standard deviation of the error 

component.  As with the RPL, because the random effects are included in the conditional 

choice probability of the ECMNL model it is necessary to estimate by utilizing the 

simulation approach.   

 

IV. Results 
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Parameters estimates for the MNL, EMNL and RPL are presented in Table 1 and were 

computed using LIMDEP®, version 9.0.  Random parameters estimates for both EMNL 

and RPL were assumed to follow a normal distribution, implying that parameters could 

be either positive or negative.  Previous findings in Revelt and Train (1998), who used a 

log normal distribution, and Shen (2009), who used a triangular distribution, signaled no 

major improvements from using a different probability distribution than normal.  As 

expected parameter estimates for all treatment options are positive, suggesting that 

consumers derive a utility from consuming pears regardless of the treatment received.  

Also note that all price coefficients are negative, indicating that an increase in price will 

have a negative effect on the willingness-to-pay for pears.  It is noteworthy that log-

likelihood values differ across datasets.  For example, for the December dataset, EMNL 

outperforms RPL and MNL, whereas for the March dataset, RPL outperforms EMNL and 

MNL.  In relation to parameter estimates for standard deviation in EMNL and RPL 

models, they resulted statistically significant at the 1% level.  As suggested by Revelt and 

Train (1998) highly significant standard deviation coefficients prove heterogeneity across 

individual responses implying that models able to capture such heterogeneity, are more 

robust than models that do not. 

Comparisons across models 

Criteria to compare MNL, EMNL, and RPL models were twofold.  First, in sample 

statistics willingness-to-pay (WTP), market share estimates, and prediction success 

indexes were calculated for both datasets.   See table 2 for results.  Second, prediction 

tests from twenty randomly selected holdout and estimation samples were conducted.  

Results for this second group of goodness of fit measures are reported in table 3.  
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 WTP indicates the amount of money the individual would have to pay to be 

indifferent toward a pear receiving a treatment and no treatment at all.  This statistic is 

equivalent to: 



 j
WTP 

 

where αj and β are parameter estimates from equations (1), (3), and (5), depending 

whether model is MNL, EMNL, or RPL.  Previous findings in Brownstone (2000) 

concluded that WTP estimated through EMNL or RPL typically remain with minor 

changes when compared to MNL.  However, results from this study indicate that WTP 

values for MNL are consistently higher than EMNL and RPL.  For example, the highest 

WTP in the December dataset was assigned to treatment 4 days ethylene, MNL value was 

$2.53/lb, compared to $2.01/lb and $2.14/lb for EMNL and RPL, respectively. Similarly 

for the March dataset, the highest WTP was for treatment  1 day in ethylene plus 1 day in 

warm air, this time, the MNL WTP value was $2.23/lb, compared to EMNL $1.90/lb and 

RPL $1.84.  

 Concerning, market share, this statistic represents the probability that consumers 

would choose pear under treatment j, having as all available alternatives to purchase 

pears under the five or six ripening treatments included in this study, at price level 

$1.50/lb.  MNL market share values resulted more disperse than EMNL and RPL values. 

For example, MNL market share for pear under treatment 4 days in ethylene for the 

December dataset is 50.7 percent compared to 99.7 percent and 94.5 percent when using 

parameters estimated estimating via EMNL and RPL, respectively.  Correspondingly for 

the March dataset, MNL market share for treatment 1 day in ethylene plus 1 day in warm 

air was 37.7 percent compared to 71.5 percent and 79.9 percent when using EMNL and 

(5) 
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RPL, respectively.  Standard errors were estimated via parametric bootstrapping for WTP 

and market share estimates across three models. Standard errors across models do not 

show major variations.  

 With respect to prediction success indexes, this goodness of fit measure compares 

the proportion successfully predicted for an alternative compared to that which would be 

predicted by chance. The higher the value of this index, the greater the prediction 

capability of the model (Louviere et al., 2000).  Results are not consistent across datasets. 

For the data collected in December, EMNL is superior to MNL and RPL; whereas for the 

March dataset, MNL is superior to RPL and EMNL.    

 Results for prediction tests using a holdout sample are reported in table 4.  We 

built our holdout sample testing on Haener et al. (2001).  First, each dataset (December 

and March) were randomly divided into an estimation sample and a holdout sample.  We 

estimated MNL, EMNL, and RPL parameters for the estimation sample.  To assure 

reliability, we replicated this procedure twenty times.  The prediction success for each 

replication was measured in terms of mean rank and percentage of correctly predicted 

choices.  Unexpectedly, for the December dataset, the mean rank and average percentage 

of correct predictions favors the MNL model.  Conversely, for the March dataset, RPL 

outperforms both MNL and EMNL. 

 In summary, there are three contrasting findings across datasets.  First, likelihood 

values signal greater explanatory power to EMNL for the December dataset and to RPL 

for the March dataset.  Second, prediction success indexes shows that for the December 

dataset EMNL outperforms, while for the March dataset MNL is superior to the other two 

models.  Third, holdout samples tests reveal superior prediction ability for MNL in the 
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December dataset but for the March dataset it is RPL the model with the highest 

prediction ability.  Results are different from previous findings in Revelt and Train (1998) 

and Jones and Hensher (2007) who found that RPL outperformed MNL.   

 An explanation for the differences across datasets is that product attributes 

influence model performance.  Different treatments led to different eating quality 

characteristics that were perceived by consumers.  See table 4 for a summary of 

participants’ overall likings for pear quality characteristics.  In the December trial, 

participants were more homogeneous in their preferences for each treatment than in 

March.  Indeed, in December, 50 percent of respondents agreed in that their preferred 

sample was treatment 4 days ethylene.  Whereas, a wider range of preferences is 

observed in March, 32 percent for 1 day ethylene plus 1 day warm air and 30 percent for 

2 days warm air.  We hypothesize that these differences in the distribution of preferences 

explains the differences in prediction ability across datasets.  These claims agree with 

Train (1998) and Greene and Hensher (2003) who concluded that context, datasets and 

behavioral assumptions affect RPL superiority to MNL.     

 

V. Conclusions 

This study provides comparisons between three popular discrete choice modeling 

specifications, the MNL, EMNL, and RPL.  We used two datasets, provided by two 

choice experiments that were conducted to measure preference for fresh pears under 

different ripening treatments.  Criteria to compare across models included willingness-to-

pay estimates, market share, within sample prediction index, and holdout samples mean 

rank and percentage of correctly predicted choices.   
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An increasing body of literature advocates for more flexible discrete choice 

models, claiming superior in-sample fit and greater out-of-sample predictability.  Our 

results show that EMNL outperformed RPL and MNL when the products being tested 

exhibited heterogeneous quality characteristics quickly perceived by respondents.   

Whereas when differences were not easily perceived, RPL outperformed MNL and RPL.  

Interestingly, MNL outperformed for the holdout sample prediction when using the 

December dataset and exhibited a higher prediction success index than RPL and EMNL 

when using the March dataset.  This result supports the claim in Chang et al. (2009) that 

more parsimonious models often exhibit a greater predictive ability.  Overall, findings in 

this study raise similar issues to Train (1998) and Green and Hensher (2003) in that 

further studies controlling for context and dataset nature are needed since they are 

determinant for measuring the predictive performance of models more flexible than MNL.     
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Figure 1.  Example of choice experiment questions used in the experiments conducted 
in December and March. 
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Table 1. Parameter estimates by experimental sample and model 
Variable DECEMBER 2008  MARCH 2009 
Treatments and price MNL EMNL RPL  MNL EMNL RPL 
Utility function parameters       

1-day ethylene 
6.35* 

(0.51) [a] 
14.43* 
(2.97) 

22.16* 
(2.30) 

 - 
 

- - 

2-days ethylene 
6.73* 
(0.52) 

23.42* 
(1.96) 

27.29* 
(2.44) 

 - 
 

- - 

4-days ethylene 
7.82* 
(0.52) 

29.85* 
(2.05) 

30.36* 
(2.61) 

 - 
 

- - 

No conditioning 
6.92* 
(0.52) 

23.24* 
(1.87) 

25.91* 
(2.33) 

 - 
 

- - 

1-day warm air 
- 
 

- -  5.56* 
(0.33) 

14.68* 
(1.01) 

17.15* 
(1.50) 

1-day ethylene 
- 
 

- -  5.44* 
(0.34) 

12.63* 
(0.98) 

16.12* 
(2.24) 

2-days warm air 
- 
 

- -  5.82* 
(0.33) 

15.35* 
(1.00) 

18.24* 
(1.41) 

1-day ethylene + 1-
day warm air 

- 
 

- -  6.44* 
(0.33) 

16.84* 
(1.03) 

20.01* 
(1.51) 

No conditioning 
- 
 

- -  5.33* 
(0.32) 

13.69* 
(1.07) 

14.50* 
(1.41) 

Price -3.09* 
(0.28) 

-14.87* 
(1.06) 

-14.18* 
(1.27) 

 -2.89* 
(0.18) 

-8.87* 
(0.56) 

-10.90* 
(0.82) 

Standard deviation       

1-day ethylene 
- 14.17* 

(1.95) 
6.99* 
(1.14) 

 - - - 

2-days ethylene 
- 11.64* 

(1.09) 
7.29* 
(0.75) 

 - - - 

4-days ethylene 
- 4.46* 

(0.48) 
8.65* 
(1.16) 

 - - - 

No conditioning 
- 8.15* 

(0.96) 
7.04* 
(0.77) 

 - - - 

Random effects  - 0.68* 
(0.47) 

-  - - - 

1-day warm air 
- - -  - 5.86* 

(0.48) 
5.65* 
(0.71) 

1-day ethylene 
- - -  - 4.24* 

(0.36) 
6.60* 
(1.08) 

2-days warm air 
- - -  - 3.87* 

(0.54) 
3.95* 
(0.55) 

1-day ethylene + 1-
day warm air 

- - -  - 5.19* 
(0.42) 

6.03* 
(0.71) 

No conditioning 
- - -  - 10.18* 

(0.72) 
6.81* 
(0.98) 

Random effects - - -  - 2.56* 
(0.33) 

- 

Log likelihood -1049.84 -494.51 -497.59  -1039.58 -547.26 -522.34 
No. of observations 4120 4120 4120  4248 4248 4248 
[a] Numbers in parenthesis are standard errors.  
Note: One (*) asterisk indicates significance at 1% level.   
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Table 2. Willingness-to-pay ($/lb) and market share estimates by experimental data and 
model 

 December 2008  March 2009 
 MNL EMNL RPL  MNL EMNL RPL 

Willingness-to-pay 

1-day ethylene 
$2.06 

(0.08) [a] 
$0.97 
(0.07) 

$1.56 
(0.08) 

 - - - 

2-days ethylene 
$2.18 
(0.08) 

$1.57 
(0.04) 

$1.92 
(0.04) 

 - - - 

4-days ethylene 
$2.53 
(0.10) 

$2.01 
(0.03) 

$2.14 
(0.04) 

 - - - 

No conditioning 
$2.24 
(0.08) 

$1.56 
(0.06) 

$1.83 
(0.04) 

 - - - 

1-day warm air 
- - -  $1.92 

(0.06) 
$1.66 
(0.06) 

$1.57 
(0.07) 

1-day ethylene 
- - -  $1.88 

(0.06) 
$1.42 
(0.04) 

$1.48 
(0.18) 

2-days warm air 
- - -  $2.01 

(0.06) 
$1.73 
(0.03) 

$1.67 
(0.05) 

1-day ethylene + 1-
day warm air 

- - -  $2.23 
(0.06) 

$1.90 
(0.04) 

$1.84 
(0.05) 

No conditioning 
- - -  $1.84 

(0.06) 
$1.54 
(0.04) 

$1.33 
(0.07) 

Market share [b] 

1-day ethylene 
0.117 

(0.012) 
0.000 

(0.000) 
0.000 

(0.008) 
 - - - 

2-days ethylene 
0.170 

(0.013) 
0.002 

(0.001) 
0.044 

(0.016) 
 - - - 

4-days ethylene 
0.507 

(0.019) 
0.997 

(0.003) 
0.945 

(0.015) 
 - - - 

No conditioning 
0.206 

(0.014) 
0.001 

(0.003) 
0.011 

(0.011) 
 - - - 

1-day warm air 
- - -  0.157 

(0.016) 
0.082 

(0.035) 
0.046 

(0.054) 

1-day ethylene 
- - -  0.139 

(0.014) 
0.011 

(0.005) 
0.016 

(0.048) 

2-days warm air 
- - -  0.203 

(0.016) 
0.161 

(0.041) 
0.136 

(0.026) 
1-day ethylene + 1-
day warm air 

- - -  0.377 
(0.021) 

0.715 
(0.067) 

0.799 
(0.038) 

No conditioning 
- - -  0.124 

(0.013) 
0.031 

(0.010) 
0.003 

(0.045) 
[a]  Numbers in parentheses are standard errors obtained via parametric bootstrapping.  
[b] Market share estimates are calculated by assuming price is at $1.50/lb for all options.  
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Table 3.  Results of overall prediction success index from within sample and prediction 
tests from twenty models over random hold-out samples 

Data Set 
Model 

MNL EMNL RPL 

Overall prediction success index from within sample 

December 2008 0.038 0.042 0.030 

March 2009 0.093 0.053 0.090 

Prediction test from twenty models over random samples and hold-out samples  

Mean rank    

December 2008 1.550 2.050 1.900 

March 2009 1.750 2.200 1.700 

Average percentage correctly predicted 

December 2008 
36.920 

[22.36, 51.17] [a] 
35.120 

[21.96, 51.17] 
36.240 

[21.96, 48.96]

March 2009 
31.250 

[21.15, 42.82] 
30.230 

[19.08, 42.54] 
31.660 

[21.15, 45.11]
[a] Numbers in brackets are minimum and maximum average percentages of the number of correctly 
predicted choice sets over the hold-out samples.  
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Table 4. Sensory tests responses for pears under each treatment  

Treatment 

Percentage of 
respondents 
who ranked 
“best” each 

sample 
(%) 

 
Consumer Ratings for Eating Quality Attributes[a] 

Overall Sweetness Juiciness Firmness Texture 

December trial       
4-days 
ethylene 

50 7.46 6.83 7.57 6.62 6.88 

No 
conditioning 

23 6.42 5.92 6.43 5.89 5.82 

2-days 
ethylene 

16 6.13 5.06 4.97 6.17 5.94 

1-day ethylene 11 5.58 4.34 3.67 5.65 5.23 
March trial       
1-day ethylene 
+ 1-day warm 
air 

32 6.60 6.05 6.73 6.68 6.60 

2-days warm 
air 

30 6.58 5.99 6.82 6.61 6.67 

1-day warm air 17 6.18 5.00 5.63 6.29 6.09 

1-day ethylene 6 6.06 5.15 5.62 6.15 5.75 

No 
conditioning 

16 6.02 5.28 5.78 6.21 5.78 
[a]  Ratings used a 1-9 hedonic scale, where 1=extremely dislike and 9=extremely like.  


