
 
 
 
 
 
 

 

 

 

 

 

 

 

 
  

 

 
 

 
 
 
                                                              
 
    

 

Working Paper Series
WP 2008-23 

School of Economic Sciences

Instability of Dynamic 
Inventory Systems 

 
By 

 
Jia Yan, and John J. Liu 

 
 
 

December 2008 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6836257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

Instability of Dynamic Inventory Systems 

By 

 

 

Jia Yan* 

School of Economic Sciences, Washington State University 

 

 

John J. Liu 

Faculty of Business, Hong Kong Polytechnic University 

 

 

December 2008 

                                                 
* Corresponding author: Hulbert 101, Washington State University, Pullman, WA 99163, USA. Email: jiay@wsu.edu. Tel: 
+1 509 335 7809. Fax: +1 509 335 1173. The research was financially supported by the Research Grants Council of Hong 
Kong under RGC grants #523006E and #531304E/G-U035.  
 



Abstract 

We show in this paper that instability is an intrinsic cause of production variability in a dynamic inventory 

system. We first show that a unique stationary optimal policy exists for both full-backlog and lost-sales 

case and under the policy a firm replenishes its inventory to a constant target level. We then express the 

constant inventory target as the unique steady state of the Euler’s equation governing the dynamics of target 

inventories. We finally show that the Euler’s equation is locally instable at the steady state but a sufficiently 

large refund to unsold inventory in lost-sales case can stabilize the inventory system.     
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1.  Introduction 

This paper sets out to demonstrate, using a simple inventory model, that instability can be a 

cause of production variability. The conclusion contributes to the literature that explain one of the most 

surprising empirical findings on macro business fluctuation summarized in Blinder and Maccini (1991) 

– production is more volatile than sales in most industries.  

Inventory is seen as the buffer to smooth production in traditional microeconomic inventory 

theories such that production cannot be more variable than sales. Researchers have modified the 

traditional microeconomic inventory models in different ways in order to explain the larger production 

variability as compared to sales variability. We classify these studies into the following groups.  

Demand factors to explain production variability. Kahn [10] shows that production can be 

more volatile than sales when demand shocks are serially correlated, and the resulted amplification in 

production variability is larger when the replenishment lead time1 is longer. A conceptually different 

but clearly related case is the demand backlog; if unmet demand in a period can be backlogged into 

future periods, the backlogs impart some serial correlation to the total demand (backlogs plus new 

demand). Kahn [11] shows that production cannot be more volatile than sales when backlog is not 

allowed (the case of lost-sales) and demand shocks are i.i.d.. Another closely related case is the price 

speculation discussed by Hall and Rust [8]; serially correlated shocks on product price encourages the 

firm’s speculative behavior to produce more if it expects a positive price change, and to produce less if 

it expects a negative price change.      

Cost factors to explain production variability. Random shocks on production cost increases 

production variability as shown by Lee et.al [13].  On a different front, Ramsey [16] shows that firms 

tend to batch their productions when there are economies of scale in production and batching amplifies 

production variability. Batching also happens when there is a fixed component in production cost; (s, S) 
                                                 
1 The time from production to storage.  



type of inventory control2 is optimal leading to larger production variability as shown by Blinder [4], 

Calpin [6], and Mosser [15].  

Market structure to explain production variability. Lee et. al [13] show that strategic behaviors 

of firms in an oligopoly market can amplify production variability.      

Behavioral factors to explain production variability. Sterman [18] demonstrates using lab 

experiments and field observations that when there is a lead time from production to storage, decision 

makers tend to give insufficient weight to the unfilled orders. Such bounded rationality causes 

production to be more volatile than sales.  

We show in this paper that instability is an intrinsic cause of production variability in a dynamic 

inventory system. We obtain this result based on a simple inventory model which is consistent with the 

classical one in Arrow et. al [2] and excludes all aforementioned factors to explain production 

variability.  A unique stationary optimal policy of the inventory model exists and is in the produce-up-to 

type3 under which a firm replenishes its inventory to a constant target level at each period. Although 

production cannot be more volatile than sales under the stationary optimal policy, the constant inventory 

target, which is the steady state of the dynamics of optimal target inventory, is fragile to small changes in 

environment; a perturbation to the system leads to the divergent oscillation of the target inventory. The 

oscillation amplifies production variability such that production can still be more volatile than sales 

even after excluding aforementioned factors. When unmet demand in a period cannot be backlogged, 

the inventory system can be stabilized by a sufficiently large refund for unsold inventory.  

 

2. The Inventory Model 

                                                 
2 Arrow, Harris, and Marschak [1]. Under (s, S) policy, a firm orders a commodity up to S whenever the inventory position 
of the commodity drops below s.   
3 It is a special case of the (s, S) in which the two thresholds s and S are the same. 



  Consider a firm which produces and sells a product in a market and the market price of the 

product is p . Demand for the product at each period ( )],[ dddt ∈  is i.i.d. distributed. The firm employs 

inventory technology and the lead time of replenishing inventory is zero. Inventory position tx  follows 

a dynamic transition equation:  

tttt sqxx −+=+1                    (1) 

where tq  is the quantity produced; ts  is the quantity sold, i.e.,   

{ }

⎪
⎩

⎪
⎨

⎧ +
=

backlog fullfor                        ,

sales-lostfor    ,,min

t

ttt

t

d

dqx
s                 (2) 

The production cost is linear and has no the fixed component; the unit production cost is denoted by c . 

The costs of holding inventory and stock-out are also linear. We use h and γ to denote unit inventory 

and stock-out cost4 such that the inventory and stock-out cost functions are [ ]+−+⋅ ttt dqxh  and 

[ ]++−⋅ ttt qxdγ  respectively, where [ ] { }xx ,0max≡+ .  The one-period profit function under lost-sales 

is  

( ) [ ] [ ] ttttttttttt cqqxddqxhspqdx −−−⋅−−+⋅−⋅= ++ γπ ,,                        (3) 

For the case of full backlog, the profit of the backlogged sales, [ ]+−− ttt qxd , is assumed to be 

realized in the next period.  With a discount rate of β , the profit on backlogged sales can be then 

written as [ ]+−−⋅− ttt qxdcp )(β . Thus, the one-period profit function under backlogging has the 

exact form as equation (3), except for γ is replaced as ( )cp −−≡ βγγ~ , denoting the smaller stock-out 

                                                 
4 The unit stock-out penaltyγ , captures both quantifiable shortage costs (e.g., additional customer service and management 
cost) and subjective components in terms of customers’ brand loyalty and preference. 



cost in full-backlog case. Taking expectation with respect to the random demand for equation (3), we 

get  

( ) ( ){ } ( ) ( ) ttttttttdtt cqqxEGqxESqdxEqxE −+−+=≡ ,,, ππ       (4) 

where ( )tt qxES + denotes the expected sale revenue; ( )tt qxEG +  denotes the sum of expected stock-

out and holding costs.  Specifically, these terms are 

( ) ( ) ( )( ) ( )
⎥
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+⋅+−+⋅=+ ∫
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+

+

−−+−+=+
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tt

zdFqxzzdFzqxhqxEG γ    (6) 

where dF  is the probability distribution function of the demand td . In equation (6), γ is replaced as γ~  

for full-backlog case.  

The firm’s objective is to maximize the present value of future profits discounted by the 

discount rate ( )1,0∈β . Let x denote the upper bound of inventory holding and ( ) [ ]tt xxx −≡Ω ,0  

denote the constraint correspondence called admissible policy space, the firm’s profit-maximization 

problem can be stylized in the following dynamic programming formulation over infinite planning 

horizon. 

( )
( ) ( )[ ]1,sup)( +

∈
+= ttt

xq
t xEVqxExV

tt

βπ
Ω

                 (7) 

                   s.t.     tttt sqxx −+=+1  

                                         Given Xxt ∈   

where for lost-sales [ ]xX ,0=  and   

    ( ) ( ) ( ) ( ) ( ){ }tttttttttdt dqxVdqxVdqxExEV −+>++≤+=+ 11 01                                          



   ( )( ) ( ) ( ) ( )∫
+

−++⋅+−=
qx

d
dttttd

t

zdFzqxVVqxF 01       (8) 

with ( )⋅1 denoting the indicator function. For full-backlog [ ]xdX ,−=  and 

( ) ∫ −+=−+=+

d

d
dtttttt zdFzqxVdqxEVxEV )()()(1              (9) 

 

3. Produce-up-to Policy, Instability, and Production Variability 

Since the planning horizon is infinite and the demand distribution is i.i.d., the optimal 

production policy is stationary5 and is expressed as the solution of 

    ( )
( )

( ) ( ){ }qxEVqxExq
xq

,,maxarg βπ +=
∈Ω

     (10) 

According to Iglehart [9], the optimal stationary policy for the full-backlog case exists uniquely and 

has the form of a produce-up-to type, which is expressed as 

            ( ) ( )
⎩
⎨
⎧ <−

=−=
+

otherwise            ,0
for   , **

* KxxKxKxq     (11) 

where *K is a constant produce-up-to or target inventory level.  We confirm also the optimality of the 

produce-up-to policy for the lost-sales case, and the results are summarized in proposition 1.   

Proposition 1: There exists uniquely optimal stationary policy for the considered inventory problem in 

(7), including both lost-sales and full-backlog case. The optimal stationary policy is in the produce-up-

to type defined in (11).      

Proof: See Appendix 1. 

 Under the stationary produce-up-to policy, the production variability, which is usually defined 

as the variance of the time series{ }tq , can be expressed as 

                                                 
5 It is only a function of state (inventory position), not an explicit function of time.  



    ( ) ( ) )(*
ttt xVarxKVarqVar =−=      (12) 

where 1
*

−−= tt dKx in full-backlog case and 1
*

−−= tt sKx in lost-sales case. Therefore production 

variability equals to demand variability in full-backlog case and is less than demand variability in lost-

sales case, since { }1
*

1 ,0max −− −= tt dKs  in lost-sales case. For the considered inventory problem, we 

can then conclude that production cannot be more volatile than demand under the stationary optimal 

policy.   

 However, the stability of the stationary produce-up-to policy has been ignored. As we will see 

later, the firm’s profit-maximization problem in (7) can be formulated as a optimal sequence problem 

to decide the optimal target inventory levels for each period given the realized the inventory position tx ; 

we denote the solution as { }*
tK  and decision today *

tK  affects decision tomorrow *
1+tK  through the 

inventory transition equation ttt sKx −=+
*

1 . Given the solutions of target inventory, production plan at 

each period is [ ]+−= ttt xKq * ; therefore the stationary optimal policy in (11) is the production plan 

under the steady-state of the dynamic process of ( )**
1 tt KfK =+ . From proposition 1 we know that the 

steady state exists uniquely. However, the stability problem investigated by this paper is concerned 

about the question: what if the target inventory once deviates from the steady-state, e.g., ∗≠ KKt , 

because of a perturbation to the system?  In order to answer this question, we need the formal 

definition of stability and here is the one in Stokey, Lucas, and Prescott [19].  

Definition 1: Let ℜ⊆Z and ZZg →:  be a continuous function, and for any Zz ∈0 , consider the 

sequence { }tz defined by ( ) ,....1,0,1 ==+ tzgz tt Let Zz ∈ be a steady-state or fixed point of g,  

1. the point z is globally asymptotically stable if for all Zz ∈0 and { }tz  satisfies g, we have 

zztt
=

∞→
lim ; 



2.  the point z is locally asymptotically stable if there exists a compact set ZZ ⊂~ that contains z , 

such that for all Zz ~
0 ∈ and { }tz  satisfies g, we have Zztt

=
∞→

lim . The point Z is said to be 

instable if it is not locally asymptotically stable. 

For the considered inventory problem, we will show that the target inventory is instable at the 

steady state; a perturbation leads to divergent oscillation of the target inventory; when the target 

inventory oscillates, production variability is amplified because it comes from two sources: demand 

variability and the oscillation of target inventory. 

 

4. Solving the Target Inventory  

With proposition 1, we now proceed to solve the stationary target inventory ∗K .  Differing from 

the approach directly from the recursive equation of value function, our solution strategy is based on 

the classical variational approach6 in which the profit maximization problem in (7) is equivalently 

reformulated as the optimal sequence problem. Let ttt qxK += , the one period expected profit 

function in (4) can be expressed as the function of tK as 

    ( ) ( ) ( ) [ ]ttttt xKcKEGKESKE −⋅−−=π      (13) 

Given current inventory position tx , the firm solves the following problem 

( )
{ }

( )∑
∞

=

−
∞
=

≡
tj

j
tj

K
t KEMaxxV

tjj

πβ       (14) 

 Proposition 2 summarizes interior solutions of problem (14) for both the full-backlog and lost-

sales case.  

Proposition 2.1 (Full-backlog case):  

                                                 
6 Stokey, Lucas, and Prescott [19, page 95] 



1. For a full-backlog  inventory system, the optimal target inventories satisfy the following 

difference equation   

( ) ( )**
1

1
)~(

)~()1(
tdtd KF

hp
cpKF

βγβ
γβ

−
++⋅

−+⋅+
=+ ,   ( )xKt ,0* ∈  for each t  (15) 

2. The stationary optimal produce-up-to level in (11) is the unique steady-state of (15) which is 

expressed as   

( ) ( )⎟⎟⎠
⎞

⎜⎜
⎝

⎛
++⋅+

−
++

+
= −

γβγ
γ

~1~
~

1*

hp
c

hp
pFK d    (16) 

where ( )cp −⋅−= βγγ~   

Proof.  See Appendix 2. 

Proposition 2.2 (Lost-sales case):  

1. For a lost-sales  inventory system, the optimal target inventories satisfy the following difference 

equation    

( ) ( )( ) wc
KF

wKF
td

td −+−=+ ππ ~~~
*

*
1 ,   ( )xKt ,0* ∈  for each t  (17) 

2. The stationary optimal produce-up-to level in (11) is the unique steady-state of (17) which is 

expressed as   

( ) ( ) ( )⎟
⎠
⎞

⎜
⎝
⎛ −+−+−−= − cwwwFK d

~~4~
2
1~

2
1 21* πππ    (18) 

where 11
>≡

β
w , ( )1,0~ ∈

++
+

≡
γ

γπ
hp

p , ( )1,0~ ∈
++

≡
γhp

cc  

Proof.  See Appendix 2. 

The first-order difference equations in (15) and (17) are the first-order conditions (Euler’s 

equations) of optimal solutions to the optimal sequence problem in (14); in the two equations, 



( ) ( )** Pr tttd KdKF ≤≡  is the probability of non stock-out under the optimal target inventory level. A 

unique steady state exists for both the two difference equations and the steady states determined by (15) 

and (17) are the constant produce-up-to points of the stationary optimal policy in (11) for full-backlog 

and lost-sales case respectively.  

 

5. Stability Analysis  

 Based on the Euler’s equations, we can investigate the stability of the stationary optimal policy 

of the considered inventory systems. The stability analysis follows directly the results from 

Scheinkman [17].    

Lemma 1.  Let Let ℜ⊆Z and ZZg →:  be a continuous function, and for any Zz ∈0 , consider the 

sequence { }tz defined by a difference equation (or system) ( ) ,....1,0 ,1 ==+ tzgz tt  Let Zz ∈ be a steady-

state or fixed point of g, and g is differentiable in a neighborhood N of z . Then, the difference 

equation is locally asymptotically stable at z  if and only if the first-order derivative of g evaluated 

at z is less than 1 in absolute value, i.e., ( ) 1<′ zg .   

Applying Lemma 1 to the Euler’s equations in (15) and (17), we have:  

Proposition 3 (Stability Conditions). The Euler’s equations in (15) and (17) are locally 

asymptotically stable at *K  if and only if, 

1) For full-backlog:  11
<

β
 

2)  For lost-sales: )()1~(0 ∗−< KFdπβ  when  ( ) 0~~ ≥− cπ ;  or 

)()1~()~~(2 ∗−<− KFc dπβπ when ( ) 0~~ <− cπ  

Proof:   See Appendix 3.   



It can then be verified that the stability conditions given in Proposition 3 cannot be met by the 

inventory systems considered in this paper so far.  Theorem 1 summarizes the instability of the steady-

state *K .  

Theorem 1 (Instability).  The dynamic inventory system defined in (7) is instable under either full-

backlog or lost-sales case.  Furthermore, the trajectories of inventory target starting from *
0K , with 

0,**
0 >∀≥− δδKK ,  are of oscillatory divergence.   

Proof.  For full-backlog case, the system is instable by Proposition 3 since 1≤β .  For lost-sales case, 

since probability distribution function )(⋅dF  must be nonnegative, it is immediate by Proposition 3 that the 

steady-state is locally asymptotically stable if and only if 1~ >π . However since 1~ ≤
++

+
=

γ
γπ

hp
p , ∗K  

cannot be a stable steady-state.  Furthermore, the trajectories starting from *
0K , with 

0,**
0 >∀≥− δδKK , are oscillatory because the Euler’s equations in (15) and (17) are strictly 

decreasing; the trajectories are divergent, i.e., moving farther and farther from *K , because of the linearity 

of Euler’s equation for the full-backlog case, and strict convexity of the Euler’s equation for the lost-sales 

case.        Q.E.D. 

Theorem 1 concludes that: 1) a full-backlog inventory system is unconditionally instable, 

unless 1>β  which is infeasible under the concerned circumstance;  2) a lost-sales inventory system is 

conditionally unstable, for which we will elaborate in the next Section.  

 

6. Achieving Stability by Inventory Refund Policies under Lost-Sales 

Firms can outsource their production parts to suppliers. After outsourcing, a firm behaves as a 

retailer to order the product from the suppliers and sell the product into a market. We show in this 



section that the inventory refund from suppliers to retailers, which is common in retailing industry and 

is mainly seen as marketing incentive for promoting new and innovative products as discussed in 

Kandel [12], can in fact stabilize a retail inventory system with lost-sales.  

We consider a retailer who receives inventory credit ξ  for each unit of unsold inventory; total 

inventory credits received at the end of each period t is then [ ]+−+⋅ ttt dqxξ . The one-period profit 

with inventory refunds can be derived as: 

( ) [ ] [ ] ttttttttttttt qcqxddqxhpsqdx −−−⋅−−+⋅−= ++ γπ ˆ,,ˆ    (19) 

where ξ−= hĥ . Noting that for the lost-sales case, the retailer’s inventory problem with inventory 

refunds differs only in ĥ  instead of h. Let 
γ

γπ
++

+
=

hp
p

ˆˆ  and 
γ++

=
hp
cc ˆˆ , and the unique stead-state 

with inventory refunds is then (from proposition 2.2) 

( ) ( ) ( )⎟
⎠
⎞

⎜
⎝
⎛ −+−+−−= − cwwwFK d ˆˆ4ˆ

2
1ˆ

2
1 21* πππ     (20) 

The stability condition of the steady-state is summarized in proposition 4.  

Proposition 4: The Euler’s equation under lost-sales case with inventory refund is locally 

asymptotically stable at *K if and only if  

))(1( γβξ +−−> ph       (21)  

Proof.  From Proposition 3, Euler’s equation under lost-sales is stable at ∗K  if and only if 1ˆ0 −< πβ , 

or equivalently, ))(1( γβξ +−−> ph .   Q.E.D. 

 By Theorem 1, a lost-sales inventory system without inventory refund is intrinsically prone to 

instability.  While according to Proposition 4 on the other hand, when inventory refunds are allowable, 

the lost-sales inventory system can be stabilized locally under a sufficient refund credited back to the 

retailer for unsold inventory. The right hand side of the inequality in (21) is intuitive: the marginal cost 



of carrying one more inventory is h but this additional inventory reduces the marginal opportunity cost 

of )( γ+p in the event of stock-out; ))(1( γβ +− p measures then the marginal benefit of ordering one 

more product today relative to ordering it tomorrow. Inequality (21) states that in order to achieve local 

stability for the inventory system with lost-sales, the inventory refund per unit unsold (ξ ) must be 

greater than the net marginal cost of ordering today. The more patient the retailer is (or the larger β  is), 

the larger inventory refund is necessary to stabilize the retailer inventory locally.  



Appendix 1 

Proof for Proposition 1  

For any ∞<t  and both the full-backlog and lost-sales inventory system, the value 

function ( )
( )

( )
⎭
⎬
⎫

⎩
⎨
⎧

≡ ∑
∞

=

−

Ω∈ tk
kkk

tk
t

xq
t qdxExV

tk

,,sup πβ  a well-defined function of inventory position tx .  Since 

our dynamic programming problem is stationary, without loss of correctness for any ∞<t , we drop the 

index t in the rest of the proof.   The Bellman’s equation can then be written as 

    ( )
( )

( )[ ]cqqxWxV
xq

−+=
∈Ω
sup               (A1.1) 

where 

    ( ) ( ) ( ) ( )qxEVqxEGqxESqxW +++−+=+ β            (A1.2)     

The retailer’s optimal order plan can then be expressed as  

( )
( )

( )[ ]cqqxWxq
xq

−+=
∈Ω
maxarg*             (A1.3)     

Define a space of continuous and bounded functionsΒ , such that ( ) Β∈xV ; and a 

mapping ΒΒ →:T , with the form 

      ( )( )
[ ]

( ) ( )qxEVqxExV
xxq

++=
−∈

βπ ,sup
,0

T             (A1.4) 

The Bellman’s equation can then be written as ( ) ( )( )xVxV T= .   Without loss of correctness, it is 

assumed that the state space, [ ]xdX ,−≡  in full-backlog case and [ ]xX ,0≡ in lost-sales case, is 

compact and convex, and the constraint correspondence ( )xΩ  is compact for each Xx∈ .  Then, the 

image of ΩΓ ×≡ X  under πE  where, 

( ) ( ){ }ΓΓ ∈=∈= wsomeforwEzzE ππ :R , 



is also compact.  Thus ( )qxE ,π  is bounded. Given ( )1,0∈β , it can be verified that there exists a unique 

V  that solves the Bellman’s equation by applying the contraction mapping theorem in Fuente [7, 

Theorem 1.5].   

 Following the existence and uniqueness of ( )xV , we proceed to show the concavity of ( )xV , 

and thus the optimality of the order-up-to policy.  

Lemma A1: The one-period expected profit function, ( )qxE ,π , is a strictly concave function of  x in 

both full-backlog  and lost-sales case.  

Proof: By direct differentiation and for lost-sales case,  

( ) ( ) ( )ttdttx qxFhppqxE
t

+⋅++−+=∇ γγπ ,            (A1.5) 

( ) ( ) ( ) 0,2 <+⋅++−=∇ ttdttx qxfhpqxE
t

γπ             (A1.6) 

γ is replaced as ( )cp −−≡ βγγ~  in full-backlog case. Still,    

   ( ) ( ) ( ) 0~,2 <+⋅++−=∇ ttdttx qxfhpqxE
t

γπ            (A1.7) 

         Q.E.D.   

To facilitate the proof, we need to prepare some preliminaries as presented in Lemma A2 below.  

Since the state space X  is convex, we can obtain 

Lemma A2:   

1. The set of weakly concave functions inΒ  is a closed subset of Β . 

2. For both full-backlog and lost-sales case, the constraint correspondence ( )xΩ is convex in the 

sense that Xxx ∈∀ 10 , , [ ]1,0∈λ , ( )00 xy Ω∈ ,  and ( )11 xy Ω∈ , we can have 

( ) ( )( )1010 11 xxyy λλλλ +−∈+− Ω .  

Proof:  The first claim is the direct result from Lemma 1.13 of Fuente [7, page 565]. For the second 

one, we just need to show that the graph of Ω  is convex. The graph of Ω  is the set 



( ) ( ){ }xyXXyx Ω∈×∈ :, , which is a triangular in both full-backlog and lost-sales case and is thus 

convex.   Q.E.D. 

With the above necessary preliminaries, we can prove in the order of the following two claims, 

which hold for both full-backlog and lost-sales case: 

1. The value function ( )xV  is strictly concave in x .   

2. ( )xq*  is a continuous function in the form of 

 ( ) ( )
⎩
⎨
⎧ ≤−

=−=
+

otherwise            ,0
for   , **

* KxxKxKxq             (A1.8) 

 where *K  represents the firm’s desired inventory, and it is defined as 

   
( )

( )[ ]cqqWK
q

−=
∈ 0

* maxarg
Ω

             (A1.9)

 Let Xxx ∈10 , , [ ]1,0∈λ ,  ( ) 10 1ˆ xxx λλ −+= , we now want to show that 

( ) ( ) ( ) ( )10 1ˆ xVxVxV λλ −+> . Let ( )0
**

0 xqq = , ( )1
**

1 xqq = , and ( )xqq ˆˆ ** = , from Lemma 1, we can get 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]*
11

*
11

*
00

*
0010 ,1,1 qxEVqxEqxEVqxExVxV ++−+++=−+ βπλβπλλλ  

( ) ( ) ( ) ( )*
11

*
00

* 1ˆ,ˆ qxEVqxEVqxE +−+++< βλλβπ                           (A1.10) 

Given the contraction mapping theorem, point 1 of Lemma A2 implies that the unit fixed point of T is 

in the space of weakly concave functions. Then following (A1.10), we can have   

( ) ( ) ( ) ( ){ }*
11

*
00

* 1ˆ,ˆ qxEVqxEVqxE +−+++ λλβπ ( ) ( ) ( )xVqxEVqxE ˆˆˆˆ,ˆ ** =++≤ βπ  

The equality in the last step is the result from point 2 of Lemma A2. This finishes claim 1.  

For claim 2, first from the Theorem of the Maximum, we know that ( )xq*   is non-empty and 

upper-hemicontinuous (uhc). Concavity of ( )xV  implies then that ( )xq*  exits uniquely and is thus a 

continuous function of the state. The inventory target K , which is expressed as the solution of 



[ ]
( )[ ]cqqWK

xq
−=

∈ ,0

* maxarg ,  exists also uniquely. Now we want to show equation (A1.4) is the optimal 

strategy.  By definition, for each Xx∈ , we know  

( ) ( )
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that is, for any *Kx < , ordering xK −*  units is optimal. Also, from the strict concavity of ( )xW , we 

can get 

( ) ( ) ( ) ( ) *
*

*
, Kxxc

Kx
KWxW

xx
xWxW

>>′∀<
−

−
<

−′
−′  

which implies that the optimal strategy is not to order when *Kx > . Finally, the optimal strategy 

when *Kx = is obtained by the continuity of ( )xq* .  This finishes claim 2 and thus the proof of 

proposition 1.       Q.E.D. 

 

Appendix 2 

Proof for Proposition 2 

We first get the differentiability of the value function in the interior region, as presented in Lemma A3, 

which holds for both full-backlog and lost-sales case. 

Lemma A3: ( )xV  is differentiable at x′  for each Xx int∈′ and ( ) ( )xxq ′∈′ Ωint* . Furthermore, 

( ) ( )( ) xxxxxx xqxExV ′=′= ′∇=∇ *,π  for each Xx int∈′ and ( ) ( )xxq ′∈′ Ωint* .  

 Proof: For any Xx int∈′  and ( ) 0* >′≡′ xqq , let ( )xN ′  be the neighborhood of x′ . For any ( )xNx ′∈ , 

( )xq Ωint∈′  because ( )'int xq Ω∈′  and Ω  is continuous. Define 



( ) ( ) ( )qxEVqxExH ′+′+′= βπ ,             (A2.1) 

Clearly, ( )xH  is differentiable with respect to x  because ( )⋅πE  is differentiable with respect to x  and 

the second term in the r.h.s. of (A1.4) is not the function of x . Thus, ( ) ( )qxExH xx ′∇=∇ ,π . By 

definition, ( ) ( )xVxH ′=′  and ( )xNx ′∈∀  , ( ) ( )xVxH ≤ . Because of the concavity of ( )xV , we can 

apply the Envelop Theorem of Benveniste and Scheinkman [3] to get that ( )xV  is differentiable at x′ , 

and 

                                 ( ) ( ) ( ) xxxxxxxxx qxExHxV ′=′=′= ′∇=∇=∇ ,π                 (A2.2) 

          Q.E.D. 

With lemma A3, we now proceed to prove proposition 2. The first order condition of the profit 

maximizing problem in the interior region, 0=∇ tq V
t

, leads to the following equality: 

                       tttqttqttq cxEVqxEGqxES
ttt

=∇++∇−+∇ ++ )()()( 11
** β           (A2.3) 

where )(**
tt xqq =  is the optimal order as given in Proposition 1, and 

    ( ) ( ) ( )1111111 11 +++++++ ++
∇=∇⋅∇=∇ ttxtqttxttq xEVxxEVxEV

tttt
       (A2.4) 

Let **
ttt qxK += ,  we write (A2.3) as 

                    ( ) ( ) tttxtqtq cxVKEGKES
ttt

=∇+∇−∇ +++
)( 11

**
1

β          (A2.5) 

Applying Lemma A3, we can then obtain 

For full-backlog: 

( ) ( )**
1

1
)~(

)~()1(
tdtd KF
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cpKF

βγβ
γβ

−
++⋅

−+⋅+
=+           (A2.6) 

For lost-sales: 



( ) ( ) ( ) βγ
γ

γβ
γ 1

*
*

1 −
++

+
+

++⋅

−+
=+ hp

p
hpKF

cpKF
td
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Reorganizing (A2.7) we can get equation (16).   

 From proposition1, we know that the order policies of the considered inventory systems have 

the stationary order-up-to type, in which the retailer orders up to *K for each period. Since the order-

up-to level must satisfy the Euler’s equation in the interior region, it is then the stationary point or the 

steady-state of the Euler’s equation. The Euler’s equations in (A2.6) and (A2.7) define a mapping 

from [ ]1,0  to itself, and by the monotonic property of the mapping, it is straightforward to verify by the 

Brouwer’s fixed point theorem that there exists a unique fixed point or steady-state **
1 tt KKK == +

∗ , 

which solves the following equation: 

  Full-backlog: ( ) ( )** 1
)~(

)~()1( KF
hp

cpKF dd βγβ
γβ

−
++⋅

−+⋅+
=    (A2.8) 

  Lost-sales: ( ) ( ) ( ) βγ
γ

γβ
γ 1

*
* −

++
+

+
++⋅

−+
=

hp
p

hpKF
cpKF

d
d    (A2.9) 

The solutions from (A2.8) and (A2.9) are the optimal order-up-to points in the interior region for full-

backlog and lost-sales case respectively. By the continuity of order-up-to decision rule, it is also 

applied to the cases when *Kx ≥ ; dx −= (for full-backlog), and 0=x (for lost-sales). This finishes 

the proof of proposition 2. 

Appendix 3 

Proof of Proposition 3 

Denoting )( tdt KF=ξ  and )( ∗∗ = KFdξ , we rewrite the Euler’s equations, respectively for backlog 

and lost-sales as:  

o Full-backlog:  
)~(

)~()1(1)(1 γβ
γβξ

β
ξξ

++⋅
−+⋅+

+==+ hp
cpg ttFBt  



o Lost-sales:   ( ) wcwg
t

tLSt −+−==+ ππ
ξ

ξξ ~~~)(1  

It is then easy to obtain that: 

 
β

ξ 1)( =′ tFBg ,    and ( )cwg
t

tLS
~~)( −

′
−=′ π
ξ

ξ  

Then, according to the stability condition, ( ) 1<′ ∗Kg , as given in Lemma 1, we confirm that the 

Euler’s equation under full-backlog is stable if and only if 

( ) 11
<=′ ∗

β
Kg FB , where )( ∗∗ = KFdξ  

For the lost-sales case, the stability condition ( ) 1
~~

)( 2 <
−

=′
t

tLS
cwKg

ξ
π at )( ∗∗ = KFdξ  can be 

equivalently expressed as a set of two mutually exclusive inequalities: 

1) For ( ) 0~~ ≥− cπ , )()1~(0 ∗−< KFdπβ , or otherwise 

2) For  ( ) 0~~ <− cπ , )()1~()~~(2 ∗−<− KFc dπβπ  

This concludes the proof for Proposition 3.           Q.E.D. 
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