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Abstract 

This paper estimates the economic value of biochar application on agricultural cropland for 

carbon sequestration and its soil amendment properties.  In particular, we consider the carbon 

emissions avoided when biochar is applied to agricultural soil, instead of agricultural lime, the 

amount of carbon sequestered, and the value of carbon offsets, assuming there is an established 

carbon trading mechanism for biochar soil application. We use winter wheat production in 

Eastern Whitman County, Washington as a case study, and consider different carbon offset price 

scenarios and different prices of biochar to estimate a farm profit. Our findings suggest that it 

may be profitable to apply biochar as a soil amendment under some conditions if the biochar 

market price is low enough and/or a carbon offset market exists.  
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1. Introduction 

Biochar is a charcoal-like material produced by the thermochemical pyrolysis of biomass 

materials. It is being considered as a potentially significant means of storing carbon for long 

periods to mitigate greenhouse gases (Laird, 2008). Much of the interest in biochar comes from 

studies of Amazonian soils that appear to have been amended with biochar, with significant 

improvements in soil quality and positive effects on crop yields (Lehmann et al., 2004). These 

changes have persisted for hundreds, if not thousands, of years. It is not yet known how long it 

takes for biochar to integrate with the soil and express its benefits. However, biochar represents a 

stable form of carbon and thus provides an intriguing potential carbon storage strategy as a soil 

amendment. 

This study assesses the potential value of the use of biochar as a soil amendment from 

potential dual benefits of increased crop yields and returns from carbon sequestration, under a set 

of assumed conditions.  We consider the effect of biochar in improving crop productivity by 

ameliorating the soil acidity.  Next, we evaluate and aggregate emissions avoided and carbon 

sequestered when biochar replaces lime usage in the field. We then calculate the value of carbon 

offsets by using a low and high price range $1/MT CO2 and $31/MT CO2, assuming a carbon 

trading mechanism exists for biochar soil application. As a case study, we focus on wheat 

production in Washington State and examine farm profitability with and without the application 

of biochar.   Our findings suggest that it may be profitable to apply biochar as a soil amendment 

under some conditions if the biochar market price is low enough and/or a carbon offset market 

exists. 

The existing literature will be reviewed in detail below.  As will be discussed, some of these 

studies focus on the properties and application rates of biochar and their impacts on agricultural 
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productivity, and some examine biochar’s potential in sequestering carbon. However, this is the 

first study to our knowledge that links farm profitability with the economic value of biochar as a 

soil additive and as a source of carbon offset credits.  

The following two sections provide a review of existing studies of the impacts of biochar soil 

application to crop productivity and to carbon (C) sequestration.  We rely on the results of these 

studies in our analysis of the economic value of biochar as a soil amendment.  Section 4 

describes our methodology, and Section 5 presents estimated costs and returns in crop production 

for the case of wheat, with and without the application of biochar. Section 6 concludes. 

 

2. Impacts of biochar on crop productivity — related studies 

A number of studies have investigated the response of crops to biochar application.  Table 1 

presents summaries of a limited sample of these studies showing the impacts of biochar on crop 

response in terms of yield or plant biomass.   Observed impacts vary depending on interactions 

between the types of biochar used, crop studied, soil type, local conditions, among others.   Some 

studies have observed increased crop productivity from using biochar alone (Baum and Weitner, 

2006; Chan et al., 2008).  Other studies found a more positive crop response when biochar is 

applied together with fertilizers (Steiner et al., 2007). However, some studies have found 

negative crop response to biochar soil amendments.  For example, Kishimoto and Sugiura (as 

cited in Chan and Xu, 2009) reported reductions in soybean yields with higher application rates 

of biochar.  Collins (2008) found a decline in the root-shoot ratio of wheat in Quincy sand soil 

amended with peanut hull biochar and softwood bark biochar compared to unamended soil.1

                                                 
1 The root/shoot ratio is the ratio of below-ground level biomass and above-ground level biomass. 

  An 

increase in the root-shoot ratio of wheat, however, is found in Hale silt loam soil amended with 
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softwood bark biochar.  Collins (unpublished data) also found a significant increase in soil water 

holding capacity on silt loam soils but not on sandy soil.  This could potentially increase crop 

yields in a dryland production region that is often water-limited for yield.  Lehmann et al. (2006) 

discussed a greenhouse study in Columbia where biochar application led to low N availability to 

crops. Leguminous crops were found to compensate for this due to biological N2 fixation 

induced by biochar application.  On the other hand, non-legume crops were found to require 

additional N fertilizers due to low N availability.  The above studies are controlled, small-scale 

experiments.  At this point, it is not possible to draw conclusions on the effect of biochar that can 

be broadly applied, especially in temperate regions with younger soils (compared to highly 

weathered soils in more tropical environments).   Furthermore, biochar itself will not contribute 

meaningful amounts of nutrients given its high stability, so the potential for biochar to reduce 

chemical fertilizer requirements remains unclear.2

One consistent effect of biochar amendment has been change in soil pH (most frequently 

raising it), which implies a liming value of biochar.  Collins (2008) found nearly a unit increase 

in soil pH with biochar derived from herbaceous feedstocks (switchgrass, digested fiber) and 0.5 

to 1 unit increase in the soil pH with biochar derived from woody sources (softwood bark,  wood 

pellets) (Table 2).  Van Zwieten et al. (2007) also reported an increase in the soil pH and 30 to 40 

percent increase in the height of wheat when biochar was applied to an acidic soil.  Rondon et al. 

(2007) credited the improvement of bean productivity due to the elevation of soil pH and other 

   Nonetheless, the evidence from available 

studies does show that soil application of biochar often affects crop productivity and can be 

beneficial in some situations. 

                                                 
2 In Collins (2008), total nitrogen in the soil is found to increase (although at small amounts) after addition of 

biochar.  This does not, however, imply that a lesser amount of N fertilizer may be needed when biochar is added to 
the soil. N in biochar is not available to plants. It is fused in the C matrix (H. Collins, personal communication, 
2009). 
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soil nutrients as a consequence of biochar use.  Biochar may be considered a potential substitute 

for agricultural lime, especially in agricultural regions that have acidic soils.  However, a unit 

change in the soil pH would require 0.54 metric ton (MT) to 3.91 metric tons per acre of 

agricultural lime, depending on the soil type (CPHA, 2002). For example, a sand soil type 

requires 0.54 MT/acre of lime to increase the soil pH by a unit as compared to about 17 MT/acre 

biochar3

 

 needed to achieve the same desired change in soil pH (Collins, 2008).   Thus, it may not 

be economically feasible for farmers to use biochar in crop production solely for pH adjustment 

since it would entail a relatively higher cost compared to agricultural lime.  On the other hand, 

other potential benefits from adding biochar to the soil such as avoided emissions of lime and the 

capacity of biochar to sequester carbon (to be discussed in the next section) should be 

considered.  It is possible that the economic returns from using biochar may be higher than from 

using lime after accounting for any other non-pH related plant growth benefits or carbon offset 

credits, were they to be available to farmers.   

3. Biochar carbon sequestration — related studies, policy and program 

Biochar is produced through the process of pyrolysis.  The three main products of pyrolysis: 

liquid (bio-oil), biochar, and gas, can influence the global carbon (C) cycle in two ways.  First, 

all three pyrolysis products may be used as an energy source that can displace fossil energy use.  

Second, if the carbon-rich and stable biochar is produced from a biomass feedstock that removes 

carbon dioxide (CO2) from the air via photosynthesis, which would otherwise have decomposed, 

                                                 
3 This refers to Quincy sand soil type. The biochar requirement to raise the pH by a unit depends on the type 

of char used, e.g., switchgrass, digested fiber, bark, etc.  Assuming an average pH increase across the chars of 0.058 
pH unit/ton of biochar, it would require about ~17.24 tons of biochar to increase the soil pH by 1 unit.   
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then char-amended land becomes a carbon sink for more intensive and long-lasting carbon 

storage. 

Lehmann et al. (2006) estimated an annual sequestration of 0.2 Pg C (200 million metric 

tons) through slash-and-char (instead of slash-and burn) and biochar application to the soil.  

Furthermore, the study reported that low-temperature pyrolysis of biomass combined with the 

capture of gas and liquid products for bioenergy production and soil application of biochar, could 

sequester the equivalent of about 10% of the annual US fossil-fuel emissions.   

Laird (2008) proposed a national system of distributed fast pyrolyzers for converting biomass 

into bio-oil, gas and char. Similar to Lehmann et al. (2006), he assumed that bio-oil and gas are 

used as energy sources that can displace fossil fuel use, while char was applied to agricultural 

soils.   Assuming the United States can produce 1.1 billion metric tons of biomass per year from 

harvestable forest and crop lands, the implementation of Laird’s proposal could displace 25% of 

the nation’s fossil fuel oil consumption per year.  The study also estimated the aggregate carbon 

credit for fossil fuel displacement and biochar C sequestration to be 10% of the average annual 

US CO2-C emissions.   

The carbon content of biochar varies depending on the feedstock.  Collins (2008) showed 

biochar carbon content (from slow pyrolysis) ranging from 61% to 80%, the highest being from 

wood pellets (Table 2).   Woody feedstocks (bark, wood pellets) tended to have a higher carbon 

content compared to herbaceous feedstocks (switchgrass, digested fiber).  Based on these figures, 

approximately 0.61 to 0.80 MT of carbon (or 2.2 to 2.93 MT of CO2)4

                                                 
4 To convert from carbon to carbon dioxide, multiply by 44/12 (~3.67) (Blasing et al., 2004).   

 is sequestered for every 

ton of biochar applied to the soil. 
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Incentives for greenhouse gas mitigation such as carbon market offset credits may tip the 

scale in favor of biochar as a soil amendment rather than as a renewable energy source.  At the 

international level, the Kyoto Protocol under the United Nations Framework on Climate Change 

(UNFCCC) only allows C sequestration from afforestation and reforestation in the trading 

program established under the Clean Development Mechanism (CDM) (UNFCCC-CDM, 2009).   

Carbon sequestration in agricultural crops and soils is not currently eligible under CDM 

(Lehmann et al., 2006; FAO, 2009).  In the United States, the Chicago Climate Exchange (CCX) 

has developed standardized rules for soil carbon management offsets in the agricultural sector. 

Eligible projects are conservation tillage and grass planting, which have to be enrolled with a 

CCX-registered Offset Aggregator.   

In 2008, prices of traded CO2 offsets on the Chicago Climate Exchange were volatile, 

ranging from $1 to $7.40 per metric ton of CO2 (CCX, 2008).  During the same year, the market 

prices of CO2 offsets in the European Climate Exchange varied between $17 and $31 per metric 

ton of CO2 (ECX, 2008).  The differences in price across markets are in part due to the fact that 

participation in the CCX is currently optional; no entity is legally required to participate in this 

exchange.  However, recent policy discussions at the national level suggest increased momentum 

toward a binding national carbon market. In the following section, we estimate the value of 

biochar as an input in crop production and as an instrument in C sequestration.  We assume that a 

carbon market exists for avoided emissions and C sequestration due to use of biochar as soil 

amendment. Also, for the value of potential CO2 offset, we use a low and high value of $1/MT 

CO2 and $31/MT CO2. 

 

4.  Estimated costs and returns for using biochar as soil amendment  
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In this section, we estimate the value of biochar as a soil amendment and the economic 

returns to farmers under a set of assumed conditions.  The calculation is done in two stages.  

First, we assess: (a) the avoided emissions from the soil application of biochar instead of 

agricultural lime, excluding the energy and emissions from transporting and spreading the 

material; and (b) the amount of carbon sequestered from biochar application. Combined, the 

emissions avoidance and sequestration effects are counted as CO2 offsets that can be sold under 

an assumed set of carbon offset prices. Second, we calculate the profit of crop production given 

two scenarios —without biochar but with lime application to the soil, and with biochar 

application as a substitute for lime.  We focus on dryland wheat production in the state of 

Washington as a case study.   

4.1.   Estimates of avoided emissions 

Gaunt and Lehmann (2008) and McCarl et al. (2009) estimated the avoided greenhouse gas 

emissions of applying biochar to agricultural land in terms of reduced agricultural input 

requirements due to a crop’s improved use of nutrients. This translates to reductions in both 

fertilizer use and nitrous oxide emissions in fertilized fields.  However, the dynamics of the 

relationship between fertilizers and biochar are not included in our analysis since the effects of 

biochar on the utilization intensity of fertilizers depend on various factors like the type of crop 

studied, soil type, soil quality and biochar type.  On the other hand, there is strong consensus 

about biochar’s positive effects on soil pH that is similar to liming effects, as exemplified by 

studies discussed in section 2. 

Agricultural lime is commonly applied to soils to ameliorate the soil pH.  The recommended 

rates of lime application in western Washington range from 0.91 metric ton to 4.54 metric tons 

per acre every 3 to 5 years, roughly (C. Cogger, personal communication, 2009).  Less or no lime 
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is needed in Washington east of the Cascades because the native soil pH is high (R. Koenig, C. 

Kogger and J. Davenport, personal communications, 2009). However, some soils in eastern 

Washington with a long history of urea or ammonium-based nitrogen fertilizers have 

experienced a reduction in pH to a low enough level to justify the need for lime. When there is a 

soil acidity problem, lime applications range from 0.91 metric ton to 2.72 metric tons per acre (J. 

Davenport, personal communication, 2009).  

West and McBride (2005) estimated the net CO2 emission from application of agricultural 

lime at about 0.059 metric ton C (or 0.22 metric ton CO2) per ton of limestone, based on the 

chemical reaction of lime in the soil and transportation of lime-derived bicarbonates to the ocean 

(via leaching and precipitation). This is the amount of emissions that can potentially be avoided 

by replacing lime with biochar.  Using the CO2 offset price range of $1 to $31/MT CO2, the 

value of avoided emissions amounts to $0.22-$6.82 per metric ton of lime.   

4.2  Estimates of biochar carbon sequestration 

Biochar from herbaceous and woody feedstock sources are found to have a carbon content of 

60.5%-66.7% and 74.5%-80%, respectively.  We can assume from these figures that for every 

ton of biochar applied to the soil, 0.61 to 0.80 ton of carbon (equivalent to 2.2-2.93 tons of CO2) 

can be sequestered (Collins, 2008).  Using the highest carbon content of the wood-based biochar 

(i.e., 80%) and the CO2 offset price range, the approximate value of biochar C sequestration is 

$2.93-$90.83 per metric ton of biochar.   

4.4  Costs and returns of crop production 

We examine the potential economic returns to farmers if they utilize biochar as a substitute 

for agricultural lime under three price scenarios: (a) $114.05 per metric ton based on the energy 

content of a wood-based biochar; (b) $87 per metric ton; and (c) $350.74 per metric ton. The first 
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value represents the opportunity cost of the foregone use of biochar as energy source. A wood-

based biochar has an average energy content of 12,500-12,500 BTU/lb (Dynamotive Energy 

Systems, 2007).  The energy content of the Central Appalachian coal is 12,500 BTU/lb and its 

price is $116.38 per metric ton as of 2008 (EIA, 2009).  Using the energy content as basis, the 

combustion value of biochar is 98% that of Central Appalachian coal, or $114.05/metric ton. The 

latter two prices are adopted from the estimated break-even prices of biochar in Granatstein et al. 

(2009).   

Wheat, a key economic crop in Washington, belongs to a group of crops that can tolerate 

slightly acidic (i.e., 6.0-6.5) soil pH (CPHA, 2002).  In general, wheat tends to favor soil pH 

between 6 and 7 (Beegle and Lingenfelter, 2005).  We focus on changes in winter wheat yield 

given changes in the soil pH as a case study.  The crop yield is estimated through the following 

equation adopted from Mahler (1986):  

Winter Wheat Yield = −2,960.56 + 1,530 SOILPH     (1) 

where winter wheat yield is in kilograms per hectare, and SOILPH refers to the value of the soil 

pH of Palouse silt loam.  Assuming the base soil pH of 4.5 for this soil type from Collins (2008), 

increasing the soil pH to 6 would require 2.59 metric tons of limestone per acre (CPHA, 2002) or 

30.62 metric tons of biochar per acre (H. Collins, unpublished data).5

Using equation (1) with soil pH of 4.5, wheat yield is estimated at about 3,924.44 kg per 

hectare or 58.36 bushels per acre.

      

6

                                                 
5 Note that the impact of char on soil pH depends on the soil type and the type of char. For the Palouse silt loam 

soil type, an average pH increase across the chars is ~0.049 pH unit/ ton of biochar per acre. Based on this, it would 
require about 30.62 tons/acre to increase the soil pH from 4.5 to 6 (i.e., increase by 1.5 units).   

   On the other hand, with a soil pH of 6, the estimated wheat 

6 Conversion: 1 bushel per acre x 0.06725 = 1 metric ton (or 1,000 kg) per hectare (Prairie Grains Magazine, 
2003). 
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yield is about 6,219.44 kg per hectare or 92.5 bushels per acre.  Profits from winter wheat 

production, with and without the application of biochar, are calculated as follows: 

Without biochar or agricultural lime:  

Profit1 = PW*Q1 – Total Cost;        (2) 

Without biochar, with agricultural lime:  

Profit2 = PW*Q2 – Total Cost – PL*AGLIME;      (3) 

With biochar, without agricultural lime:  

Profit3 = PW*Q2+ COFFSET – Total Cost – PBi*BCHAR,    (4) 

where PW refers to the Fall 2008 contract price of winter wheat, which is $7.50 per bushel 

(Union Elevator, 2008). Q1 is the estimated yield of winter wheat given a soil pH of 4.5 in 

equation (2) and Q2 in equations (3) and (4) is the estimated wheat yield given a soil pH of 6. The 

product of PW and Q gives the revenue in Table 3 below. PL is the price of lime at $51.53 per 

metric ton for a 100-lb bag in 2008 (Steve Eckhart, J.A. Jack and Sons, personal communication, 

2009). AGLIME refers to the application rate of agricultural lime (2.59 metric tons per acre); PB 

means the biochar price; BCHAR represents the application rate of biochar (30.62 metric tons per 

acre); and COFFSET is the value of carbon offset from avoided emissions and biochar C 

sequestration by replacing lime with biochar.  Total Cost denotes the sum of fixed cost and 

variable cost of winter wheat crop production based on the Eastern Whitman County 2008 

Enterprise Budget (Painter, unpublished), exclusive of lime or biochar cost.  

Table 3 shows the estimated profits given the addition of agricultural lime or biochar to the 

soil and different price scenarios.  As discussed above, the yield of wheat is higher when the soil 

pH improves; hence, the revenue is higher with the application of lime or biochar than without.  
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A farmer will gain a profit even when there is an additional cost of agricultural lime. When 

biochar replaces agricultural lime, on the other hand, getting a profit or a loss will depend on the 

price of biochar and value of sequestered carbon. Without a carbon offset market (COFFSET is 

zero in equation 4), the price of biochar has to be about $9.10/MT in order for a farmer to break 

even (profit = 0)7

Suppose now that a carbon offset market exists. At $1/MT CO2, the farmer loses income 

given any of the biochar price scenarios; and at $31/MT CO2, losses are also incurred if the price 

of biochar is high, i.e., at $351/MT or $114/MT. This means that the income from offsets is not 

enough to support the adoption of biochar in agricultural production. If, however, the price of 

biochar goes down to $87/MT and the carbon offset is priced at $31/MT CO2, a profit is gained 

and it is higher than the case where agricultural lime is used instead.  This implies that when the 

price of biochar is low enough, the income derived from carbon offsets can outweigh the cost of 

biochar.   It should be noted that the production cost does not include the cost of transporting and 

applying lime or biochar to agricultural land (machinery and labor cost).  Including these would 

likely further drive up the estimated losses or decrease any profit earned.   

 and about $4.34/MT for profit to be equal to that of agricultural lime scenario, 

excluding the transportation and application costs of biochar.  

The differences in potential profit given varying prices of biochar and carbon offset are 

further illustrated in Figure 1.  Profit declines as the price of biochar increases, holding other 

things constant.  When the carbon offset price is $31/MT CO2, the farmer will break even if the 

price of biochar is approximately $100.52/MT.  The farmer’s estimated profit with biochar 

application will be equal to the profit with agricultural lime application ($146/acre) if the price of 

                                                 
7 From equation (4), the price of biochar (PB

*) at which profit is zero is derived by calculating:                        
PB

* = (PW*Q + COFFSET – Total Cost)/BCHAR. 
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biochar is about $95.75/MT.  On the other hand, at a carbon offset price of $1/MT CO2, a profit 

of about $62.84 per acre is gained when the price of biochar is $10/MT.  At this lower offset 

price, the farmer will break even if the price of biochar is approximately $12.05/MT.  

 

5.  Conclusions  

Our quantitative analyses focus on using biochar as a soil additive and its potential carbon 

sequestration benefits for agricultural uses.  We find that biochar soil application can be 

economically feasible given the following scenarios:  

• If there exists a carbon market that recognizes the avoided emissions and carbon 

sequestration due to the application of biochar to agricultural soils.  This is a necessary 

condition if biochar will be promoted as a technology for carbon sequestration; and 

• If the market price of biochar is low enough so that a farmer will earn a profit after applying 

biochar to the crop field (i.e., in our case study, lower than $12.05/MT and $100.52/MT 

when the price of carbon offset if $1/MT CO2 and $31/MT CO2, respectively). 

It is clear that biochar has potential as a soil amendment and its value as such would likely 

increase as social and regulatory interest in carbon sequestration increases because of the 

longevity of carbon in the soil.   However, more substantial increases in crop production need to 

be documented across a range of crops and soils that can add value to the farm at a level beyond 

the estimated value of biochar for carbon sequestration.  Under the current economic situation, 

growers are unlikely to adopt biochar use without greater payback. Also at this time, even if 

growers found biochar beneficial, they could face difficulty in sourcing quantities large enough 

for farm application.  
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Many niche opportunities for biochar use are also possible, including soil amendment and 

compost use outside of agriculture such as urban gardens, lawns, parks, and ball fields. Biochar 

can be suitable as a precursor to activated carbon commonly utilized in industrial filtration 

process (Azargohar and Dalai, 2006) like municipal wastewater treatment (e.g. Bansode et al., 

2003, Ng et al., 2003) and other water and air filtering systems (Kearns, 2008; Lima et al., 

2008).   Biochar can also be used as an energy source; as combustion fuel to power the pyrolysis 

process; as a gasifier feedstock (Boateng, 2007; Polagye et al., 2007); or for water heating and 

cooking (IBI, 2009; Johannes, 2008).The extent of developing these markets, of course, depends 

on many factors associated with the cost of biochar production relative to existing alternatives, as 

well as the relative effectiveness of biochar from pyrolysis for intended uses.  The question is 

whether or not it would be more economically valuable to use biochar as a soil amendment rather 

than for energy production or other alternative uses.  For instance, it may be more economically 

attractive to burn it to generate energy (i.e., as a substitute for coal) if the energy content of 

biochar is high.  However, the process loses the added benefits of applying biochar to soils, such 

as gains in agricultural productivity due to soil quality improvement and payments for carbon 

sequestration. 
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Table 1 
Summary of studies on biochar used as a soil amendment. 
Author(s) Location Soil type Type of biochar Biochar 

application rate 
Crop 

Kishimoto 
and Sugiura 
(1985)a,b 

Japan Volcanic ash 
soil, loam 

Unknown wood 0, 0.2, 2.0 and 6.1 
t/acre 

Soybean 

 Crop response: At 0.2 t/acre, increased yield by 51%. At 2 t/acre and 6.1/acre, reduced yield by 37% 
and 71%, respectively.  Reductions were attributed to micronutrient deficiency induced by an 
increase in pH. 

Mikan and 
Abrams 
(1995)b 

United 
States 
(Pennsyl-
vania) 

Forest area on 
relic charcoal 
hearths 

Wood for charcoal 
production 

Unknown Vegetation in 
hearth and 
non-hearth 
areas 
compared 
after 110 years 

 Crop response: Tree density and basal area were reduced by 40%.  
Young et 
al. (1996) 

United 
States 
(Appala-
chian 
mountains) 

Forest area on 
relic charcoal 
hearths 

Wood for charcoal 
production 

Unknown Trees 

 Crop response: Lower overstory tree cover and density on relic charcoal hearths than on adjacent, 
non-hearth areas. The richness and diversity of overstory and understory tree cover as well as ground 
vegetation were consistently lower on hearths. 

Glaser et al. 
(2002) 

Brazil Xanthic 
Ferralsol  

Secondary forest 
wood 

0, 27.2 and 54.7 
t/acre 

Rice, 
Cowpea 

 Crop response: At application rate of 27.2 t/acre, biomass increased by: 20%, rice; 50%, cowpea 
compared to control treatment where no biochar was applied. At application rate of 54.7 t/acre, 
biomass of cowpea increased by 100%. 

Steiner 
(2006)c 

Brazil Xanthic 
Ferralsol  

Wood 4.5 t/acre Banana 

 Crop response: Reduced soil acidity and increased K uptake 
Yamamoto et 
al. (2006) c 

Indonesia Acid soil Bark 6.1 t/acre Maize 

 Crop response: Higher yields with biochar and fertilizer, than fertilizer alone 
Steiner et 
al. (2007) 

Brazil Xanthic 
Ferralsol  

Secondary forest 
wood 

4.5 t/acre Rice, 
Sorghum  

 Crop response: Charcoal plus mineral fertilizer improved yield by a factor of 1.5-2 and improved 
stover by a factor of 1.3-1.4. Using charcoal plus compost and/or fertilizer, yields are consistently 
greater (i.e., 4 to 12 times greater) compared to using fertilizer alone. 

Sources: a Adopted from Glaser et al. (2002); b Adopted from Chan and Xu (2009); c Adopted from 
Blackwell et al. (2009). 
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Table 1 (continued) 
Summary of studies on biochar used as a soil amendment. 
Author(s) Location Soil type Type of biochar Biochar 

application rate 
Crop 

Van 
Zwieten 
(2007) 

Australia Semi-tropical 
soil 

 4 t/acre Wheat, 
soybeans 

 Crop response: Wheat: biomass tripled. Soybeans: biomass more than doubled. Percentage increase 
in biomass is the same when nitrogen fertilizer is applied together with biochar.  Biochar raised soil 
pH at about 1/3 the rate of lime. 

Van Zwieten et 
al. (2007) b 

Australia Ferrosol Paper mill sludge 4 t/acre Wheat 

 Crop response: 30-40% increase in wheat height in acidic soil but not in alkaline soil.  Response 
was attributed mainly to the liming value of biochar. 

Collins 
(2008) 

Washington Quincy sand, 
Hale silt loam 

Peanut hull (PH),  
fir bark (SB) 

0, 5, 10 and 20 
t/acre 

Wheat 

 Crop response:  Quincy: Root-shoot ratio of wheat decreased in all application rates of biochar. 
Hale: Using PH, decline in root-shoot ratio of wheat at 10 t/acre of biochar compared to nil; no 
change at 5 t/acre and 20 t/acre.  Hale: Using SB, root-shoot ratio of wheat increased in all 
treatments. 0.5 to 1 unit increase in soil pH due to biochar addition 

Chan et al. 
(2008) 

Australia Alfisol Poultry litter 0, 4, 10.1 and 20.2 
t/acre 

Radish 

 Crop response: With biochar, without N fertilizer: yield increased from 42% at 4 t/acre of biochar to 
96% at 20.2 t/acre of biochar, relative to the yield from unamended control. 

Van 
Zwieten et 
al. (2008)c 

Australia Ferrosol Poultry litter (PL), 
Paper mill 
waste(PM) 

Maize: 0.2-20.2 t/acre 
PL. Beans: 4 t/acre PL 
and PM versus 1.2 t/acre 
lime 

Maize, 
Faba beans 
 

 Crop response: Maize: 51% yield increase at 4 t/acre; and 109% yield increase at 20.2 t/acre 
compared to nil.  Beans: Yields are highest with biochar plus fertilizer, compared to biochar alone.  
PL biochar outperformed lime amendment. 

Sources: a Adopted from Glaser et al. (2002); b Adopted from Chan and Xu (2009); c Adopted from 
Blackwell et al. (2009) 
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Table 2 
Selected characteristics of six biochars (slow pyrolysis at 500oC) used in the laboratory analyses. 
Source of biochar Biochar Characteristics 

C N S C:N C:S pH 
 --------- % ---------    
Switchgrass 60.5 2.06 0.20 30   350 9.4 
Digested fiber 66.7 2.23 0.30 30   228 9.3 
Peanut hull 70.6 1.74 0.04 41 1203 9.6 
Bark (UGA) 74.5 0.34 0.03 220 2833 7.6 
Softwood bark 77.8 0.44 0.06 176 1482 8.4 
Wood Pellets 80.0 0.14 0.04 588 1855 7.4 
Activated Charcoal 87.3 0.47 0.80 186   114 9.1 
Source: Collins (2008). 
Note: Activated charcoal is included as a standard analysis and comparison to biochars. 
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Table 3 
Comparison of profits from winter wheat productiona (US$ per acre), with and without biochar 
application. 
Scenario Revenue CO2 

Offset 
Valueb 

Total 
Costc 

Cost of    
Ag Limed 

Cost of 
Biochard 

Profite 

Without biochar or 
agricultural lime application 

$438 — $415 — — $23 

       
With ag lime application $694 — $415 $133 — $146 

       
With biochar application, when offset price is $1/MT CO2 and the price of biochar (PB) is… 
PB1 = $350.74/metric tonf $694 $90 $415 — $10,740 -$10,371 
PB2 = $114.05/metric tong $694 $90 $415 — $3,492 -$3,123 
PB3 = $87/metric tonf $694 $90 $415 — $2,664 -$2,295 
       
With biochar application, when offset price is $31/MT CO2 and the price of biochar (PB) is… 
PB1 = $350.74/metric tonf $694 $2,799 $415 — $10,740 -$7,662 
PB2 = $114.05/metric tong $694 $2,799 $415 — $3,492 -$414 
PB3 = $87/metric tonf $694 $2,799 $415 — $2,664 $414 
Figures for the revenue, CO2 offset value, cost and profit are rounded to the nearest whole number. 
a The assumed base soil pH is 4.5. Biochar or agricultural lime application is intended to raise the assumed soil pH 
to 6. 
b CO2 Offset Value = 90.29 metric tons of CO2 offset per acre from avoided emissions of lime and biochar C 
sequestration (see Appendix) times the price of CO2 offset ($1 or $31 per MT CO2). 
c From 2008 Enterprise Budget for Eastern Whitman County, Conventional Tillage (Painter, unpub.).  To illustrate 
the estimation of a farmer’s profits with and without ag lime or biochar application, we chose Eastern Whitman 
County as example based on Mahler et al. (1985). The study found that the pH of soils in eastern Washington had 
significantly declined.  By 1980, more than 65 percent in Whitman County had a soil pH less than 6.  
d Excludes the cost of applying lime or biochar to agricultural land (machinery and labor cost). 
e Profit = Revenue + CO2 offset value – Total Cost – Ag Lime Cost – Biochar Cost.  All are in US$ per acre.   
f Obtained from Granatstein et al. (2009) 
g Based on the energy content of a wood-based biochar. 
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Fig. 1. Profit given the low/high price of CO2 offset and different prices of biochar. 
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Appendix 

Assumptions used to calculate the value of CO2 offset 

1. Case study:  Eastern Whitman County, a high precipitation region (more than 18” per year) 

2. Type of soil:  Silt loam. We use the base pH = 4.5 in Collins (2008) for Palouse silt loam. To increase 

the soil pH of silt loam by 1.5 units (i.e., from 4.5 to 6), the requirements are: 

o 2.85 short tons of lime per acre (or 2.59 metric tons/acre)*

o 33.75 short tons of biochar per acre (or 30.62 metric tons/acre)

; or 

†

Note the conversion 1 metric ton (MT) = 1.10231131 short tons. 

. 

3. Emissions avoidance and carbon sequestration from using biochar as soil amendment: 

o Avoided emissions for not using lime = 0.22 MT CO2 per metric ton of limestone‡

o Biochar C sequestration = 0.8 ton per metric ton of carbon or 2.93 MT CO2

 

§
 per metric ton of 

biochar applied to the soil**

4. Estimated carbon sequestration per acre (CO2 offset per acre) given application of biochar to 

cropland: 

 

o Avoided emissions for not using lime =  

2.59 MT lime∗(0.22 MT CO2/metric ton of lime) ≈ 0.57 MT CO2 

o Biochar C sequestration =  

30.62 metric ton of biochar∗(2.93 MT CO2/metric ton of biochar)  ≈ 89.72 MT CO2 

o Total value of CO2 offset per acre ≈ 90.29 MT CO2 
                                                 

* Source: California Plant Health Association (CPHA). 2002. Western Fertilizer Handbook, 9th edition. 
Danville, Illinois: Interstate Publishers, Inc. 

† Source: H. Collins, unpublished data.  Palouse silt loam soil analysis, biochar analyses.  
‡ Source: West, Tristram O. and Allen C. McBride. 2005. “The Contribution of Agricultural Lime to Carbon 

Dioxide Emissions in the United States: Dissolution, Transport and Net Emissions.” Agriculture Ecosystems and 
Environment, 108:145-154. 

§ To convert from carbon to carbon dioxide, multiply by 44/12 (~3.67) (Blasing, T.J. et al., 2004. Estimates 
of Monthly CO2 emissions and Associated 13C/12C Values from Fossil Fuel Consumption in the U.S.A. Available 
at: http://cdiac.ornl.gov/trends/emis_mon/emis_mon_co2.html. 

** Based on biochar content of pine pellets.  Source: Collins, Hal. 2008. “Use of Biochar from the Pyrolysis 
of Waste Organic Material as a Soil Amendment: Laboratory and Greenhouse Analyses.”   Quarterly report prepared 
for the Biochar Project (December 2008). 
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