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Abstract

Imposing the natural rate hypothesis (NRH) can dramayicdter the determinacy bounds on mone-
tary policy by closing the output gap in the long run. | shoatttine hypothesis eliminates any role for
the output gap in determinacy and renders the conditionddtarminacy identical for all conforming
supply equations. Specializing further to IS demand, datecy depends only on the parameters in
the interest rate rule and a pure forward or backward-lapkifiation target is inconsistent with deter-
minacy. Monetary policy that embodies the Taylor principléh respect to contemporaneous inflation

delivers a determinate equilibrium in all models that $atise NRH.
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1 Introduction

What are the consequences of the natural rate hypothesid)(fdRmonetary policy? | address this
question in the context of the determinacy bounds on theyalile for the nominal interest rate. The
NRH, which posits that the output gap is closed on averagardégss of nominal quantities, is not
fulfilled by the standard model for monetary policy analy#ie sticky-price New Keynesian model.
As | show that the bounds under the NRH can differ quite suibistidy, my analysis demonstrates that
New Keynesian determinacy analyses are not robust to the &Ras such, requiring fulfilment of
this hypothesis is of direct consequence for policy reconaagons.

The central contribution of this paper is an equivalencelte$or a given demand schedule, the
bounds on monetary policy to ensure a determinate equitibere identical for all supply equations
that satisfy the NRH. This result rests intuitively on thesefvation that all such supply equations
behave identically in the long run, positing a vertical lenug Phillips curve at the natural rate. Thus,
the novelty of my analysis is the positive result that idigedithe limits to monetary policy for there to
be determinacy when the NRH holds.

Several specific results are derived from this equivalemckthe long-run restriction of the hy-
pothesis. First, regardless of the specification for demantput gap targeting is wholly irrelevant
for determinacy under the NRH. With the long-run Phillipsvauvertical in all NRH specifications,
the output gap cannot be leveraged to substitute for vigmuirtflation targeting. Under standard dy-
namic IS demand, the only model parameters relevant formetacy are those in the interest rate
rule itself. The long-run closure of the output gap redudes|8 equation to a Fisher-like equation
with no reference to parameters in the demand equation hvdoimbined with the equivalence on the
supply side removes reference to all model specific paramegalditionally, the combination of IS
demand and the NRH strips all policies that only target eiplast or future inflation of any horizon of
determinacy for all parameter constellations. In the abseha dynamic tradeoff in the Phillips curve,
forward-looking or backward-looking inflation targets cah be translated into a nominal anchor for
contemporaneous nominal developments. The flip-side ®higative result is that the necessary con-
dition of a more than one-for-one response to inflation (dnddr principle) can be combined with the
additional sufficient condition that more than half of thesponse be directed towards current inflation

to ensure a determinate equilibrium for any supply spetifinaghat satisfies the NRH.

1See, e.g., Woodford (2003, p. 254), McCallum (2004), G008, p. 78), and McCallum and Nelson (2011).



McCallum (2004, p. 21) noted that the widespread agreeméhinathe profession regarding
the validity of the natural rate hypothesis (NRH) “has saggtyi been implicitly overturned, not by
argument but merely by example, via the widespread adopfitime famous Calvo (1983) model of
nominal price stickiness,” a development that Wolman (2@07.366) called “an awkward situation
in monetary economics.” McCallum (1998) and subsequerattydalled for monetary policy analysis
to be conducted within the confines of NRH. Efforts have beewerto reconcile the NRH and the
New Keynesian framework, notably Andrés, Lopez-Saligag Nelson’s (2005) examination of the
NRH and New Keynesian models with an emphasis on the roleeof\fRH for models’ dynamics
or Levin and Yun’s (2007) model that brings the standardkgtjgrice model closer to the NRH by
endogenizing the contract length. | extend these effortisé@nalysis of determinacy.

Policy recommendations from determinacy analyses comeiform of bounds consistent with a
unique saddle-path stable equilibrium on parameter valuasnonetary policy ruIQ.These bounds
present a “First, do no harm” recommendation for monetahgpto ensure uniqueness of an equilib-
rium while being silent as to what that equilibrium might iomelly beH The notable precursor to my
analysis is Carlstrom and Fuerst (2002), who examine détewy under a narrower scope of interest
rate rules in their specific NRH model. They explicitly make tonnection between determinacy of
nominal variables in a fully flexible model and determinaecytheir model with rigidities. Unfortu-
nately, their analysis is limited to their specific modelippsetup; this paper generalizes and extends
their insights to a range of policy rules and a class of moithelssatisfy the NRH.

Methodologically, | foreshadow the formal derivation okthesults with an informal thought-
experiment approach that derives the entire set of detewyiresults under IS demand by exploring
borderline stability cases. | compliment the textlﬂ)tﬂought experiment of finding the nominal in-
terest rate response to a permanent increase in inflatibrethaes the long-run real rate positive with
a second thought experiment on the opposite side of the iuclg @anplying a permanent oscillation in

inflation that identifies the remaining determinacy boBersides offering access to the main results

2While determinacy is neither the only criterium for evalngtthe uniqueness of an equilibrium—see, e.g., McCal-
lum (2003) for an overview of some competitors: his MSV aslwsl E-stability and LS-learning—nor is its validity
uncontested—see Cochrane (2011), it is the current stdradderium in the literature. As McCallum (2009, p. 26)
notes, the subject appears on “75 different pages in MicWaeddford’s hugely influential treatise Interest and Prices
(Woodford 2003). In addition, the number of new writings §ks, articles, and working papers) with both of the phrases
‘indeterminacy’ and ‘monetary policy’ appearing in thegxt was 166 over the time span January 1995 through June’2008.

3See Woodford (2011) for an overview of recent advances sdinection.

4See, e.g., Woodford (2003, p. 254) and Gali (2008, pp. 78-79

SIf the model is a local approximation, it is important to nttiat use of permanent shifts in the thought experiments
in no way contradicts the applicable locally-bounded-#oium approach of Woodford (2003). As made explicit by



through a second and far less formal channel, this appraasesthe dual purpose of highlighting
that it is indeed the violation of the NRH in the sticky-prggpply equations that is at fault, as well as
providing an intuitive insight into the nature of the muligity that determinacy seeks to avoid. For
comparison with the sticky-price IiteratLHegn inventory of rules comprising inflation targeting (con-
temporaneous as well as forward and backward looking) ubggmp targeting, interest-rate smoothing,
as well as exogenous interest rate rules is examined formaigizcy.

The formal derivation contributes a lemma to the literatimreassessing determinacy in a broad
class of Iinezﬁ models with arbitrary leads, lags, and lagged expectaborthe basis of two condi-
tions, a stand addle-point consideration from Anderson (2010) and dvabdity of any remain-
ing undetermined expectations structure from Meyer-G@a@&0). The generality of the model class
examined does not, on its own, rule out isolated singula&s%lbut excepting for such cases, a general
equivalence of the determinacy bounds among all admissibliels that satisfy the NRH is proven.
Finally, in applying a simplification of the Schur-Cohn eribn, | provide a completed classification
of the conditions that sort the zeros to a second order patyaido either side of the unit circle.

The remainder of the paper is organized as follows. SeCtlmefy examines the standard sticky-
price New Keynesian model and its relation to the NRH. | usethought experiment approach in
section_B to derive the determinacy bounds for the standankl/sprice and models that satisfy the
NRH in parallel. In sectionl4, | prove the main result of thep@a the equivalence proposition for
the determinacy bounds within a class of models that satiiefyNRH. Sectionl5 applies the result
to a particular interest rate rule that encompasses sewetaly studied rules, confirms the results
from the thought experiments, and explores the robustrféle one-period horizon for backward and

forward-looking targets. Sectiém 6 concludes.

Woodford (2003, pp. 78 & 633), the question of local determinreduces to examining whether the linearized system of
equations have a unique bounded solution. Thus, the hyticdhenbounded deviations from a rest point serve to coax th
boundaries of determinacy and do not undermine the locat@atf the approximation.

SE.g., Woodford (2003, Ch. 4) provides the literature-staddnventory of determinacy results, or Lubik and Marzo
(2007) presents a more recent compendium of determinaaijtses a standard sticky-price model. See Bernanke and
Woodford (1997), Clarida, Gali, and Gertler (1999), Brdland Mitra (2002) and Woodford (2003), among many others,
for the corresponding and contrasting results from stigkge models.

’In case the system has been linearized, determinacy haveakand not global. For the latter type of determinacy
analysis, see Benhabib, Schmitt-Grohé, and Uribe (20@i9se analysis shows that the Taylor principle for deteatyn
from local analysis does not carry over to the global analifsat takes the zero lower bound of nominal interest rates in
account. The analysis here abstracts from such complicatind restricts itself entirely to local determinacy.

8Anderson’s (2010) condition extends Blanchard and Kati®80) to higher leads and lags.

9For example, that the demand and supply equations arellraggendent at some expectational horizon.



2 The New Keynesian Sticky-Price Model and the NRH

The most prominent model for monetary policy analysis atyeis the standard New Keynesian
sticky-price model with Calvo (1983)-style overlappinght@cts in general equilibriu@ In its sim-
plest form, the model comprises three equations—demanblysuand a monetary policy rule—in
three variables—inflation, the output gap, and the nommakest rate. Demand is given by the dy-

namic IS equation

(1) Yt = Et [Yi+1] — aR +ak [T

R; is the nominal interest ratg, is the output gapig inflation, anda a positive parameter equal to the
intertemporal elasticity of substitution in the simpleshfiguration. The demand side relates expected
changes in the output gap positively to movements in theirdatest ratay = R — E;[Tg11]. The

supply side is given by the sticky-price Phillips curve

(2) Yt = % (T& — BE: [Tk11])

wheref3 is the discount factor, ankl a positive composite parameter that depends, among othrers,
the probability of a price change. Of note is the non-stath@aesentation of the Phillips curve, with
the output gap on the left-hand side, which will ease the sitjom when examining the fully flexible
limiting casSeveraI different specifications for monetary policy infibven of a Taylor (1993)-type
rule for the nominal interest rate will be explored to cldse model.

The central focus of my analysis rests on the fulfillment ¢ RH by the supply side. As
encapsulated by Friedman (1968, p. 11), the NRH capturestaatéenet of monetary theory that
though “there is always a temporary trade-off between inftednd employment; there is no permanent
trade-off.” Lucas (1972) provides the formalization of tiBRH that | will us namely that for the
NRH to be fulfilled,E [y;] = 0 must hold for any monetary policy and, hence, regardlessaofetary
policy. The sticky-price Phillips curvé](2) does not in gelesatisfy the NRH, as has been noted by

many including Woodford (2003, p. 254), McCallum (2004)iGa008, p. 78), and McCallum and

105ee, e.g., Woodford (2003, p. 246) or Gali (2008, p. 49)drttiook-length expositions.

Hadditionally, this presentation is consistent with Modgii’'s (1977, p. 5) assessment that the NRH “turns the standa
explanation on its head: instead of (excess) employmersimginflation, it is (the unexpected component of) the rdte o
inflation that causes excess employment.”

MccCallum (2004, pp. 21-22) draws a distinction betweené@iman’s weaker version” and the “stronger Lucas ver-
sion” of the NRH. The former states that a higher, but corstate of inflation cannot permanently affect output and the
latter that no path for prices, inflation, inflation growthc.e can permanently keep output above its natural level Lu
cas’s (1972) is the version that McCallum (1994) argues lshoeiupheld by monetary models—repeated more directly in
McCallum (1998, p. 359)—and will be the version imposed inanglysis.



Nelson (2011), as it does posit a permanent tradeoff. Tadsgaibte that from the perspective of time
t—Kk,

1
(3) Ei kW] = EEt_k [T& — BTE+1]
the tradeoff between the output gap and inflation remainkamged. That is, the sticky-price model
posits the same dynamic tradeoff at all expectational basz Setting3 to one or using indexati
may remove a static tradeoff, but cannot remove the dynamioff in [2 Yet, ask — o, the
sticky-price Phillips curve il (2) in fact does satisfy th&N.

@ lim yi = Jim (7§~ BEc[e.1]) = 0
Of course, in this case, the probability of a price changesgo@ne and the Phillips curve posits no
tradeoff, simply stating that the output gap is always dos&s | proceed to derive the determinacy
bounds on monetary policy, note that only the limiting case«) of the bounds themselves from
the sticky-price model will coincide with the bounds obtdrdirectly under the NRH. This underlines
the crucial role that the sticky-price model’'s permaneati¢&off has played in existing determinacy

studies.

3 Determinacy via Thought Experiments

In this section, | derive the determinacy bounds in the bidsie Keynesian model, both when the NRH
is fulfilled and for the standard sticky-price case, by exang the threshold response of the nhominal
interest rate to ensure a positive response of the (longraah rate to a permanent pattern of change
in inflation. Using a thought experiment approach is usedut dispenses with much of the technical
exposition of later sections necessary to formally estabdne bounds on determinacy in a broader
class of models that satisfy the NRH, enabling more inteigigcess to the results. The constant pattern
for inflation is the standalgthought experiment to evaluate whether the Taylor prirciflds under

a given monetary policy rule and the constant oscillatirttgpa captures another Taylor principle-type
unit-root threshold case. With this approach, | will dentosite the dramatic effect that imposing the
NRH can have on the traditional determinacy bounds posiliay the New Keynesian model. Under

the NRH, output gap targeting of any degree is ineffectiMeringing about a determinate equilibrium

135ee Yun (1996) for a constant indexation, Christiano, Hiblaeim, and Evans (2005) for full dynamic indexation and
Smets and Wouters (2003) for a partial dynamic indexation.

L4For more on this point, see McCallum (2004) and McCallum agtséh (2011).

15See Woodford (2003, p. 254) and Gali (2008, pp. 78—79) kabtek applications.



and forward-looking or backward-looking inflation targegiof any degree fails to secure determinacy

unless the central bank smoothes interest rates.

3.1 The Thought Experiments

The Taylor principle, e.g., Taylor (2001, p. 331), captuties idea that for monetary policy to be
stabilizing, the real interest rate should increase in #ice bf a sustained increase in inflation so as to
exert a countervailing downward pressure on inflation bytremting demand. This principle can be
recast as a thought experiment of the effect on the real fatp@ermanent permanent pattern of change
in inflation (dTg), where the threshold response to ensure a countervailovgment in the long-run
real interest rate is calculated via the demand equationill Identify the threshold response using
the same demand equation, the New Keynesian standard dyt@&exuationl({1), but will distinguish
two cases for the supply side: the sticky-price Phillipsveuf2) and the NRH case. That is, | will
not specify a specific formulation of the supply curve unéherfIRH, but will derive the determinacy
bounds by simply appealing to the neutrality propertiesdegul by the NRH.

I will consider two different permanent patterns in inflatio elicit the threshold responses of the
nominal interest rate consistent with the Taylor principl&e first pattern is a constant increase and
the second an oscillating pattern with a constant amplifutte (trigonometric) period equal to two
(model) periods. For the first, textbook standard pattera @érmanent, constant increase in inflation
(call it drg = d1g1), the threshold value to bring about the necessary couaitiery movement in the
real interest rate is given bg% = 1: any cumulative reaction of the nominal interest rate tgretan
the increase in inflation will bring about the necessaryaase in long-run real interest rate to contract
demand. This can be confirmed in both models (sticky price MR&i) by noting that a constant
pattern in inflation translates into a constant pattern endhtput gap. For the sticky-price model,
through the Phillips curveé(2),

(5) dyt = %(drrt —dmgyq) = %BT& = d¥t41

and for the NRH model, by virtue of the NRH, the output gap isessary closed in the long run, so
the associated pattern relevant for the long-rung reatasteate iy = dy,1 = 0. With a constant
output gap in both models, the neutral movement in the lamgreal interest rate (call dry) is zero,

as can be confirmed by plugging the long-run pattern of theudwap into the demand equatidnh (1)
(6) dy =dy.1—adrr = 0=dr



Thus any positive long-run movement in the real intere& vaiuld present a countervailing force to

stabilize the postulated increase in inflation. From thenitedn of the real interest rate it follows then

drgq
(7) 0<dr=dR >{ dmg

drg_1
The nominal interest rate must move more than one for oneinfidtion to achieve this increase in

the real rate—the celebrated Taylor principle.

The second pattern | will use is non-standard and is designadapt Lubik and Marzo’s (2007)
insight that non-monotonic sunspot dynamics are not ondgitde in these models, but are associated
with some policy and parameter regions of interest. Comsadeoscillating pattern with a constant
amplitude and (trigonometric) period equal to two (modelipds (call it—dg = d1g,1). Thisis a
“unit-root” sunspot in inflation just like in the standardp@timent, but with the root located differently
on the unit circle ¢ 1 here instead of the 1 above). Unlike the first experimeetnt#utral movements
in the long-run real rate in the two models is different bytwer of the dynamic tradeoff in the sticky-
price Phillips curve discussed in the previous sectionntira the sticky-price model first: the Phillips

curve [2) delivers (as-dmg = drg, 1)

1 1+
® dy = (dn —dri 1) = T Py
thus (again, as-dmg = drg..1), dytr1 = —dw. Inserting this into the IS demand (1) equation
9) dyt:dytﬂ—adrt:—gdyt:drté—zl%ﬁdm:drt

Monetary policy’s rule for the nominal interest rate musivensure that the real ratelessthan this

threshold value (recall the location on the unit circle-ik)

- <1+ 2%‘) dme 1
+ 1
(10) —2?Tﬁ >drr=dR < —(1+2%B> drg

<1+ Z%B) drg 1
Of note is that this upper bound on the elasticity of the na@himterest rate with respect to inflation

is negative for current inflatitJﬁ but positive for both future and past inflation. Turning te tiRH
model for the oscillating inflation pattern, by virtue of tN&H, the output gap is necessary closed in
the long run regardless of the pattern of inflation, so the@ated pattern relevant for the long-rung

real interest rate ig = y; 1 = 0. Thus, from demand(1)

(11) dy =dy.1—adr = 0=dr

16This illustrates that a region of determinacy exists foegativeelasticity here, see King (2000, p. 79).



for the real rate to be less than this threshold (again, Irtf@location on the unit circle),

drg g
(12) O0>drr=dR << —dmg

dmg 1
As in the sticky-price model, this upper bound is negativeciarrent inflation, but positive for both

future and past inflation. King’s (2000, p. 79) conclusioattthe zone of indeterminacy under cur-
rent inflation targeting is greater with sticky than with flae prices is illustrated by this bound with
the maximal elasticity precisely1 for the NRH model but generally less tharl for the sticky
price model. Yet, the relevant range of elasticities in thenetary policy rule is arguably limited
to positive elasticitie@ and the positive upper bounds associated with future andinféetion im-

ply exactly the opposite conclusion. In what follows, | wiksh out the consequences of these two
thought-exEriment bounds for a broad range of interestrtdés, maintaining the positive elasticity

assumptio

3.2 Exogenous Interest Rates

The simplest example of an exogenous interest rate is aregtteate peg that keeps the nominal in-
terest rate equal to some exogenously given constant. Apgéa the thought experiment, it follows
immediately that the model cannot be determinate: theasteate is constant (or exogenous to infla-
tion) and, hence, cannot increase more than one-for-omeifate of a permanent rise in inflation.
The same logic applies to any bounded, exogenous procetbefonterest rate. Determinacy rests
on the homogenous part of the system of difference equatidnish captures the response of monetary
policy to deviations from some stochastically varying malupath in the words of King (2000). The
interest rate, properly normalized for this neutral pashagain constant and, as such, determinacy
can be assessed for any bounded exogenous interest ratethmdame conditions as for a constant
interest rate. Thus, any constant or bounded exogenousshtate rule is necessarily associated with
indeterminacy—the Sargent and Wallace (1975) result. @trigesponds to Woodford (2003, p. 253)
and confirms McCallum’s (1981) result that a nominal interate rule must involve feedback from

endogenous variables if Sargent and Wallace’s (1975) énahétacy is to be overcome.

17See, e.g., Bullard and Mitra (2002), Woodford (2003), antikand Marzo (2007).
18Readers unsatisfied with this assumption are directed twe¢h€5.1 in sectiohl5 for the general case.



3.3 Output Gap Targeting

Consider, now, an output gap targeting interest-rate rule

(13) R = @

| will go right to the determinacy bounds, derived using theught experiments laid out above.
For the sticky-price model, froni(7), the response of the imairinterest rate must be greater than
that of inflation. In the sticky-price model, movements ie thutput gap correspond to movements in
inflation even in the long run, with the relation, as derived3), given bydy = 1%Bdﬂ't. Thus, as
3—2 = ‘é—&ﬁ—% = (pyl;KB, if (pyl%[3 > 1 the model is determinatd. For the NRH model, the permanent
change in inflation has—by virtue of the NRH—no permanentantmn the output gaplf = 0).
Hence,g—i = g—ﬁg—% = 0 and the response of the nominal interest rate cannot exbeeatecessary
threshold value with an interest rate rule that targets dméyoutput gap. The second experiment
places an upper bound on the threshold response of the niamtierest rate. But it is negative and
with a positive tradeoff in the sticky-price model, no pagtdegree of output gap targeting can fulfill
this condition. As in the first experiment, the nominal ietgrrate will not respond at all in the long
run under the NRH and no degree of output gap targeting caug lathout the necessary response in
the long-run real rate.

Contrary to Woodford’s (2003, pp. 254-255) claim that “g&enough [response tejther[the
output gap or inflation] suffices to guarantee determingeyriphasis in the original) if the feedback
from endogenous variables is limited to the output gap, rpekeof output gap targeting can induce
determinacy. The culprit: the non-vertical long-run Rp8glcurve in sticky-price models allows mone-
tary policy to substitute output gap targeting for inflattargeting so as to satisfy the Taylor Principle,
a possibility not available if the NRH is upheld. Without arp@nent output-inflation tradeoff as in

the sticky-price model, the Taylor principle cannot be fldél under a pure output gap target.

3.4 Contemporaneous Inflation Targeting

Consider now an extended (by interest rate smoothing angubggap targeting) contemporaneous

inflation targeting rule

(14) R = grR -1+ 0Tk + Q¥

19See Woodford (2003, p. 254) and Gali (2008, p. 77)pget 0 and note that Woodford's (2003, p. 25%)is equivalent
to my @, (see Woodford (2003, p. 246)).



Turning to the first thought experiment, the effect on thd rate of a permanent increase in
inflation (d1g = d1%1). For the sticky-price model, the threshold response ohtirainal interest rate
is just equal to that of inflation, sekl (7). Inserting thiesirold response along with the response of
the output gap to inflation from the previous section itfg)&iéldsg—% =QR+Q —l—(pyl%ﬁ. This must
be greater than the borderline case of one, which delipers 1 — @r — (pyl%B Under the NRH, as
before, the permanent change in inflation has no permangrtcnon the output gam{ = 0). With
the threshold response of one, it now follows framl (14) %%t: Or+ @ > 1. The Taylor principle
can be satisfied under the NRH only by a sufficiently vigorousglative reactionﬁdm) of the
nominal interest rate to inflation.

The interpretation under the NRH is the one generally giwethé Taylor principle, despite the
pervasiveness of the sticky-price model in the literatuhéctv allows monetary policy to substitute a
reaction to the output gap for a reaction to inflation at the l@g (the long-run slope of the Phillips
curve). Under the NRH, the monetary authority is unable teevsauch a trade with a long-run vertical
Phillips curve and must, then, satisfy the Taylor princighiectly. The second experiment of oscillat-
ing inflation again places a negative upper bound, see tleeafas in (1), on the threshold response
of the nominal interest rate: restricting policy rules tesipwe elasticities, no parameter combination
can satisfy this condition.

The results under the NRH reiterate the conclusion thatutgap targeting is irrelevant for de-
terminacy. The absence of parameters outside of monetdigy pas the convenient attribute that
determinacy can be evaluated on the merits of the interestube alone. Woodford’s (2003, p. 255)
indirect interpretation of Taylor (2001), requiring pargter estimations of the sticky-price Phillips
curve is not necessary under the NRH model. Indeed, takingdiigod's (2003, p. 255) analysis lit-
erally, one could just as easily conclude that indeternyiiathe pre-Volker era was due to too small
a concern of monetary policy for the real economy and not ssandy to too weak of a reaction to

inflation; a conclusion which could not be reached if the NRipheld.

20See Woodford (2003, p. 255), but note that $iss equivalent to myp,.
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3.5 Forward-Looking Inflation Targeting

Consider an extended (again, by interest rate smoothingatplt gap targeting) inflation-forecast

target

(15) R = ORR -1+ OrEe [Th 1] + @1t

| again turn to the thought experiments, though now the stegperiment will be of consequence.
First, in the case of a permanent increase in inflation, theedawer bound is derived as in the case
of contemporaneous inflation targeting. In the special gase gz = 0, this lower bound is given by
@r > 1 in both the standard sticky-price model and NRH modelsowiihg for interest rate smoothing
enables the monetary authority to spread the needed mareotiefor-one increase in the nominal
rate over many periods in accordance with the cumulativéofayrinciple. The presence of output
gap targeting then differentiates the results of stickggpand NRH models, with the non-vertical
Phillips curve of the former allowing the monetary authpta substitute output gap targeting for the
necessary inflation targeting at the ré{&, the long-run slope of the Phillips curve.

Turning to the second experiment with oscillating inflationdrg = drg..1), the threshold re-
sponse of the nominal interest rate for the sticky-price ehodee [(ID), is now given bR =
<1+2%B) drg.1. From [15), noting the oscillatory paths and the tradeofivieen inflation and the
output gap, it follows thal R = grdR_1 + @rdTE 1 + @, dyt becomesiR = —¢r (l-l— 21%3) drg 1+
QrdTe 1 — cpyl%ﬁdmﬂ ordR = (—(pR (1+2%B> +Qr— (pyl%ﬁ) drg1. The response of the nom-
inal interest rate must be below the threshold value, [s€g @@ this requires-gr <1+ Z%B) +
P — (p),l%B < 1+21%B, or On < (14+¢Rr) (l-l— Z%B) + (p),l%ﬁ For the NRH model, the thresh-
old response of the nominal interest rate, dee (12), is diyedR = drg1. From [15),dR =
PrAR_1 + @rdTe1 + @y dyt Which, noting the oscillatory paths and that the permankange in in-
flation has no permanent impact on the output ghp £ 0), becomeslR = —@rdTt .1 + @Ak 1 OF
dR = (—@r+ @) dTg 1. For the response of the nominal interest rate to be belothtieshold value,
this requires—@r+ @ < 1 Or O < 1+ @R.

The lower bound requires the interest rate to follow the dafArinciple, necessitating an active
interest rate. The upper bound, however, requires thattieeeist rate not be overly aggressive, lest
“the output gap and inflation [be] projected to converge bacthe steady stateegardlessof their

values in the current perio@ The difference is that in the absence of interest-rate snogtthe two

21See Woodford (2003, p. 258), noting that pisorresponds to mig and his% to my ¢.
22| evin, Wieland, and Williams (2003, p. 628). Emphasis in thiginal.
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bounds collapse, meaning every interest rate rule of tipis iy either too aggressive or not aggressive
enougl@ The history dependence induced by feedback on the lagge#ttrate is enough to open
a window of determinacy for the forward-looking rule. Yetaag determinacy is independent of the
degree of output gap targeting and of parameters outsidatdrest rate rule, contrary to sticky-price
analyses. The lower bound conforms to Woodford’s (2003 6p.ir®ertial modification of the Taylor
Principle: the cumulative response of the nominal intera& must react more than one-to-one to a
sustained deviation in inflation. Woodford (2003, p. 25%aeks that with “coefficients in the range
that is likely to be of practical interest, [the upper bouraks]| not seem likely to be a problem;”
likewise Gali (2008, p. 79). These assurances are lessrming if one requires the NRH to be
fulfilled.

In the special cas@, = ¢r = 0, note that the determinacy region disappears under the: liRkre
inflation-forecast targeting rule is necessarily indeie Contrary to sticky-price models, there
is no region of determinacy for pure inflation-forecast édirgg rules. The pervasive indeterminacy
under the NRH would certainly seem to be more consistent Witlodford’s (2000) discussion of
the non-optimality of purely forward-looking monetary @yl rules than the analogous analysis in

sticky-price models.

3.6 Backward-Looking Inflation Targeting

Consider an extended (again, by interest rate smoothingatpait gap targeting) backward-looking

inflation target

(16) R = @rR -1+ QT -1 + Gyt

The determinacy bounds for the backward-looking targetideatical to those for the forward
looking target, noted also by Lubik and Marzo (2007). To des tising the thought experiments,
observe that the first experiment delivers the same lowend@uiderived as in the case of contempo-
raneous inflation targeting. This follows as timing is ievdnt in this experiment{ = 1% 1). Turning
to the second experiment with oscillating inflatioar¢ = 1%, 1), the threshold response of the nomi-

nal interest rate for the sticky-price model, de€ (10), iw goven bydR = (14—2%3) drg_;. From

23This indeterminacy can also be seen by considering thefgpBi&H supply sidey; = 0. This reduced{1) t& =
E: [Te+1], the Fisher-like equation from the frictionless case. Taeepnflation forecast targeting rule & = @rE; [Tg11].
The system of these two equations can at most pin dawandE; [Tt 1], leavingTs undetermined. See footnote 49 of
King (2000, p. 80).

24The result of Carlstrom and Fuerst (2002) and Michael Dogseyommunicated to King (2000, p. 80).
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(@8), noting the oscillatory paths and the tradeoff betwiediation and the output gap, it follows
thatdR = (—(pR <1+ 2%) +Qr— cpyl%B> drg_1. The response of the nominal interest rate must
be below the threshold value, s€el(10), and this requires (1+ ¢r) <1+21Kif> + (pyl%ﬁ as with
forward-looking moentary policy. For the NRH model, theetsinold response of the nominal interest
rate, seel(12), is given R = dmg_1. From [16),dR = grdR_1 + @rdTe_1 + @,dyt which becomes
dR = (—@r+ @) dr_1. For the response of the nominal interest rate to be belothtieehold value,
this requiresp; < 1+ @, as in the case of a forward looking target.

I now turn to the formal analysis of the paper to generalinesé results to a class of models
that satisfy the NRH and a wider range of interest rate rules. results derived informally here for a
number of specific monetary policy rules will be confirmedialtly in sectioi 5.1 and an interpretation
for the differences between the NRH case and the sticky maiidde given in section 512, building

on the intuition developed with the formal results in the augrsections.

4 Determinacy and the Natural Rate Hypothesis

This section derives the main result of the paper; afterrtpintroduced the class of models and
derived the conditions for determinacy in the class, | prameequivalence property among these
conditions for models in the class that satisfy the NRH. Ttaénmmesult is that all models, saving a
few isolated singularities, that satisfy the NRH are deteate under the same conditions on monetary
policy for a given demand equation; that is, the nature ofsti@rt-run tradeoff (if any) in the supply
equation is inconsequential for determinacy bounds on moy@olicy. Additionally, if the NRH is
fulfilled, then the degree of output gap targeting (if anyiyislevant for determinacy—the output gap
is closed in the long run by virtue of the NRH and provides n@tage for monetary policy to fulfill
the Taylor principle. Finally, if demand is given by standié® demand, the only parameters relevant
for determinacy are those in the interest rate rule of map@licy. The class of models encompasses
all three-equation models in the output gap, inflation, dredrtominal interest rate with finite leads,
lags, and expectational lags. The number of leads, lagsgrettational lags is arbitrary leading to a
rather general class of rational expectations models. Tmelard New Keynesian model is a special
case and | show how it fits into the broader class | define. Lsi¢A872) NRH as applied to the class

| study reduces to the condition introduced by Carlstrom laneérst (2002) and | link the NRH to a

parameter restriction on sums of coefficient in the suppiyagiqn.
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4.1 Model Class

Consider the following class of three-equation (i.e., syp@emand, and monetary policy) linear
rational-expectations models
(17) 0= % DECiXij, %=[R T %], 0<pmn<e
wherey; is the output ga]u;,}r?nflatlon, andR; the nominal interest rate. With three variables and three
equations, the matrice3(i, j)’s are of dimension X 3. The class encompasses all linear rational-
expectations models in the three variables of interes{thladve a finite number of leads (given hy;
(ii) have a finite number of lags (given log), and (iii) have expectations formed at horizons frioimto
the finite past — p The compact presentation of the classin (17) is chosendbnteal reasons that
will become apparent later but | shall first explore a patticexample, the standard New Keynesian
model, to make it more transparent.

The standard New Keynesian model has three equations itionfl#he output gap, and the nomi-
nal interest rate (salg = @nTk + @Y;, Taylor's (1993) rule) and has finite leads (namely, ame: 1),
lags (nonem = 0), and expectational lags (nope= 0). Thus, it fits within the class introduced above

and can be brought into the form 6f {17)
1 0 - 17[R 0 & o] [E[R4]
(18) 0= Z)Q(O,DEtXHj: —a 0 -1/ |m|+ |0 a 1| |E[m]
= -1 ¢ @] (Y] |0 0 O] [Ey+1]
with only two 3x 3 matricesQ(0,0) andQ(0, 1), being non-zero.

Notice in contrast to the standard New Keynesian model, a&rgeneral structure of model is
permitted by [(17). Besides requiring supply and demand ¢mlfit into the finite lead, lag, and
expectational lag structure of the class, monetary pobioyanly needs fits into the class. If monetary

policy is the third equation om% glven by
(19) 0= J)Ee—i [Xerj]
5,3 0
The class, of course, captures a wide range of interestukge found in the literature, including the

current and forward-looking inflation targeting, intereste smoothing, and output gap targeting as
examined in Woodford (2003) as well as the rules in Bullard ktitra (2002).

25Note that the absence of exogenous driving forces ih (17)candtants is without loss of generality. The conditions
for determinacy remain the same[if{17) is appended withostaty driving forces (i.e., | am investigating the propest
of the homogenous component of the system of differencetiemns.

28\WhereQs, (i, j) is the row vector given by the the third row @fi, ).
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4.2 The NRH in the Model Class

For the NRH to be fulfilledE [yt] = 0 must hold for any monetary policy. In the class of finite nede

defined in[(1T), this reduces to the following condition fr@arlstrom and Fuerst (200@,

Definition 4.1 (The Natural Rate in the Class of Models[in](17))
(20) Ei_k[y] =0Vt

Within the class there exists some maximal expectatiogghfeer which the slope of the Phillips
curve no longer changes. Thus, if the long-run Philips cigte be vertical as demanded by the NRH,
it must do so at some finite horizon, say

The list of dynamic models that satisfy (20) includes: AerjrLopez-Salido, and Nelson’s (2005,
p. 1034) “Sticky information, staggered a la Taylor,” aarid also in Koenig (2004), Collard, Dellas,
and Smets (2009), and Woodford (2011); other models of nstaggered predetermined prices such
as Fischer (1977) and Blanchard and Fischer (1989, pp. 3d0-&arlstrom and Fuerst’s (2002,
p 81-82) model in this spirit; the Mussa-McCallum-Barroe&mann “P-bar model’—see McCallum
(1994) and McCallum and Nelson (2001); as well as the expent Phillips curve of Lucas (1973)—
see also Sargent and Wallace (1975)—that formalized tienedtexpectations revolution. With the
exception of Calvo sticky-information models with an infenidistribution of expectational Ia@,
every linear intertemporal model that claims to satsifyasis (1972) NRH also satisfies the condition
of Carlstrom and Fuerst (2002), repeated heré ds (20).

The NRH can also be seen as a parameter restriction for miod@lg), given by
k
(21) Z)Ql’ha,j):o’ Vji=-m,...,nandh=1,2
i=

(22) Qun(i,j)=0,Vj=—-m,...,ni>kandh=1,2
where the subscripts iQ1 (i, j) refer to theh’th column of the row associated with the supply equa-
tion, assumed without loss of generality to be the first rolvsTondition requires that inflation and

the nominal interest rate at each lead and lag drop out ofupplg equation upon application of the

27An obvious extension of (20) that would be inconsequentiatiie analysis of determinacy but useful in analyzing
stochastic properties would allow the righthand side tiedifom zero by a stationary stochastic process orthogortak
remaining variables in the system.

28For technical reasons requiring the analysis of non-constefficient difference equations, | examine the deteacyn
properties of this model separately and cast doubt on theopied adherence of the model, whose origins can be found in
Mankiw and Reis (2002) and Bénassy (2003), to the NRH.
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conditional expectations operatoperiods ago
p n

0=Ey [Z}Z Qu(i, ))E—i [Rtj Thj yt+ﬂ/]
i=0j=—m

k n P n
:(%_Z Ql(i,j)> Bk [Rej T+ ] ytﬂ}urik_z Quli, DEi [Ryj Torj Yirjl’
I=0J=-m i=kj=—m
k n p n
— (Z) > Quga(i, j)) Erk [Yet ] +_Z<. > Quali, j)E-i [+
I=0)=—m i=k j=—m

which is assumed throughout to be a saddle-point equatitnresolvable expectations in the output
gap an(@ hence, the natural rate property follows and the output gafmsed on average irrespective

of monetary policy.

4.3 Determinacy: A Lemma

Here, | derive a lemma for the conditions under which deteaty obtains in the general class of
models in[(1V). This lemma splits the determinacy property a standard saddle-point problem and
a resolvability of the lagged expectation structure.

The following lemma establishes necessary and sufficiemdiions for models in the class (17)
to have a unique stationary solution. There are two conthtibiat need to be fulfilled. First, the
Blanchard and Kahn (1980) saddle-point condition need®ttullilled. Due to the variable number
of leads and lags in_(17), Anderson’s (2010) explicit extem$o such a case is used, eliminating the
burden of expanding the state space to fit Blanchard and Kgh@80) canonical form. The second
condition collects the set of equations needed to resolvéatiged expectatio,extending Meyer-
Gohde (2010) to the variable leads and lags of Anderson (2@H@ requires that it have a unique
solution. The lemma itself contains little novelty, but daimes existing results to be flexible enough
for the rather general class of models).

Lemma 4.2. For the systeni(17) to be determinate, i.e., to have a unitai®sary solution,

291f not, there exists the potential for an interaction of tteminal side with an increasing-returns-to-scale type of
indeterminacy as explored by Weder (2008). This is, howédnaond the scope of this paper.

30An example of how lagged expectations can be unresolvakbpiored starting witH (25).

31Boyd and Dotsey (1996) provide a somewhat similar resusigfn their uniqueness proof leaves a set of coefficients
arbitrary leading them to the apparently paradoxical aasioh that “the general solution is not unique.” Additidgal
by assuming the underlying homogenous system to be nomdaingnd using the resulting Jordan decomposition, they
are able to characterize a rank condition analytically. Géeeralized Schur decomposition, here from Anderson (2010
or likewise Klein (2000) among others, | use here allows fogslar cases to be analyzed, but comes at the cost of the
analytical analysis of this rank condition, which | abstriom following common practice in the literature. See also
footnotd 38 for more on this point.
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1. The model that results from replacing all lagged expeotest (those formed at time-t p for

p > 0) with their time t values must have a unique saddle-poirilstaolution.

2. The sequence of one-step expectation errors inducedebgtthcture of lagged expectations

must have a unique solution.
Proof. See appendixB. O

Again, the first condition requires that the model be deteatd if all lagged expectations are
replaced with time expectations, Anderson’s (2010) saddle point. While treoise requires that
one can uniquely resolve the lagged expectations, formglhiteman’s (1983, pp. 29-36) insight
that resolving lagged expectations, solving "withholdaostraints” in his terminology or removing

“arbitrary MA coefficients” in Boyd and Dotsey’s (1996), istgenerally a trivial task.

4.4 Determinacy and Monetary Policy

In this section, | apply the lemma from the foregoing sectmastablish the link between determinacy
in NRH models and determinacy in their fully frictionlessuoerparts, excepting for the indetermi-
nacy of expectational non-resolvability. This link enabiae to decouple the examination of deter-
minacy from the particular supply curve in an analysis s@las it satisfies the NRH, leading to the
equivalence result in theordm #.6. Finally, the ability bstaact from the particular supply curve al-
lows me to establish general results for determinacy gitemdsard dynamic IS demand for all supply
sides that satisfy the NRH in the admissible class.

First, |1 shall describe the frictionless counterpart benatk. Here, there is no impediment to
firms’ setting the optimal, full-information price everynoad. It follows by definition that the output
gap is always zero
(23) Vi =0Wt
i.e., the special case &f= 0 in the NRH definition[(20). This is a rather extreme versibthe NRH
also satisfied by the limiting case of the New Keynesian mesamined in sectionl 2. In this case, IS
demand[(ll) reduces to
(24) R = Et [T 4]

After k periods have passed since some disturbance from equitibesupply side that fulfill§_(20)
behaves identically to that df (R3), i.e., applying the dtindal expectations operator to the LHS of
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both supply sides yields zerok [ (23)] = E;_k[(20)] = 0. Hence, given a common specification for
the remainder of the model, any two models that satisfy (B0s6mek are identical in the long-run

(or indeed, aftek).

Proposition 4.3. Consider a model in_(17) that satisfies the NRHLof (20). Theahisddeterminate

only if the corresponding frictionless model—i.e., onés$ging (23)—is determinate.

Proof. If the model is determinate, pafts 1 did 2 of lemima 4.2 ardlédfi But par{l of lemma4l2
is the same for the frictionless model and is thus likewidiled. This leaves paiftl2 of lemnia 4.2.
But part[2 is necessarily fulfilled by the frictionless mogle matrix [B-15) in the proof of lemma
4.2 is lower triangular with all diagonal entries equal onence necessarily nonsingular). Thus, the

frictionless model that satisfids (23) is also determinate. O

Thus, a necessary condition for determinacy in any modékth#sfies the NRH is that the corre-
sponding frictionless model is determinate. The foreggrgposition proves the necessity of deter-
minacy in the underlying frictionless model, showing esisdly that the eigenvalue counting method
of Blanchard and Kahn (1980) is the same regardless of acila ofk.

Proposition 4.4. Consider a determinate frictionless model—i.e., one thasfes[(2B) in[(17). There

exist corresponding NRH models—i.e., that satisfy (20kfer0—that are indeterminate.

Proof. As the frictionless model is determinate, gart 1 of lenimaig Rilfilled. This system is the
same for the NRH model and hence pdrt 1 of lenima 4.2 is fulfidedhe NRH model. Paft]2 is
necessarily fulfilled by the frictionless model (the matf815) in the proof of lemma 412 is lower
triangular with all diagonal entries equal one, hence reardyg nonsingular), but the lagged expecta-
tion structure is unrestricted in the NRH model. Thus, paot 2mmad4.2 need not be fulfilled by the
NRH model (the matrix[(B-15) in the proof of lemrha 4.2 can imggl be singular) and there exist

indeterminate NRH models whose the corresponding fritggsimodels are determinate. ]

Lemmd 4.2 establishes that the saddle-point property afriderlying matrix polynomial is insuf-
ficient to conclusively establish determinacy: it does rextassarily follow that a model that satisfies
the NRH is determinate when its frictionless counterparTtis shows, for example, that the equiva-
lence between nominal and real determinacy in the NRH mddeadstrom and Fuerst (2002) does

not carry over without exception to all models that satisly NRH. As Whiteman (1983, p. 33) points
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out, “the conditions for existence and uniqueness of smhstio withholding equations are quite dif-
ferent from those for the general expectational differezmpeation.”

A simple, univariate example will illustrate. Consider fo#owing system
(25) ak; [6;11] = b6y +CcE_11[6]
In the absence of expectations (that is, in the form of[daftiéromal4.2), this reduces to
(26) abr11 = (b+c) 6
which is saddle-point stable|i?%| > 1. But the original equation does have expectations andgeithd
lagged expectations that need to be resolved for[part 2 ahkh2. Taking expectations ¢f (25) at
the highest expectational lag (here 1) yields
(27) ak1[B 1] = (b+c) Er—1 (6]
defining_1 = Er_1 [6], inserting into the above and lagging forward yields
(28) akE [61] = (b+0)&
an equation whose saddle-point properties are the sarh&psT{aus, if|b%3| > 1, there is a unique
stable solution. This confirms propositibnl4.3 and restshenunderlying “eigenvalue count” being
the same. As the system is homogenous, this unique solstir-=i 0. Recalling the definition o
and inserting intd(25) yields
(29) 0 = b6
Consider now the special cabe= 0: the foregoing does not deliver a unique solutionfgreven
though the condition for saddle-point stability, n¢§} > 1, can still be fulfilled. This results is em-
bodied in propositioh 414 and rests on the singularity ofttieesystem needed to “resolve” the expec-
tations structure. Of coursb,= 0 is a special case and it need not hold generally: henceptatad
singularity. In the context of a multivariate model, likeo#e in [17), a singularity in the expectations
structure would occur if demand and supply are linearly ddpat at some expectational horizon and
hence the model is ill-formulated, or monetary policy s@ttin recreating such a linear dependency
through a fortuitous selection of policy and parameter @aluVhile neither seems likely within the
the analysis here, neither can be excluded a priori and soigtlarities might be of greater importance
in other analyses.

Moving past such singular cases for the analysis, the quurekence between determinacy under
the NRH and determinacy in the corresponding frictionlessleh has some strong implications. To

aid in the analysis that follows, | shall define a class of ni@tieat excludes such isolated singularities,
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so that the analysis can focus on regular cases

Definition 4.5 (The Class of Regular Models in (17)Jhe class of models in this definition is the class

of models in[(1]7) restricted to rule out the non-resolvapiiin part(2 of lemma4]2.

Restricting attention to models in definitibn 1.5, an eglemae theorem, the central result of the

paper, follows straightforwardly
Theorem 4.6. Consider models in definitidn 4.5 and fix the demand equatioimaonetary policy.

1. If the model is determinate under one supply equationgatsfies[(20), it is determinate under

all supply equations that satisfy (20).

2. Ifthe model is not determinate under one supply equaltiandatisfied (20), it is not determinate

under all supply equations that satisfy (20).
Thus, the determinacy bounds are the same for all supplytesathat satisfy[(20).

Proof. The non-resolvability in paftl2 of lemnia 4.2, propositiodl has been ruled out by definition
[4.5. Thus, a model in this class that satisfies the NRH defim¢20) is determinate if and only if the
corresponding model that satisfies|(23) is determinates fhist hold for alk and thus holds for all
k < k. Any supply equation that satisfies the NRH at a horiken k, necessarily satisfies it at the
horizonk as well. Thus, for a givehk, all supply equations that satisfy the NRH are determirfatad

only if the corresponding frictionless model is determéat O

The intuition is as follows. If the model satisfies the NRHerhithe output gap must on average
be equal to zero independent of monetary policy. This guaesnthe existence (but not necessarily
the uniqueness) of a stationary output gap independenflafion and the nominal interest rate. Were
k = 0, there would be complete separation between the real amihabsides of the economy and
monetary policy would serve only to establish nominal deteacy with the output gap necessary
determined. Fok > 0, the lack of a complete separation by assumption links nahand real de-
terminacy: without a unique solution for the nominal sides tink between the output gap and the
nominals at horizons less th&anmplies a unique solution for the output gap cannot be pirdwun.

If a unique solution for the nominal side can be determinetbbyg-run demand and monetary policy,

this solution selects, through the link at horizons less #ha single solution for the output gap.
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Therefore, as there is a unique stationary solution for thpu gap if and only if there is a unique
stationary solution for inflation and the nominal interegerin the frictionless counterpart model, the
conditions for determinacy are identical for all supply atjons that satisfﬂzg The situation is
exemplified graphically in figurgl 1: each path for the outpap ¢s associated with a single path for
inflation. All the different paths of the output gap in figurd ¢éonverge even though all but one of
the paths for inflation, depicted in figurel1b, diverge. Sihgcthe unique stationary path among the
different paths for inflation selects a particular path fa dutput gap (the more heavily weighted lines
in the figure), thus determining both through considerasiolely of inflation. The particular pattern
for the output gap associated with each path for inflatioe—the particular form of the short-run

Phillips tradeoff—is entirely inconsequential.
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Figure 1: Hypothetical Impulse Responses with DiffereftidhConditions

The irrelevance of the degree and manner of output gap taggetr determinacy, as well as that

of the exact nature of the short-run tradeoff in the Philépsve relationship follows immediately.

Corollary 4.7. Consider a model within the class of definitionl4.5 with anymy equation satisfying
(20). Determinacy is independent of the parameters bothaririterest rate rule, however formulated

within the class, pertaining to the output gap and of thostaesupply equation.

Proof. From theorerh 416, | may choose any supply equation to eshathditerminacy. Choosinig (23),
the output gap is always closed. But this eliminates therpaters in monetary policy pertaining to
the output gap. Furthermore, from theorem 4.6, it followeclly that the parameters in the supply

equation are irrelevant. O

32saving, of course, for the caveat of the non-resolvabititgar{2 of lemma 4]2.
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Again, if the model satisfies the NRH, then the output gap nonstiverage be equal to zero
independent of monetary policy. There is simply no role fogeting the real side in determinacy.
Furthermore, as the conditions for determinacy are the $amedl supply equations that satisfy the
NRH, theoreni 416, parameters of a specific supply equationudtation must be irrelevant.

Specializing to standard dynamic IS demand, a more spetafiersent can be made: a complete
independence of the conditions for determinacy from alhpaaters outside of monetary policy except

those that relate to inflation and the nominal interest rate

Corollary 4.8. Consider a model within the class of definitlon|4.5 with dedngiven by[(lL) and any
supply equation satisfying (R0). Determinacy is a functolely of the parameters in the interest rate

rule, however formulated within the class, pertaining tiidtion and the interest rate.

Proof. Following theoreni 416, any supply equation that satisfi€ ¢2n be used to establish deter-
minacy. From corollary 4]7, choosing (23) renders all patams in the supply equation and those in
monetary policy related to the output gap moot. Examinifgftbm (23) , (1) becomes (24), elimi-

nating the parameters in the demand equation. Thus, thgpandyneters in the model remaining that

can affect determinacy are those in the interest rate rutaipang to inflation and the interest ratel]

Dynamic IS demand ultimately derives from a consumptioreEafl Lucas asset pricing equation
and arbitrage-free pricing of assets leads to a Fisher iequiatking the pricing of real and nominal
assetst; = R + E; [Tk +1]. As the classical dichotomy sets in with the model appraagttie long run,
the real rate becomes exogenous (and can thus be normalizedd) to the determinacy question,
which operates through the nominal side in the long run utiteeNRH as argued above. Demand

then only contributes this Fisher relation24), a paramletes equation, to the long-run system.

5 Interest Rate Rules and the NRH

Of particular interest are the determinacy results regardpecific policies, such as inflation target-
ing, forward-looking and backward-looking monetary pglimterest rate smoothing, and output gap

targeting. To that end, let monetary policy now be descrlipethe following interest rate rule

(30) R = @rR 1+ Orn(W1Et [Thy 1] +WoTk + W3k 1) + @y, wheregy + Yo+ Pz =1
wheregr describes the degree of interest-rate smootlppof inflation targeting, angy, of output gap

targeting. The coefficient; > 3 nest contemporaneous inflation targetigg & 1), inflation forecast
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targeting (1 = 1), and a purely backward-looking inflation targég (= 1).

Theorem 5.1. For every model in definition 4.5 with demand given[By (1), supyply eﬁaﬁon satis-
fying (20), and monetary policy described byl(30), the sa&gjuilibrium is determinat

(31) |oR+ Q2| > |1 — @r(P1+W3) |

Furthermore, if|gr + @rl2| < |1 — @r (W1 + W3) |, the stable equilibrium is

indeterminate ifQrs| < |1 — @y
(32)
non-existent ifers| > |1 — @y |

Proof. Following theoreni_416, | may choose any supply equationghtsfies the NRH to establish
determinacy. Choosin@ (P3) reduces the demand equatid@jcafd the interest rate rule, {30), to

R = R 1+ O (W1Et [Tk 1] + WoTk + W3k _1). Combining delivers the system

Q1 0 1] [Et[Th41) o2 ol Qr| | TR
(33) -1 01 Tg =10 0 0| |T&_1
0 10 R 1 0 0 R_1

The generalized eigenvalugssolve 0= —z (z2 (1—o1) — z(@Erd2 + @r) — (pang) . With two backward-
looking and one forward-looking variable, determinacyuiegs two roots inside and one outside
the unit circle. One eigenvalue is necessarily inside beipggl to 0. Therefore, of the remaining
two roots, exactly one must be outside and one inside thecingie for determinacy. If the re-
maining two are both inside the unit circle, the stable eliim is indeterminate, and if they are
both outside the unit circle, the stable equilibrium is retistent. The two remaining roots solve
Z(1— o) — z(@rW2 + @r) — @3 = O, and, the bounds on the eigenvalues follow directly from
corollary[A.2 in appendikA. d

Reiterating the results from 4.8, determinacy depends onlgarameters in the interest rate rule
and is independent of the degree of output gap targeting.
Additionally, a specific case of the foregoing is of partauinterest for monetary policy, that of

positive reaction coefficients.

33|t is to be understood that the analysis will be abstractiognfcases where the relevant eigenvalues lie on the unit
circle. Following Woodford (2003, p. 254), in such a case,lthearized models examined here are insufficient to addres
the question of local determinacy. There is the additiossiié of “translatability” of the stable manifold—i.e., Kis
(2000, p. 1413) Assumption 4.5 or Blanchard and Kahn's (1$8@308) full-rank condition—that ensures the stable
manifold can be associated with the initial conditions af tieckward-looking variables that | abstract from likewise
following Woodford (2003, pp. 672—-673).
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Corollary 5.2. For @r, @ > O the determinacy bounds from theorem 5.1 become
Determinacy:  @pr>1—@rand@q(1—202) < 1+ ¢R

Pr<1—¢r
Indeterminacy: either
Or(1—242) > 1+ grand s > 1+ Qs
(34) Non-existence:  @n(1—2y») > 1+ @rand@y < 1+ @iz
Proof. See appendix]C. O

In (30), the general rule that allows for any combination afffard-looking, backward-looking,
and contemporaneous inflation targeting, a sufficient cadio eliminate the upper bound is that
majority of the emphasis is given to contemporaneous iofiatargeting @, > 1/2)—see figuré 2
and corollary 5.2. The indeterminacy of aggressive pum@wérd-looking policy (highp1) can be
mitigated or eliminated entirely if the monetary authoptaces sufficient weight on current and past
indicators, reinforcing Woodford’s (2000) warning thatmetary policy needs to be history dependent.
If the emphasis is shifted towards past inflation ratheri{hjjg) than a (cumulative) contemporane-
ous response (higl, andgr), indeterminacy may be replaced by non-existence, platiadnistory
dependence motivation under a caveat.

With corollary[5.2, | can proceed to analyze specific casebefnterest-rate rulé (80) as derived

informally with two thought experiments in sectioh 3.

5.1 Confirming the Special Cases of Sectidd 3

The determinacy bounds for the standard sticky-price NeynkKsian model and when the NRH is
fulfilled were derived in section] 3 using two thought expesits. Using theorem 8.1, | will confirm
the bounds derived there formally. Additionally, | will idéfy regions where determinacy does not

obtain as being associated with indeterminacy or nonaxste

5.1.1 Exogenous Interest Rates

A constant (or constant with respect to some exogenouslliviegotarget) interest rate rule reduces
(30) toR = 0, which requiresp; = @, = ¢r = 0. Inserting these values into theoreml 5.1, it follows
immediately that@r + @rnz| = [0] > [1 — @r(P1+ Y3) | = [1] cannot hold and thus the model is not

34Restricting the parameters to be positive also impliesttrabounds should be of the form, taking the first bound in
the corollary as an exampley > max(1— @g,0), see Lubik and Marzo (2007). These non-negativity boungs baen
left implicit to reduce clutter.
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Figure 2: Determinacy Regions from Theorem 5.1

determinate, confirming the result in section 3.2. Furtteeanes| = |0| < |1 — @u1| = |1| does

hold and thus the model is indeterminate.

5.1.2 Output Gap Targeting

An interest rate rule with only output gap feedback reduB€s {o R = @,y:, which requiresp; =
¢r = 0. Inserting these values into theorém|5.1, it follows imratady that|gr + @rd2| = |0 >
|1 — @r(Y1+W3)| = |1] cannot hold and thus the model is not determinate, just asdtion[3.3.

Furthermore|@z| = |0| < |1 — @u1| = |1| does hold and thus the model is indeterminate.

5.1.3 Contemporaneous Inflation Targeting

An interest rate rule with contemporaneous inflation tangeteduces[(30) t& = @rR;_1 + QT +
@Y:, which requiresp; = Y3 = 0 and, therefora}, = 1. Recalling that the exercise focused only on
positive coefficient values and inserting these valuestfeqits into corollary[5.2, it follows immedi-
ately thatgr > 1 — @r and@y(1— 22) < 1+ @r translate intap; > 1 — @r and 0< 1+ @r. Thus, the
model is determinate only whegy, > 1— @r, €.9. when the cumulative reaction of the nominal interest
rate to inflation is more than one-for-one, confirming thaultesf section’3.4. Going further, it is

apparent from corollardy 5.2 that when the model is not deiteaite under a contemporaneous inflation
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target with positive coefficientgy; < 1 — @R, it is necessarily indeterminate.

5.1.4 Forward-Looking Inflation Targeting

An interest rate rule with feedback from future inflationweds [(3D) tdR = xR _1 + @rE; [TE+1] +
@Y:, Which requiresp, = Y3 = 0 and, thereforap; = 1. Recalling that the exercise focused only on
positive coefficient values and inserting these valuestfeqis into corollary[5.2, it follows immedi-
ately thatp; > 1 — @r and@r (1 — 2Q2) < 1+ @R translate intap; > 1 — @r and@y < 1+ @r. Thus, the
model is determinate only when-gr < ¢r < 14 @r. That is, the monetary authority should respect
the Taylor principle, but not overly aggressive, confirmihg result of section 3.5. Going further, in
the absence of determinagy; (1 — 2y2) > 1+ @r and@y < 1+ @3 from corollary(5.2 translates
into @ > 1+ @r and@1 < 1, which cannot hold for positiver. Thus when the model is not deter-
minate under a forward looking inflation target with postisoefficients, + @gr < Or < 1+ @R, it is

necessarily indeterminate.

5.1.5 Backward-Looking Inflation Targeting

An interest rate rule with feedback from past inflation rezRIE30) toR = @rR—1 + @rTk—1 + @ }t,
which requiresp; = P2 = 0 and, thereforaps = 1. Recalling that the exercise focused only on positive
coefficient values and inserting these values fonjitseinto corollary[5.2, it follows immediately that
O > 1—@rand@r(1—22) < 1+ @r translate intap; > 1 — @z and@r < 1+ @r. Thus, the model is
determinate only when1 ¢r < @ < 14 @r. That is, the monetary authority should respect the Taylor
principle, but not overly aggressive, confirming the resfisectior 3.6 and repeating the result from
above from the forward-looking rule. Going further, in tHesance of determinacy:(1—2yy) >

1+ @r and@P1 < 1+ @3 from corollary[5.2 translates intg; > 1+ @r and 0< 1+ @, admitting
non-existence for the overly aggressive inflation resporidaus with a backward looking inflation
target with positive coefficients, the model is determinaken 1— @r < @ < 14 @R, indeterminate

wheng; < 1— @r, and displays non-existence whes #r < @r.

5.2 Comparison with Sticky Prices

The results for the special cases [0f](30), examined aboeegathered in tablel 1. The table juxta-

poses the determinacy regions in an NRH model with thoseeistidndard sticky-price model, derived
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with the thought experiments in secti@%.Under standard parameter assumptions—aa,> 0
and 0< B < 1—where the determinacy regions differ, the sticky-pricedels implies a larger re-
gion of determinacy for the plausible space of positiverederate rule elasticities. Appealing to the
“near-unanimous acceptance of the Friedman-Phelps-luieasthat there is no exploitable long-run
tradeoff between inflation and output or employment[,]” @G&dlum 1999, p. 182) | conclude that the
sticky-price model can mislead monetary authorities irtaping policies that fail to yield a deter-
minate equilibrium. It can be seen that even the extremeanetexization ofd = 1 does not suffice
to bring the determinacy results of the sticky-price modéhe with those of a NRH model. Indeed,
there only parameterization that brings the determinagiores of the sticky-price model in the line
with those of a NRH model is the parameterization that brihgssticky-price model inline with the
NRH, K — oo, as can be easily observed in the tglﬁor the long-run Phillips curve to be vertical in

the case of the standard sticky-price model, it must alwaysdstical.

Table 1: Determinacy Regions: Comparison of NRH and StiakyeR

Interest Rate Rule Sticky Prices NRH
Non-Price-Related Feedback
R=0 ) ()
R = @\ W > 15 0
Forward-Looking Inflation Targeting
R = @nE [Tis1] 1< @r<1+258 0
o> 1-gr— Sl P> 1R

Re = ORR- 1+ OnEe [Th ] + Bt 1p

P < (1+¢Rr) (1+2%B> +@ 5 On<l4or
Backward-Looking Inflation Targeting

R = QnT 1 1<%<1+21%B 0
o> 1-gr—Pq Gr>1-gr

R = @rR -1+ @nTk—1 + QWi
» o< (1+90) (14258) + @ gr< 140w

Contemporaneous Inflation Targeting
R = @nTt Qo> 1 o> 1
R = ORR—1+ Ork + Q¥ o> 1—gr— 5 Llq, P> 1— @R

Recall that, in general, the sticky-price New Keynesian ehalbes not satisfy the NRH. Conse-

quently, the sticky-price model is not even asymptoticétymorphic to its frictionless equivalent:

35Detailed formal derivations of the determinacy resultstfar sticky-price model can be found in Bullard and Mitra
(2002), Woodford (2003), Lubik and Marzo (2007), and Ga08) among others.

36This implies a rule of thumb to judge whether a study’s pattic determinacy results stem from its violation of the
NRH: namely examine the limit of the determinacy conditisritze Phillips curve becomes vertical.
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with this permanent link between the nominal and real siddhvefeconomy, nominal and real deter-
minacy must be simultaneously ascertai%m assessing determinacy in the sticky-price model, one
is forced to look at paths along which the violation of the NRitdy be consequential. In terms of
the thought experiment of sectibh 3, potential equilibaaaciated with a permanent non-diminishing
pattern in inflation are excluded from the permissible seipfilibria, such that only bounded equilib-
ria remain in the set. Hence, the assessment of determiraegsitates the examination of paths that
become unbounded in order to exclude them from the set ofsailoie equilibria. It is here that the
NRH becomes decisive: due to the permanency of the outflation tradeoff in sticky price models,

a path can become unbounded (and hence excludable) sokelpdun unabated mutual interaction
with inflation and the output gap are feeding boundlessly e@dch other. In contrast, such a perma-
nent link is impossible in a model that satisfies the NRH aldbiltput gap is necessarily bounded by
virtue of the NRH. Therefore, a model’s violation of the NR&hcforce an otherwise bounded equi-
libria to become unbounded, distorting policy recommeiothiatin terms of bounds on coefficients in
the monetary authority’s policy rule so as to ensure theusmegss of a bounded equilibrium.

That imposing the NRH leads to such general results un@srtime long-run nature of determinacy
analyses. It is perhaps all to easy to forget that deterngiolitnately rests on ruling out explosive,
or divergent, patf@ It is the behavior in the long run that establishes whethearéiqular path is
diverging. Determinacy is a question of the long run and ihighe long run by its restriction on the

average output gap that the NRH is of consequence.

5.3 Higher Leads and Lags?

The determinacy bounds in theorem|5.1 imply that neithera farward-looking R = @r[T+1]) nor
pure backward-looking® = @qT%_1) inflation target is associated with determinacy. In théofeing,
I will prove that this is not restricted to the one period kon used in the theorem, but extends

straightforwardly to any (finite) horizon.

37As McCallum (2003, p. 1157) put it, “the [Calvo] form of stigkrices [...] is such that the model continues to include
nominal variables even when monetary policy supplies noinahanchor, because private behavior involves a type of
dynamic money illusion.”

38According to Cochrane (2011), the problem is even worse: rosmonomics appears to have forgotten why and
whether it can rule out such paths all. The analysis herenssti on that issue, taking as given the standard practice o
analyzing determinacy to ascertain whether a unique dugjuiin is present. It should, however, be noted that the aisaly
here suggests that determinacy under the NRH and with shifldemand reduces to the simple model used by Cochrane
(2011) to fix ideas, implying that determinacy for the entil@ss of models that satisfies Lucas’s (1972) NRH rest dyrect
upon the resolution of simple model in the Cochrane (201ifijjae.
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Theorem 5.3. A model within the class of definitibn 4.5 with demand give(yany supply equation
satisfying [(2D), and monetary policy described Ry=RpE; [T&H} has a unique stable equilibrium
(determinacy) only if = 0.

Proof. Following theoreni 416, | may choose any supply equationghtsfies the NRH to establish
determinacy. Choosing (P3) reduces the demand equati@d)o ¢ombining with the interest rate
rule, R = @n; [T84 ], yields

(35) Ee [Th11] = OnEe [Th ]

For j > 1, the characteristic equation of the systenF{g) = gnz) —z. As the system is entirely
forward looking, all zeros need to lie outside the unit @rcBut the zeros solvécpr[zj*l — 1) z=0,
one of which is obviously equal to zero.

For j < —1, the characteristic equation of the systerf {g) = gz | — z. Stability now requires
one zero outside anginside the unit circle. But the zeros sol{g; — 2/ ™) z= 0, all of which are on
the same side of the unit circle dependinggn

For j = 0, the characteristic equation of the systerk {g) = @ — z. Stability requires one zero
outside the unit circle, which holds |ipy| > 1. ]

The intuition here is simple. In the case of backward-logkures, the necessary vigor in monetary
policy’s reaction to satisfy the Taylor principle is immatkly too vigorous, implying that inflation is
always explosive. In the case of forward-looking rules,lwyfact that agents with IS demand are also
forward looking, the model contains no reference to cunmtdation whatsoever; satisfying the Taylor
principle does not preclude transient self-fulfilling initen sunspots. In the case of a pure target,

monetary policynustfocus on the current state of inflation.

6 Conclusion

| have presented results on determinacy and monetary pivlatyare applicable in an entire class
of intertemporal models restricted only to satisfy the NF$.argued by McCallum (1998), this is
precisely the class upon which analyses of monetary patioylsl concentrate and my results indicate
that the determinacy analyses in much of the New Keynedemature are not robust to the NRH. The
general results can be be summarized as reinforcing thertemme of the Taylor principle, dismissing
the relevance of output gap targeting, and questioning dfegysof forward-looking and backward-

looking monetary policy in terms of determinacy.

29



A Appendix: Eigenvalue Bounds Using Jury’s Criterion

This appendix derives bounds on eigenvalues of a two-dimaealksystem using Jury’s (1961) simpli-
fication of the Schur-Cohn criteri@.

Lemma A.1. The polynomial with real coefficients
(A-1) F(z) = aZ + a1z+ ag
has both zeros inside the unit circle if and only if

20| < [ag]

(A-2) a0+ az| > |ay]
Proof. See Jury (1961, p. 342). O

This statement of the two-dimensional stability problereslaot require the normalization of the

leading coefficient of the polynomial, which greatly sinfigls the following.

Corollary A.2. The zeros of the polynomial with real coefficients
(A-3) F(2) = a7 +a1z+ag
are bounded with respect to the unit circle as follows
Both inside  |ag+ap| > |ai| and|ag| < |az|
Both outside  |ag+ap| > |az| and|ag| > |ay

(A-4) One inside and one outside |ap+ay| < |ay]

Proof. The condition for both zeros inside the unit circle is a réjet of lemmaA.l. The condition
for both zeros to be outside the unit circle is a simple apfitinr of lemmd_A.lL to the polynomial
zzF(l/z) = agZ? + a1z+ ap, where the zeros of the new polynomial are reciprocals ofémes of the
original polynomial. Excluding both of the foregoing casesly three possibilities remain: (1) one
zero lies inside and one lies outside the unit circle, (2hle&ros lie on the unit circle, (3) one zero
lies on the unit circle and the other lies either inside osilg the unit circle. As noted by Jury (1961,

p. 342) (or as can be simply confirmed by evaluati{d) andF (—1)), the conditionlap + az| < |a;]|

39This also corrects Lubik’s (2007, p. 409) claim that a neagsand sufficient condition for both roots of the polynomial
p(A) = A% —trA +detto lie outside the unit circle igdet| > 1 and|tr| < 14 det This can be shown incorrect by way of
a simple counterexample. Set= 0 and letdet= —9, it follows that the zeros of(A) are given by+3, both of which
are obviously outside the unit circle. Lubik’s (2007, p. #@8cond condition, howeveltr| < 1+ det, is not fulfilled
(1+ det= —8 is necessarily negative, contradicting the condition flta= 0 < 1+ def). Corollary{A.2 in the text here
corrects this result. None of the subsequent results ind (#8i07) were affected by this error.
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rules out a real root on the unit circle. This immediatelyesubut possibility (3), as the only unit
roots that remain must be complex roots, which necessawityecin conjugate pairs. Additionally,

possibility (2) is then only possible with complex conjugmion the unit circle. Thus, if complex

I will rule out possibility (2) with complex conjugates bymwadiction. Accordingly, assumag +

(43-230—3-%)1/2 _As

ap| < |ap| and that the zeros &f(z) are given ag; » = h+tiv, whereh= _za_§2 andv= 5

the pair must lie on the unit circle, the modulus must be etpuahe: R? = 1 = h? + V2. Substituting

for h andv in the modulusa, = ag must then hold. From the assumption of complex roots follows
additionally that the discriminant of the polynomial is ag&ge: a1 dazag < 0, or rearranginda; | <
2,/azag. Using the fact thaty = ag, 2,/aag = 2|ag| = |2ag| = |apg + a|, and combining with the

]

B Appendix: Proof of Lemmal4.2

By the Wold theorer@ any stationary process can be represented as
(B-5) X = Z Bt + =, whereEg; = 0 andEggr, j =0, Vj #0

and =; is an orthogonal linearly deterministic process, foreaalst perfectly from its own history.

o /min(pl+j)
( % Q(i, >9|€t—|—j]
! o
DefiningQ(l, j) = S™™ Q(i, ) and rewriting

(B-7) 0= Z)[%Q )81+ i€t +z %Q +151)0E- J]

This must hold for all realizations af Comparlng coeff|C|ents yields
(B-8) 0= %Q D814+ z Q0. 1)8

a time-varying system of difference equations with |n|d:1aa|hd|t|onszﬁ":1 6_j=0. But as@( p+i,j)=

Starting with the indeterministic part, and inserting i(nﬂ)

(8-6) 0= ;[IWOCE’ QG, )elﬂ-st_l

= 1

Q( p,j), Vi >0, the system of difference equations has constant coeifcater and including.

This system can be written as
n
(B-9) 0="3 QX
j=—m
whereQ; = 5P ,Q(i, j) and coincides with Anderson’s (2010) canonical form in theecthat all

40see, e.g., Sargent (1987, pp. 286-290), as well as Pri¢$88y, pp. 756—758).
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lagged expectations in_([L7) are replaced with their ttinvalues. If the solution to this system is

unique, its stable solution can be written as

(B-10) 6 =B[6 , ... 8 4], VI>p
The firstp (block) equations—remembering the initial conditions-r-b& gathered into

(B-11) Q6h ... B pq]' =0

giving 3p equations in 8p+ n) variables, with the" block row ofQ given by

(B-12) [Omaxos-1-m Q(s—1,—min(s—1,m),n) Op_g]

where Qis a 3x 3i block vector of zeros an@(a,b,c) = [Q(a,b) Q(a,b+1) ...Q(ac)].
Equation[(B-1D) yields 8 more equations that can be collected as

(B-13) B[6) ... 6,4 =0

with thes™ block row of B given by

(B-14) [Omasxtosip-m-1) —B(Min(p+s—1,m)) | On_g]

wherel is a 3x 3 identity matrix and3 (a) being the last % 3a elements of the & 3m matrix B that

forms Anderson’s (2010, p. 7) convergent autoregressikiso to (B-9).

Stacking [(B-111) and (B-13) yields the syste@’ B’}'[% 93+p_1}',where
| *
(B-15) [B} :

is a square matrix.

=0
Onip-1

The system[(B48) is homogenous. Thus, one stationary saligigiven by, = 0, Vi, the funda-
mental solution in the absence of exogenous driving forlcte[Q’ B’]' is nonsingular and if (B19) is
saddle-point stable, then this is the only stationary smhut

Only =; remains. Inserting it intd (17), it follows that this canalse written as[(B19). If there is
a unigue solution in past values &f, the solution can be written in the same form[as (B-10), which

must be zero when taken to its remote past from the stabfli@@-d.0).

C Appendix: Proof of Corollary 5.2
C.1 Bounds for Determinacy

For positive coefficientdgpr + @rnli2| > |1 — @ (Y1 + W3) | from theoreni 5J1 becomes (pkr + Q2 >
|1— @r (W1 + Y3) | and there are three possibilities depending on the sign-ap(W; + W3).
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(1): 1— @r(P1+Ws) < 0. Here, (i) becomegr + @2 > —1 + @ (Y1 + P3) which can be re-
arranged agr (Y1 — Yo +P3) < 1+ @r. Using the relationshigiy + Y2 + Y3 = 1 (i.e., the@s are
relative weights), the foregoing can be rewrittenpagl — 2y0) < 1+ @r.

(2): 1— @z (P1+P3) > 0. In this case, (i) becomes: + @2 > 1 — @r(P1 + Ys) which can be
rearranged a®n (W1 + W2+ W3) > 1— @r. Using the relationshigi + W2 + W3 =1 (i.e., the@'s are
relative weights), the foregoing can be rewritterpas> 1 — @r.

(3): 1— @n(W1+W3) =0. Now, (i) becomegr + @2 > 0, which is necessarily satisfied.

Combining the three possibilities yields the two constiain the corollary.

C.2 Bounds for Indeterminacy and Non-Existence

From theorerh 51, there are two conditions that must bel&dfil(ii) |@r+ Q2| < |1— O (W1 + W3) |
rules out determinacy, along with (iii apWs| < |1 — @1/ for indeterminacy and (iii b)@rs| >

|1— @y | for non-existence.

C.2.1 Discriminating between Indeterminacy and Non-Existnce

The conditions (jiii a & b) become (i3 = |1 — @1 | for positive coefficients and there are three
possibilities depending on the sign of-Xp1.

(1): 1— @1 > 0. Here, (iv) becomesp s = 1— @1 which can be rearranged @g(Qs + Y1) =
1. Thus@y(P3+ 1) > 1 is associated with non-existence amd s + Y1) < 1 with indeterminacy.
As it was assumed that-1 @1 > 0, the range of non-existence emanating from this possilidi
bounded above, + @r3 < QP < 1 or 1< @r (W1 +P3) < 1+ @rls; the range of indeterminacy is
bounded below by the assumption of positive coefficients,@ (W3 + Y1) < 1.

(2): 1— @1 < 0. Now, (iv) becomespliz = —1+ @1 Which can be rearranged ggl; =
14+ @3. Thuser < 1+ @3 is associated with non-existence apgp1 > 1+ @3 with in-
determinacy. As it was assumed that b1 < 0, the range of non-existence emanating from this
possibility is bounded below, & g1 < 1+ @rlia.

(3): 1— @1 = 0. In this caseps > |1 — Q1| always holds for any positive value ¢ and
o3 < |1 — @rd1| cannot hold. Thusp; = 1 andys > 0 non-existence, but not indeterminacy, is
possible.

Combining these three possibilities, the range ®;(Ws+ Y1) < 1 is associated with indeter-

minacy, 1— g3 < o1 < 1+ @3 with non-existence, and-t @3 < @1 With indeterminacy
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again. Note that ifp3 = 0, the non-existence region disappears and the indetecyniagions become
connected with indeterminacy now possible over the whosite real line. This concludes the part
of the analysis on distinguishing between non-existendedaterminacy, but taking as given that one

of the two will in fact prevail.

C.2.2 Joint Bounds for Indeterminacy and Non-Existence

Turning to the remaining condition of the two that must béitfed for there to be either indeterminacy
or non-existence, namely whether one of two must prevaillat@ndition (i) must be met. This is
the mirror image of the condition for determinacy above axlabove, there are three possibilities
depending on the sign of-1 @ (W1 + W3).

(1): 1—@r(W1+Y3) < 0. Here, (i) becomegr + @ri2 < —1+ @ (WY1 + P3) which can be re-
arranged agr (Y1 — Yo +W3) > 1+ @r. Using the relationshigiy + Y2 + Y3 = 1 (i.e., the@s are
relative weights), the foregoing can be rewrittenpagl — 2yp) > 1+ @r.

(2): 1— @r(P1+W3) > 0. In this case, (i) becomegs + @2 < 1 — @ (W1 + P3) which can be
rearranged a®n (W1 + W2+ W3) < 1— @r. Using the relationshigi + W2 + W3 =1 (i.e., the@'s are
relative weights), the foregoing can be rewritterpas< 1 — @r.

(3): 1— @ (W1 +W3) = 0. Now, (ii) becomespr + @2 < 0, which is necessarily violated.
C.2.3 Combining: Individual Bounds for Indeterminacy and Non-Existence

Combining the three possibilities, there are two regionsaéterminacy or non-existenog; < 1— @r
(when 1— @ (W1 + W3) > 0) and@q(1—2y2) > 14 @r (When 1— @y (Y1 + W3) < 0). Combining this
with the result above dividing the positive real line intogé regions (indeterminacy, non-existence,
and indeterminacy again), | conclude the following. In thgion 1— @y ({1 + Y3) > 0, only inde-
terminacy is possible. Hence the regipn< 1 — @r is associated with indeterminacy. In the region
1— (W1 +W3) < 0O, the portion bounded by W1 < 1+ @3 is associated with non-existence and
the remainder by indeterminacy. Hence, there is indetexoyiif @ (1 — 2y2) > 1+ @r and @ >

1+ @nP3 and the stable equilibrium is non-existengif(1 — 2y2) > 1+ @r and@r < 1+ @rs.
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