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Abstract

Imposing the natural rate hypothesis (NRH) can dramatically alter the determinacy bounds on mone-

tary policy by closing the output gap in the long run. I show that the hypothesis eliminates any role for

the output gap in determinacy and renders the conditions fordeterminacy identical for all conforming

supply equations. Specializing further to IS demand, determinacy depends only on the parameters in

the interest rate rule and a pure forward or backward-looking inflation target is inconsistent with deter-

minacy. Monetary policy that embodies the Taylor principlewith respect to contemporaneous inflation

delivers a determinate equilibrium in all models that satisfy the NRH.
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1 Introduction

What are the consequences of the natural rate hypothesis (NRH) for monetary policy? I address this

question in the context of the determinacy bounds on the policy rule for the nominal interest rate. The

NRH, which posits that the output gap is closed on average regardless of nominal quantities, is not

fulfilled by the standard model for monetary policy analysis, the sticky-price New Keynesian model.1

As I show that the bounds under the NRH can differ quite substantially, my analysis demonstrates that

New Keynesian determinacy analyses are not robust to the NRHand, as such, requiring fulfilment of

this hypothesis is of direct consequence for policy recommendations.

The central contribution of this paper is an equivalence result: for a given demand schedule, the

bounds on monetary policy to ensure a determinate equilibrium are identical for all supply equations

that satisfy the NRH. This result rests intuitively on the observation that all such supply equations

behave identically in the long run, positing a vertical long-run Phillips curve at the natural rate. Thus,

the novelty of my analysis is the positive result that identifies the limits to monetary policy for there to

be determinacy when the NRH holds.

Several specific results are derived from this equivalence and the long-run restriction of the hy-

pothesis. First, regardless of the specification for demand, output gap targeting is wholly irrelevant

for determinacy under the NRH. With the long-run Phillips curve vertical in all NRH specifications,

the output gap cannot be leveraged to substitute for vigourous inflation targeting. Under standard dy-

namic IS demand, the only model parameters relevant for determinacy are those in the interest rate

rule itself. The long-run closure of the output gap reduces the IS equation to a Fisher-like equation

with no reference to parameters in the demand equation, which combined with the equivalence on the

supply side removes reference to all model specific parameters. Additionally, the combination of IS

demand and the NRH strips all policies that only target either past or future inflation of any horizon of

determinacy for all parameter constellations. In the absence of a dynamic tradeoff in the Phillips curve,

forward-looking or backward-looking inflation targets cannot be translated into a nominal anchor for

contemporaneous nominal developments. The flip-side of this negative result is that the necessary con-

dition of a more than one-for-one response to inflation (the Taylor principle) can be combined with the

additional sufficient condition that more than half of this response be directed towards current inflation

to ensure a determinate equilibrium for any supply specification that satisfies the NRH.

1See, e.g., Woodford (2003, p. 254), McCallum (2004), Galı́ (2008, p. 78), and McCallum and Nelson (2011).
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McCallum (2004, p. 21) noted that the widespread agreement within the profession regarding

the validity of the natural rate hypothesis (NRH) “has seemingly been implicitly overturned, not by

argument but merely by example, via the widespread adoptionof the famous Calvo (1983) model of

nominal price stickiness,” a development that Wolman (2007, p. 1366) called “an awkward situation

in monetary economics.” McCallum (1998) and subsequently has called for monetary policy analysis

to be conducted within the confines of NRH. Efforts have been made to reconcile the NRH and the

New Keynesian framework, notably Andrés, López-Salido,and Nelson’s (2005) examination of the

NRH and New Keynesian models with an emphasis on the role of the NRH for models’ dynamics

or Levin and Yun’s (2007) model that brings the standard sticky-price model closer to the NRH by

endogenizing the contract length. I extend these efforts tothe analysis of determinacy.

Policy recommendations from determinacy analyses come in the form of bounds consistent with a

unique saddle-path stable equilibrium on parameter valuesin a monetary policy rule.2 These bounds

present a “First, do no harm” recommendation for monetary policy to ensure uniqueness of an equilib-

rium while being silent as to what that equilibrium might optimally be.3 The notable precursor to my

analysis is Carlstrom and Fuerst (2002), who examine determinacy under a narrower scope of interest

rate rules in their specific NRH model. They explicitly make the connection between determinacy of

nominal variables in a fully flexible model and determinacy in their model with rigidities. Unfortu-

nately, their analysis is limited to their specific model-policy setup; this paper generalizes and extends

their insights to a range of policy rules and a class of modelsthat satisfy the NRH.

Methodologically, I foreshadow the formal derivation of the results with an informal thought-

experiment approach that derives the entire set of determinacy results under IS demand by exploring

borderline stability cases. I compliment the textbook4 thought experiment of finding the nominal in-

terest rate response to a permanent increase in inflation that leaves the long-run real rate positive with

a second thought experiment on the opposite side of the unit circle implying a permanent oscillation in

inflation that identifies the remaining determinacy bound.5 Besides offering access to the main results

2While determinacy is neither the only criterium for evaluating the uniqueness of an equilibrium—see, e.g., McCal-
lum (2003) for an overview of some competitors: his MSV as well as E-stability and LS-learning—nor is its validity
uncontested—see Cochrane (2011), it is the current standard criterium in the literature. As McCallum (2009, p. 26)
notes, the subject appears on “75 different pages in MichaelWoodford’s hugely influential treatise Interest and Prices
(Woodford 2003). In addition, the number of new writings (books, articles, and working papers) with both of the phrases
‘indeterminacy’ and ‘monetary policy’ appearing in their text was 166 over the time span January 1995 through June 2008.”

3See Woodford (2011) for an overview of recent advances in this direction.
4See, e.g., Woodford (2003, p. 254) and Galı́ (2008, pp. 78–79).
5If the model is a local approximation, it is important to notethat use of permanent shifts in the thought experiments

in no way contradicts the applicable locally-bounded-equilibrium approach of Woodford (2003). As made explicit by
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through a second and far less formal channel, this approach serves the dual purpose of highlighting

that it is indeed the violation of the NRH in the sticky-pricesupply equations that is at fault, as well as

providing an intuitive insight into the nature of the multiplicity that determinacy seeks to avoid. For

comparison with the sticky-price literature,6 an inventory of rules comprising inflation targeting (con-

temporaneous as well as forward and backward looking), output gap targeting, interest-rate smoothing,

as well as exogenous interest rate rules is examined for determinacy.

The formal derivation contributes a lemma to the literaturefor assessing determinacy in a broad

class of linear7 models with arbitrary leads, lags, and lagged expectationson the basis of two condi-

tions, a standard8 saddle-point consideration from Anderson (2010) and a resolvability of any remain-

ing undetermined expectations structure from Meyer-Gohde(2010). The generality of the model class

examined does not, on its own, rule out isolated singular cases;9 but excepting for such cases, a general

equivalence of the determinacy bounds among all admissiblemodels that satisfy the NRH is proven.

Finally, in applying a simplification of the Schur-Cohn criterion, I provide a completed classification

of the conditions that sort the zeros to a second order polynomial to either side of the unit circle.

The remainder of the paper is organized as follows. Section 2briefly examines the standard sticky-

price New Keynesian model and its relation to the NRH. I use the thought experiment approach in

section 3 to derive the determinacy bounds for the standard sticky-price and models that satisfy the

NRH in parallel. In section 4, I prove the main result of the paper, the equivalence proposition for

the determinacy bounds within a class of models that satisfythe NRH. Section 5 applies the result

to a particular interest rate rule that encompasses severalwidely studied rules, confirms the results

from the thought experiments, and explores the robustness of the one-period horizon for backward and

forward-looking targets. Section 6 concludes.

Woodford (2003, pp. 78 & 633), the question of local determinacy reduces to examining whether the linearized system of
equations have a unique bounded solution. Thus, the hypothetical unbounded deviations from a rest point serve to coax the
boundaries of determinacy and do not undermine the local nature of the approximation.

6E.g., Woodford (2003, Ch. 4) provides the literature-standard inventory of determinacy results, or Lubik and Marzo
(2007) presents a more recent compendium of determinacy results in a standard sticky-price model. See Bernanke and
Woodford (1997), Clarida, Galı́, and Gertler (1999), Bullard and Mitra (2002) and Woodford (2003), among many others,
for the corresponding and contrasting results from sticky-price models.

7In case the system has been linearized, determinacy here is local and not global. For the latter type of determinacy
analysis, see Benhabib, Schmitt-Grohé, and Uribe (2001),whose analysis shows that the Taylor principle for determinacy
from local analysis does not carry over to the global analysis that takes the zero lower bound of nominal interest rates into
account. The analysis here abstracts from such complications and restricts itself entirely to local determinacy.

8Anderson’s (2010) condition extends Blanchard and Kahn’s (1980) to higher leads and lags.
9For example, that the demand and supply equations are linearly dependent at some expectational horizon.
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2 The New Keynesian Sticky-Price Model and the NRH

The most prominent model for monetary policy analysis currently is the standard New Keynesian

sticky-price model with Calvo (1983)-style overlapping contracts in general equilibrium.10 In its sim-

plest form, the model comprises three equations—demand, supply, and a monetary policy rule—in

three variables—inflation, the output gap, and the nominal interest rate. Demand is given by the dy-

namic IS equation

yt = Et [yt+1]−aRt +aEt [πt+1](1)

Rt is the nominal interest rate,yt is the output gap,πt inflation, anda a positive parameter equal to the

intertemporal elasticity of substitution in the simplest configuration. The demand side relates expected

changes in the output gap positively to movements in the realinterest ratert = Rt −Et [πt+1]. The

supply side is given by the sticky-price Phillips curve

yt =
1
κ
(πt −βEt [πt+1])(2)

whereβ is the discount factor, andκ a positive composite parameter that depends, among others,on

the probability of a price change. Of note is the non-standard presentation of the Phillips curve, with

the output gap on the left-hand side, which will ease the exposition when examining the fully flexible

limiting case.11 Several different specifications for monetary policy in theform of a Taylor (1993)-type

rule for the nominal interest rate will be explored to close the model.

The central focus of my analysis rests on the fulfillment of the NRH by the supply side. As

encapsulated by Friedman (1968, p. 11), the NRH captures a central tenet of monetary theory that

though “there is always a temporary trade-off between inflation and employment; there is no permanent

trade-off.” Lucas (1972) provides the formalization of theNRH that I will use,12 namely that for the

NRH to be fulfilled,E [yt ] = 0 must hold for any monetary policy and, hence, regardless ofmonetary

policy. The sticky-price Phillips curve (2) does not in general satisfy the NRH, as has been noted by

many including Woodford (2003, p. 254), McCallum (2004), Galı́ (2008, p. 78), and McCallum and

10See, e.g., Woodford (2003, p. 246) or Galı́ (2008, p. 49) for textbook-length expositions.
11Additionally, this presentation is consistent with Modigliani’s (1977, p. 5) assessment that the NRH “turns the standard

explanation on its head: instead of (excess) employment causing inflation, it is (the unexpected component of) the rate of
inflation that causes excess employment.”

12McCallum (2004, pp. 21–22) draws a distinction between “Friedman’s weaker version” and the “stronger Lucas ver-
sion” of the NRH. The former states that a higher, but constant, rate of inflation cannot permanently affect output and the
latter that no path for prices, inflation, inflation growth, etc., can permanently keep output above its natural level. Lu-
cas’s (1972) is the version that McCallum (1994) argues should be upheld by monetary models—repeated more directly in
McCallum (1998, p. 359)—and will be the version imposed in myanalysis.
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Nelson (2011), as it does posit a permanent tradeoff. To see this, note that from the perspective of time

t −k,

Et−k [yt ] =
1
κ

Et−k [πt −βπt+1](3)

the tradeoff between the output gap and inflation remains unchanged. That is, the sticky-price model

posits the same dynamic tradeoff at all expectational horizons. Settingβ to one or using indexation13

may remove a static tradeoff, but cannot remove the dynamic tradeoff in (2).14 Yet, asκ → ∞, the

sticky-price Phillips curve in (2) in fact does satisfy the NRH.

lim
κ→∞

yt = lim
κ→∞

1
κ
(πt −βEt [πt+1]) = 0(4)

Of course, in this case, the probability of a price change goes to one and the Phillips curve posits no

tradeoff, simply stating that the output gap is always closed. As I proceed to derive the determinacy

bounds on monetary policy, note that only the limiting case (κ → ∞) of the bounds themselves from

the sticky-price model will coincide with the bounds obtained directly under the NRH. This underlines

the crucial role that the sticky-price model’s permanent tradeoff has played in existing determinacy

studies.

3 Determinacy via Thought Experiments

In this section, I derive the determinacy bounds in the basicNew Keynesian model, both when the NRH

is fulfilled and for the standard sticky-price case, by examining the threshold response of the nominal

interest rate to ensure a positive response of the (long-run) real rate to a permanent pattern of change

in inflation. Using a thought experiment approach is useful as it dispenses with much of the technical

exposition of later sections necessary to formally establish the bounds on determinacy in a broader

class of models that satisfy the NRH, enabling more intuitive access to the results. The constant pattern

for inflation is the standard15 thought experiment to evaluate whether the Taylor principle holds under

a given monetary policy rule and the constant oscillating pattern captures another Taylor principle-type

unit-root threshold case. With this approach, I will demonstrate the dramatic effect that imposing the

NRH can have on the traditional determinacy bounds postulated by the New Keynesian model. Under

the NRH, output gap targeting of any degree is ineffective inbringing about a determinate equilibrium

13See Yun (1996) for a constant indexation, Christiano, Eichenbaum, and Evans (2005) for full dynamic indexation and
Smets and Wouters (2003) for a partial dynamic indexation.

14For more on this point, see McCallum (2004) and McCallum and Nelson (2011).
15See Woodford (2003, p. 254) and Galı́ (2008, pp. 78–79) for textbook applications.
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and forward-looking or backward-looking inflation targeting of any degree fails to secure determinacy

unless the central bank smoothes interest rates.

3.1 The Thought Experiments

The Taylor principle, e.g., Taylor (2001, p. 331), capturesthe idea that for monetary policy to be

stabilizing, the real interest rate should increase in the face of a sustained increase in inflation so as to

exert a countervailing downward pressure on inflation by contracting demand. This principle can be

recast as a thought experiment of the effect on the real rate of a permanent permanent pattern of change

in inflation (dπt), where the threshold response to ensure a countervailing movement in the long-run

real interest rate is calculated via the demand equation. I will identify the threshold response using

the same demand equation, the New Keynesian standard dynamic IS equation (1), but will distinguish

two cases for the supply side: the sticky-price Phillips curve (2) and the NRH case. That is, I will

not specify a specific formulation of the supply curve under the NRH, but will derive the determinacy

bounds by simply appealing to the neutrality properties imposed by the NRH.

I will consider two different permanent patterns in inflation to elicit the threshold responses of the

nominal interest rate consistent with the Taylor principle. The first pattern is a constant increase and

the second an oscillating pattern with a constant amplitudeand (trigonometric) period equal to two

(model) periods. For the first, textbook standard pattern ofa permanent, constant increase in inflation

(call it dπt = dπt+1), the threshold value to bring about the necessary countervailing movement in the

real interest rate is given bydRt
dπt

= 1: any cumulative reaction of the nominal interest rate greater than

the increase in inflation will bring about the necessary increase in long-run real interest rate to contract

demand. This can be confirmed in both models (sticky price andNRH) by noting that a constant

pattern in inflation translates into a constant pattern in the output gap. For the sticky-price model,

through the Phillips curve (2),

dyt =
1
κ
(dπt −dπt+1) =

1−β
κ

πt = dyt+1(5)

and for the NRH model, by virtue of the NRH, the output gap is necessary closed in the long run, so

the associated pattern relevant for the long-rung real interest rate isdyt = dyt+1 = 0. With a constant

output gap in both models, the neutral movement in the long-run real interest rate (call itdrt) is zero,

as can be confirmed by plugging the long-run pattern of the output gap into the demand equation (1)

dyt = dyt+1−adrt ⇒ 0= drt(6)
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Thus any positive long-run movement in the real interest rate would present a countervailing force to

stabilize the postulated increase in inflation. From the definition of the real interest rate it follows then

0< drt ⇒ dRt >











dπt+1

dπt

dπt−1

(7)

The nominal interest rate must move more than one for one withinflation to achieve this increase in

the real rate—the celebrated Taylor principle.

The second pattern I will use is non-standard and is designedto adapt Lubik and Marzo’s (2007)

insight that non-monotonic sunspot dynamics are not only possible in these models, but are associated

with some policy and parameter regions of interest. Consider an oscillating pattern with a constant

amplitude and (trigonometric) period equal to two (model) periods (call it−dπt = dπt+1). This is a

“unit-root” sunspot in inflation just like in the standard experiment, but with the root located differently

on the unit circle (−1 here instead of the 1 above). Unlike the first experiment, the neutral movements

in the long-run real rate in the two models is different by virtue of the dynamic tradeoff in the sticky-

price Phillips curve discussed in the previous section. Examine the sticky-price model first: the Phillips

curve (2) delivers (as−dπt = dπt+1)

dyt =
1
κ
(dπt −dπt+1) =

1+β
κ

πt(8)

thus (again, as−dπt = dπt+1), dyt+1 =−dyt . Inserting this into the IS demand (1) equation

dyt = dyt+1−adrt ⇒−2
a

dyt = drt ⇒−2
1+β
aκ

dπt = drt(9)

Monetary policy’s rule for the nominal interest rate must now ensure that the real rate islessthan this

threshold value (recall the location on the unit circle is−1)

−2
1+β
aκ

πt > drt ⇒ dRt <



















(

1+21+β
aκ

)

dπt+1

−
(

1+21+β
aκ

)

dπt
(

1+21+β
aκ

)

dπt−1

(10)

Of note is that this upper bound on the elasticity of the nominal interest rate with respect to inflation

is negative for current inflation,16 but positive for both future and past inflation. Turning to the NRH

model for the oscillating inflation pattern, by virtue of theNRH, the output gap is necessary closed in

the long run regardless of the pattern of inflation, so the associated pattern relevant for the long-rung

real interest rate isyt = yt+1 = 0. Thus, from demand (1)

dyt = dyt+1−adrt ⇒ 0= drt(11)

16This illustrates that a region of determinacy exists for anegativeelasticity here, see King (2000, p. 79).
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for the real rate to be less than this threshold (again, recall the location on the unit circle),

0> drt ⇒ dRt <











dπt+1

−dπt

dπt−1

(12)

As in the sticky-price model, this upper bound is negative for current inflation, but positive for both

future and past inflation. King’s (2000, p. 79) conclusion that the zone of indeterminacy under cur-

rent inflation targeting is greater with sticky than with flexible prices is illustrated by this bound with

the maximal elasticity precisely−1 for the NRH model but generally less than−1 for the sticky

price model. Yet, the relevant range of elasticities in the monetary policy rule is arguably limited

to positive elasticities,17 and the positive upper bounds associated with future and past inflation im-

ply exactly the opposite conclusion. In what follows, I willflesh out the consequences of these two

thought-experiment bounds for a broad range of interest rate rules, maintaining the positive elasticity

assumption.18

3.2 Exogenous Interest Rates

The simplest example of an exogenous interest rate is an interest rate peg that keeps the nominal in-

terest rate equal to some exogenously given constant. Appealing to the thought experiment, it follows

immediately that the model cannot be determinate: the interest rate is constant (or exogenous to infla-

tion) and, hence, cannot increase more than one-for-one in the face of a permanent rise in inflation.

The same logic applies to any bounded, exogenous process forthe interest rate. Determinacy rests

on the homogenous part of the system of difference equations, which captures the response of monetary

policy to deviations from some stochastically varying neutral path in the words of King (2000). The

interest rate, properly normalized for this neutral path, is again constant and, as such, determinacy

can be assessed for any bounded exogenous interest rate under the same conditions as for a constant

interest rate. Thus, any constant or bounded exogenous interest rate rule is necessarily associated with

indeterminacy—the Sargent and Wallace (1975) result. Thiscorresponds to Woodford (2003, p. 253)

and confirms McCallum’s (1981) result that a nominal interest rate rule must involve feedback from

endogenous variables if Sargent and Wallace’s (1975) indeterminacy is to be overcome.

17See, e.g., Bullard and Mitra (2002), Woodford (2003), and Lubik and Marzo (2007).
18Readers unsatisfied with this assumption are directed to theorem 5.1 in section 5 for the general case.
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3.3 Output Gap Targeting

Consider, now, an output gap targeting interest-rate rule

(13) Rt = φyyt

I will go right to the determinacy bounds, derived using the thought experiments laid out above.

For the sticky-price model, from (7), the response of the nominal interest rate must be greater than

that of inflation. In the sticky-price model, movements in the output gap correspond to movements in

inflation even in the long run, with the relation, as derived in (5), given bydyt =
1−β

κ dπt . Thus, as
dRt
dπt

= dRt
dyt

dyt
dπt

= φy
1−β

κ , if φy
1−β

κ > 1 the model is determinate.19 For the NRH model, the permanent

change in inflation has—by virtue of the NRH—no permanent impact on the output gap (dyt = 0).

Hence,dRt
dπt

= dRt
dyt

dyt
dπt

= 0 and the response of the nominal interest rate cannot exceedthe necessary

threshold value with an interest rate rule that targets onlythe output gap. The second experiment

places an upper bound on the threshold response of the nominal interest rate. But it is negative and

with a positive tradeoff in the sticky-price model, no positive degree of output gap targeting can fulfill

this condition. As in the first experiment, the nominal interest rate will not respond at all in the long

run under the NRH and no degree of output gap targeting can bring about the necessary response in

the long-run real rate.

Contrary to Woodford’s (2003, pp. 254–255) claim that “a large enough [response to]either [the

output gap or inflation] suffices to guarantee determinacy,”(emphasis in the original) if the feedback

from endogenous variables is limited to the output gap, no degree of output gap targeting can induce

determinacy. The culprit: the non-vertical long-run Phillips curve in sticky-price models allows mone-

tary policy to substitute output gap targeting for inflationtargeting so as to satisfy the Taylor Principle,

a possibility not available if the NRH is upheld. Without a permanent output-inflation tradeoff as in

the sticky-price model, the Taylor principle cannot be fulfilled under a pure output gap target.

3.4 Contemporaneous Inflation Targeting

Consider now an extended (by interest rate smoothing and output gap targeting) contemporaneous

inflation targeting rule

Rt = φRRt−1+φππt +φyyt(14)

19See Woodford (2003, p. 254) and Galı́ (2008, p. 77): setφπ = 0 and note that Woodford’s (2003, p. 254)φx
4 is equivalent

to my φy (see Woodford (2003, p. 246)).
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Turning to the first thought experiment, the effect on the real rate of a permanent increase in

inflation (dπt = dπt+1). For the sticky-price model, the threshold response of thenominal interest rate

is just equal to that of inflation, see (7). Inserting this threshold response along with the response of

the output gap to inflation from the previous section into (14) yields dRt
dπt

= φR+φπ+φy
1−β

κ . This must

be greater than the borderline case of one, which deliversφπ > 1−φR−φy
1−β

κ .20 Under the NRH, as

before, the permanent change in inflation has no permanent impact on the output gap (dyt = 0). With

the threshold response of one, it now follows from (14) thatdRt
dπt

= φR+φπ > 1. The Taylor principle

can be satisfied under the NRH only by a sufficiently vigorous cumulative reaction ( 1
1−φR

dπt) of the

nominal interest rate to inflation.

The interpretation under the NRH is the one generally given to the Taylor principle, despite the

pervasiveness of the sticky-price model in the literature which allows monetary policy to substitute a

reaction to the output gap for a reaction to inflation at the rate 1−β
κ (the long-run slope of the Phillips

curve). Under the NRH, the monetary authority is unable to make such a trade with a long-run vertical

Phillips curve and must, then, satisfy the Taylor principledirectly. The second experiment of oscillat-

ing inflation again places a negative upper bound, see the case of πt in (10), on the threshold response

of the nominal interest rate: restricting policy rules to positive elasticities, no parameter combination

can satisfy this condition.

The results under the NRH reiterate the conclusion that output gap targeting is irrelevant for de-

terminacy. The absence of parameters outside of monetary policy has the convenient attribute that

determinacy can be evaluated on the merits of the interest rate rule alone. Woodford’s (2003, p. 255)

indirect interpretation of Taylor (2001), requiring parameter estimations of the sticky-price Phillips

curve is not necessary under the NRH model. Indeed, taking Woodford’s (2003, p. 255) analysis lit-

erally, one could just as easily conclude that indeterminacy in the pre-Volker era was due to too small

a concern of monetary policy for the real economy and not necessarily to too weak of a reaction to

inflation; a conclusion which could not be reached if the NRH is upheld.

20See Woodford (2003, p. 255), but note that hisφx
4 is equivalent to myφy.
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3.5 Forward-Looking Inflation Targeting

Consider an extended (again, by interest rate smoothing andoutput gap targeting) inflation-forecast

target

Rt = φRRt−1+φπEt [πt+1]+φyyt(15)

I again turn to the thought experiments, though now the second experiment will be of consequence.

First, in the case of a permanent increase in inflation, the same lower bound is derived as in the case

of contemporaneous inflation targeting. In the special caseφy = φR = 0, this lower bound is given by

φπ > 1 in both the standard sticky-price model and NRH models. Allowing for interest rate smoothing

enables the monetary authority to spread the needed more than one-for-one increase in the nominal

rate over many periods in accordance with the cumulative Taylor principle. The presence of output

gap targeting then differentiates the results of sticky-price and NRH models, with the non-vertical

Phillips curve of the former allowing the monetary authority to substitute output gap targeting for the

necessary inflation targeting at the rate1−β
κ , the long-run slope of the Phillips curve.

Turning to the second experiment with oscillating inflation(−dπt = dπt+1), the threshold re-

sponse of the nominal interest rate for the sticky-price model, see (10), is now given bydRt =
(

1+21+β
aκ

)

dπt+1. From (15), noting the oscillatory paths and the tradeoff between inflation and the

output gap, it follows thatdRt = φRdRt−1+φπdπt+1+φydyt becomesdRt =−φR

(

1+21+β
aκ

)

dπt+1+

φπdπt+1− φy
1+β

κ dπt+1 or dRt =
(

−φR

(

1+21+β
aκ

)

+φπ −φy
1+β

κ

)

dπt+1. The response of the nom-

inal interest rate must be below the threshold value, see (10), and this requires−φR

(

1+21+β
aκ

)

+

φπ − φy
1+β

κ < 1+ 21+β
aκ , or φπ < (1+φR)

(

1+21+β
aκ

)

+ φy
1+β

κ .21 For the NRH model, the thresh-

old response of the nominal interest rate, see (12), is givenby dRt = dπt+1. From (15),dRt =

φRdRt−1+ φπdπt+1+ φydyt which, noting the oscillatory paths and that the permanent change in in-

flation has no permanent impact on the output gap (dyt = 0), becomesdRt =−φRdπt+1+φπdπt+1 or

dRt = (−φR+φπ)dπt+1. For the response of the nominal interest rate to be below thethreshold value,

this requires−φR+φπ < 1 or φπ < 1+φR.

The lower bound requires the interest rate to follow the Taylor Principle, necessitating an active

interest rate. The upper bound, however, requires that the interest rate not be overly aggressive, lest

“the output gap and inflation [be] projected to converge backto the steady stateregardlessof their

values in the current period.”22 The difference is that in the absence of interest-rate smoothing, the two

21See Woodford (2003, p. 258), noting that hisρ corresponds to myφR and hisφx
4 to my φy.

22Levin, Wieland, and Williams (2003, p. 628). Emphasis in theoriginal.
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bounds collapse, meaning every interest rate rule of this type is either too aggressive or not aggressive

enough.23 The history dependence induced by feedback on the lagged interest rate is enough to open

a window of determinacy for the forward-looking rule. Yet again, determinacy is independent of the

degree of output gap targeting and of parameters outside theinterest rate rule, contrary to sticky-price

analyses. The lower bound conforms to Woodford’s (2003, p. 96) inertial modification of the Taylor

Principle: the cumulative response of the nominal interestrate must react more than one-to-one to a

sustained deviation in inflation. Woodford (2003, p. 259) remarks that with “coefficients in the range

that is likely to be of practical interest, [the upper bound does] not seem likely to be a problem;”

likewise Galı́ (2008, p. 79). These assurances are less convincing if one requires the NRH to be

fulfilled.

In the special caseφy = φR= 0, note that the determinacy region disappears under the NRH: a pure

inflation-forecast targeting rule is necessarily indeterminate.24 Contrary to sticky-price models, there

is no region of determinacy for pure inflation-forecast targeting rules. The pervasive indeterminacy

under the NRH would certainly seem to be more consistent withWoodford’s (2000) discussion of

the non-optimality of purely forward-looking monetary policy rules than the analogous analysis in

sticky-price models.

3.6 Backward-Looking Inflation Targeting

Consider an extended (again, by interest rate smoothing andoutput gap targeting) backward-looking

inflation target

Rt = φRRt−1+φππt−1+φyyt(16)

The determinacy bounds for the backward-looking target areidentical to those for the forward

looking target, noted also by Lubik and Marzo (2007). To see this using the thought experiments,

observe that the first experiment delivers the same lower bound is derived as in the case of contempo-

raneous inflation targeting. This follows as timing is irrelevant in this experiment (πt = πt+1). Turning

to the second experiment with oscillating inflation (−πt = πt+1), the threshold response of the nomi-

nal interest rate for the sticky-price model, see (10), is now given bydRt =
(

1+21+β
aκ

)

dπt−1. From

23This indeterminacy can also be seen by considering the specific NRH supply side:yt = 0. This reduces (1) toRt =
Et [πt+1], the Fisher-like equation from the frictionless case. The pure inflation forecast targeting rule isRt = φπEt [πt+1].
The system of these two equations can at most pin downRt andEt [πt+1], leavingπt undetermined. See footnote 49 of
King (2000, p. 80).

24The result of Carlstrom and Fuerst (2002) and Michael Dotseyas communicated to King (2000, p. 80).
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(16), noting the oscillatory paths and the tradeoff betweeninflation and the output gap, it follows

that dRt =
(

−φR

(

1+21+β
aκ

)

+φπ −φy
1+β

κ

)

dπt−1. The response of the nominal interest rate must

be below the threshold value, see (10), and this requiresφπ < (1+φR)
(

1+21+β
κ1

)

+ φy
1+β

κ as with

forward-looking moentary policy. For the NRH model, the threshold response of the nominal interest

rate, see (12), is given bydRt = dπt−1. From (16),dRt = φRdRt−1+φπdπt−1+φydyt which becomes

dRt = (−φR+φπ)dπt−1. For the response of the nominal interest rate to be below thethreshold value,

this requiresφπ < 1+φR, as in the case of a forward looking target.

I now turn to the formal analysis of the paper to generalizes these results to a class of models

that satisfy the NRH and a wider range of interest rate rules.The results derived informally here for a

number of specific monetary policy rules will be confirmed formally in section 5.1 and an interpretation

for the differences between the NRH case and the sticky modelwill be given in section 5.2, building

on the intuition developed with the formal results in the coming sections.

4 Determinacy and the Natural Rate Hypothesis

This section derives the main result of the paper; after having introduced the class of models and

derived the conditions for determinacy in the class, I provean equivalence property among these

conditions for models in the class that satisfy the NRH. The main result is that all models, saving a

few isolated singularities, that satisfy the NRH are determinate under the same conditions on monetary

policy for a given demand equation; that is, the nature of theshort-run tradeoff (if any) in the supply

equation is inconsequential for determinacy bounds on monetary policy. Additionally, if the NRH is

fulfilled, then the degree of output gap targeting (if any) isirrelevant for determinacy—the output gap

is closed in the long run by virtue of the NRH and provides no leverage for monetary policy to fulfill

the Taylor principle. Finally, if demand is given by standard IS demand, the only parameters relevant

for determinacy are those in the interest rate rule of monetary policy. The class of models encompasses

all three-equation models in the output gap, inflation, and the nominal interest rate with finite leads,

lags, and expectational lags. The number of leads, lags, andexpectational lags is arbitrary leading to a

rather general class of rational expectations models. The standard New Keynesian model is a special

case and I show how it fits into the broader class I define. Lucas’s (1972) NRH as applied to the class

I study reduces to the condition introduced by Carlstrom andFuerst (2002) and I link the NRH to a

parameter restriction on sums of coefficient in the supply equation.
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4.1 Model Class

Consider the following class of three-equation (i.e., supply, demand, and monetary policy) linear

rational-expectations models:

0=
p

∑
i=0

n

∑
j=−m

Q(i, j)Et−iXt+ j , Xt =
[

Rt πt yt
]′
, 0≤ p,m,n< ∞(17)

whereyt is the output gap,πt inflation, andRt the nominal interest rate. With three variables and three

equations, the matricesQ(i, j)’s are of dimension 3× 3. The class encompasses all linear rational-

expectations models in the three variables of interest that(i) have a finite number of leads (given byn),

(ii) have a finite number of lags (given bym), and (iii) have expectations formed at horizons fromt into

the finite pastt− p.25 The compact presentation of the class in (17) is chosen for technical reasons that

will become apparent later but I shall first explore a particular example, the standard New Keynesian

model, to make it more transparent.

The standard New Keynesian model has three equations in inflation, the output gap, and the nomi-

nal interest rate (sayRt = φππt +φyyt , Taylor’s (1993) rule) and has finite leads (namely, one:n= 1),

lags (nonem= 0), and expectational lags (nonep= 0). Thus, it fits within the class introduced above

and can be brought into the form of (17)

0=
1

∑
j=0

Q(0, j)EtXt+ j =





0 −1
κ 1

−a 0 −1
−1 φπ φy









Rt

πt

yt



+





0 β
κ 0

0 a 1
0 0 0









Et [Rt+1]
Et [πt+1]
Et [yt+1]



(18)

with only two 3×3 matrices,Q(0,0) andQ(0,1), being non-zero.

Notice in contrast to the standard New Keynesian model, a more general structure of model is

permitted by (17). Besides requiring supply and demand onlyto fit into the finite lead, lag, and

expectational lag structure of the class, monetary policy too only needs fits into the class. If monetary

policy is the third equation of (17),26 given by

0=
p

∑
i=0

n

∑
j=−m

Q3,.(i, j)Et−i
[

Xt+ j
]

(19)

The class, of course, captures a wide range of interest rate rules found in the literature, including the

current and forward-looking inflation targeting, interestrate smoothing, and output gap targeting as

examined in Woodford (2003) as well as the rules in Bullard and Mitra (2002).

25Note that the absence of exogenous driving forces in (17) andconstants is without loss of generality. The conditions
for determinacy remain the same if (17) is appended with stationary driving forces (i.e., I am investigating the properties
of the homogenous component of the system of difference equations).

26WhereQ3,.(i, j) is the row vector given by the the third row ofQ(i, j).
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4.2 The NRH in the Model Class

For the NRH to be fulfilled,E [yt ] = 0 must hold for any monetary policy. In the class of finite models

defined in (17), this reduces to the following condition fromCarlstrom and Fuerst (2002),27

Definition 4.1 (The Natural Rate in the Class of Models in (17)).

Et−k [yt ] = 0 ∀t(20)

Within the class there exists some maximal expectational lag after which the slope of the Phillips

curve no longer changes. Thus, if the long-run Philips curveis to be vertical as demanded by the NRH,

it must do so at some finite horizon, sayk.

The list of dynamic models that satisfy (20) includes: Andr´es, López-Salido, and Nelson’s (2005,

p. 1034) “Sticky information, staggered á la Taylor,” as found also in Koenig (2004), Collard, Dellas,

and Smets (2009), and Woodford (2011); other models of finitely staggered predetermined prices such

as Fischer (1977) and Blanchard and Fischer (1989, pp. 390–394); Carlstrom and Fuerst’s (2002,

p 81-82) model in this spirit; the Mussa-McCallum-Barro-Grossmann “P-bar model”—see McCallum

(1994) and McCallum and Nelson (2001); as well as the expectational Phillips curve of Lucas (1973)—

see also Sargent and Wallace (1975)—that formalized the rational expectations revolution. With the

exception of Calvo sticky-information models with an infinite distribution of expectational lags,28

every linear intertemporal model that claims to satsify Lucas’s (1972) NRH also satisfies the condition

of Carlstrom and Fuerst (2002), repeated here as (20).

The NRH can also be seen as a parameter restriction for modelsin (17), given by
k

∑
i=0

Q1,h(i, j) = 0, ∀ j =−m, ...,n andh= 1,2(21)

Q1,h(i, j) = 0, ∀ j =−m, ...,n, i > k andh= 1,2(22)

where the subscripts inQ1,h(i, j) refer to theh’th column of the row associated with the supply equa-

tion, assumed without loss of generality to be the first row. This condition requires that inflation and

the nominal interest rate at each lead and lag drop out of the supply equation upon application of the

27An obvious extension of (20) that would be inconsequential for the analysis of determinacy but useful in analyzing
stochastic properties would allow the righthand side to differ from zero by a stationary stochastic process orthogonalto the
remaining variables in the system.

28For technical reasons requiring the analysis of non-constant coefficient difference equations, I examine the determinacy
properties of this model separately and cast doubt on the purported adherence of the model, whose origins can be found in
Mankiw and Reis (2002) and Bénassy (2003), to the NRH.
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conditional expectations operatork periods ago

0= Ek

[

p

∑
i=0

n

∑
j=−m

Q1(i, j)Et−i
[

Rt+ j πt+ j yt+ j
]′
]

=

(

k

∑
i=0

n

∑
j=−m

Q1(i, j)

)

Et−k
[

Rt+ j πt+ j yt+ j
]′
+

p

∑
i=k

n

∑
j=−m

Q1(i, j)Et−i
[

Rt+ j πt+ j yt+ j
]′

=

(

k

∑
i=0

n

∑
j=−m

Q1,3(i, j)

)

Et−k
[

yt+ j
]

+
p

∑
i=k

n

∑
j=−m

Q1,3(i, j)Et−i
[

yt+ j
]

which is assumed throughout to be a saddle-point equation with resolvable expectations in the output

gap and,29 hence, the natural rate property follows and the output gap is closed on average irrespective

of monetary policy.

4.3 Determinacy: A Lemma

Here, I derive a lemma for the conditions under which determinacy obtains in the general class of

models in (17). This lemma splits the determinacy property into a standard saddle-point problem and

a resolvability of the lagged expectation structure.

The following lemma establishes necessary and sufficient conditions for models in the class (17)

to have a unique stationary solution. There are two conditions that need to be fulfilled. First, the

Blanchard and Kahn (1980) saddle-point condition needs to be fulfilled. Due to the variable number

of leads and lags in (17), Anderson’s (2010) explicit extension to such a case is used, eliminating the

burden of expanding the state space to fit Blanchard and Kahn’s (1980) canonical form. The second

condition collects the set of equations needed to resolve the lagged expectations,30 extending Meyer-

Gohde (2010) to the variable leads and lags of Anderson (2010), and requires that it have a unique

solution. The lemma itself contains little novelty, but combines existing results to be flexible enough

for the rather general class of models in (17).31

Lemma 4.2. For the system (17) to be determinate, i.e., to have a unique stationary solution,

29If not, there exists the potential for an interaction of the nominal side with an increasing-returns-to-scale type of
indeterminacy as explored by Weder (2008). This is, however, beyond the scope of this paper.

30An example of how lagged expectations can be unresolvable isexplored starting with (25).
31Boyd and Dotsey (1996) provide a somewhat similar result, though their uniqueness proof leaves a set of coefficients

arbitrary leading them to the apparently paradoxical conclusion that “the general solution is not unique.” Additionally,
by assuming the underlying homogenous system to be non-singular and using the resulting Jordan decomposition, they
are able to characterize a rank condition analytically. Thegeneralized Schur decomposition, here from Anderson (2010)
or likewise Klein (2000) among others, I use here allows for singular cases to be analyzed, but comes at the cost of the
analytical analysis of this rank condition, which I abstract from following common practice in the literature. See also
footnote 33 for more on this point.
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1. The model that results from replacing all lagged expectations (those formed at time t− p for

p> 0) with their time t values must have a unique saddle-point stable solution.

2. The sequence of one-step expectation errors induced by the structure of lagged expectations

must have a unique solution.

Proof. See appendix B.

Again, the first condition requires that the model be determinate if all lagged expectations are

replaced with timet expectations, Anderson’s (2010) saddle point. While the second requires that

one can uniquely resolve the lagged expectations, formalizing Whiteman’s (1983, pp. 29–36) insight

that resolving lagged expectations, solving ”withholdingconstraints” in his terminology or removing

“arbitrary MA coefficients” in Boyd and Dotsey’s (1996), is not generally a trivial task.

4.4 Determinacy and Monetary Policy

In this section, I apply the lemma from the foregoing sectionto establish the link between determinacy

in NRH models and determinacy in their fully frictionless counterparts, excepting for the indetermi-

nacy of expectational non-resolvability. This link enables me to decouple the examination of deter-

minacy from the particular supply curve in an analysis so long as it satisfies the NRH, leading to the

equivalence result in theorem 4.6. Finally, the ability to abstract from the particular supply curve al-

lows me to establish general results for determinacy given standard dynamic IS demand for all supply

sides that satisfy the NRH in the admissible class.

First, I shall describe the frictionless counterpart benchmark. Here, there is no impediment to

firms’ setting the optimal, full-information price every period. It follows by definition that the output

gap is always zero

yt = 0 ∀t(23)

i.e., the special case ofk= 0 in the NRH definition (20). This is a rather extreme version of the NRH

also satisfied by the limiting case of the New Keynesian modelexamined in section 2. In this case, IS

demand (1) reduces to

Rt = Et [πt+1](24)

After k periods have passed since some disturbance from equilibrium, a supply side that fulfills (20)

behaves identically to that of (23), i.e., applying the conditional expectations operator to the LHS of
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both supply sides yields zero—Et−k [ (23)] =Et−k [ (20)] = 0. Hence, given a common specification for

the remainder of the model, any two models that satisfy (20) for somek are identical in the long-run

(or indeed, afterk).

Proposition 4.3. Consider a model in (17) that satisfies the NRH of (20). The model is determinate

only if the corresponding frictionless model—i.e., one satisfying (23)—is determinate.

Proof. If the model is determinate, parts 1 and 2 of lemma 4.2 are fulfilled. But part 1 of lemma 4.2

is the same for the frictionless model and is thus likewise fulfilled. This leaves part 2 of lemma 4.2.

But part 2 is necessarily fulfilled by the frictionless model(the matrix (B-15) in the proof of lemma

4.2 is lower triangular with all diagonal entries equal one,hence necessarily nonsingular). Thus, the

frictionless model that satisfies (23) is also determinate.

Thus, a necessary condition for determinacy in any model that satisfies the NRH is that the corre-

sponding frictionless model is determinate. The foregoingproposition proves the necessity of deter-

minacy in the underlying frictionless model, showing essentially that the eigenvalue counting method

of Blanchard and Kahn (1980) is the same regardless of actualvalue ofk.

Proposition 4.4. Consider a determinate frictionless model—i.e., one that satisfies (23) in (17). There

exist corresponding NRH models—i.e., that satisfy (20) fork> 0—that are indeterminate.

Proof. As the frictionless model is determinate, part 1 of lemma 4.2is fulfilled. This system is the

same for the NRH model and hence part 1 of lemma 4.2 is fulfilledby the NRH model. Part 2 is

necessarily fulfilled by the frictionless model (the matrix(B-15) in the proof of lemma 4.2 is lower

triangular with all diagonal entries equal one, hence necessarily nonsingular), but the lagged expecta-

tion structure is unrestricted in the NRH model. Thus, part 2of lemma 4.2 need not be fulfilled by the

NRH model (the matrix (B-15) in the proof of lemma 4.2 can in general be singular) and there exist

indeterminate NRH models whose the corresponding frictionless models are determinate.

Lemma 4.2 establishes that the saddle-point property of theunderlying matrix polynomial is insuf-

ficient to conclusively establish determinacy: it does not necessarily follow that a model that satisfies

the NRH is determinate when its frictionless counterpart is. This shows, for example, that the equiva-

lence between nominal and real determinacy in the NRH model of Carlstrom and Fuerst (2002) does

not carry over without exception to all models that satisfy the NRH. As Whiteman (1983, p. 33) points
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out, “the conditions for existence and uniqueness of solutions to withholding equations are quite dif-

ferent from those for the general expectational differenceequation.”

A simple, univariate example will illustrate. Consider thefollowing system

aEt [θt+1] = bθt +cEt−1 [θt ](25)

In the absence of expectations (that is, in the form of part 1 of lemma 4.2), this reduces to

aθt+1 = (b+c)θt(26)

which is saddle-point stable if|b+c
a |> 1. But the original equation does have expectations and, indeed,

lagged expectations that need to be resolved for part 2 of lemma 4.2. Taking expectations of (25) at

the highest expectational lag (heret −1) yields

aEt−1 [θt+1] = (b+c)Et−1 [θt ](27)

definingθ̃t−1 = Et−1 [θt ], inserting into the above and lagging forward yields

aEt
[

θ̃t+1
]

= (b+c) θ̃t(28)

an equation whose saddle-point properties are the same as (26). Thus, if|b+c
a | > 1, there is a unique

stable solution. This confirms proposition 4.3 and rests on the underlying “eigenvalue count” being

the same. As the system is homogenous, this unique solution is θ̃t = 0. Recalling the definition of̃θt

and inserting into (25) yields

0= bθt(29)

Consider now the special caseb = 0: the foregoing does not deliver a unique solution forθt , even

though the condition for saddle-point stability, now| c
a| > 1, can still be fulfilled. This results is em-

bodied in proposition 4.4 and rests on the singularity of thethe system needed to “resolve” the expec-

tations structure. Of course,b= 0 is a special case and it need not hold generally: hence, an isolated

singularity. In the context of a multivariate model, like those in (17), a singularity in the expectations

structure would occur if demand and supply are linearly dependent at some expectational horizon and

hence the model is ill-formulated, or monetary policy succeeds in recreating such a linear dependency

through a fortuitous selection of policy and parameter values. While neither seems likely within the

the analysis here, neither can be excluded a priori and such singularities might be of greater importance

in other analyses.

Moving past such singular cases for the analysis, the correspondence between determinacy under

the NRH and determinacy in the corresponding frictionless model has some strong implications. To

aid in the analysis that follows, I shall define a class of models that excludes such isolated singularities,
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so that the analysis can focus on regular cases

Definition 4.5 (The Class of Regular Models in (17)). The class of models in this definition is the class

of models in (17) restricted to rule out the non-resolvability in part 2 of lemma 4.2.

Restricting attention to models in definition 4.5, an equivalence theorem, the central result of the

paper, follows straightforwardly

Theorem 4.6.Consider models in definition 4.5 and fix the demand equation and monetary policy.

1. If the model is determinate under one supply equation thatsatisfies (20), it is determinate under

all supply equations that satisfy (20).

2. If the model is not determinate under one supply equation that satisfies (20), it is not determinate

under all supply equations that satisfy (20).

Thus, the determinacy bounds are the same for all supply equations that satisfy (20).

Proof. The non-resolvability in part 2 of lemma 4.2, proposition 4.4 has been ruled out by definition

4.5. Thus, a model in this class that satisfies the NRH defined in (20) is determinate if and only if the

corresponding model that satisfies (23) is determinate. This must hold for allk and thus holds for all

k̃ < k. Any supply equation that satisfies the NRH at a horizonk̃ < k, necessarily satisfies it at the

horizonk as well. Thus, for a givenk, all supply equations that satisfy the NRH are determinate if and

only if the corresponding frictionless model is determinate.

The intuition is as follows. If the model satisfies the NRH, then the output gap must on average

be equal to zero independent of monetary policy. This guarantees the existence (but not necessarily

the uniqueness) of a stationary output gap independent of inflation and the nominal interest rate. Were

k = 0, there would be complete separation between the real and nominal sides of the economy and

monetary policy would serve only to establish nominal determinacy with the output gap necessary

determined. Fork > 0, the lack of a complete separation by assumption links nominal and real de-

terminacy: without a unique solution for the nominal side, the link between the output gap and the

nominals at horizons less thank implies a unique solution for the output gap cannot be pinneddown.

If a unique solution for the nominal side can be determined bylong-run demand and monetary policy,

this solution selects, through the link at horizons less than k, a single solution for the output gap.

20



Therefore, as there is a unique stationary solution for the output gap if and only if there is a unique

stationary solution for inflation and the nominal interest rate in the frictionless counterpart model, the

conditions for determinacy are identical for all supply equations that satisfy (20).32 The situation is

exemplified graphically in figure 1: each path for the output gap is associated with a single path for

inflation. All the different paths of the output gap in figure 1a converge even though all but one of

the paths for inflation, depicted in figure 1b, diverge. Selecting the unique stationary path among the

different paths for inflation selects a particular path for the output gap (the more heavily weighted lines

in the figure), thus determining both through considerationsolely of inflation. The particular pattern

for the output gap associated with each path for inflation—i.e., the particular form of the short-run

Phillips tradeoff—is entirely inconsequential.
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Figure 1: Hypothetical Impulse Responses with Different Initial Conditions

The irrelevance of the degree and manner of output gap targeting for determinacy, as well as that

of the exact nature of the short-run tradeoff in the Phillipscurve relationship follows immediately.

Corollary 4.7. Consider a model within the class of definition 4.5 with any supply equation satisfying

(20). Determinacy is independent of the parameters both in the interest rate rule, however formulated

within the class, pertaining to the output gap and of those inthe supply equation.

Proof. From theorem 4.6, I may choose any supply equation to establish determinacy. Choosing (23),

the output gap is always closed. But this eliminates the parameters in monetary policy pertaining to

the output gap. Furthermore, from theorem 4.6, it follows directly that the parameters in the supply

equation are irrelevant.

32Saving, of course, for the caveat of the non-resolvability in part 2 of lemma 4.2.
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Again, if the model satisfies the NRH, then the output gap muston average be equal to zero

independent of monetary policy. There is simply no role for targeting the real side in determinacy.

Furthermore, as the conditions for determinacy are the samefor all supply equations that satisfy the

NRH, theorem 4.6, parameters of a specific supply equation formulation must be irrelevant.

Specializing to standard dynamic IS demand, a more specific statement can be made: a complete

independence of the conditions for determinacy from all parameters outside of monetary policy except

those that relate to inflation and the nominal interest rate

Corollary 4.8. Consider a model within the class of definition 4.5 with demand given by (1) and any

supply equation satisfying (20). Determinacy is a functionsolely of the parameters in the interest rate

rule, however formulated within the class, pertaining to inflation and the interest rate.

Proof. Following theorem 4.6, any supply equation that satisfies (20) can be used to establish deter-

minacy. From corollary 4.7, choosing (23) renders all parameters in the supply equation and those in

monetary policy related to the output gap moot. Examining (1), from (23) , (1) becomes (24), elimi-

nating the parameters in the demand equation. Thus, the onlyparameters in the model remaining that

can affect determinacy are those in the interest rate rule pertaining to inflation and the interest rate.

Dynamic IS demand ultimately derives from a consumption Euler or Lucas asset pricing equation

and arbitrage-free pricing of assets leads to a Fisher equation linking the pricing of real and nominal

assets,rt = Rt +Et [πt+1]. As the classical dichotomy sets in with the model approaching the long run,

the real rate becomes exogenous (and can thus be normalized to zero) to the determinacy question,

which operates through the nominal side in the long run underthe NRH as argued above. Demand

then only contributes this Fisher relation (24), a parameter-less equation, to the long-run system.

5 Interest Rate Rules and the NRH

Of particular interest are the determinacy results regarding specific policies, such as inflation target-

ing, forward-looking and backward-looking monetary policy, interest rate smoothing, and output gap

targeting. To that end, let monetary policy now be describedby the following interest rate rule

Rt = φRRt−1+φπ (ψ1Et [πt+1]+ψ2πt +ψ3πt−1)+φyyt , whereψ1+ψ2+ψ3 = 1(30)

whereφR describes the degree of interest-rate smoothing,φπ of inflation targeting, andφy of output gap

targeting. The coefficientsψ1,2,3 nest contemporaneous inflation targeting (ψ2 = 1), inflation forecast
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targeting (ψ1 = 1), and a purely backward-looking inflation target (ψ3 = 1).

Theorem 5.1.For every model in definition 4.5 with demand given by (1), anysupply equation satis-

fying (20), and monetary policy described by (30), the stable equilibrium is determinate if33

|φR+φπψ2|> |1−φπ (ψ1+ψ3) |(31)

Furthermore, if|φR+φπψ2|< |1−φπ (ψ1+ψ3) |, the stable equilibrium is
indeterminate if|φπψ3|< |1−φπψ1|

non-existent if|φπψ3|> |1−φπψ1|
(32)

Proof. Following theorem 4.6, I may choose any supply equation thatsatisfies the NRH to establish

determinacy. Choosing (23) reduces the demand equation to (24) and the interest rate rule, (30), to

Rt = φRRt−1+φπ (ψ1Et [πt+1]+ψ2πt +ψ3πt−1). Combining delivers the system




−φπψ1 0 1
−1 0 1
0 1 0









Et [πt+1]
πt

Rt



=





φπψ2 φπψ3 φR

0 0 0
1 0 0









πt

πt−1

Rt−1



(33)

The generalized eigenvalues,z, solve 0=−z
(

z2(1−φπψ1)−z(φπψ2+φR)−φπψ3
)

. With two backward-

looking and one forward-looking variable, determinacy requires two roots inside and one outside

the unit circle. One eigenvalue is necessarily inside beingequal to 0. Therefore, of the remaining

two roots, exactly one must be outside and one inside the unitcircle for determinacy. If the re-

maining two are both inside the unit circle, the stable equilibrium is indeterminate, and if they are

both outside the unit circle, the stable equilibrium is non-existent. The two remaining roots solve

z2(1−φπψ1)− z(φπψ2+φR)− φπψ3 = 0, and, the bounds on the eigenvalues follow directly from

corollary A.2 in appendix A.

Reiterating the results from 4.8, determinacy depends onlyon parameters in the interest rate rule

and is independent of the degree of output gap targeting.

Additionally, a specific case of the foregoing is of particular interest for monetary policy, that of

positive reaction coefficients.

33 It is to be understood that the analysis will be abstracting from cases where the relevant eigenvalues lie on the unit
circle. Following Woodford (2003, p. 254), in such a case, the linearized models examined here are insufficient to address
the question of local determinacy. There is the additional issue of “translatability” of the stable manifold—i.e., Klein’s
(2000, p. 1413) Assumption 4.5 or Blanchard and Kahn’s (1980, p. 1308) full-rank condition—that ensures the stable
manifold can be associated with the initial conditions of the backward-looking variables that I abstract from likewise
following Woodford (2003, pp. 672–673).
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Corollary 5.2. For φR,φπ ≥ 0,34 the determinacy bounds from theorem 5.1 become

Determinacy: φπ > 1−φR andφπ (1−2ψ2)< 1+φR

Indeterminacy: either

{

φπ < 1−φR

φπ (1−2ψ2)> 1+φR andφπψ1 > 1+φπψ3

Non-existence: φπ (1−2ψ2)> 1+φR andφπψ1 < 1+φπψ3(34)

Proof. See appendix C.

In (30), the general rule that allows for any combination of forward-looking, backward-looking,

and contemporaneous inflation targeting, a sufficient condition to eliminate the upper bound is that

majority of the emphasis is given to contemporaneous inflation targeting (ψ2 > 1/2)—see figure 2

and corollary 5.2. The indeterminacy of aggressive purely forward-looking policy (highφπψ1) can be

mitigated or eliminated entirely if the monetary authorityplaces sufficient weight on current and past

indicators , reinforcing Woodford’s (2000) warning that monetary policy needs to be history dependent.

If the emphasis is shifted towards past inflation rather (high ψ3) than a (cumulative) contemporane-

ous response (highψ2 andφR), indeterminacy may be replaced by non-existence, placingthe history

dependence motivation under a caveat.

With corollary 5.2, I can proceed to analyze specific cases ofthe interest-rate rule (30) as derived

informally with two thought experiments in section 3.

5.1 Confirming the Special Cases of Section 3

The determinacy bounds for the standard sticky-price New Keynesian model and when the NRH is

fulfilled were derived in section 3 using two thought experiments. Using theorem 5.1, I will confirm

the bounds derived there formally. Additionally, I will identify regions where determinacy does not

obtain as being associated with indeterminacy or nonexistence.

5.1.1 Exogenous Interest Rates

A constant (or constant with respect to some exogenously evolving target) interest rate rule reduces

(30) toRt = 0, which requiresφπ = φy = φR = 0. Inserting these values into theorem 5.1, it follows

immediately that|φR+φπψ2| = |0| > |1−φπ (ψ1+ψ3) | = |1| cannot hold and thus the model is not

34Restricting the parameters to be positive also implies thatthe bounds should be of the form, taking the first bound in
the corollary as an example,φπ > max(1−φR,0), see Lubik and Marzo (2007). These non-negativity bounds have been
left implicit to reduce clutter.
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Figure 2: Determinacy Regions from Theorem 5.1

determinate, confirming the result in section 3.2. Furthermore, |φπψ3| = |0| < |1− φπψ1| = |1| does

hold and thus the model is indeterminate.

5.1.2 Output Gap Targeting

An interest rate rule with only output gap feedback reduces (30) to Rt = φyyt , which requiresφπ =

φR = 0. Inserting these values into theorem 5.1, it follows immediately that |φR+ φπψ2| = |0| >
|1− φπ (ψ1+ψ3) | = |1| cannot hold and thus the model is not determinate, just as in section 3.3.

Furthermore,|φπψ3|= |0|< |1−φπψ1|= |1| does hold and thus the model is indeterminate.

5.1.3 Contemporaneous Inflation Targeting

An interest rate rule with contemporaneous inflation targeting reduces (30) toRt = φRRt−1+ φππt +

φyyt , which requiresψ1 = ψ3 = 0 and, therefore,ψ2 = 1. Recalling that the exercise focused only on

positive coefficient values and inserting these values for theψ’s into corollary 5.2, it follows immedi-

ately thatφπ > 1−φR andφπ (1−2ψ2)< 1+φR translate intoφπ > 1−φR and 0< 1+φR. Thus, the

model is determinate only whenφπ > 1−φR, e.g. when the cumulative reaction of the nominal interest

rate to inflation is more than one-for-one, confirming the result of section 3.4. Going further, it is

apparent from corollary 5.2 that when the model is not determinate under a contemporaneous inflation
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target with positive coefficients,φπ < 1−φR, it is necessarily indeterminate.

5.1.4 Forward-Looking Inflation Targeting

An interest rate rule with feedback from future inflation reduces (30) toRt = φRRt−1+φπEt [πt+1]+

φyyt , which requiresψ2 = ψ3 = 0 and, therefore,ψ1 = 1. Recalling that the exercise focused only on

positive coefficient values and inserting these values for theψ’s into corollary 5.2, it follows immedi-

ately thatφπ > 1−φR andφπ (1−2ψ2)< 1+φR translate intoφπ > 1−φR andφπ < 1+φR. Thus, the

model is determinate only when 1−φR < φπ < 1+φR. That is, the monetary authority should respect

the Taylor principle, but not overly aggressive, confirmingthe result of section 3.5. Going further, in

the absence of determinacy,φπ (1−2ψ2)> 1+φR andφπψ1 < 1+φπψ3 from corollary 5.2 translates

into φπ > 1+φR andφπψ1 < 1, which cannot hold for positiveφR. Thus when the model is not deter-

minate under a forward looking inflation target with positive coefficients, 1−φR < φπ < 1+φR, it is

necessarily indeterminate.

5.1.5 Backward-Looking Inflation Targeting

An interest rate rule with feedback from past inflation reduces (30) toRt = φRRt−1+ φππt−1+ φyyt ,

which requiresψ1=ψ2= 0 and, therefore,ψ3= 1. Recalling that the exercise focused only on positive

coefficient values and inserting these values for theψ’s into corollary 5.2, it follows immediately that

φπ > 1−φR andφπ (1−2ψ2)< 1+φR translate intoφπ > 1−φR andφπ < 1+φR. Thus, the model is

determinate only when 1−φR< φπ < 1+φR. That is, the monetary authority should respect the Taylor

principle, but not overly aggressive, confirming the resultof section 3.6 and repeating the result from

above from the forward-looking rule. Going further, in the absence of determinacy,φπ (1−2ψ2) >

1+φR andφπψ1 < 1+φπψ3 from corollary 5.2 translates intoφπ > 1+φR and 0< 1+φπ, admitting

non-existence for the overly aggressive inflation response. Thus with a backward looking inflation

target with positive coefficients, the model is determinatewhen 1−φR < φπ < 1+φR, indeterminate

whenφπ < 1−φR, and displays non-existence when 1+φR< φπ.

5.2 Comparison with Sticky Prices

The results for the special cases of (30), examined above, are gathered in table 1. The table juxta-

poses the determinacy regions in an NRH model with those in the standard sticky-price model, derived
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with the thought experiments in section 3.35 Under standard parameter assumptions—i.e.,a,κ > 0

and 0< β < 1—where the determinacy regions differ, the sticky-price models implies a larger re-

gion of determinacy for the plausible space of positive interest rate rule elasticities. Appealing to the

“near-unanimous acceptance of the Friedman-Phelps-Lucasview that there is no exploitable long-run

tradeoff between inflation and output or employment[,]” (McCallum 1999, p. 182) I conclude that the

sticky-price model can mislead monetary authorities into adapting policies that fail to yield a deter-

minate equilibrium. It can be seen that even the extreme parameterization ofβ = 1 does not suffice

to bring the determinacy results of the sticky-price model inline with those of a NRH model. Indeed,

there only parameterization that brings the determinacy regions of the sticky-price model in the line

with those of a NRH model is the parameterization that bringsthe sticky-price model inline with the

NRH, κ → ∞, as can be easily observed in the table.36 For the long-run Phillips curve to be vertical in

the case of the standard sticky-price model, it must always be vertical.

Table 1: Determinacy Regions: Comparison of NRH and Sticky Prices

Interest Rate Rule Sticky Prices NRH
Non-Price-Related Feedback

Rt = 0 /0 /0
Rt = φyyt φy >

κ
1−β /0

Forward-Looking Inflation Targeting

Rt = φπEt [πt+1] 1< φπ < 1+21+β
aκ /0

Rt = φRRt−1+φπEt [πt+1]+φyyt
φπ > 1−φR− 1−β

κ φy φπ > 1−φR

φπ < (1+φR)
(

1+21+β
aκ

)

+φy
1+β

κ φπ < 1+φR

Backward-Looking Inflation Targeting

Rt = φππt−1 1< φπ < 1+21+β
aκ /0

Rt = φRRt−1+φππt−1+φyyt
φπ > 1−φR− 1−β

κ φy φπ > 1−φR

φπ < (1+φR)
(

1+21+β
aκ

)

+φy
1+β

κ φπ < 1+φR

Contemporaneous Inflation Targeting
Rt = φππt φπ > 1 φπ > 1

Rt = φRRt−1+φππt +φyyt φπ > 1−φR− 1−β
κ φy φπ > 1−φR

Recall that, in general, the sticky-price New Keynesian model does not satisfy the NRH. Conse-

quently, the sticky-price model is not even asymptoticallyisomorphic to its frictionless equivalent:

35Detailed formal derivations of the determinacy results forthe sticky-price model can be found in Bullard and Mitra
(2002), Woodford (2003), Lubik and Marzo (2007), and Galı́ (2008) among others.

36This implies a rule of thumb to judge whether a study’s particular determinacy results stem from its violation of the
NRH: namely examine the limit of the determinacy condition as the Phillips curve becomes vertical.
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with this permanent link between the nominal and real side ofthe economy, nominal and real deter-

minacy must be simultaneously ascertained.37 In assessing determinacy in the sticky-price model, one

is forced to look at paths along which the violation of the NRHmay be consequential. In terms of

the thought experiment of section 3, potential equilibria associated with a permanent non-diminishing

pattern in inflation are excluded from the permissible set ofequilibria, such that only bounded equilib-

ria remain in the set. Hence, the assessment of determinacy necessitates the examination of paths that

become unbounded in order to exclude them from the set of admissible equilibria. It is here that the

NRH becomes decisive: due to the permanency of the output-inflation tradeoff in sticky price models,

a path can become unbounded (and hence excludable) solely due to an unabated mutual interaction

with inflation and the output gap are feeding boundlessly into each other. In contrast, such a perma-

nent link is impossible in a model that satisfies the NRH and the output gap is necessarily bounded by

virtue of the NRH. Therefore, a model’s violation of the NRH can force an otherwise bounded equi-

libria to become unbounded, distorting policy recommendations in terms of bounds on coefficients in

the monetary authority’s policy rule so as to ensure the uniqueness of a bounded equilibrium.

That imposing the NRH leads to such general results underlines the long-run nature of determinacy

analyses. It is perhaps all to easy to forget that determinacy ultimately rests on ruling out explosive,

or divergent, paths.38 It is the behavior in the long run that establishes whether a particular path is

diverging. Determinacy is a question of the long run and it isin the long run by its restriction on the

average output gap that the NRH is of consequence.

5.3 Higher Leads and Lags?

The determinacy bounds in theorem 5.1 imply that neither a pure forward-looking (Rt = φπ [πt+1]) nor

pure backward-looking (Rt = φππt−1) inflation target is associated with determinacy. In the following,

I will prove that this is not restricted to the one period horizon used in the theorem, but extends

straightforwardly to any (finite) horizon.

37As McCallum (2003, p. 1157) put it, “the [Calvo] form of sticky prices [...] is such that the model continues to include
nominal variables even when monetary policy supplies no nominal anchor, because private behavior involves a type of
dynamic money illusion.”

38According to Cochrane (2011), the problem is even worse: macroeconomics appears to have forgotten why and
whether it can rule out such paths all. The analysis here is agnostic on that issue, taking as given the standard practice of
analyzing determinacy to ascertain whether a unique equilibrium is present. It should, however, be noted that the analysis
here suggests that determinacy under the NRH and with standard IS demand reduces to the simple model used by Cochrane
(2011) to fix ideas, implying that determinacy for the entireclass of models that satisfies Lucas’s (1972) NRH rest directly
upon the resolution of simple model in the Cochrane (2011) critique.
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Theorem 5.3.A model within the class of definition 4.5 with demand given by(1), any supply equation

satisfying (20), and monetary policy described by Rt = φπEt
[

πt+ j
]

has a unique stable equilibrium

(determinacy) only if j= 0.

Proof. Following theorem 4.6, I may choose any supply equation thatsatisfies the NRH to establish

determinacy. Choosing (23) reduces the demand equation to (24), combining with the interest rate

rule,Rt = φπEt
[

πt+ j
]

, yields

Et [πt+1] = φπEt
[

πt+ j
]

(35)

For j ≥ 1, the characteristic equation of the system isF(z) = φπzj − z. As the system is entirely

forward looking, all zeros need to lie outside the unit circle. But the zeros solve
(

φπzj−1−1
)

z= 0,

one of which is obviously equal to zero.

For j ≤ −1, the characteristic equation of the system isF(z) = φπz− j −z. Stability now requires

one zero outside andj inside the unit circle. But the zeros solve
(

φπ −zj+1
)

z= 0, all of which are on

the same side of the unit circle depending onφπ.

For j = 0, the characteristic equation of the system isF(z) = φπ − z. Stability requires one zero

outside the unit circle, which holds if|φπ|> 1.

The intuition here is simple. In the case of backward-looking rules, the necessary vigor in monetary

policy’s reaction to satisfy the Taylor principle is immediately too vigorous, implying that inflation is

always explosive. In the case of forward-looking rules, by the fact that agents with IS demand are also

forward looking, the model contains no reference to currentinflation whatsoever; satisfying the Taylor

principle does not preclude transient self-fulfilling inflation sunspots. In the case of a pure target,

monetary policymustfocus on the current state of inflation.

6 Conclusion

I have presented results on determinacy and monetary policythat are applicable in an entire class

of intertemporal models restricted only to satisfy the NRH.As argued by McCallum (1998), this is

precisely the class upon which analyses of monetary policy should concentrate and my results indicate

that the determinacy analyses in much of the New Keynesian literature are not robust to the NRH. The

general results can be be summarized as reinforcing the importance of the Taylor principle, dismissing

the relevance of output gap targeting, and questioning the safety of forward-looking and backward-

looking monetary policy in terms of determinacy.
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A Appendix: Eigenvalue Bounds Using Jury’s Criterion

This appendix derives bounds on eigenvalues of a two-dimensional system using Jury’s (1961) simpli-

fication of the Schur-Cohn criterion.39

Lemma A.1. The polynomial with real coefficients

F(z) = a2z2+a1z+a0(A-1)

has both zeros inside the unit circle if and only if

|a0|< |a2|

|a0+a2|> |a1|(A-2)

Proof. See Jury (1961, p. 342).

This statement of the two-dimensional stability problem does not require the normalization of the

leading coefficient of the polynomial, which greatly simplifies the following.

Corollary A.2. The zeros of the polynomial with real coefficients

F(z) = a2z2+a1z+a0(A-3)

are bounded with respect to the unit circle as follows

Both inside |a0+a2|> |a1| and|a0|< |a2|

Both outside |a0+a2|> |a1| and|a0|> |a2|

One inside and one outside |a0+a2|< |a1|(A-4)

Proof. The condition for both zeros inside the unit circle is a repetition of lemma A.1. The condition

for both zeros to be outside the unit circle is a simple application of lemma A.1 to the polynomial

z2F(1/z) = a0z2+a1z+a2, where the zeros of the new polynomial are reciprocals of thezeros of the

original polynomial. Excluding both of the foregoing cases, only three possibilities remain: (1) one

zero lies inside and one lies outside the unit circle, (2) both zeros lie on the unit circle, (3) one zero

lies on the unit circle and the other lies either inside or outside the unit circle. As noted by Jury (1961,

p. 342) (or as can be simply confirmed by evaluatingF(1) andF(−1)), the condition|a0+a2|< |a1|
39This also corrects Lubik’s (2007, p. 409) claim that a necessary and sufficient condition for both roots of the polynomial

p(λ) = λ2− trλ+det to lie outside the unit circle is|det|> 1 and|tr|< 1+det. This can be shown incorrect by way of
a simple counterexample. Settr = 0 and letdet= −9, it follows that the zeros ofp(λ) are given by±3, both of which
are obviously outside the unit circle. Lubik’s (2007, p. 409) second condition, however,|tr| < 1+ det, is not fulfilled
(1+det= −8 is necessarily negative, contradicting the condition that |tr| = 0< 1+det). Corollary A.2 in the text here
corrects this result. None of the subsequent results in Lubik (2007) were affected by this error.
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rules out a real root on the unit circle. This immediately rules out possibility (3), as the only unit

roots that remain must be complex roots, which necessarily come in conjugate pairs. Additionally,

possibility (2) is then only possible with complex conjugates on the unit circle. Thus, if complex

conjugates on the unit circle can be ruled out using|a0+a2|< |a1|, then only possibility (1) remains.

I will rule out possibility (2) with complex conjugates by contradiction. Accordingly, assume|a0+

a2|< |a1| and that the zeros ofF(z) are given asz1,2 = h± iv, whereh=− a1
2a2

andv= (4a2a0−a2
1)

1/2

2a2
. As

the pair must lie on the unit circle, the modulus must be equalto one:R2 = 1= h2+v2. Substituting

for h andv in the modulus,a2 = a0 must then hold. From the assumption of complex roots follows

additionally that the discriminant of the polynomial is negative:a2
1−4a2a0 < 0, or rearranging|a1|<

2
√

a2a0. Using the fact thata2 = a0, 2
√

a2a0 = 2|a0| = |2a0| = |a0+ a2|, and combining with the

rearranged discriminant condition yields|a1|< |a0+a2|, a contradiction, as|a0+a2|< |a1|.

B Appendix: Proof of Lemma 4.2

By the Wold theorem,40 any stationary process can be represented as

Xt =
∞

∑
l=0

θl εt−l +Ξt , whereEεt = 0 andEεtε′t+ j = 0, ∀ j 6= 0(B-5)

and Ξt is an orthogonal linearly deterministic process, forecastable perfectly from its own history.

Starting with the indeterministic part, and inserting into(17)

0=
n

∑
j=0

[

∞

∑
l=0

(

min(p,l)

∑
i=0

Q(i, j)

)

θl+ jεt−l

]

+
m

∑
j=1

[

∞

∑
l=0

(

min(p,l+ j)

∑
i=0

Q(i, j)

)

θl εt−l− j

]

(B-6)

DefiningQ̃(l , j) = ∑minp,l
i=0 Q(i, j) and rewriting

0=
n

∑
j=0

[

∞

∑
l=0

Q̃(l , j)θl+ jεt−l

]

+
m

∑
j=1

[

∞

∑
l=0

Q̃(l + j, j)θlεt−l− j

]

(B-7)

This must hold for all realizations ofεt . Comparing coefficients yields

0=
n

∑
j=0

Q̃(l , j)θl+ j +
m

∑
j=1

Q̃(l , j)θl− j(B-8)

a time-varying system of difference equations with initialconditions∑m
j=1 θ− j =0. But asQ̃(p+ i, j)=

Q̃(p, j), ∀i ≥ 0, the system of difference equations has constant coefficients after and includingp.

This system can be written as

0=
n

∑
j=−m

Q̃ jXt+ j(B-9)

whereQ̃ j = ∑p
i=0Q(i, j) and coincides with Anderson’s (2010) canonical form in the case that all

40See, e.g., Sargent (1987, pp. 286–290), as well as Priestley(1981, pp. 756–758).
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lagged expectations in (17) are replaced with their timet values. If the solution to this system is

unique, its stable solution can be written as

θl = B
[

θ′l−m . . . θ′l−1

]′
, ∀l ≥ p(B-10)

The firstp (block) equations—remembering the initial conditions—can be gathered into

Q
[

θ′0 . . . θ′n+p−1

]′
= 0(B-11)

giving 3p equations in 3(p+n) variables, with thesth block row ofQ given by
[

0max(0,s−1−m) Q̃(s−1,−min(s−1,m),n) 0p−s
]

(B-12)

where 0i is a 3×3i block vector of zeros and̃Q(a,b,c) =
[

Q̃(a,b) Q̃(a,b+1) . . .Q̃(a,c)
]

.

Equation (B-10) yields 3n more equations that can be collected as

B
[

θ′0 . . . θ′n+p−1

]′
= 0(B-13)

with thesth block row ofB given by
[

0max(0,s+p−m−1) −B̃(min(p+s−1,m)) I 0n−s
]

(B-14)

whereI is a 3×3 identity matrix andB̃(a) being the last 3×3a elements of the 3×3m matrix B that

forms Anderson’s (2010, p. 7) convergent autoregressive solution to (B-9).

Stacking (B-11) and (B-13) yields the system
[

Q′ B′]′ [θ′0 . . . θ′n+p−1

]′
, where

[

Q
B

]







θ0
...

θn+p−1






= 0(B-15)

is a square matrix.

The system (B-8) is homogenous. Thus, one stationary solution is given byθl = 0, ∀i, the funda-

mental solution in the absence of exogenous driving forces.If
[

Q′ B′]′ is nonsingular and if (B-9) is

saddle-point stable, then this is the only stationary solution.

Only Ξt remains. Inserting it into (17), it follows that this can also be written as (B-9). If there is

a unique solution in past values ofΞt , the solution can be written in the same form as (B-10), which

must be zero when taken to its remote past from the stability of (B-10).

C Appendix: Proof of Corollary 5.2

C.1 Bounds for Determinacy

For positive coefficients,|φR+φπψ2|> |1−φπ (ψ1+ψ3) | from theorem 5.1 becomes (i)φR+φπψ2 >

|1−φπ (ψ1+ψ3) | and there are three possibilities depending on the sign of 1−φπ (ψ1+ψ3).

32



(1): 1− φπ (ψ1+ψ3) < 0. Here, (i) becomesφR+ φπψ2 > −1+ φπ (ψ1+ψ3) which can be re-

arranged asφπ (ψ1−ψ2+ψ3) < 1+ φR. Using the relationshipψ1+ψ2+ψ3 = 1 (i.e., theφ’s are

relative weights), the foregoing can be rewritten asφπ (1−2ψ2)< 1+φR.

(2): 1− φπ (ψ1+ψ3) > 0. In this case, (i) becomesφR+ φπψ2 > 1− φπ (ψ1+ψ3) which can be

rearranged asφπ (ψ1+ψ2+ψ3) > 1−φR. Using the relationshipψ1+ψ2+ψ3 = 1 (i.e., theφ’s are

relative weights), the foregoing can be rewritten asφπ > 1−φR.

(3): 1−φπ (ψ1+ψ3) = 0. Now, (i) becomesφR+φπψ2 > 0, which is necessarily satisfied.

Combining the three possibilities yields the two constraints in the corollary.

C.2 Bounds for Indeterminacy and Non-Existence

From theorem 5.1, there are two conditions that must be fulfilled: (ii) |φR+φπψ2|< |1−φπ (ψ1+ψ3) |
rules out determinacy, along with (iii a)|φπψ3| < |1− φπψ1| for indeterminacy and (iii b)|φπψ3| >
|1−φπψ1| for non-existence.

C.2.1 Discriminating between Indeterminacy and Non-Existence

The conditions (iii a & b) become (iv)φπψ3 ≷ |1−φπψ1| for positive coefficients and there are three

possibilities depending on the sign of 1−φπψ1.

(1): 1−φπψ1 > 0. Here, (iv) becomesφπψ3 ≷ 1−φπψ1 which can be rearranged asφπ (ψ3+ψ1)≷

1. Thusφπ (ψ3+ψ1) > 1 is associated with non-existence andφπ (ψ3+ψ1) < 1 with indeterminacy.

As it was assumed that 1− φπψ1 > 0, the range of non-existence emanating from this possibility is

bounded above, 1−φπψ3 < φπψ1 < 1 or 1< φπ (ψ1+ψ3) < 1+φπψ3; the range of indeterminacy is

bounded below by the assumption of positive coefficients, 0< φπ (ψ3+ψ1)< 1.

(2): 1− φπψ1 < 0. Now, (iv) becomesφπψ3 ≷ −1+ φπψ1 which can be rearranged asφπψ1 ≷

1+ φπψ3. Thusφπψ1 < 1+ φπψ3 is associated with non-existence andφπψ1 > 1+ φπψ3 with in-

determinacy. As it was assumed that 1− φπψ1 < 0, the range of non-existence emanating from this

possibility is bounded below, 1< φπψ1 < 1+φπψ3.

(3): 1−φπψ1 = 0. In this case,φπψ3 > |1−φπψ1| always holds for any positive value ofψ3 and

φπψ3 < |1−φπψ1| cannot hold. Thus,φπψ1 = 1 andψ3 > 0 non-existence, but not indeterminacy, is

possible.

Combining these three possibilities, the range 0< φπ (ψ3+ψ1) < 1 is associated with indeter-

minacy, 1−φπψ3 < φπψ1 < 1+φπψ3 with non-existence, and 1+φπψ3 < φπψ1 with indeterminacy
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again. Note that ifψ3 = 0, the non-existence region disappears and the indeterminacy regions become

connected with indeterminacy now possible over the whole positive real line. This concludes the part

of the analysis on distinguishing between non-existence orindeterminacy, but taking as given that one

of the two will in fact prevail.

C.2.2 Joint Bounds for Indeterminacy and Non-Existence

Turning to the remaining condition of the two that must be fulfilled for there to be either indeterminacy

or non-existence, namely whether one of two must prevail at all, condition (ii) must be met. This is

the mirror image of the condition for determinacy above and,as above, there are three possibilities

depending on the sign of 1−φπ (ψ1+ψ3).

(1): 1− φπ (ψ1+ψ3) < 0. Here, (ii) becomesφR+ φπψ2 < −1+ φπ (ψ1+ψ3) which can be re-

arranged asφπ (ψ1−ψ2+ψ3) > 1+ φR. Using the relationshipψ1+ψ2+ψ3 = 1 (i.e., theφ’s are

relative weights), the foregoing can be rewritten asφπ (1−2ψ2)> 1+φR.

(2): 1−φπ (ψ1+ψ3) > 0. In this case, (ii) becomesφR+φπψ2 < 1−φπ (ψ1+ψ3) which can be

rearranged asφπ (ψ1+ψ2+ψ3) < 1−φR. Using the relationshipψ1+ψ2+ψ3 = 1 (i.e., theφ’s are

relative weights), the foregoing can be rewritten asφπ < 1−φR.

(3): 1−φπ (ψ1+ψ3) = 0. Now, (ii) becomesφR+φπψ2 < 0, which is necessarily violated.

C.2.3 Combining: Individual Bounds for Indeterminacy and Non-Existence

Combining the three possibilities, there are two regions ofindeterminacy or non-existence:φπ < 1−φR

(when 1−φπ (ψ1+ψ3)> 0) andφπ (1−2ψ2)> 1+φR (when 1−φπ (ψ1+ψ3)< 0). Combining this

with the result above dividing the positive real line into three regions (indeterminacy, non-existence,

and indeterminacy again), I conclude the following. In the region 1− φπ (ψ1+ψ3) > 0, only inde-

terminacy is possible. Hence the regionφπ < 1− φR is associated with indeterminacy. In the region

1−φπ (ψ1+ψ3) < 0, the portion bounded byφπψ1 < 1+φπψ3 is associated with non-existence and

the remainder by indeterminacy. Hence, there is indeterminacy if φπ (1−2ψ2) > 1+φR andφπψ1 >

1+φπψ3 and the stable equilibrium is non-existent ifφπ (1−2ψ2)> 1+φR andφπψ1 < 1+φπψ3.
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