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Abstract 

Education production functions are estimated using student-level achievement data for 

Japanese students, with emphasis on estimating the causal effect of class size on students‟ 

academic performance. The empirical results show that students‟ test scores are strongly 

affected by individual and family backgrounds, whereas school resource variables and teacher 

characteristics have a more limited impact. The causal effect of class size, which is currently 

being politically debated in Japan, is investigated using a regression discontinuity design. The 

estimation results suggest that class-size reduction has a weak impact on the academic 

performance of Japanese students. 
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1 Introduction 

A central issue for the economics of education and education policy has been the 

influence of schools on students‟ academic achievement, that is, whether schools and/or 

teachers can succeed in reducing the gaps in opportunities among students from different 

family backgrounds, given the stylized fact that family backgrounds are the major 

determinants of students‟ academic performance (Coleman et al., 1966; Hanushek, 2003, 

2006; Wößmann, 2003). The underlying concern in the debates regarding reducing class size, 

improving teacher quality, increasing spending per pupil, etc., can be summarized as follows: 

Why do schools not influence student achievement? 

Since the number of students in a class is considered to be not only a key variable in the 

production of learning but also a simple variable for policymakers to manipulate, many 

researchers, including economists, have long debated whether and how class size matters for 

student achievement. During the past half a century, hundreds of studies have literally been 

undertaken to identify the impact of class size on education outcomes. We can divide them 

into the following three groups: non-experimental studies, experimental studies, and 

instrumental variable approach. 

The Coleman Report (Coleman et al., 1966) and subsequent studies can be categorized as 

non-experimental studies, because their statistical analyses are based on non-experimental 

survey data. Although the initial focus of the Coleman Report was not on investigating the 

effect of class size, the survey data, which collected students‟ test scores and information 

regarding students‟ family and school backgrounds, enabled researchers to estimate the 
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so-called education production function and to identify the determinants of student 

achievement. 

Coleman et al. (1966) found that family and community characteristics had a strong effect 

on student achievement and school-related variables such as pupil/teacher ratios, expenditures 

per pupil, and teacher characteristics had a weak effect on student achievement.
1
 A main 

criticism against this finding is that the data used in the report are cross-sectional or snapshot, 

taken at a point in time. To the extent that students‟ achievement at time t is determined by 

current as well as past circumstances that students have experienced until the timing of the 

survey, there are many omitted variables in the regression equation using only current 

information. In addition, the class-size variable is potentially endogenous if school authorities 

and teachers prefer to teach lower-performing students in a smaller/larger class, or 

education-minded parents choose schools by moving residence. 

The second set of studies analyze the effect of class size using data obtained from 

experimental design, wherein students are randomly assigned to classes of different sizes. The 

random assignment of students is equivalent to identifying the causal effect of class size, if the 

experiment is carefully conducted. An influential experiment was the Project STAR in 

Tennessee in the 1980s. Many researchers analyzed STAR data in order to identify the causal 

effect of class-size reduction, and some authors found statistically significant benefits of 

smaller classes, especially for minority students (Finn and Achilles, 1999; Krueger, 1999). On 

the other hand, some authors raised concern regarding the difficulties of the experiment: the 

motivation of teachers changes because they know they are participating in the experiment 

                                                      
1
 Hanushek (1997) provided a review of empirical evidence after the Coleman Report. 
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(Hoxby, 2000). In addition, non-random selection of schools, non-random allocation of 

teachers, and attrition and late entry of students may affect the design of the experiment 

(Hanushek, 1999). 

The third set of studies tried to avoid the endogeneity problem in quasi-experimental 

settings and identified the causal effect of class size by utilizing instrumental variable methods 

(Heinesen, 2010; Hoxby, 2000; Wößmann and West, 2006). Angrist and Lavy (1999) analyzed 

Israeli data and proposed an instrumental variable method utilizing information regarding the 

maximum class size rule in Israeli schools. An increasing number of studies are applying the 

maximum class size rule approach (Bonesrønning [2003] and Leuven et al. [2008] for 

Norway; Browning and Heinesen [2007] for Denmark; Gary-Bobo and Mahjoub [2006] for 

France; Urquiola [2006] for Bolivia; Wößmann [2005] for ten European countries). Because 

there are similarities in the institutional conditions between Japan and Israel, this paper applies 

the instrumental variable method for the Japanese case and investigates the causal effect of 

class-size reduction on the academic performance of Japanese students. 

Empirical studies on Japanese education including education production function 

estimations have been scarce owing to limited data availability.
2
 This paper, therefore, in 

addition to exploring the causal effect of class-size reduction, aims to contribute to this area of 

research by reporting the education production function estimates for Japanese students. 

The remainder of the paper is structured as follows: Section 2 provides a brief description of 

the data. Section 3 explains the methodology of regression model analysis. Section 4 presents 

                                                      
2
 See Oshio and Senoh (2007) for related literature in Japan. Hojo and Oshio (2010) reported 

education production function estimates for five East Asian countries, including Japan. 



6 

 

the estimation results. We cannot reject the hypothesis that the effect of reducing class size is 

zero. Section 5 concludes the paper. 

 

2 Data and descriptive analysis 

The empirical analysis of this paper is based on the dataset for Japan collected from the 

Trends in International Mathematics and Science Study (TIMSS), which was conducted in 

2007 under the auspices of the International Association for the Evaluation of Educational 

Achievement (IEA). Fifty-nine countries/regions participated in TIMSS 2007, and the survey 

in Japan was conducted by the National Institute for Educational Policy Research (NIER) in 

March 2007. TIMSS included four surveys: mathematics and science tests for the fourth and 

eighth graders. This paper will focus only on mathematics and science for eighth graders.
3
  

The TIMSS assessment was administered to random samples of students from the target 

population, that is, the fourth and eighth graders in each country. Schools were selected with 

probability proportional to size, and classrooms with equal probabilities. In Japan, students 

were sampled in two stages: in the first stage, schools were randomly sampled and in the 

second stage, one or two classrooms were randomly chosen within each school and all of its 

students were tested. The number of sampled junior high schools is 146, and the number of 

sampled students is 4,312. 

Student scores in TIMSS were normalized with an international mean of 500 and an 

                                                      
3
 This paper focuses on eighth graders because information of parental education is not 

available for fourth graders. I conducted empirical analysis similar to what is discussed below 

using the data of fourth graders. For the sake of brevity, I do not report the results of fourth 

graders, which are generally similar to those of eighth graders; however, they are available 

from the author upon request. 
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international standard deviation of 100. These score data can be linked to the background data 

from three types of background questionnaires. The student questionnaire asked students to 

provide information on their backgrounds, home and school lives, and their experiences in 

learning mathematics and science. The teacher questionnaire collected information from 

subject teachers regarding their backgrounds, course contents, and professional development. 

The school questionnaire asked the school principals to provide information on the school 

characteristics and the resources available to provide instruction. 

As with any survey data, there were missing observations in the background 

questionnaires. Students with missing observations and those in private schools were dropped, 

and finally, the survey generated 4,960 observations for mathematics and 3,699 for science.
4
 

Table 1 shows the descriptive statistics. The mean scores are 564 and 549 for 

mathematics and science, respectively, whereas the standard deviations are 78.4 and 71.1, 

respectively. In order to assess the distribution of student performance, Figure 1 graphically 

depicts the kernel density estimates of scores. Both mathematics and science scores have 

nearly symmetric distributions around the mean. 

 

3 Method 

 

3.1 Estimation model 

We estimated the education production function for each grade in the following manner: 

                                                      
4
 The number of observations for mathematics, 4,690, exceeds the number of sampled 

students, 4,312, because some students are taught by multiple teachers. In the TIMSS dataset, 

students who are taught by two teachers are recorded as two observations. 
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                        (1) 

where      is the TIMSS-normalized score of student i in class c of school s,      is a set of 

individual-, teacher-, and school-level variables, and     is the size of class c in school s; 

     is an error term. Note that our class size measure is defined as the number of students at 

the instruction of each subject. If students are grouped at the instruction of certain subjects, the 

number of students at instruction could differ from the class size at homeroom. 

Individual-level variables in      are the gender and birth month of student i. As in other 

countries worldwide, the Japanese school system has a single cutoff date, that is, April 1, for 

school eligibility. This makes some students younger than others when they begin school, and 

younger students are likely to have some disadvantage in learning owing to physical and/or 

psychological immaturity. Recent studies have demonstrated that these initial maturity 

differences have long-lasting effects on student performance and schooling experiences 

(Bedard and Dhuey [2006] for OECD countries; Kawaguchi [2011] for Japan; and Mühlenweg 

and Puhani [2010] for Germany). We consider initial maturity differences for eighth graders, 

most of whom are 14 years old. Other individual-level variables are resources at students‟ 

homes (computer, dictionary, and Internet connection), number of books at home, and 

education level of parents.
5
 

Teacher-level variables consist of teacher‟s gender, educational attainment (having 

                                                      
5
 In case a student answers his/her parental education as “unknown,” a predicted value was 

calculated from the result of a regression of parental education on students‟ gender and birth 

month, number of books at home, resources at home, percentage of economically 

disadvantaged students, and the number of people in school-located districts. The empirical 

results reported are essentially similar when parental education levels are treated as categorical 

dummy variables. 
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obtained master‟s degree or not), and years of teaching experience. School-level variables are 

enrollment in each grade, the percentage of economically disadvantaged (PD) students, and 

the number of people in school-located districts. 

 

3.2 Class-size effect and regression-discontinuity design 

In estimating the education production functions given in Eq. (1), our focus is on the 

causal effect of class size,    , on student performance. The potential endogeneity of class 

size makes analyzing its effect rather difficult: schools, teachers, or parents may prefer to teach 

lower-performing students in a smaller/larger class. Angrist and Lavy (1999) tackled this issue 

by applying the instrumental variable method. They showed that the class size in Israeli public 

schools is strongly affected by Maimonides‟ rule: the twelfth century rabbinic scholar 

Maimonides proposed a maximum class size of 40. In other words, class size increases with 

grade enrollment until the threshold value of 40; however, it sharply declines once enrollment 

exceeds 40. Similarly, class size decreases each time the grade enrollment exceeds a multiple 

of 40.  

Angrist and Lavy (1999) proposed an instrumental variable method that utilizes 

discontinuities in the relationship between grade enrollment and class size: instrumenting 

actual class size with the predicted one derived from Maimonides‟s rule. This can be viewed 

as an application of (fuzzy) regression discontinuity design. The predicted class size is 

determined solely by grade enrollment; thus, although it is largely exogenous to the school‟s 

preference or parental choices, it strongly correlates with the actual class size. Therefore, the 
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predicted class size can be used as an instrument for the actual class size. The predicted class 

size is given by 

   
 

 
          

                        
    (2) 

where int[ ] defines the integer closest to the number in [ ]. 

Figure 2 shows the distribution of enrollment in the eighth grade. We do not observe 

apparent discontinuity around the threshold (multiples of 40); therefore, this suggests that 

grade enrollment is exogenously determined.
6
 Figure 3 shows the distribution of the actual 

class size for mathematics (panel a) and science (panel b). Class size for mathematics is 

scattered to the left, indicating that in the case of mathematics students tend to be divided into 

smaller groups in some way. On the other hand, class size for science is less scattered. 

Figure 4 depicts the actual and predicted class size for mathematics (panel a) and science 

(panel b), with grade enrollment on the horizontal axis. In Japan, it is mandatory for class sizes 

to not exceed 40.
7
 As clearly seen from this figure, although the predicted class size 

successfully explains the actual class size for both the subjects, some observations are located 

apart from the line corresponding to the rule, especially in the case of mathematics. 

Figure 5 illustrates the relationship between predicted class size and achievement. The 

solid line plots the predicted class size at intervals of 10 students, and the dashed lines show 

average scores. If smaller class size increases student achievement, then a jump in average 

                                                      
6
 Urquiola and Verhoogen (2009) show that Chilean schools adjust their enrollments to avoid 

adding an additional classroom. This violates the assumptions underlying the regression 

discontinuity designs. 
7
 The maximum class size, 40, is legally defined at the nation level, and the number of 

teachers allocated to a public school is determined on the basis of the grade enrollment divided 

by 40. However, at the same time, the maximum class size can be slightly modified at the 

local government level. 
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achievement around the thresholds should be observed. We found mirror patterns, though not 

perfect, for both subjects. 

 

4 Estimation results 

 

4.1 Ordinary least squares (OLS) estimates 

Table 2 shows the estimation results of the education production function for both 

subjects using OLS.
8
 Without any control variables (columns 1 and 4), the coefficient 

estimate of class size is positive and statistically insignificant. Controlling for individual 

characteristics (columns 2 and 5) and school characteristics (columns 3 and 6) does not change 

the class-size effect, indicating that conditioning on additional observables is not sufficient to 

correct for biases owing to selective placement by schools, teachers, or parents. 

 

4.2 Instrumental variable estimation using maximum class size rule 

Table 3 shows the results of the first-stage regression of two-stage least squares (2SLS). 

The coefficient estimate of predicted class size is positive and statistically significant in both 

regressions, suggesting that the predicted class size is a valid instrumental variable for the 

actual class size. Note that the coefficients are approximately 0.45 in the regressions for both 

subjects; thus, they are smaller than 1, suggesting that schools do not perfectly adhere to the 

maximum class size rule. 

                                                      
8
 In addition to OLS, we examined quintile regression because the structure of the education 

production function may differ between low- and high-performance students. The results of 

quintile regression were essentially similar to those of OLS. 
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Table 4 reports 2SLS estimation results for both subjects, using student-, teacher-, and 

school-level data. The estimate of class size is positive for mathematics and negative for 

science, although both are statistically insignificant. Therefore, we found no evidence that 

smaller class sizes increase Japanese eighth grade students‟ achievement in mathematics and 

science. This result is similar to that found in Leuven et al. (2008) for Norwegian students. 

In contrast to class size, we found strong evidence that individual-level variables have 

large and statistically significant influences on test scores. First, the younger students tend to 

score lower than older students. Since almost all eligible children in Japan enter school 

without delay or advancement (Kawaguchi, 2011), the coefficient estimates of birth month 

clearly reflect initial maturity differences. Students who were born from January to March 

score 10.5 points (0.13 standard deviations) lower for mathematics and 7.0 points (0.10 

standard deviations) lower for science than those who were born from April to June. 

Second, we found a positive correlation between test scores and attributes of students‟ 

homes. The number of books and resources at home (computers, dictionaries, and Internet 

connection) have strong positive effects on student-level test scores for both subjects. Third, 

higher parental education level is associated with higher performance for both subjects. All 

these results suggest strong effects of individual and family attributes, which are repeatedly 

shown in many preceding studies. 

We found that test score is negatively correlated with the percentage of economically 

disadvantaged students. A student whose school is located in an economically disadvantaged 

area tends to score low (22.7 points for mathematics and 20.8 points for science). Among 
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teacher-level variables, female teacher has a positive effect on mathematics scores. In Japan, 

teaching was considered an attractive job for women, and both men and women were treated 

more equally in schools than in private firms, in terms of employment opportunities and 

position advancement. Therefore, a positive effect for female teacher may indicate higher 

ability of female teachers. Among other school-level variables, students who are grouped 

according to their ability at instruction score higher than those who are not. 

 

4.2 Robustness checks 

We proceed to check the robustness of the 2SLS estimations. Table 5 shows the estimated 

class-size effects for various subsamples. The discontinuity sample (+5/-5) includes schools 

with enrollment levels at most five students short of or more than a multiple of 40 (hence, 

between 36 and 45, between 76 and 85, etc.). Row (2) reports the result for the subsample of 

students who are not grouped by ability at instruction, because the ability grouping is 

negatively correlated with actual class size (see Table 3). Row (3) reports the result for the 

subsample of girls. Row (4) shows the result for the subsample of schools located in 

economically disadvantaged areas, because the effect of class-size reduction may be large for 

students living in disadvantaged areas. Row (5) shows the results for the subsample of 

students with low-educated parents (both father and mother have less than 12 years of 

education). Row (6) shows class-size effects for all sample students; however, the predicted 

class size is calculated assuming that the maximum class size is 41 instead of 40. For all 

subsamples and the alternative rule of maximum class size, we cannot find any significant 
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effects of class-size reduction for both subjects. 

Hægeland et al. (2005) argued that input substitution may take place for equality or 

efficiency reasons. For example, large classes may be given more teacher hours or assigned 

able and/or veteran teachers (Jepsen and Rivkin, 2009). Students in large classes may tend to 

have more study hours at home with their parents (Datar and Mason, 2008). Mutual influences 

among students may decrease when their class size is small. 

In order to simply check the possibilities of input substitution, Table 6 shows average 

values of potentially substitutable inputs for small and large classes. For mathematics, teachers 

assigned to large classes (class size ≥ 38) tend to assign homework and give opportunities of 

discussion more frequently than those assigned to small classes (class size ≤ 25). For science, 

teachers assigned to large classes have 4.8 years longer teaching experience than those 

assigned to small classes (class size ≤ 29). These input substitutions, though weak, may lessen 

the estimated class-size effects. 

 

5 Conclusions 

There is considerable debate in the educational community regarding the effect of 

class-size reduction on education outcomes of students. Although it is rather difficult to 

identify the causal effect of class size on student achievement owing to the potential 

endogeneity of class size, recent developments in econometric methods enable us to avoid 

biases in estimates. Using student-level data of Japanese public schools, this paper applied an 

instrumental variable estimation method to answer the following question: Are smaller classes 
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better for Japanese students? 

Student-level estimation results showed that the effect of class size on student 

achievement is statistically insignificant in both OLS and 2SLS estimations. Class-size effects 

are also insignificant for various subgroup regressions. Therefore, although we found no 

evidence that a smaller class increases mathematics and science performance of Japanese 

eighth grade students, we found strong effects of individual and family attributes, such as birth 

month, number of books at home, and parental education. Community characteristics 

measured by percentage of economically disadvantaged students also have strong effects. 

Among input-related variables, we found strong positive effects of female teachers and 

grouping by students‟ ability. 

We should of course exercise considerable caution in interpreting the empirical results 

found in this paper. First, the evidence found in this paper is based only on mathematics and 

science for eighth graders. The effect of class-size reduction, or, more broadly, the process of 

education production, may differ with different subjects and/or different grades. Second, the 

impact of class size may have long-run consequences; in other words, the benefit of being in a 

smaller class may occur after several years (Krueger and Whitmore, 2001). Third, although 

this paper focuses only on the test scores of mathematics and science, other education 

outcomes are also important, such as increased motivation for studying, better relationships 

among students, etc. Fourth, class-size reduction may lessen the positive effects of classroom 

peers because the number of peers, and thus the heterogeneity of peers, decreases for students 

in small classes (Fertig, 2003). Fifth, owing to recent educational policy changes, a small class 
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size does not necessarily mean a low pupil/teacher ratio in Japanese public schools. Multiple 

teachers may be assigned to instruction at large classes (called team teaching). Further 

accumulation of data and its increased availability would enable us to know the true impact 

and costs of class-size reduction in Japanese schools. 
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Figure 1 Kernel density estimates 
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Figure 2 Distribution of grade enrollment 
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Figure 3 Distribution of actual class size 
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Figure 4 Actual and predicted class size 
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Figure 5 Predicted class size and achievement 
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Table 1 Summary Statistics

Mean Std. Dev. Mean Std. Dev.

Score 563.76 78.36 548.81 71.09

Class size 33.39 6.92 34.83 4.75

Individual characteristics

Girl 0.50 0.50 0.50 0.50

Born from April to June 0.25 0.43 0.25 0.44

Born from July to September 0.26 0.44 0.26 0.44

Born from October to December 0.25 0.43 0.25 0.43

Born in January-March 0.24 0.43 0.24 0.43

ln (Number of books at home) 3.74 1.50 3.75 1.50

Computer at home 0.87 0.34 0.87 0.34

Dictionary at home 0.99 0.12 0.98 0.12

Internet connection at home 0.76 0.43 0.76 0.43

Mother's years of education 13.17 1.59 13.17 1.59

Father's years of education 13.44 1.92 13.43 1.93

School characteristics

ln (Population size in school district) 12.07 1.39 12.07 1.40

PD: 0-10% 0.55 0.50 0.54 0.50

PD: 11-25% 0.35 0.48 0.36 0.48

PD: more than 50% 0.10 0.31 0.11 0.31

Enrollment in 8th grade 158.32 70.11 157.52 70.20

Grouped by ability at instruction 0.32 0.47 0.04 0.19

Teacher characteristics

Female 0.42 0.49 0.13 0.34

Master's degree 0.06 0.24 0.12 0.32

Years of experience 15.49 9.33 17.14 10.38

Mathematics (N=4690) Science (N=3699)

Note: Author's calculation from TIMSS 2007. TIMSS-provided sampling weights are used. National and

private schools are dropped.
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Table 2 OLS estimates: dependent variable=test scores

Class size 0.498 (0.444) 0.185 (0.290) 0.356 (0.288) 0.423 (0.625) 0.024 (0.479) 0.479 (0.403)

Individual characteristics

Girl -4.119 (2.354) -4.284 (2.306) -3.727 (1.987) -3.881 (1.928)*

June-September -0.508 (3.066) 0.040 (3.104) 1.582 (2.978) 2.038 (2.972)

October-December -4.313 (3.311) -3.603 (3.204) -1.775 (3.079) -0.934 (2.940)

January-March -11.741 (3.247)** -10.791 (3.145)** -8.085 (3.277)* -6.973 (3.220)*

ln (Number of books at home) 8.552 (0.858)** 8.245 (0.887)** 10.205 (0.801)** 10.033 (0.830)**

Computer at home 7.808 (4.252) 7.038 (4.086) 9.755 (4.136)* 9.361 (3.997)*

Dictionary at home 76.575 (14.571)** 73.955 (15.618)** 76.947 (11.505)** 73.853 (12.023)**

Internet connection at home 14.643 (3.875)** 15.801 (3.959)** 3.514 (3.511) 4.951 (3.453)

Mother's education 3.158 (0.851)** 3.086 (0.845)** 2.752 (0.761)** 2.640 (0.724)**

Father's education 7.771 (0.807)** 7.529 (0.785)** 6.294 (0.747)** 6.233 (0.713)**

School characteristics

PD: 11-25% -2.630 (3.943) -1.380 (3.390)

PD: more than 25% -22.711 (7.424)** -21.234 (7.551)**

ln (Population size in school district) -1.535 (1.287) -1.986 (1.357)

Grouped by ability 11.067 (3.766)** 30.682 (4.776)**

Teacher characteristics

Female 8.395 (3.126)** -3.661 (4.826)

Master's degree -11.246 (6.678) 1.851 (6.047)

Years of experience -0.147 (0.183) 0.123 (0.168)

adj.R-squared 0.002 0.168 0.182 0.001 0.168 0.183

N observations 4690 4690 4690 3699 3699 3699

N schools 129 129 129 128 128 128

All estimations use TIMSS-provided sampling weights.

Standard errors are reported in parentheses and are robust to clustering at the school level.

Stars indicate statistical significance as follows: * p<0.05, ** p<0.01.

Mathematics Science

(1) (2) (3) (4) (5) (6)
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Table 3 The impact of predicted class size on actual class size

Coef. (SE) Coef. (SE)

Predicted class size 0.449 (0.214)* 0.463 (0.174)**

Enrollment 0.152 (0.086) 0.053 (0.060)

Enrollment squared/100 -0.081 (0.048) -0.014 (0.030)

Enrollment cubed/10000 0.013 (0.009) 0.001 (0.005)

Individual characteristics

Girl 0.090 (0.140) 0.004 (0.102)

June-September -0.509 (0.223)* -0.233 (0.115)*

October-December -0.094 (0.228) -0.114 (0.131)

January-March -0.412 (0.256) -0.164 (0.205)

ln (Number of books at home) -0.131 (0.102) -0.097 (0.046)*

Computer at home -1.071 (0.459)* -0.434 (0.292)

Dictionary at home 1.961 (1.225) 0.235 (0.559)

Internet connection at home 0.576 (0.370) 0.183 (0.209)

Mother's education 0.036 (0.066) -0.048 (0.043)

Father's education 0.078 (0.063) 0.073 (0.043)

School characteristics

PD: 11-25% -1.423 (1.083) -0.859 (0.615)

PD: more than 25% 0.981 (2.412) 0.500 (1.382)

ln (Population size in school district) 0.220 (0.445) 0.548 (0.237)*

Grouped by ability -2.293 (1.527) -1.136 (3.918)

Teacher characteristics

Female 1.713 (0.798)* 1.631 (0.902)

Master's degree -1.622 (1.755) 0.870 (0.661)

Years of experience 0.027 (0.045) 0.067 (0.033)*

adj.R-squared 0.247 0.527

F (Prob > F) 7.87 (0.000) 18.82 (0.000)

N observations 4690 3699

N schools 129 128

All estimations use TIMSS-provided sampling weights.

Standard errors are reported in parentheses and are robust to clustering at the school level.

Stars indicate statistical significance as follows: * p<0.05, ** p<0.01.

Mathematics Science
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Table 4 2SLS estimation results of the education production functions

Coef. (SE) Coef. (SE)

Class size (instrumented) 0.848 (1.357) -0.206 (1.288)

Enrollment -0.003 (0.462) 0.159 (0.312)

Enrollment squared/100 0.005 (0.246) -0.072 (0.163)

Enrollment cubed/10000 -0.001 (0.041) 0.011 (0.028)

Individual characteristics

Girl -4.325 (2.293) -3.919 (1.909)*

June-September 0.257 (3.133) 1.907 (2.959)

October-December -3.628 (3.200) -1.028 (2.909)

January-March -10.478 (3.176)** -6.989 (3.222)*

ln (Number of books at home) 8.339 (0.874)** 9.939 (0.788)**

Computer at home 7.719 (4.413) 9.036 (4.178)*

Dictionary at home 72.871 (15.223)** 73.978 (12.024)**

Internet connection at home 15.176 (4.087)** 5.080 (3.519)

Mother's education 3.019 (0.850)** 2.622 (0.719)**

Father's education 7.466 (0.771)** 6.265 (0.707)**

School characteristics

PD: 11-25% -1.913 (4.174) -2.101 (3.475)

PD: more than 25% -22.699 (7.819)** -20.753 (7.923)**

ln (Population size in school district) -2.122 (1.425) -1.756 (1.472)

Grouped by ability 12.321 (5.349)* 29.172 (4.472)**

Teacher characteristics

Female 7.762 (3.665)* -2.364 (5.032)

Master's degree -11.071 (7.156) 2.365 (6.149)

Years of experience -0.166 (0.190) 0.189 (0.206)

adj.R-squared 0.179 0.181

N observations 4690 3699

N schools 129 128

All estimations use TIMSS-provided sampling weights.

Standard errors are reported in parentheses and are robust to clustering at the school level.

Stars indicate statistical significance as follows: * p<0.05, ** p<0.01.

Mathematics Science
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Table 5 Estimated class size effects for sub-groups

Effect (SE) N obs. Effect (SE) N obs.

(1) +5/-5 discontinuity sample 2.943 (3.115) 1070 -6.979 (49.412) 811

(2) Not grouped by ability 1.453 (1.143) 2831 -0.243 (1.283) 3554

(3) Girls 1.512 (1.358) 2314 -0.089 (1.094) 1826

(4) Disadvantaged areas 5.643 (8.536) 2197 6.575 (11.107) 1797

(5) Low-educated parents -0.845 (2.923) 1092 -1.957 (3.507) 847

(6) Threshold=41 -0.381 (1.194) 4690 -0.901 (0.882) 3699

Coefficient estimates of class size using 2SLS are reported.

All estimations use TIMSS-provided sampling weights.

Standard errors are reported in parentheses and are robust to clustering at the school level.

Stars indicate statistical significance as follows: * p<0.05, ** p<0.01.

Mathematics Science
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Table 6 Potential input substitution: difference in inputs between small and large classes

CS≦25 CS≧38 difference (S.E) CS≦29 CS≧38 difference (S.E)

(1) Instruction minutes (a week) 158.664 154.260 -4.404 (6.755) 150.828 152.155 1.327 (1.470)

(2) Teacher: master's degree 0.044 0.059 0.015 (0.054) 0.109 0.148 0.038 (0.117)

(3) Teacher: female 0.329 0.498 0.169 (0.106) 0.135 0.161 0.026 (0.113)

(4) Teacher: experience (years) 12.473 14.543 2.070 (2.268) 16.563 21.355 4.792 (3.548)

(5) Frequency assign homework 0.145 0.318 0.173 (0.096)* 0.119 0.014 -0.106 (0.113)

(6) Frequency discuss small groups 0.010 0.062 0.051 (0.036) 0.494 0.340 -0.154 (0.203)

Weighted average values and differences are reported.

Stars indicate statistical significance as follows: * p<0.10

Mathematics Science

Large class is defined as one which has 38 students or more, while small class is defined as one which has 25 (Mathematics) or 29

(science) students or less.
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