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Abstract

This paper is concerned with tests and con�dence intervals for parameters that are

not necessarily identi�ed and are de�ned by moment inequalities. In the literature,

di¤erent test statistics, critical value methods, and implementation methods (i.e., the

asymptotic distribution versus the bootstrap) have been proposed. In this paper, we

compare these methods. We provide a recommended test statistic, moment selection

critical value method, and implementation method. We provide data-dependent proce-

dures for choosing the key moment selection tuning parameter � and a size-correction

factor �:

Keywords: Asymptotic size, asymptotic power, bootstrap, con�dence set, generalized
moment selection, moment inequalities, partial identi�cation, re�ned moment selection,

test, unidenti�ed parameter.
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1 Introduction

This paper considers inference in moment inequality models with parameters that

need not be identi�ed. We focus on con�dence sets for the true parameter, as opposed

to the identi�ed set. We construct con�dence sets (CS�s) by inverting Anderson-Rubin-

type test statistics. We consider a class of such statistics and a class of generalized

moment selection (GMS) critical values. This approach follows Imbens and Manski

(2004), Chernozhukov, Hong, and Tamer (2007) (CHT), Andrews and Guggenberger

(2009) (AG), Andrews and Soares (2010) (AS), and other papers.

GMS and subsampling tests and CS�s are the only methods in the literature that

apply to arbitrary moment functions and have been shown to have correct asymptotic

size in a uniform sense, see AG, AS, and Romano and Shaikh (2008). AS and Bugni

(2010) show that GMS tests dominate subsampling tests in terms of asymptotic size

and power properties. In addition, in our experience based on simulation results, sub-

sampling tests often are substantially under-sized in �nite samples in moment inequality

testing problems. Hence, we focus on GMS critical values.

GMS tests and CS�s depend on a test statistic function S; a critical value function ';

and a tuning parameter �: In this paper we determine a combination that performs well

in terms of size and power and can be recommended for general use. To do so, we consider

asymptotics in which � equals a �nite constant plus op(1); rather than asymptotics in

which �!1 as n!1; as has been considered elsewhere in the literature.1

We �nd that an adjusted Gaussian quasi-likelihood ratio (AQLR) test statistic com-

bined with a �t-test moment selection� critical value performs very well in terms of

asymptotic average power compared to other choices considered in the literature.2 We

develop data-dependent methods of selecting � and a size-correction factor � and show

that they yield very good asymptotic and �nite-sample size and power. We provide a

table that makes them easy to implement in practice for up to ten moment inequalities.

We show that with i.i.d. observations bootstrap critical values out-perform those

based on the asymptotic-distribution in terms of �nite-sample size. We also show that

the bootstrap version of the AQLR test performs similarly in terms of null rejection

probabilities and power to an analogous test based on the empirical likelihood ratio

(ELR) statistic. The AQLR-based test is noticeably faster to compute than the ELR-

1The theoretical arguments mentioned in the preceding paragraph rely on �!1 asymptotics.
2The �adjustment�in the AQLR test statistic is designed to handle singular asymptotic correlation

matrices of the sample moment functions.
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based test and avoids computational convergence problems that can arise with the ELR

statistic when the correlation matrix of the moment conditions is singular.

The asymptotic results of the paper apply to i.i.d. and time series data and to mo-

ment functions that are based on preliminary estimators of point-identi�ed parameters.

In short, the contribution of this paper relative to the literature is to compare moment

inequality tests, determine a recommended test, and provide data-dependent tuning

parameters.

The remainder of the paper is organized as follows. Section 2 introduces the model

and describes the recommended con�dence set and test. Section 3 de�nes the di¤erent

test statistics and critical values that are compared in the paper. Section 4 provides

the numerical comparisons of the tests based on asymptotic average power. Section 5

describes how the recommended data-dependent tuning parameter b� and size-correction
factor b� are determined and provides numerical results assessing their performance.
Section 6 gives �nite-sample results.

Andrews and Jia (2008) (AJ2) provides Supplemental Material that includes: (i) the

asymptotic results that are utilized in this paper, (ii) details concerning the numerical

results given here, and (iii) additional numerical results.

Let R+ = fx 2 R : x � 0g; R++ = fx 2 R : x > 0g; R+;1 = R+ [ f+1g;
Kp = K � :::�K (with p copies) for any set K; and 0p = (0; :::; 0)0 2 Rp:

2 Model and Recommended Con�dence Set

The moment inequality model is speci�ed as follows. The true value �0 (2 � � Rd)
is assumed to satisfy the moment conditions:

EF0mj(Wi; �0) � 0 for j = 1; :::; p; (2.1)

where fmj(�; �) : j = 1; :::; pg are known real-valued moment functions and fWi : i � 1g
are i.i.d. or stationary random vectors with joint distribution F0: The observed sample

is fWi : i � ng: The true value �0 is not necessarily identi�ed. The results also apply
when the moment functions in (2.1) depend on a parameter � ; i.e., when they are of the

form fmj(Wi; �; �) : j � pg; and a preliminary consistent and asymptotically normal
estimator b�n(�0) of � exists, see AJ2. In addition, the asymptotic results in AJ2 allow
for moment equalities as well as moment inequalities.
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We are interested in tests and con�dence sets (CS�s) for the true value �0:We consider

a con�dence set obtained by inverting a test. The test is based on a test statistic Tn(�0)

for testing H0 : � = �0: The nominal level 1� � CS for � is

CSn = f� 2 � : Tn(�) � cn(�)g; (2.2)

where cn(�) is a data-dependent critical value.3

We now describe the recommended test statistic and critical value. The justi�ca-

tions for these recommendations are described below and are given in detail in AJ2.

The recommended test statistic is an adjusted quasi-likelihood ratio (AQLR) statistic,

TAQLR;n(�); that is a function of the sample moment conditions, n1=2mn(�); and an

estimator of their asymptotic variance, b�n(�):
TAQLR;n(�) = S2A(n

1=2mn(�); b�n(�))
= inf

t2Rp+;1
(n1=2mn(�)� t)0e��1n (�)(n1=2mn(�)� t); where

mn(�) = (mn;1(�); :::;mn;p(�))
0; mn;j(�) = n

�1
nX
i=1

mj(Wi; �) for j � p;

e�n(�) = b�n(�) + maxf"� det(b
n(�)); 0g bDn(�); " = :012;bDn(�) = Diag(b�n(�)); b
n(�) = bD�1=2
n (�)b�n(�) bD�1=2

n (�); (2.3)

and Diag(�) denotes the diagonal matrix based on the matrix �:4 Note that the weight

matrix e�n(�) depends only on b�n(�) and hence TAQLR;n(�) can be written as a function of
(mn(�); b�n(�)): The function S2A(�) is an adjusted version of the QLR function S2(�) that
appears in Section 3. The adjustment is designed to handle singular variance matrices.

Speci�cally, the matrix e�n(�) equals the asymptotic variance matrix estimator b�n(�)
with an adjustment that ensures that e�n(�) is always nonsingular and is invariant to
scale changes in the moment functions. The matrix b
n(�) is the correlation matrix that
corresponds to b�n(�):

3When � is in the interior of the identi�ed set, it may be the case that Tn(�) = 0 and cn(�) = 0: In
consequence, it is important that the inequality in the de�nition of CSn is �; not < :

4The constant " = :012 was determined numerically based on an average asymptotic power criterion.
See Section 6.2 of AJ2 for details.
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When the observations are i.i.d. and no parameter � appears, we take

b�n(�) = n�1 nX
i=1

(m(Wi; �)�mn(�))(m(Wi; �)�mn(�))
0; where

m(Wi; �) = (m1(Wi; �); :::;mp(Wi; �))
0: (2.4)

With temporally dependent observations or when a preliminary estimator of a parameter

� appears, a di¤erent de�nition of b�n(�) often is required, see AJ2. For example,

with dependent observations, a heteroskedasticity and autocorrelation consistent (HAC)

estimator may be required.

The test statistic TAQLR;n(�) is computed using a quadratic programming algorithm.

Such algorithms are built into GAUSS and Matlab. They are very fast even when p is

large. For example, to compute the AQLR test statistic 100,000 times takes 2:6; 2:9;

and 4:7 seconds when p = 2; 4; and 10; respectively, using GAUSS on a PC with a 3.4

GHz processor.5

A moment selection critical value that utilizes a data-dependent tuning parameter b�
and size-correction factor b� is referred to as a re�ned moment selection (RMS) critical
value. Our recommended RMS critical value is

cn(�) = cn(�; b�) + b�; (2.5)

where cn(�; b�) is the 1�� quantile of a bootstrap (or �asymptotic normal�) distribution
of a moment selection version of TAQLR;n(�) and b� is a data-dependent size-correction
factor. For i.i.d. data, we recommend using a nonparametric bootstrap version of

cn(�; b�): For dependent data, either a block bootstrap or an asymptotic normal version
can be applied.

We now describe the bootstrap version of cn(�; b�): Let fW �
i;r : i � ng for r = 1; :::; R

denote R bootstrap samples of size n (i.i.d. across samples), such as nonparametric

i.i.d. bootstrap samples in an i.i.d. scenario or block bootstrap samples in a time series

scenario, where R is large. De�ne the bootstrap variance matrix estimator b��n;r(�) asb�n(�) is de�ned (e.g., as in (2.4) in the i.i.d. case) with fW �
i;r : i � ng in place of

fWi : i � ng throughout.6 The p-vectors of re-centered bootstrap sample moments and
5In our experience, the GAUSS 9.0 quadratic programming procedure �qprog�is much faster than

the Matlab 7 procedure �quadprog.�
6Note that when a preliminary consistent estimator of a parameter � appears, the bootstrap moment

conditions need to be based on a bootstrap estimator of this preliminary estimator. In such cases, the
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p� p bootstrap weight matrices for r = 1; :::; R are de�ned by

m�
n;r(�) = n

1=2
�
m�
n;r(�)�mn(�)

�
ande��n;r(�) = b��n;r(�) + maxf"� det(b
�n;r(�)); 0g bD�

n;r(�); where " = :012;bD�
n;r(�) = Diag(

b��n;r(�)); and b
�n;r(�) = bD�
n;r(�)

�1=2b��n;r(�) bD�
n;r(�)

�1=2: (2.6)

The idea behind the RMS critical value is to compute the critical value using only

those moment inequalities that have a noticeable e¤ect on the asymptotic null distri-

bution of the test statistic. Note that moment inequalities that have large positive

population means have little or no e¤ect on the asymptotic null distribution. Our pre-

ferred RMS procedure employs element-by-element t-tests of the null hypothesis that

the mean of mn;j(�) is zero versus the alternative that it is positive for j = 1; :::; p: The

j-th moment inequality is selected if

n1=2mn;j(�)b�n;j(�) � b�; (2.7)

where b�2n;j(�) is the (j; j) element of b�n(�) for j = 1; :::; p and b� is a data-dependent tun-
ing parameter (de�ned in (2.10) below) that plays the role of a critical value in selecting

the moment inequalities. Let bp denote the number of selected moment inequalities.
For r = 1; :::; R; let m�

n;r(�; bp) denote the bp-sub-vector of m�
n;r(�) that includes the bp

selected moment inequalities.7 ;8 Analogously, let b��n;r(�; bp) denote the (bp�bp)-sub-matrix
of b��n;r(�) that consists of the bp selected moment inequalities. The bootstrap quantity
cn(�; b�) is the 1� � sample quantile of

fS2A(m�
n;r(�; bp); b��n;r(�; bp)) : r = 1; :::; Rg; (2.8)

where S2A(�; �) is de�ned as in (2.3) but with p replaced by bp:
An �asymptotic normal�version of cn(�; b�) is obtained by replacing the bootstrap

quantities m�
n;r(�; bp) and b��n;r(�; bp) in (2.8) by b�1=2n (�; bp)Z�r and b�n(�; bp); respectively,

where b�n(�; bp) denotes the (bp � bp)-sub-matrix of b�n(�) that consists of the bp selected
asymptotic normal version of the critical value may be much quicker to compute.

7Note that m�
n;r(�; bp) depends not only on the number of moments selected, bp; but which moments

are selected. For simplicity, this is suppressed in the notation.
8By de�nition, bp � 1; i.e., at least one moment must be selected. For speci�city, m�

n;r(�; bp) equals
the last element of m�

n;r(�) if no moments are selected via (2.7).
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moment inequalities, Z�r � i:i:d: N(0bp; Ibp) for r = 1; :::; R; and fZ�r : r = 1; :::; Rg are
independent of fWi : i � ng conditional on bp:
The tuning parameter b� in (2.7) and the size-correction factor b� in (2.5) depend on the

estimator b
n(�) of the asymptotic correlation matrix 
(�) of n1=2mn(�): In particular,

they depend on b
n(�) through a [�1; 1]-valued function �(b
n(�)) that is a measure of
the amount of negative dependence in the correlation matrix b
n(�): We de�ne

�(
) = smallest o¤-diagonal element of 
; (2.9)

where 
 is a p � p correlation matrix. The moment selection tuning parameter b� and
the size-correction factor b� are de�ned by

b� = �(b�n(�)) and b� = �1(b�n(�)) + �2(p); where b�n(�) = �(b
n(�)): (2.10)

Table I provides values of �(�); �1(�); and �2(p) for � 2 [�1; 1] and p 2 f2; 3; :::; 10g
for tests with level � = :05 and CS�s with level 1 � � = :95: AJ2 provides simulated

values of the mean and standard deviation of the asymptotic distribution of cn(�; b�):
These results, combined with the values of �1(�) and �2(p) in Table I, show that the

size-correction factor b� typically is small compared to cn(�; b�); but not negligible.9
Computation of the �2(p) values given in Table I by simulation is not easy because it

requires computing the (asymptotic) maximum null rejection probability (MNRP) over

a large number of null mean vectors � and correlation matrices 
: For this reason, we

only provide �2(p) values for p � 10: For the correlation matrices, we consider both

a �xed grid and randomly generated matrices. For the null mean vectors � 2 Rp+;1;
computation of the �2(p) values is carried out initially for mean vectors that consist

only of 00s and 10s: Then, the di¤erences are computed between the values obtained

by maximization over such � vectors and the values obtained by maximization over �

vectors that lie in (i) a �xed full grid, (ii) two partial grids, and (iii) 1,000 or 100,000

randomly generated � vectors (depending on the variance matrix). The di¤erences are

found to be :0000 in most cases and small (� :0018) in all cases, see AJ2 for details.

These results indicate, although do not establish unequivocally, that the maxima over

� 2 Rp+;1 are obtained at � vectors that consist only of 00s and 10s:

9For example, for p = 10; 
 = I10; �ve moment inequalities binding, and �ve moment inequalities
completely slack, the mean and standard deviation of the asymptotic distribution of cn(�; b�) are 7:2
and :57; respectively, whereas the size-correction factor is :614:
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In sum, the preferred RMS critical value, cn(�); and CS are computed using the fol-

lowing steps. One computes (i) b
n(�) de�ned in (2.4), (ii) b�n(�) = smallest o¤-diagonal
element of b
n(�); (iii) b� = �(b�n(�)) using Table I, (iv) b� = �1(b�n(�))+ �2(p) using Table
I, (v) the vector of selected moments using (2.7), (vi) the selected bootstrap sample

moments, correlation matrices, and weight matrices f(m�
n;r(�; bp); b��n;r(�; bp); e��n;r(�; bp)) :

r = 1; :::; Rg; de�ned in (2.6) with the non-selected moment inequalities omitted, (vii)
cn(�; b�); which is the :95 sample quantile of fS2A(m�

n;r(�; bp); b��n;r(�; bp)) : r = 1; :::; Rg
(for a test of level :05 and a CS of level :95) and (viii) cn(�) = cn(�; b�)+b�: The preferred
RMS con�dence set is computed by determining all the values � for which the null hy-

pothesis that � is the true value is not rejected. For the asymptotic normal version of

the recommended RMS critical value, in step (vi) one computes the selected sub-vector

and sub-matrix of b�1=2n (�; bp)Z�r and b�n(�; bp); de�ned in the paragraph following (2.8),
and in step (vii) one computes the :95 sample quantile with these quantities in place of

m�
n;r(�; bp) and b��n;r(�; bp); respectively.
To compute the recommended bootstrap RMS test using R =10,000 simulation rep-

etitions takes 1:3; 1:5; and 2:7 seconds when p = 2; 4; and 10; respectively, and n = 250

using GAUSS on a PC with a 3.4 GHz processor. For the �asymptotic normal�version,

the times are :20; :25; and :45 seconds.

When constructing a CS, if the computation time is burdensome (because one needs

to carry out many tests with di¤erent values of � as the null value), then a useful

approach is to map out the general features of the CS using the �asymptotic normal�

version of the MMM/t-Test/�=2.35 test, which is extremely fast to compute, and then

switch to the bootstrap version of the recommended RMS test to �nd the boundaries of

the CS more precisely.10

10The �asymptotic normal� version of the MMM/t-Test/�=2.35 test is de�ned just as the recom-
mended RMS test is de�ned but with (S1; � = 2:35; � = 0) in place of (S2A; b�;b�); respectively, where S1
is de�ned in (3.2), and with the bootstrap replaced by the normal asymptotic distribution. The boot-
strap version of this test is much slower to compute than the asymptotic normal version and, hence,
we do not recommend that it is used for this purpose. The computation times for the �asymptotic
normal�version of the MMM/t-Test/�=2.35 test are :007; :014; and :03 seconds when p = 2; 4; and 10;
respectively.
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3 Test Statistics and Critical Values

We now describe the justi�cation for the recommended RMS test. Details are given

in AJ2. The test statistics Tn(�) that we consider are of the form

Tn(�) = S(n
1=2mn(�); b�n(�)); (3.1)

where S is a real function on (R [ f+1g)p � V and V is the space of p � p variance
matrices. The leading examples of S are the AQLR function S2A de�ned above, the QLR

function S2; which is the same as S2A in (2.3) but with " = 0 (and hence e�n(�) = b�n(�)),
the modi�ed method of moments (MMM) function S1; and the SumMax function S3:

S1(m;�) =

pX
j=1

[mj=�j]
2
� and S3(m;�) =

p1X
j=1

[m(j)=�(j)]
2
�; (3.2)

where [x]� = minfx; 0g; m = (m1; :::;mp)
0; �2j is the jth diagonal element of �;

[m(j)=�(j)]
2
� denotes the jth largest value among f[m`=�`]

2
� : ` = 1; :::; pg; and p1 < p

is some speci�ed integer.11 ;12 ;13 The MMM statistic S1 has been used by Pakes, Porter,

Ho, and Ishii (2004), CHT, Fan and Park (2007), Romano and Shaikh (2008), AG, AS,

and Bugni (2010); the (unadjusted) QLR statistic has been used by AG, AS, and Rosen

(2008); and the Max and SumMax statistics S3 have been used by AG, AS, and Azeem

Shaikh.14

We consider the class of GMS critical values discussed in AS. They rely on a tuning

parameter � and moment selection functions 'j : (R [ f+1g)p � 	 ! R+ for j � p;

where 	 is the set of all p� p correlation matrices. The leading examples of 'j are

'
(1)
j (�;
) =

(
0 if �j � 1
1 if �j > 1;

'
(2)
j (�;
) = [�(�j � 1)]+; '

(3)
j (�;
) = [�j]+;

'
(4)
j (�;
) = ��j1(�j > 1); and '

(0)
j (�;
) = 0 (3.3)

for j � p; where [x]+ = maxfx; 0g; � = (�1; :::; �p)
0; 
 is a p � p correlation matrix,

11When constructing a CS, a natural choice for p1 is the dimension d of �; see below.
12With the functions S1; S2A; and S3; there is no restriction on the parameter space for the variance

matrix � of the moment conditions� � can be singular.
13Several papers in the literature use a variant of S1 that is not invariant to rescaling of the moment

functions (i.e., with �j = 1 for all j): This is not desirable in terms of the power of the resulting test.
14Personal communication.
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and � in '(2)j and '(4)j is the tuning parameter �: Let '(�;
) = ('1(�;
); :::; 'p(�;
))
0

(for any 'j(�;
) as in (3.3)). CHT, AS, and Bugni (2010) consider the function '
(1);

Canay (2010) considers '(2); AS considers '(3); and Fan and Park (2007) use a non-

scale-invariant version of '(4): The function '(1) generates the recommended �moment

selection t-test�procedure of (2.7), see AJ2 for details. The function '(0) generates a

critical value based on the least-favorable distribution evaluated at an estimator of the

true variance matrix �: It only depends on the data through the estimation of �: It

is referred to as the �plug-in� asymptotic (PA) critical value. (No value � is needed

for this critical value.) Another ' function is the modi�ed moment selection criterion

(MMSC) '(5) function introduced in AS. It is computationally more expensive than the

functions '(1)-'(4) considered above, but uses all of the information in the p-vector of

moment conditions to decide which moments to select. It is a one-sided version of the

information-criterion-based moment selection criterion considered in Andrews (1999).

For brevity, we do not de�ne '(5) here, but we consider it below.

For a GMS critical value as in AS, f� = �n : n � 1g is a sequence of constants that
diverges to in�nity as n ! 1; such as �n = (lnn)1=2: In contrast, for an RMS critical
value, b� does not go to in�nity as n!1 and is data-dependent. Data-dependence of b�
is obtained by taking b� to depend on b
n(�): b� = �(b
n(�));where �(�) is an R++-valued
function. We justify RMS critical values using asymptotics in which � equals a �nite

constant plus op(1); rather than asymptotics in which � ! 1 as n ! 1: This di¤ers
from the asymptotics in other papers in the moment inequality literature.

There are four reasons for using �nite-� asymptotics. First, they provide better

approximations because � is �nite, not in�nite, in any given application. Second, for

any given (S; '); they allow one to compute a best � value in terms of asymptotic average

power, which in turn allows one to compare di¤erent (S; ') functions (each evaluated at

its own best � value) in terms of asymptotic average power. One cannot determine a best

� value in terms of asymptotic average power when � ! 1 because asymptotic power

is always higher if � is smaller, asymptotic size does not depend on �; and �nite-sample

size is worse if � smaller.15 Third, for the recommended (S; ') functions, the �nite-�

asymptotic formula for the best � value lets one determine a data-dependent � value

that is approximately optimal in terms of asymptotic average power. Fourth, �nite-�

15This does not imply that one cannot size-correct a test and then consider the � ! 1 asymptotic
properties of such a test. Rather, the point is that �!1 asymptotics do not allow one to determine
a suitable formula for size correction for the reason given.
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asymptotics permit one to compute size-correction factors that depend on �; which is a

primary determinant of a test�s �nite-sample size. In contrast, if �!1 the asymptotic

properties of tests under the null hypothesis do not depend on �: Even the higher-order

errors in null rejection probabilities do not depend on �; see Bugni (2010). Thus, with

� ! 1 asymptotics, the determination of a desirable size-correction factor based on �

is not possible.

For brevity, the �nite-� asymptotic results are given in AJ2. These results include

uniform asymptotic size and n�1=2-local power results. We use these results to compare

di¤erent (S; ') functions below and to develop recommended b� and b� values.
For Z� � N(0p; Ip) and � 2 (R [ f+1g)p; let qS(�;
) denote the 1� � quantile of

S(
1=2Z� + �;
): For constants � > 0 and � � 0; de�ne

AsyPow(�;
; S; '; �; �)

= P
�
S(
1=2Z� + �;
) > qS

�
'(��1[
1=2Z� + �];
);


�
+ �

�
; (3.4)

where � 2 Rp and 
 2 	: The asymptotic power of an RMS test of the null hypothesis
that the true value is �; based on (S; ') with data-dependent b� = �(b
n(�)); and b� =
�(b
n(�)); is shown in AJ2 to be AsyPow(�;
(�); S; '; �(
(�));�(
(�))); where � is a
p-vector whose elements depend on the limits (as n!1) of the normalized population
means of the p moment inequalities and 
(�) is the population correlation matrix of the

moment functions evaluated at the null value �:

We compare the power of di¤erent RMS tests by comparing their asymptotic average

power for a chosen set Mp(
) of alternative parameter vectors � 2 Rp for a given

correlation matrix 
: The asymptotic average power of the RMS test based on (S; '; �; �)

for constants � > 0 and � � 0 is

jMp(
)j�1
X

�2Mp(
)

AsyPow(�;
; S; '; �; �); (3.5)

where jMp(
)j denotes the number of elements inMp(
):

We are interested in constructing tests that yield CS�s that are as small as possible.

The boundary of a CS, like the boundary of the identi�ed set, is determined at any

given point by the moment inequalities that are binding at that point. The number of

binding moment inequalities at a point depends on the dimension, d; of the parameter

�: Typically, the boundary of a con�dence set is determined by d (or fewer) moment
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inequalities. That is, at most d moment inequalities are binding and at least p � d are
slack. In consequence, we specify the setsMp(
) considered below to be ones for which

most vectors � have half or more elements positive (since positive elements correspond

to non-binding inequalities), which is suitable for the typical case in which p � 2d:
To compare (S; ') functions based on asymptotic Mp(
)-average power requires

choices of functions (�(�); �(�)): We use the functions ��(
) and ��(
) that are optimal
in terms of maximizing asymptoticMp(
)-average power. These are determined numer-

ically, see AJ2 for details. Given 
; ��(
); and ��(
); we compare (S; ') functions by

comparing their values of the quantity in (3.5) evaluated at � = ��(
); and � = ��(
):

Once we have determined a recommended (S; '); we determine data-dependent val-

ues b� and b� that are suitable for use with this (S; ') combination.
Note that generalized empirical likelihood (GEL) test statistics, including the empir-

ical likelihood ratio (ELR) statistic, behave the same asymptotically (to the �rst order)

as the (unadjusted) QLR statistic Tn(�) based on S2 under the null and local alternative

hypotheses for nonsingular correlation matrices of the moment conditions. See Sections

8.1 and 10.3 of AG, Section 10.1 of AS, and Canay (2010). In consequence, although

GEL statistics are not of the form given in (3.1), the asymptotic results of the present

paper, given in AJ2, hold for such statistics under the assumptions given in AG for

classes of moment condition correlation matrices whose determinants are bounded away

from zero. Hence, in the latter case, the recommended b� and b� values given in Table I
can be used with GEL statistics. However, an advantage of the AQLR statistic in com-

parison to GEL statistics is that its asymptotic properties are known and well-behaved

whether or not the moment condition correlation matrix is singular. There are also

substantial computational reasons to prefer the AQLR statistic to GEL statistics such

as ELR, see Section 6 below.

4 Asymptotic Average Power Comparisons

In the numerical work reported here, we focus on results for p = 2; 4; and 10: For each

value of p; we consider three correlation matrices 
: 
Neg; 
Zero; and 
Pos: The matrix


Zero equals Ip for p = 2; 4; and 10: The matrices 
Neg and 
Pos are Toeplitz matrices

with correlations on the diagonals (as they go away from the main diagonal) given by the

following: For p = 2: � = �:9 for 
Neg and � = :5 for 
Pos: For p = 4: � = (�:9; :7;�:5)
for 
Neg and � = (:9; :7; :5) for 
Pos: For p = 10: � = (�:9; :8;�:7; :6;�:5; :4;�:3; :2;�:1)

11



for 
Neg and � = (:9; :8; :7; :6; :5; :::; :5) for 
Pos:

For p = 2; the set of � vectors M2(
) for which asymptotic average power is

computed includes seven elements: M2(
) = f(��1; 0); (��2; 1); (��3; 2); (��4; 3);
(��5; 4); (��6; 7); (��7;��7)g; where �j depends on 
 and is such that the power

envelope is :75 at each element ofM2(
): Consistent with the discussion in Section 3,

most elements of M2(
) have less than two negative elements. The positive elements

of the � vectors are chosen to cover a reasonable range of the parameter space. For

brevity, the values of �j inM2(
) and the setsMp(
) for p = 4; 10 are given in AJ2.

The elements of Mp(
) for p = 4; 10 are selected such that the power envelope is :80

and :85; respectively, at each element of the set.

In AJ2 we also provide results for two singular 
 matrices and 19 nonsingular 


matrices (for each p) that cover a grid of �(
) values from �1:0 to 1:0: The qualitative
results reported here are found to apply as well to the broader range of 
matrices. Some

special features of the results based on the singular variance matrices are commented

on below.

We compare tests based on the following functions: (S; ') = (MMM, PA), (MMM,

t-Test), (Max, PA), (Max, t-Test), (SumMax, PA), (SumMax, t-Test), (AQLR, PA),

(AQLR, t-Test), (AQLR, '(3)), (AQLR, '(4)), and (AQLR, MMSC).16 We also consider

the �pure ELR�test, for which Canay (2010) establishes a large deviation asymptotic

optimality result. This test rejects the null when the ELR statistic exceeds a �xed

constant (that is the same for all 
):17 The reason for reporting results for this test is

to show that these asymptotic optimality results do not provide theoretical grounds for

favoring the ELR test or ELR test statistic over other tests or test statistics.

For each test, Table II reports the asymptotic average power given the � value that

maximizes asymptotic average power for the test, denoted �=Best. The best � values

are determined numerically using grid search, see AJ2 for details. For all tests and

p = 2; 4; 10; the best � values are decreasing from 
Neg to 
Zero to 
Pos: For example,

16The statistics MMM, AQLR, Max, and SumMax use the functions S1; S2; S3 with p1 = 1; and S3
with p1 = 2; respectively. The PA, t-Test, and MMSC critical values use the functions '(0); '(1); and
'(5); respectively.
17The level :05 pure ELR asymptotic critical value is determined numerically by calculating the

constant for which the maximum asymptotic null rejection probability of the ELR statistic over all
mean vectors in the null hypothesis and over all positive de�nite correlation matrices 
 is :05: See AJ2
for details. The critical values are found to be 5:07; 7:99; and 16:2 for p = 2; 4; and 10; respectively.
These critical values yield asymptotic null rejection probabilities of :05 when 
 contains elements that
are close to �1:0:
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for the AQLR/t-Test test, the best � values for (
Neg;
Zero;
Pos) are (2:5; 1:4; :6) for

p = 10; (2:5; 1:4; :8) for p = 4; and (2:6; 1:7; :6) for p = 2:

The asymptotic power results are size-corrected.18 ;19 The critical values, size-correction

factors, and power results are each calculated using 40; 000 simulation repetitions, ex-

cept where stated otherwise, which yields a simulation standard error of :0011 for the

power results.

Table II shows that the MMM/PA test has very low asymptotic power compared

to the AQLR/t-Test/�Best test (which is shown in boldface) especially for p = 4; 10:

Similarly, the Max/PA and SumMax/PA tests have low power. The AQLR/PA test has

better power than the other PA tests, but it is still very low compared to the AQLR/t-

Test/�Best test.

Table II also shows that the MMM/t-Test/�Best test has equal asymptotic average

power to the AQLR/t-Test/�Best test for 
Zero and only slightly lower power for 
Pos:

But, it has substantially lower power for 
Neg: For example, for p = 10; the compar-

ison is :18 versus :55: The Max/t-Test/�Best test has noticeably lower average power

than the AQLR/t-Test/�Best test for 
Neg; slightly lower power for 
Zero; and essen-

tially equal power for 
Pos: It is strongly dominated in terms of average power. The

SumMax/t-Test/�Best test also is strongly dominated by the AQLR/t-Test/�Best test

in terms of asymptotic average power. The power di¤erences between these two tests

are especially large for 
Neg: For example, for p = 10 and 
Neg; their powers are :20

and :55; respectively.

Next we compare tests that use the AQLR test statistic but di¤erent critical values�

due to the use of di¤erent functions ': The AQLR/'(2)/�Best test is essentially dom-

inated by the AQLR/t-Test/�Best, although the di¤erences are not large. The AQLR

/'(3)/�Best test has noticeably lower asymptotic average power than the AQLR/t-

Test/�Best test for 
Neg; somewhat lower power for 
Zero; and equal power for 
Pos:

The di¤erences increase with p:

The AQLR/'(4)/�Best test has almost the same asymptotic average power as the

AQLR/t-Test/�Best test for 
Zero and 
Pos and slightly lower power for 
Neg: This

18Size-correction here is done for the �xed known value of 
: It is not based on the least-favorable 

matrix because the results are asymptotic and 
 can be estimated consistently.
19The maximum null rejection probability calculations used in the size correction were calculated

using � vectors that consist of 00s and10s: Then, additional calculations were carried out to determine
whether the maximum over � 2 Rp+;1 is attained at such a � vector in each case. No evidence was
found to suggest otherwise. See Section 7 of the Supplemental Material for details.

13



is because the '(4) and '(1) functions are similar. The AQLR/MMSC/�Best test and

AQLR/t-Test/�Best tests have quite similar power. Nevertheless, the AQLR/MMSC/

�Best test is not the recommended test for reasons given below. We experimented

with several smooth versions of the '(1) critical value function in conjunction with the

AQLR statistic. We were not able to �nd any that improved upon the asymptotic

average power of the AQLR/t-Test/�Best test. Some were inferior. All such tests have

substantial disadvantages relative to the AQLR/t-test in terms of the computational

ease of determining suitable data-dependent � and � values.

In conclusion, we �nd that the best (S; ') choices in terms of asymptotic average

power (based on �=Best) are: AQLR/t-Test and AQLR/MMSC, followed closely by

AQLR/'(2) and AQLR/'(4): Each of these tests out-performs the PA tests by a wide

margin in terms of asymptotic power.

The AQLR/MMSC test has the following drawbacks: (i) its computation time is very

high when p is large, such as p = 10; because the test statistic must be computed for

all 2p possible combinations of selected moment vectors and (ii) the best � value varies

widely with 
 and p; which makes it quite di¢ cult to specify a data-dependent � value

that performs well. Similarly, the AQLR/'(2) and AQLR/'(4) tests have substantial

computational drawbacks for determining a data-dependent � values, see AJ2 for details.

Based on the power results discussed above and on the computational factors, we

take the AQLR/t-Test to be the recommended test and we develop data-dependent b�
and b� for this test.
The last row of Table II gives the asymptotic power envelope, which is a �uni-

directional�envelope, see AJ2 for details. One does not expect a test that is designed to

perform well for multi-directional alternatives to be on, or close to, the uni-directional

envelope. In fact, it is surprising how close the AQLR/t-Test/�Best test is to the power

envelope when 
 = 
Pos: As expected, the larger is p the greater is the di¤erence between

the power of a test designed for p-directional alternatives and the uni-directional power

envelope.

When the sample correlation matrix is singular, the QLR test statistic can be de�ned

using the Moore-Penrose generalized inverse in the de�nition of the weighting matrix.

Let MP-QLR denote this statistic. For the case of singular correlation matrices, AJ2

provides asymptotic power comparisons of the AQLR/t-Test/�Best test, the MP-QLR/t-

Test/�Best test, and several other tests.

The results show that the AQLR/t-Test/�Best test has vastly superior asymptotic
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average power to that of the MP-QLR/t-Test/�Best test (e.g., .98 versus .29 when

p = 10) when the correlation matrix exhibits perfect negative correlation and the same

power when only perfect positive correlation is present. Hence, it is clear that the

adjustment made to the QLR statistic is bene�cial. The results also show that the

AQLR/t-Test/�Best test strongly dominates tests based on the MMMandMax statistics

in terms of asymptotic average power with singular correlation matrices.

Finally, results for the �pure ELR�test show that it has very poor asymptotic power

properties.20 For example, for p = 10; its power ranges 1/3 to 1/7 that of the AQLR/t-

Test/�Best test (and of the feasible AQLR/t-Test/�Auto test, which is the recommended

test of Section 2). The poor power properties of this �asymptotically optimal�test imply

that the (generalized Neyman-Pearson) large deviations asymptotic optimality criterion

is not a suitable criterion in this context.21

Note that the poor power of the �pure ELR� test does not imply that the ELR

test statistic is a poor choice of test statistic. When combined with a good critical

value, such as the data-dependent critical value recommended in this paper or a similar

critical value, it yields a test with very good power. The point is that the large deviations

asymptotic optimality result does not provide convincing evidence in favor of the ELR

statistic.

5 Approximately Optimal �(
) and �(
) Functions

Next, we describe how the recommended �(
) and �(
) functions for the AQLR/t-

Test test, de�ned in Section 2 and referred to, are determined.

First, for p = 2 and given � 2 (�1; 1); where � denotes the correlation that appears
in 
; we compute numerically the values of � that maximize the asymptotic average

(size-corrected) power of the nominal :05 AQLR/t-Test test over a �ne grid of 31 �

values. We do this for each � in a �ne grid of 43 values. Because the power results

20The power of the pure ELR test and AQLR/t-Test/�Auto test, which is the recommended test of
Section 2, in the nine cases considered in Table II are: for p = 10; (.19, .55), (.17, .67), and (.12, .82);
for p = 4; (.44, .59), (.42, .69), (.39, .78); and for p = 2; (.57, .65), (.55, .69), and (.54, .73). See Table
S-XIII of AJ2.
21In our view, the large-deviation asymptotic optimality criterion is not appropriate when comparing

tests with substantially di¤erent asymptotic properties under non-large deviations. In particular, this
criterion is questionable when the alternative hypothesis is multi-dimensional because it implies that a
test can be �optimal�against alternatives in all directions, which is incompatible with the �nite sample
and local asymptotic behavior of tests in most contexts.
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are size-corrected, a by-product of determining the best � value for each � value is the

size-correction value � that yields asymptotically correct size for each �:

Second, by a combination of intuition and the analysis of numerical results, we

postulate that for p � 3 the optimal function ��(
) is well approximated by a function
that depends on 
 only through the [�1; 1]-valued function �(
) de�ned in (2.9).
The explanation for this is as follows: (i) Given 
; the value ��(
) that yields

maximum asymptotic average power is such that the size-correction value ��(
) is not

very large. (This is established numerically for a variety of p and 
:) The reason is that

the larger is ��(
); the larger is the fraction, ��(
)=(cn(�; ��(
))+ ��(
)) of the critical

value that does not depend on the data (for 
 known), the closer is the critical value

to the PA critical value that does not depend on the data at all (for known 
); and

the lower is the power of the test for � vectors that have less than p elements negative

and some elements strictly positive. (ii) The size-correction value ��(
) is small if the

rejection probability at the least-favorable null vector � is close to � when using the size-

correction factor �(
) = 0: (This is self-evident.) (iii) We postulate that null vectors

� that have two elements equal to zero and the rest equal to in�nity are nearly least-

favorable null vectors.22 If true, then the size of the AQLR/t-Test test depends on the

two-dimensional sub-matrices of 
 that are the correlation matrices for the cases where

only two moment conditions appear. (iv) The size of a test for given � and p = 2 is

decreasing in the correlation �: In consequence, the least-favorable two-dimensional sub-

matrix of 
 is the one with the smallest correlation. Hence, the value of � that makes

the size of the test equal to � for a small value of � is (approximately) a function of 


through �(
) de�ned in (2.9). (Note that this is just a heuristic explanation. It is not

intended to be a proof.)

Next, because �(
) corresponds to a particular 2�2 submatrix of 
 with correlation
� (= �(
)); we take �(
) to be the value that maximizes asymptotic average power when

p = 2 and � = �; as speci�ed in Table I and described in the second paragraph of this

section. We take �(
) to be the value determined by p = 2 and �; i.e., �1(�) in (2.10)

and Table I, but allow for an adjustment that depends on p; viz., �2(p); that is de�ned to

guarantee that the test has correct asymptotic signi�cance level (up to numerical error).

22The reason for this postulation is that a test with given � has larger null rejection probability the
more negative are the correlations between the moments. A variance matrix of dimension three by three
or greater has restrictions on its correlations imposed by the positive semi-de�niteness property. If all
of the correlations are equal, they cannot be arbitarily close to �1: In constrast, with a two-dimensional
variance matrix, the correlation can be arbitarily close to �1:
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See AJ2 for details.

We refer to the proposed method of selecting �(
) and �(
); described in Section

2, as the �Auto method. We examine numerically how well the �Auto method does in

approximating the best �; viz., ��(
):23 We provide four groups of results and consider

p = 2; 4; 10 for each group. The �rst group consists of the three 
 matrices considered

in Table II. The rows of Table II for the AQLR/t-Test/�Best and AQLR/t-Test/�Auto

tests show that the �Auto method works very well. It has the same asymptotic average

power as the AQLR/t-Test/�Best test for all p and 
 values except one case where the

di¤erence is just :01:

The second group consists of a set of 19 
 matrices for which �(
) takes values on a

grid in [�:99; :99]: In 53 of the 57 (=3�19) cases, the di¤erence in asymptotic average
power of the AQLR/t-Test/�Best and AQLR/t-Test/�Auto tests is less than :01:

The third group consists of two singular 
 matrices. One with perfect negative and

positive correlations and the other with perfect positive correlations. The AQLR/t-

Test/�Auto test has the same asymptotic average power as the AQLR/t-Test/�Best

test for 3 (p;
) combinations, power that is lower by :01 for 2 combinations, and power

that is lower by :02 for one combination.

The fourth group consists 500 randomly generated 
 matrices for p = 2; 4 and 250

randomly generated 
 matrices for p = 10: For p = 2; across the 500 
 matrices, the

asymptotic average power di¤erences have average equal to :0010; standard deviation

equal to :0032; and range equal to [:000; :022]: For p = 4; across the 500 
 matrices,

the average power di¤erence is :0012; the standard deviation is :0016; and the range is

[:000; :010]: For p = 10; across the 250 
 matrices, the average power di¤erences have

average equal to :0183; standard deviation equal to :0069; and range equal to [:000; :037]:

In conclusion, the �Auto method performs very well in terms of selecting � values

that maximize the asymptotic average power.

6 Finite-Sample Results

The recommended RMS test, AQLR/t-Test/�Auto, can be implemented in �nite

samples via the �asymptotic normal� and the bootstrap versions of the t-Test/�Auto

critical value. Here we determine which of these two methods performs better in �nite

samples. We also compare these tests to the bootstrap version of the ELR/t-Test/�Auto

23For brevity, details of the numerical results are given in AJ2.
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test, which has the same �rst-order asymptotic properties as the AQLR-based tests (for

correlation matrices whose determinants are bounded away from zero by " = :012 or

more). See Sec. 6.3.3 of AJ2 for the de�nition of the ELR statistic and details of its

computation.

In short, we �nd that the bootstrap version (denoted Bt in Table III) of the AQLR/t-

Test/�Auto test performs better than the asymptotic normal version (denoted Nm) in

terms of the closeness of its null rejection probabilities to its nominal level and similarly

on average in terms of its power. The AQLR bootstrap test also performs slightly

better than the ELR bootstrap test in terms of power, is noticeably superior in terms of

computation time, and is essentially the same (up to simulation error) in terms of null

rejection probabilities. In addition, the AQLR bootstrap test is found to perform quite

well in an absolute sense. Its null rejection probabilities are close to its nominal level

and the di¤erence between its �nite-sample and asymptotic power is relatively small.

We provide results for sample size n = 100: We consider the same correlation

matrices 
Neg; 
Zero; and 
Pos as above and the same numbers of moment inequal-

ities p = 2; 4; and 10: We take the mean zero variance Ip random vector Zy =

V ar�1=2(m(Wi; �))(m(Wi; �) � Em(Wi; �)) to be i.i.d. across elements and consider

three distributions for the elements: standard normal (i.e., N(0, 1)), t3; and chi-squared

with three degrees of freedom �23: All of these distributions are centered and scaled to

have mean zero and variance one. The power results are �size-corrected�based on the

true 
 matrix. For p = 2; 4; and 10; we use 5000, 3000, and 1000 critical value and

rejection probability repetitions, respectively, for the results under the null and under

the alternative.24

We note that the �nite-sample testing problem for any moment inequality model �ts

into the framework above for some correlation matrix 
 and some distribution of Zy:

Hence, the �nite-sample results given here provide a level of generality that usually is

lacking with �nite-sample simulation results.

The upper part of Table III provides the �nite-sample maximum null rejection prob-

abilities (MNRP�s) of the nominal .05 normal and bootstrap versions of the AQLR/t-

Test/�Auto test as well the bootstrap version of the ELR/t-Test/�Auto test. The

MNRP is the maximum rejection probability over mean vectors � in the null hypothesis

for a given correlation matrix 
 and a given distribution of Zy: The lower part of Table

24The binding constraint on the number of simulation repetitions is the ELR test, see below for
details.
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III provides MNRP-corrected �nite-sample average power for the same three tests. The

average power results are for the same mean vectors � in the alternative hypothesis as

considered above for asymptotic power.

Table III shows that the AQLR/t-Test/�Auto bootstrap test performs well with

MNRP�s in the range of [:043; :066]: In contrast, the AQLR normal test over-rejects some-

what for some 
 matrices with the normal and t3 distributions for which its MNRP�s

are in the range of [:045; :092]: With the skewed distribution, �23; the AQLR normal

test over-rejects the null hypothesis substantially with its MNRP�s being in the range

[:068; :153]: The fact that over-rejection is largest for a skewed distribution is not surpris-

ing because the �rst term in the Edgeworth expansion of a sample average is a skewness

term and the statistics considered here are simple functions of sample averages.

The ELR bootstrap test performs similarly to the AQLR bootstrap test in terms

of null rejection probabilities. Its average amount of over-rejection over the 27 cases is

:012; whereas it is :005 for the AQLR bootstrap test.

For the N(0, 1), t; and �23 distributions, Table III shows that the AQLR bootstrap

test has �nite-sample average power compared to the AQLR normal test that is similar,

inferior, and superior, respectively.

The ELR bootstrap test performs similarly to the AQLR bootstrap test in terms of

power. Computation of the ELR/t-Test/�Auto bootstrap test using R =10,000 simula-

tion repetitions takes 9:5; 11:8; 16:2; 31:9; 59:0; and 182:7 seconds when p = 2; 4; 10; 20;

30; and 50; respectively, and n = 250 using GAUSS on a PC with a 3.4 GHz processor.

This is slower than the AQLR/t-Test/�Auto bootstrap test (see Section 2) by a factor

of 4:4 to 7:7:

AJ2 reports additional �nite-sample results for the case of singular correlation ma-

trices. The results for the AQLR/t-Test/�Auto test show that the bootstrap version

performs better than the normal version in terms of MNRP�s but similarly in terms of

average power. Both tests perform well in an absolute sense. The bootstrap version

of the MP-QLR/t-Test/�Auto test also is found to have good MNRP�s. However, its

�nite-sample average power is much inferior to that of the AQLR/t-Test/�Auto boot-

strap test� quite similar to the asymptotic power di¤erences.

For the ELR/t-Test/�Auto bootstrap test, results for singular correlation matrices

are reported in AJ2 only for the case of p = 2: The reason is that with a singular

correlation matrix, the Hessian of the empirical likelihood objective function is singu-

lar a.s., which causes di¢ culties for standard derivative-based optimization algorithms
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when computing the ELR test statistic. With p = 4 and p = 10; the constrained op-

timization algorithm in GAUSS exhibits convergence problems and computation times

are prohibitively large. For p = 2; the ELR bootstrap test�s performance is essentially

the same as that of the AQLR bootstrap test in terms of MNRP�s and power.

In conclusion, we �nd that the AQLR/t-test/�Auto bootstrap test, which is the

recommended test, performs well in an absolute sense with both nonsingular and singular

variance matrices and out-performs the other tests considered in terms of asymptotic and

�nite-sample MNRP�s or power, computational time, and/or computational stability.
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Table I. Moment Selection Tuning Parameters �(�) and Size-Correction Factors �1(�)

and �2(p) for � = :05
1

� �(�) �1(�) � �(�) �1(�) � �(�) �1(�)

[�1;�:975) 2:9 :025 [�:30;�:25) 2:1 :111 [:45; :50) 0:8 :023

[�:975;�:95) 2:9 :026 [�:25;�:20) 2:1 :082 [:50; :55) 0:6 :033

[�:95;�:90) 2:9 :021 [�:20;�:15) 2:0 :083 [:55; :60) 0:6 :013

[�:90;�:85) 2:8 :027 [�:15;�:10) 2:0 :074 [:60; :65) 0:4 :016

[�:85;�:80) 2:7 :062 [�:10;�:05) 1:9 :082 [:65; :70) 0:4 :000

[�:80;�:75) 2:6 :104 [�:05; :00) 1:8 :075 [:70; :75) 0:2 :003

[�:75;�:70) 2:6 :103 [:00; :05) 1:5 :114 [:75; :80) 0:0 :002

[�:70;�:65) 2:5 :131 [:05; :10) 1:4 :112 [:80; :85) 0:0 :000

[�:65;�:60) 2:5 :122 [:10; :15) 1:4 :083 [:85; :90) 0:0 :000

[�:60;�:55) 2:5 :113 [:15; :20) 1:3 :089 [:90; :95) 0:0 :000

[�:55;�:50) 2:5 :104 [:20; :25) 1:3 :058 [:95; :975) 0:0 :000

[�:50;�:45) 2:4 :124 [:25; :30) 1:2 :055 [:975; :99) 0:0 :000

[�:45;�:40) 2:2 :158 [:30; :35) 1:1 :044 [:99; 1:0] 0:0 :000

[�:40;�:35) 2:2 :133 [:35; :40) 1:0 :040

[�:35;�:30) 2:1 :138 [:40; :45) 0:8 :051

p 2 3 4 5 6 7 8 9 10

�2(p) :00 :15 :17 :24 :31 :33 :37 :45 :50

1The values in Table I are obtained by simulating asymptotic formulae using 40,000

critical-value and 40,000 rejection-probability simulation repetitions, see AJ2 for details.
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Table II. Asymptotic Average Power Comparisons (Size-Corrected): MMM, Max,

SumMax, & AQLR Statistics, & PA, t-Test, '(2); '(3); '(4); & MMSC Critical Values

with �=Best1

Crit. Tuning p = 10 p = 4 p = 2

Stat. Val. Par. � 
Neg 
Zero 
Pos 
Neg 
Zero 
Pos 
Neg 
Zero 
Pos

MMM PA - .04 .36 .34 .20 .53 .45 .48 .62 .59

MMM t-Test Best .18 .67 .79 .31 .69 .76 .51 .69 .72

Max PA - .19 .44 .70 .30 .57 .71 .48 .64 .66

Max t-Test Best .25 .58 .82 .35 .66 .78 .51 .69 .72

SumMax PA - .10 .43 .62 .20 .55 .60 .48 .62 .59

SumMax t-Test Best .20 .65 .81 .31 .69 .77 .51 .69 .72

AQLR PA - .35 .36 .69 .46 .53 .70 .58 .69 .65

AQLR t-Test Best .55 .67 .82 .60 .69 .78 .65 .69 .73
AQLR t-Test Auto .55 .67 .82 .59 .69 .78 .65 .69 .73

AQLR '(2) Best .51y .65y .81 y .60} .69� .78� .66� .69� .72�

AQLR '(3) Best .43y .63y .81y .55} .68� .78� .61� .69� .72�

AQLR '(4) Best .51y .65y .81y .60} .70� .78� .66� .69� .72�

AQLR MMSC Best .56y .66y .81y .63 .69 .78 .65 .69 .73

Power Envelope - .85 .85 .85 .80 .80 .80 .75 .75 .75

1�=Best denotes the � value that maximizes asymptotic average power. All cases

not marked with a �; }; or y are based on (40,000, 40,000, 40,000) critical-value, size-

correction, and power repetitions, respectively.
�Results are based on (5000, 5000, 5000) repetitions.
}Results are based on (2000, 2000, 2000) repetitions.
yResults are based on (1000, 1000, 1000) repetitions.
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Table III. Finite-Sample MaximumNull Rejection Probabilities (MNRP�s) and (�Size-

Corrected�) Average Power of the Nominal .05 AQLR/t-Test/�Auto Test with Normal

(AQLR/Nm) and Bootstrap-Based (AQLR/Bt) Critical Values and ELR/t-Test/�Auto

Test with Bootstrap-Based (ELR/Bt) Critical Values

p = 10 p = 4 p = 2

Test Dist H0/H1 
Neg 
Zero 
Pos 
Neg 
Zero 
Pos 
Neg 
Zero 
Pos

AQLR/Nm N(0,1) H0 .088 .092 .057 .065 .062 .049 .056 .058 .053

AQLR/Bt N(0,1) H0 .061 .062 .058 .053 .056 .049 .054 .053 .052

ELR/Bt N(0,1) H0 .075 .076 .073 .059 .065 .054 .055 .058 .053

AQLR/Nm t3 H0 .059 .067 .045 .050 .049 .047 .053 .047 .046

AQLR/Bt t3 H0 .043 .055 .055 .051 .058 .052 .057 .055 .056

ELR/Bt t3 H0 .059 .072 .072 .056 .067 .058 .057 .057 .055

AQLR/Nm �23 H0 .136 .153 .068 .093 .101 .062 .085 .087 .080

AQLR/Bt �23 H0 .062 .066 .057 .050 .055 .050 .054 .053 .056

ELR/Bt �23 H0 .068 .077 .065 .054 .061 .054 .053 .054 .055

AQLR/Nm N(0,1) H1 .45 .59 .78 .54 .63 .76 .63 .68 .71

AQLR/Bt N(0,1) H1 .46 .62 .77 .54 .64 .76 .63 .68 .71

ELR/Bt N(0,1) H1 .49 .61 .76 .56 .64 .75 .63 .68 .71

AQLR/Nm t3 H1 .58 .69 .84 .66 .76 .81 .70 .76 .72

AQLR/Bt t3 H1 .56 .67 .79 .61 .71 .78 .67 .72 .71

ELR/Bt t3 H1 .55 .62 .76 .61 .67 .76 .64 .68 .71

AQLR/Nm �23 H1 .37 .42 .72 .48 .53 .71 .56 .57 .61

AQLR/Bt �23 H1 .43 .51 .72 .53 .57 .70 .57 .59 .62

ELR/Bt �23 H1 .41 .47 .70 .53 .56 .70 .56 .59 .62
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1 Introduction

This paper contains Supplemental Material to the paper Andrews and Jia (2008),

which we refer to hereafter as AJ1.

The contents of this paper are summarized as follows.

Sections 2-5 provide the asymptotic results upon which AJ1 is based.

Section 2 specifies the model considered, which allows for both moment inequalities

and equalities (whereas AJ1 only considers moment inequalities).

Section 3 defines the class of test statistics that are considered.

Section 4 defines in detail the class of refined moment selection (RMS) critical values

that are introduced in AJ1, gives the basic idea behind RMS critical values, defines

data-dependent tuning parameters b and data-dependent size-correction factors b and
discusses plug-in asymptotic (PA) critical values.

Section 5 establishes that RMS CS’s have correct asymptotic size (defined in a uni-

form sense), derives the asymptotic power of RMS tests against local alternatives, dis-

cusses an asymptotic average power criterion for comparing RMS tests, and discusses

the uni-dimensional asymptotic power envelope.

Section 6 provides supplemental numerical results to those reported in AJ1. Sec-

tion 6.1 contains additional results that assess the performance of the data-dependent

method for choosing b and b for the AQLR/-Test/Auto test. Section 6.2 discusses the
determination of the recommended adjustment constant  = 012 for the recommended

AQLR test statistic. Section 6.3 considers the case where the sample moments have a
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singular asymptotic correlation matrix. It provides comparisons of several tests based

on their asymptotic average power, finite-sample maximum null rejection probabilities

(MNRP’s), and finite-sample average power. Section 6.4 provides tables of the  values

that maximize asymptotic average power (i.e., the best  values), which are used in the

construction of Table II of AJ1 and of the asymptotic MNRP’s (which are used for “size-

correction”) of the RMS tests that appear in Table II of AJ1 (which reports asymptotic

power) when no size-correction factor is employed, i.e.,  = 0 Section 6.5 is similar to

Section 4 of AJ1, which compares the asymptotic power of various RMS tests, except

that it considers 19 correlation matrices Ω (rather than three) but fewer tests. Section

6.6 compares several generalized moment selection (GMS) and RMS tests, where the

GMS tests are based on non-data-dependent tuning parameters  and no size-correction

factors  Section 6.7 gives asymptotic MNRP and power results for some tests that

are not considered in AJ1. Section 6.8 discusses the relative computation times of the

asymptotic normal and bootstrap versions of the AQLR/-Test/Auto and MMM/-

Test/ = 235 tests. Section 6.9 provides information on the magnitude of the (random)

RMS critical values for the recommended AQLR/-Test/Auto test.

Section 7 provides details concerning the numerical results reported in AJ1 and in

Section 6 of this paper. Section 7.1 provides the  vectors used in AJ1 (which define

the alternatives over which asymptotic and finite-sample average power is computed).

Section 7.2 describes some details concerning the assessment of the properties of the

automatic method of choosing  Section 7.3 discusses the determination and computa-

tion of the asymptotic power envelope. Section 7.4 discusses the computation of the 

values that maximize asymptotic average power that are reported in Table II of AJ1.

Sections 7.5 and 7.6 describe the numerical computation of 2() which is part of the

recommended size-correction function (·)
Section 8 describes the GAUSS computer programs that were used to compute the

numerical results.

Section 9 gives an alternative parametrization of the moment inequality/equality

model to that given in AJ1 (that is conducive to the calculation of the uniform asymp-

totic properties of CS’s and tests) and provides proofs of the results given in Section

5.

Throughout, we use the following notation. Let + = { ∈  :  ≥ 0} ++ =
{ ∈  :   0} +∞ = + ∪ {+∞} [+∞] =  ∪ {+∞} [±∞] =  ∪ {±∞}
 =  × × (with  copies) for any set  ∞ = (+∞ +∞)0 (with  copies).
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All limits are as  → ∞ unless specified otherwise. Let “df” abbreviate “distribution

function,” “pd” abbreviate “positive definite,” (Ψ) denote the closure of a set Ψ and

0 denote a -vector of zeros.

2 Moment Inequality/Equality Model

For brevity, the model considered in AJ1 only allows for moment inequalities. Here

we consider a more general model that allows for both inequalities and equalities. The

moment inequality/equality model is as follows. The true value 0 (∈ Θ ⊂ ) is

assumed to satisfy the moment conditions:

0( 0) ≥ 0 for  = 1   and
0( 0) = 0 for  = + 1  +  (2.1)

where {(· ) :  = 1  } are known real-valued moment functions,  =  +  and

{ :  ≥ 1} are i.i.d. or stationary random vectors with joint distribution 0 Either

 or  may be zero. The observed sample is { :  ≤ } The true value 0 is not
necessarily identified.

We are interested in tests and confidence sets (CS’s) for the true value 0

Generic values of the parameters are denoted (  ) For the case of i.i.d. observa-

tions, the parameter space F for (  ) is the set of all (  ) that satisfy:

(i)  ∈ Θ (ii) ( ) ≥ 0 for  = 1   (iii) ( ) = 0

for  = + 1   (iv) { :  ≥ 1} are i.i.d. under 
(v) 2() =   (( ))  0 (vi)  (( )) ∈ Ψ and

(vii)  |( )()|2+ ≤ for  = 1   (2.2)

where   (·) and (·) denote variance and correlation matrices, respectively, when
 is the true distribution, Ψ is the parameter space for × correlation matrices specified
at the end of Section 3, and  ∞ and   0 are constants.

The asymptotic results apply to the case of dependent observations. We specify

F for dependent observations in Section 9 below. The asymptotic results also apply

when the moment functions in (2.1) depend on a parameter   i.e., when they are of the

form {(  ) :  ≤ } and a preliminary consistent and asymptotically normal
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estimator b(0) of  exists (where 0 is the true value of ) The existence of such

an estimator requires that  is identified given 0 In this case, the sample moment

functions take the form () = (b()) (= −1
P

=1( b())) The
asymptotic variance of 12() typically is affected by the estimation of  and is

defined accordingly. Nevertheless, all of the asymptotic results given below hold in this

case using the definition of F given in Section 9 below with the definitions of ( )

and () changed suitably, as described there.

We consider a confidence set obtained by inverting a test. The test is based on a

test statistic (0) for testing 0 :  = 0 The nominal level 1−  CS for  is

 = { ∈ Θ : () ≤ ()} (2.3)

where () is a data-dependent critical value.
1 In other words, the confidence set

includes all parameter values  for which one does not reject the null hypothesis that 

is the true value.

3 Test Statistics

In this section, we define the test statistics () that we consider. The statistic

() is of the form

() = (12() bΣ()) where

() = (1() ())
0 () = −1

X
=1

( ) for  ≤  (3.1)

bΣ() is a × variance matrix estimator defined below,  is a real function on (


[+∞]×
)×V× and V× is the space of × variance matrices. (The set 

[+∞]× contains

-vectors whose first  elements are either real or +∞ and whose last  elements are

real.)

The estimator bΣ() is an estimator of the asymptotic variance matrix of the sample

1When  is in the interior of the identified set, it may be the case that () = 0 and () = 0 In

consequence, it is important that the inequality in the definition of  is ≤ not  
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moments 12() When the observations are i.i.d. and no parameter  appears,

bΣ() = −1
X
=1

(( )−())(( )−())
0 where

( ) = (1( ) ( ))
0 (3.2)

The correlation matrix bΩ() that corresponds to bΣ() is defined by

bΩ() = b−12
 ()bΣ() b−12

 () where b() = (bΣ()) (3.3)

and (Σ) denotes the diagonal matrix based on the matrix Σ

With temporally dependent observations or when a preliminary estimator of a pa-

rameter  appears, a different definition of bΣ() often is required, see Section 9. For

example, with dependent observations, a heteroskedasticity and autocorrelation consis-

tent (HAC) estimator may be required.

We now define the leading examples of the test statistic function  The first is the

modified method of moments (MMM) test function 1 defined by

1(Σ) =

X
=1

[]
2
− +

+X
=+1

()
2 where

[]− =

(
 if   0

0 if  ≥ 0  = (1 )
0 (3.4)

and 2 is the th diagonal element of Σ AJ1 lists papers in the literature that consider

this test statistic and the other test statistics below.2

The second function  is the quasi-likelihood ratio (QLR) test function 2 defined

by

2(Σ) = inf
=(10):1∈

+∞
(− )0Σ−1(− ) (3.5)

The origin of the QLR  function is as follows. Suppose one replaces  in (3.5) by a

data vector  ∈  that has a known × variance matrix Σ Then, the resulting QLR

statistic is the likelihood ratio statistic for the model with  ∼ (Σ)  = (01 
0
2)
0 ∈

 ×  =  the null hypothesis ∗
0 : 1 ≥ 0 & 2 = 0 and the alternative

2Several papers in the literature use a variant of 1 that is not invariant to rescaling of the moment

functions (i.e., with  = 1 for all ) which is not desirable in terms of the power of the resulting test.
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hypothesis ∗
1 : 1 ¤ 0 &/or 2 6= 0 The QLR statistic has been considered in many

papers on tests of inequality constraints, e.g., see Kudo (1963) and Silvapulle and Sen

(2005, Sec. 3.8). In the moment inequality literature, it has been considered by Andrews

and Guggenberger (2009) (AG), Andrews and Soares (2010) (AS), and Rosen (2008).

Note that under the null and local alternative hypotheses, GEL test statistics behave

asymptotically (to the first order) the same as the QLR statistic () based on 2

(see Sections 8.1 and 10.3 in AG, Section 10.1 in AS, and Canay (2010)). Although

GEL statistics are not of the form given in (3.1), the results of the present paper, viz.,

Theorems 1 and 3 below, hold for such statistics under the assumptions given in AG

provided the class of moment condition correlation matrices have determinants bounded

away from zero.

Next we consider an adjusted QLR (AQLR) test function denoted 2 which is the

recommended  function in AJ1. It has the property that its weight matrix (whose

inverse appears in the quadratic form) is nonsingular even if the estimator of the as-

ymptotic variance matrix of the moment conditions is singular. It is defined by

2(Σ) = inf
=(10):1∈

+∞
(− )0eΣ−1Σ (− ) where

eΣΣ = Σ+max{− det(ΩΣ) 0}Σ (3.6)eΣ = (eΣΣ) eΩΣ = e−12
Σ

eΣΣ
e−12
Σ  and   0

Note that the adjustment to the matrix Σ is designed so that eΣ is invariant to scale

changes in the moment functions. Based on the results in Section 6.3, the recommended

choice of  for 2 is  = 012

The function 3 is a function that directs power against alternatives with 1 ( )

moment inequalities violated. The test function 3 is defined by

3(Σ) =

1X
=1

[()()]
2
− +

+X
=+1

()
2 (3.7)

where [()()]
2
− denotes the th largest value among {[]

2
− :  = 1  } and

1   is some specified integer.34

3When constructing a CS, a natural choice for 1 is the dimension  of  see Section 5.3 below.
4With the functions 1 2 and 3 the parameter space Ψ for the correlation matrices in Assump-

tion S and in condition (vi) of (2.2) can be any non-empty subset of the set Ψ1 of all  ×  correlation

matrices. With the function 2 the asymptotic results below require that the correlation matrices in
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The asymptotic results given in Section 5 below hold for all functions  that satisfy

the following assumption.

Assumption S. (a) (Σ) = (Σ) for all  ∈  Σ ∈ × and pd

diagonal  ∈ ×

(b) (Ω) ≥ 0 for all  ∈  and Ω ∈ Ψ

(c) (Ω) is continuous at all  ∈ 


[+∞] × and Ω ∈ Ψ5

(d) (Ω)  0 if and only if   0 for some  = 1   or  6= 0 for some

 = + 1   where  = (1 )
0 and Ω ∈ Ψ

(e) For all  ∈ 


[+∞]× all Ω ∈ Ψ and  ∼ (0Ω) the df of (+ Ω) at  is

(i) continuous for   0 and (ii) unless  = 0 and  =∞ strictly increasing for   0

In Assumption S, the set Ψ is as in condition (vi) of (2.2) when the observations are i.i.d.

and no preliminary estimator of a parameter  appears. Otherwise, Ψ is the parameter

space for the correlation matrix of the asymptotic distribution of 12() under (  )

denoted  (
12())

6

The functions 1 2 and 3 satisfy Assumption S. The function 2 satisfies As-

sumption S provided the determinants of the correlation matrices in Ψ are bounded

away from zero.7

4 Refined Moment Selection

This section is concerned with critical values for use with the test statistics introduced

in Section 3. We proceed in four steps. First, we explain the idea behind moment

selection critical values and discuss a tuning parameter b that determines the extent
of the moment selection. Second, we introduce a function  that helps one to select

“relevant” moment inequalities. Third, we define the RMS critical value. Lastly, we

specify a size-correction factor b that delivers correct asymptotic size even when b does
Ψ have determinants bounded away from zero because Σ−1 appears in the definition of 2

5Let  ⊂  We say that a real function  on 


[+∞]× is continuous at  ∈ 


[+∞]× if  → 

for  ∈ 


[+∞]× implies that ()→ () In Assumption S(c), (Ω) is viewed as a function with

domain Ψ1
6More specifically, for dependent observations or when a preliminary estimator of a parameter 

appears, Ψ is as in condition (v) of (9.2) in Section 9.
7For the functions 1-3 see Lemma 1 of AG for a proof that Assumptions S(a)-S(d) hold and AS

for a proof that Assumption S(e) holds. The proof for 2 is the same as that for 2 with eΣΣ in place
of Σ By construction, eΣΣ has a determinant that is bounded away from zero even if the latter property
fails for Σ
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not diverge to infinity. Because the CS’s defined in (2.3) are obtained by inverting tests,

we discuss both tests and CS’s below.

4.1 Basic Idea and Tuning Parameter bκ
The idea behind generalized moment selection and refined moment selection is to

use the data to determine whether a given moment inequality is satisfied and is far from

being an equality. If so, one takes the critical value to be smaller than it would be if all

moment inequalities were binding–both under the null and under the alternative.

Under a suitable sequence of null distributions { :  ≥ 1} the asymptotic null
distribution of () is the distribution of

(Ω
12
0 ∗ + (1 0)Ω0) where 

∗ ∼ (0 ) (4.1)

1 ∈ 

+∞ Ω0 is a  ×  correlation matrix, and both 1 and Ω0 typically depend

on the true value of  The correlation matrix Ω0 can be consistently estimated. But

the “112-local asymptotic mean parameter 1 cannot be (uniformly) consistently

estimated.8

A moment selection critical value is the 1− quantile of a data-dependent version of
the asymptotic null distribution, (Ω

12
0 ∗+(1 0)Ω0) that replacesΩ0 by a consistent

estimator and replaces 1 with a -vector in 

+∞ whose value depends on a measure of

the slackness of the moment inequalities. The measure of slackness is

() = b−112 b−12
 ()() ∈  (4.2)

where b is a tuning parameter. For a generalized moment selection (GMS) critical value
(as in AS), {b =  :  ≥ 1} is a sequence of constants that diverges to infinity as
 → ∞ such as  = (ln)12 or  = (2 ln ln)

12 In contrast, for an RMS critical

value, b does not go to infinity as →∞ and is data-dependent.

8The asymptotic distribution of the test statistic () is a discontinuous function of the expected

values of the moment inequality functions. This is not a feature of its finite sample distribution. For this

reason, sequences of distributions { :  ≥ 1} in which these expected values may drift to zero–rather
than a fixed distribution –need to be considered. See Andrews and Guggenberger (2009) for details.

The local parameter 1 cannot be estimated consistently because doing so requires an estimator of

the mean 1
12 that is consistent at rate (

−12) which is not possible.

9



Data-dependence of b is obtained by taking b to depend on bΩ():

b = (bΩ()) (4.3)

where (·) is a function from Ψ to ++ A suitable choice of function (·) improves
the power properties of the RMS procedure because the asymptotic power of the test

depends on the probability limit of b through Ω()

We assume that (Ω) satisfies:

Assumption κ. (a) (Ω) is continuous at all Ω ∈ Ψ (b) (Ω)  0 for all Ω ∈ Ψ9

4.2 Moment Selection Function ϕ

Next, we discuss the moment selection function  that determines how non-binding

moment inequalities are detected. Let () 1 and [Ω
12
0 ∗] denote the th elements

of () 1 and Ω
12
0 ∗ respectively, for  = 1   When () is zero or close to

zero, this indicates that 1 is zero or fairly close to zero and the desired replacement

of 1 in (Ω
12
0 ∗ + (1 0)Ω0) is 0 On the other hand, when () is large, this

indicates 1 is large and the desired replacement of 1 in (Ω
12
0 ∗ + (1 0)Ω0) is

∞ or some large value.

We replace 1 in (Ω
12
0 ∗+ (1 0)Ω0) by (()

bΩ()) for  = 1   where

 : (


[+∞] ×
[±∞])×Ψ→ [±∞] is a function that is chosen to deliver the properties

described above. The leading choices for the function  are


(1)
 (Ω) =

(
0 if  ≤ 1
∞ if   1


(2)
 (Ω) = [(Ω)( − 1)]+


(3)
 (Ω) = []+ and 

(4)
 (Ω) =

(
0 if  ≤ 1
(Ω) if   1

(4.4)

for  = 1   where []+ = max{ 0} and (Ω) in 
(2)
 and 

(4)
 is the same tuning

9For simplicity, the recommended function (Ω) = ((Ω)) given in AJ1 is constant on intervals

of (Ω) values and has jumps from one interval to the next. Hence, it does not satisfy Assumption

 However, the function () in Table I of AJ1 can be replaced by a continuous linearly-interpolated

function whose value at the left-hand point in each interval of  equals the value given in Table I. Such

a function satisfies Assumption  Numerical calculations show that the grid of  values in Table I is

sufficiently fine that the finite-sample and asymptotic properties of the recommended RMS test are not

sensitive to whether the () function is linearly interpolated or not.
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parameter function that appears in (4.3). Let ()(Ω) = (
()
1 (Ω)  

()
 (Ω)

0  0)0 ∈ 


[±∞] × {0} for  = 1  4 Chernozhukov, Hong, and Tamer (2007), AS,

and Bugni (2010) consider the function (1); Canay (2010) considers (2); AS considers

(3); and Fan and Park (2007) consider (4)10

The function (1) generates a “moment selection -test” procedure, which is the

recommended  function in AJ1. Note that (0) ≤ 1 is equivalent to the condition
12()b() ≤ b in AJ1.
The functions (2)−(4) exhibit less steep rates of increase than (1) as functions of

 for  = 1  

For the asymptotic results given below, the only condition needed on the  functions

is that they are continuous on a set that has probability one under a certain distribution:

Assumption  For all  = 1   all  ∈ 


[+∞]× and all Ω ∈ Ψ (Ω) is contin-

uous at (Ω) for all (0 00)
0 in a set Ξ(Ω) ⊂ 



[+∞]× for which  (−1(Ω)[Ω12∗+

] ∈ Ξ(Ω)) = 1 where ∗ ∼ (0 )

The functions  in (4.4) all satisfy Assumption 

The functions () for  = 1  4 all exhibit “element by element” determination of

which moments to “select” because 
()
 (Ω) only depends on (Ω) through  This

has significant computational advantages because 
()
 (()

bΩ()) is very easy to com-

pute. On the other hand, when bΩ() is non-diagonal, the whole vector () contains

information about the magnitude of the population mean of () The function (5)

that is introduced in AS and defined below exploits this information. It is related to

the information-criterion-based moment selection criteria (MSC) considered in Andrews

(1999) for a different moment selection problem. We refer to (5) as the modified MSC

(MMSC)  function. It is computationally more expensive than the functions (1)-(4)

considered above.

Define  = (1  )
0 to be a selection -vector of 00 and 10 If  = 1 the th

moment condition is selected; if  = 0 it is not selected. The moment equality functions

are always selected, so  = 1 for  = +1   Let || =P

=1  For  ∈ 


[+∞]×
[±∞]

define  ·  = (11  )0 ∈ 


[+∞] ×
[±∞] where  = 0 if  = 0 and  =∞ Let

C denote the parameter space for the selection vectors, e.g., C = {0 1}×{1} Let (·)
10The function used by Fan and Park (2007) is not exactly equal to 

(4)
  Let b() denote the ( )

element of bΣ() The function Fan and Park (2007) use is (4) (Ω) with “if  ≤ 1” replaced by “ifb() ≤ 1 ” and likewise for  in place of   This yields a non-scale-invariant  function, which

is not desirable, so we define 
(4)
 as is.
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be a strictly increasing real function on + Given (Ω) ∈ (

[+∞] × 
[±∞]) × Ψ the

selection vector (Ω) ∈ C that is chosen is the vector in C that minimizes the MMSC
defined by

(− · Ω)− (||) (4.5)

The minus sign that appears in the first argument of the  function ensures that a large

positive value of  yields a large value of (− · Ω) when  = 1 as desired. Since

(·) is increasing, −(||) is a bonus term that rewards inclusion of more moments. For
 = 1   define


(5)
 (Ω) =

(
0 if (Ω) = 1

∞ if (Ω) = 0
(4.6)

The MMSC is analogous to the Bayesian information criterion (BIC) and the Hannan-

Quinn information criterion (HQIC) when () =   = (log )
12 for BIC, and  =

( ln ln)12 for some  ≥ 2 for HQIC, see AS. Some calculations show that when bΩ()

is diagonal,  = 1 2 or 2 and () =  the function (5) reduces to (1)

4.3 RMS Critical Value cn(θ)

The (asymptotic normal) RMS critical value is equal to the 1 −  quantile of


¡
Ω12∗ + Ω

¢
evaluated at  = (()

bΩ()) and Ω = bΩ() plus a size-correction

factor b More specifically, given a choice of function
(Ω) = (1(Ω)  (Ω) 0  0)

0 ∈ 


[+∞] × {0} (4.7)

the replacement for the -vector (1 0) in (Ω
12
0 ∗ +(1 0) Ω0) is given by

(()
bΩ()) (4.8)

For ∗ ∼ (0 ) (independent of { :  ≥ 1}) and  ∈ 
[+∞] let (Ω) denote

the 1−  quantile of


¡
Ω12∗ + Ω

¢
 (4.9)

One can compute (Ω) by simulating  i.i.d. random variables {∗ :  = 1  }
with ∗ ∼ (0 ) and taking (Ω) to be the 1− sample quantile of {(Ω12∗ +
Ω) :  = 1  } where  is large.
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The nominal 1−  (asymptotic normal) RMS critical value is

() = 

³

³
()

bΩ()
´
 bΩ()

´
+ (bΩ()) (4.10)

where b = (bΩ()) is a size-correction factor that is specified in Section 4.4 below.

The bootstrap RMS critical value is obtained by replacing ((()
bΩ()) bΩ())

in (4.10) by ∗((() bΩ()))where 
∗
() is the 1− quantile of ( b∗

()
−12∗

()+

 bΩ∗()) for  ∈ 
[+∞] and ∗

()
b∗
() and

bΩ∗() are bootstrap quantities de-
fined in AJ1. The quantity ∗((() bΩ())) can be computed by taking the 1 − 

sample quantile of {( b∗
()

−12∗
() + (()

bΩ()) bΩ∗()) :  = 1  }
For the recommended RMS critical value defined in AJ1, the asymptotic normal

critical value is of the form in (4.10) with  = 2  = (1) and (Ω) = 1((Ω))+2()

The bootstrap critical value uses ∗2(·) in place of 2(· bΩ())

4.4 Size-Correction Factor bη
We now discuss the size-correction factor b = (bΩ()) Such a factor is necessary to

deliver correct asymptotic size under asymptotics in which b does not diverge to infinity.
This factor can viewed as giving an asymptotic size refinement to a GMS critical value.

As noted above, we show in the proofs (see Section 9) that under a suitable se-

quence of true parameters and distributions {( ) :  ≥ 1} () → (Ω
12∗ +

(1 0)Ω) for some (1Ω) ∈ 

+∞ × Ψ Furthermore, we show that under such a se-

quence the asymptotic coverage probability of an RMS CS based on a data-dependent

tuning parameter b = (bΩ()) and a fixed size-correction constant  is

 (1Ω ) = 
¡

¡
Ω12∗ + (1 0)Ω

¢ ≤ (4.11)


¡

¡
−1(Ω)[Ω12∗ + (1 0)]Ω

¢
Ω
¢
+ 
¢


where ∗ ∼ (0 ) (Correspondingly, the null rejection probability of an RMS test

with fixed  for testing 0 :  = 0 is 1−  (1Ω ))

We let ∆ (⊂ 

+∞ ×Ψ) denote the set of all (1Ω) values that can arise given the

model specification F . More precisely, ∆ is defined as follows. Let the normalized mean

vector and asymptotic correlation matrix of the sample moment functions be denoted
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by

1(  ) = −12
¡
 

¡
12()

¢¢
( ) ≥ 0 and

Ω(  ) = 
¡
12()

¢
 (4.12)

where   (
12()) and  (

12()) denote the variance and corre-

lation matrices, respectively, of the asymptotic distribution of 12() when the true

parameter is  and the true distribution is 11 Then, ∆ is defined by

∆ = {(1Ω) ∈ 

+∞ × (Ψ) : ∃ a subsequence {} of {} and

a sequence {( ) ∈ F :  ≥ 1} with 1(  ) ≥ 0 and
Ω( ) ∈ Ψ for which 12 1( )→ 1 Ω(  )→ Ω

and  → ∗ for some ∗ in (Θ)} (4.13)

Our primary focus is on the standard case in which

∆ = 

+∞ × (Ψ) (4.14)

This arises when there are no restrictions on the moment functions beyond the inequal-

ity/equality restrictions and 1 and Ω are variation free. Our asymptotic results cover

the general case in (4.13) in which ∆ may be restricted, as well as the standard case in

(4.14).

To determine the asymptotic size of an RMS test or CS, it suffices to have b =
(bΩ()) satisfy:

Assumption η1. (Ω) is continuous at all Ω ∈ Ψ12

However, for an RMS CS to have asymptotic size greater than or equal to 1− (·)
must be chosen to satisfy the first condition that follows. If it also satisfies the second,

stronger, condition, then its asymptotic size equals 1 −  Let  (1Ω (Ω)−) =
lim↓0 (1Ω (Ω)− )

11For dependent observations and when a preliminary estimator of a paramter  appears, the

parameter space F of (  ) is defined in Section 9.1 such that both   (
12()) and

 (
12()) exist. These limits equal   (( ))) and  (( ))) respectively,

in the case of i.i.d. observations with no preliminary estimator of a parameter  
12An analogous comment to that in footnote 9 also applies to the recommended function (·) given

in AJ1 and Assumption 1.
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Assumption η2. inf(1Ω)∈∆ (1Ω (Ω)−) ≥ 1− 

Assumption η3. (a) inf(1Ω)∈∆ (1Ω (Ω)) = 1− 

(b) inf(1Ω)∈∆ (1Ω (Ω)−) = inf(1Ω)∈∆ (1Ω (Ω))

Assumption 3(b) is a continuity condition that is not restrictive. The left-hand side

(lhs) quantity inside the probability in (4.11) has a df that is continuous and strictly

increasing for positive values. The corresponding right-hand side (rhs) quantity is posi-

tive. These two quantities are quite different nonlinear functions of the same underlying

normal random vector. Hence, they are equal with probability zero, which implies that

Assumption 3(b) holds.

The function (Ω) depends on  and the tuning parameter function (Ω) For no-

tational simplicity, we suppress this dependence. Functions (·) that satisfy Assumptions
2 and/or 3 are not uniquely defined. The smallest function that satisfies Assumption

3(a), denoted ∗(Ω) exists and is defined as follows. For each Ω ∈ Ψ define ∗(Ω) to

be the smallest value  for which

inf
1:(1Ω)∈∆

 (1Ω ) = 1− 13 (4.15)

When ∆ satisfies (4.14), the infimum is over 1 ∈ 

+∞ For purposes of minimizing the

probability of false coverage of the CS (or equivalently, maximizing the power of the tests

upon which the CS is based), it is desirable to take (Ω) as close to ∗(Ω) as possible

subject to (Ω) ≥ ∗(Ω) For computational tractability and storability, however, it is

convenient to use a function (·) that is simpler than ∗(Ω) e.g., a function that depends
on Ω only through a scalar function of Ω as with the recommended RMS critical value

described in AJ1.14

4.5 Plug-in Asymptotic Critical Values

We now discuss CS’s based on a plug-in asymptotic (PA) critical value. The least-

favorable asymptotic null distributions of the statistic () are those for which the

moment inequalities hold as equalities. These distributions depend on the correlation

matrix Ω of the moment functions. PA critical values are determined by the least-

favorable asymptotic null distribution for given Ω evaluated at a consistent estimator of

13A smallest value exists because  (1Ω ) is right continuous in 
14Note that even if (Ω) 6= ∗(Ω) Assumption 3(a) still can hold.
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Ω Such critical values have been considered in the literature on multivariate one-sided

tests, see Silvapulle and Sen (2005) for references. AG and AS consider them in the

context of the moment inequality literature. Rosen (2008) considers variations of PA

critical values that make adjustments in the case where it is known that if one moment

inequality holds as an equality then another cannot.15

The PA critical value is

(0 bΩ()) (4.16)

The PA critical value can be viewed as a special case of an RMS critical value with

(Ω) = 0 for all  = 1   and (bΩ()) = 0 This implies that the asymptotic

results stated below for RMS CS’s and tests also apply to PA CS’s and tests.

5 Asymptotic Results

This section provides asymptotic results for RMS CS’s and tests. It establishes that

RMS CS’s have correct asymptotic size (defined in a uniform sense), derives the as-

ymptotic power of RMS tests against local alternatives, discusses an asymptotic average

power criterion for comparing RMS tests, and discusses the uni-dimensional asymptotic

power envelope.

5.1 Asymptotic Size

The exact and asymptotic confidence sizes of an RMS CS are

 = inf
( )∈F

 (() ≤ ()) and  =lim inf
→∞

 (5.1)

respectively. The definition of  takes the “ inf ” before the “ lim ” This builds

uniformity over (  ) into the definition of  Uniformity is required for the as-

ymptotic size to give a good approximation to the finite-sample size of a CS.

Theorems 1 and 3 below apply to i.i.d. observations, in which case F is defined in

(2.2). They also apply to stationary temporally-dependent observations and to cases in

which the moment functions depend on a preliminary consistent estimator of a parameter

  in which cases F is defined in Section 9 below.

15This method delivers corrrect asymptotic size in a uniform sense only if when one moment inequality

holds as an equality then the other is strictly bounded away from zero.
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Theorem 1 Suppose Assumptions S,   and 1 hold and 0    1 Then, the

nominal level 1−  RMS CS based on   b = (bΩ()) and b = (bΩ()) satisfies

(a)  ∈ [inf(1Ω)∈∆ (1Ω (Ω)−) inf(1Ω)∈∆ (1Ω (Ω))]

(b)  ≥ 1−  provided Assumption 2 holds, and

(c)  = 1−  provided Assumption 3 holds.

Comments. 1. Theorem 1(b) shows that an RMS CS based on a size-correction factorb = (bΩ()) that satisfies Assumption 2 is asymptotically valid in a uniform sense

under asymptotics that do not require b → ∞ as  → ∞ In contrast, the GMS CS

introduced in AS requires b→∞ as →∞

2. Theorem 1 holds even if there are restrictions such that one moment inequality

cannot hold as an equality if another moment inequality does. Rosen (2008) discusses

models in which restrictions of this sort arise.

3. Theorem 1 applies to moment conditions based on weak instruments (because

the tests considered are of an Anderson-Rubin form).

4. Define the asymptotic size of an RMS test of 0 :  = 0 by

(0) = lim sup
→∞

sup
( )∈F :=0

 ((0)  (0)) (5.2)

The proof of Theorem 1 shows that under the assumptions in Theorem 1, (a)(0) ∈
[1− inf(1Ω)∈∆0

 (1Ω (Ω)) 1− inf(1Ω)∈∆0
 (1Ω (Ω)−)] where ∆0 is defined

as ∆ is defined in (4.14) or as in (4.13) but with the sequence { :  ≥ 1} re-
placed by the constant 0 (b) (0) ≤  provided Assumption 2 holds, and (c)

(0) =  provided Assumption 3 holds, where ∆ in Assumptions 2 and 3 is

replaced by ∆0 The primary case of interest is when ∆0 = 

+∞ × (Ψ) which occurs

when there are no restrictions on the moment functions beyond the inequality/equality

restrictions and 1 and Ω are variation free.

5. The proofs of Theorem 1 and all other results stated here are provided in Section

9.

5.2 Asymptotic Power

In this section, we compute the asymptotic power of RMS tests against 112-local

alternatives. These results have immediate consequences for the length or volume of

a CS based on these tests because the power of a test for a point that is not the true
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value is the probability that the CS does not include that point. (See Pratt (1961) for

an equation that links CS volume and probabilities of false coverage.) We use these

results to define tuning parameters  = (Ω) and size-correction factors  = (Ω) that

maximize average power for a selected set of alternative parameter values. We also use

the results to compare different choices of test function  and moment selection function

 in terms of asymptotic average power.

For given 0 we consider tests of

0 : ( 0) ≥ 0 for  = 1   and
( 0) = 0 for  = + 1   (5.3)

where  denotes the true distribution of the data. (More precisely, by this we mean 0:

the true (  ) ∈ F satisfies  = 0) The alternative is 1 : 0 does not hold.

Let

2() =   (
12()) for  = 1  

(  ) = {21()  2()} and
Ω(  ) =  (

12()) (5.4)

Note that this definition of 2() reduces to that given in (2.2) when the observations

are i.i.d. Let b2() is the ( ) element of bΣ() for  = 1  

We now introduce the 112-local alternatives. The first two assumptions are the

same as in AS. The third assumption is a high-level assumption that allows for de-

pendent observations and sample moment functions that may depend on a preliminary

estimator b() It is shown to hold automatically with i.i.d. observations when there is
no preliminary estimator of a parameter  

Assumption LA1. The true parameters {( ) ∈ F :  ≥ 1} satisfy:
(a)  = 0 − −12(1 + (1)) for some  ∈  and  → 0 for some (0 0) ∈ F,
(b) 12( )()→ 1 for some 1 ∈ +∞ for  = 1   and

(c) sup≥1|( 0)(0)|2+ ∞ for  = 1   for some   0

Assumption LA2. The × matrix Π(  ) = (0)[−12(  )( )] exists

and is continuous in (  ) for all (  ) in a neighborhood of (0 0)
16

16When a preliminary estimator of a parameter  appears in the sample moment functions, then

in Assumptions LA1 and LA2 and (5.5), ( ) and ( ) are defined to be (  0) and
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Assumption LA3. The true parameters {( ) ∈ F :  ≥ 1} satisfy:
(a) 0 = (

0
1  

0
)

0 →  ∼ (0Ω0) as →∞ where 0 = 12((0)−
( 0))(0)

(b) b(0)(0)→ 1 as →∞ for  = 1   and

(c) b−12
 (0)bΣ(0) b−12

 (0)→ Ω0 as →∞

When the observations are i.i.d. for each (Ω) ∈ F  Assumption LA3 holds auto-
matically as shown in the following Lemma.

Assumption LA3∗. (a) For each  ≥ 1 the observations { :  ≤ } are i.i.d.
under ( ) ∈ F  (b) bΣ() is defined by (3.2), and (c) no preliminary estimator of a

parameter  appears in the sample moment functions.

Lemma 2 Assumptions LA1 and LA3∗ imply Assumption LA3.

The asymptotic distribution of (0) under local alternatives depends on the limit

of the normalized moment inequality functions when evaluated at the null value 0

Under Assumptions LA1 and LA2, it can be shown that

lim
→∞

12−12(0 )( 0) =  = (1 0) +Π0 ∈ 


[+∞] × where

1 = (11  1)
0 and Π0 = Π(0 0) (5.5)

By definition, if 1 =∞ then 1+ =∞ for any  ∈  Let Π0 denote the th row of

Π0 written as a column -vector for  = 1  Note that (1 0)+Π0 ∈ 


[+∞]× Let

 = (1  )
0 The true distribution  is in the alternative, not the null (for  large)

when  = 1 +Π00  0 for some  = 1   or Π00 6= 0 for some  = + 1  

For constants   0 and  ≥ 0 define

(Ω    )

= 
¡
(Ω12∗ + Ω)  

¡
(−1[Ω12∗ + ]Ω)Ω

¢
+ 
¢
and

−(Ω0    ) = lim
↓0

(Ω0     − ) (5.6)

where ∗ ∼ (0 )  ∈  Ω ∈ Ψ  ∈ ++ the functions   and  are as defined

(  0) respectively, where 0 denotes the true value of the parameter  under the true distribution


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in Section 3, (4.4) or (4.6), and (4.9), respectively.17 Typically, (Ω    ) =

−(Ω    ) because the lhs quantity in the probability in (5.6) is a non-

linear function of a normal random vector that has a continuous and strictly increasing

df (unless  = 0 and  =∞ which cannot hold under the alternative hypothesis) and

the rhs quantity in the probability in (5.6) is a quite different nonlinear function of the

same normal random vector.

For a sequence of constants { :  ≥ 1} let  → [1∞ 2∞] denote that 1∞ ≤
lim inf→∞  ≤ lim sup→∞  ≤ 2∞

Theorem 3 Under Assumptions S,   1, and LA1-LA3, the RMS test based on

b = (bΩ()) and b = (bΩ()) satisfies

((0)  (0))

→[(Ω0   (Ω0) (Ω0)) −(Ω0   (Ω0) (Ω0))]

where  = (1 0) +Π0

Comments. 1. Theorem 3 provides the 112-local alternative power function of RMS

and PA tests. Typically, (Ω0   (Ω0) (Ω0)) = −(Ω0  

(Ω0) (Ω0)) and the asymptotic local power function is unique for any given (Ω0)

2. The results of Theorem 3 hold under the null and alternative hypotheses.

3. For moment conditions based on weak instruments, the results of Theorem 3 still

hold. But, with weak instruments, RMS and PA tests have power less than or equal to

 against 112-local alternatives because Π00 = 0 for all  = 1  

5.3 Average Power

RMS tests depend on   (Ω) and (Ω) We compare the power of RMS tests

by comparing their asymptotic average power for a chosen set M(Ω) of alternative

parameter vectors  ∈  for Ω ∈ Ψ18 Let |M(Ω)| denote the number of elements
17For some functions  such as (1) and (4)  = 0 is permissible because lim↓0 (−1[Ω12+]Ω)

is well-defined. For example, for (1) and  ∈  lim↓0 (−1Ω) = 0 if  ≤ 0 and lim↓0 (−1Ω) =
∞ if   0
18As indicated, we allow this set to depend on Ω The reason is that the power of any test and

the asymptotic power envelope depend on Ω Hence, it is natural to vary the magnitude of |||| for
 ∈M(Ω) as Ω varies.
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in M(Ω) The asymptotic average power of the RMS test based on (  ) for

constants   0 and  ≥ 0 is

|M(Ω)|−1
X

∈M(Ω)

(Ω    ) (5.7)

We are interested in comparing the () functions defined in (3.4)-(3.7), (4.4),

and (4.6) in terms of asymptotic M(Ω)-average power. To do so requires choices of

functions ((·) (·)) for each () We use the tuning and size-correction functions
∗(Ω) and ∗(Ω) that are optimal in terms of asymptoticM(Ω)-average power. They

are defined as follows. Given Ω and   0 let ∗(Ω ) be defined as in (4.15) with

∆ = 

+∞ × (Ω) and tuning parameter   0 The optimal tuning parameter ∗(Ω)

maximizes (5.7) with  replaced by ∗(Ω ) over   0 The optimal size-correction

factor then is ∗(Ω) = ∗(Ω ∗(Ω)) and the test based on (∗(Ω) ∗(Ω)) has asymptotic

size  (Obviously, ∗(·) and ∗(·) depend on ( ))
Given ∗(Ω) and ∗(Ω) we compare () functions by comparing their values of

|M(Ω)|−1
X

∈M(Ω)

(Ω   ∗(Ω) ∗(Ω)) (5.8)

which depend on Ω

Figure 1. Confidence Set for a Parameter  ∈  for  = 2 Based on  = 4 Moment

Inequalities

x 3210-1

4

3
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We are interested in constructing tests that yield CS’s that are as small as possible.
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The boundary of a CS, like the boundary of the identified set, is determined at any

given point by the moment inequalities that are binding at that point. The number of

binding moment inequalities at a point depends on the dimension,  of the parameter

 Typically, the boundary of a confidence set is determined by  (or fewer) moment

inequalities. That is, at most  moment inequalities are binding and at least −  are

slack, see Figure 1. In consequence, we specify the sets M(Ω) considered below to

be ones for which most vectors  have half or more elements positive (since positive

elements correspond to non-binding inequalities), which is suitable for the typical case

in which  ≥ 2

5.4 Asymptotic Power Envelope

To assess the power performance of RMS tests in an absolute sense, it is of interest

to compare their asymptotic power to the asymptotic power envelope. For details on

the determination and computation of the latter, see Section 7 below.

We note that the asymptotic power envelope is a “uni-directional” envelope. One

does not expect a test that is designed to perform well for multi-directional alternatives

to be on, or close to, the uni-directional envelope. This is analogous to the fact that the

power of a standard  -test for a -dimensional restriction with an unrestricted alterna-

tive hypothesis in a normal linear regression model is not close to the uni-dimensional

power envelope. For example, for  = 2 4 10 when the asymptotic power envelope

is 75 80 85 respectively, the  test has power 65 60 49 respectively.19 Clearly,

the larger is  the greater is the difference between the power of a test designed for

-directional alternatives and the uni-directional power envelope.

6 Numerical Results

This section gives supplemental numerical results to those given in AJ1.

Section 6.1 describes how the approximately optimal (·) and (·) functions given in
Table I of AJ1 are determined and provides numerical results concerning their proper-

ties.20

19These asymptotic power results are obtained by some simple calculations based on the distribution

function of the noncentral 2 distribution with  = 1 2 4 10 degrees of freedom, where the noncentral

2 distribution with  = 1 degrees of freedom is used for the power envelope calculations.
20These functions determine the data-dependent tuning parameter b and size-correction factor b
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Section 6.2 discusses the determination of the recommended adjustment constant

 = 012 for the recommended AQLR test statistic, which is based on the 2 function.
21

Section 6.3 considers the case where the sample moments have a singular asymptotic

correlation matrix. It provides comparisons of several tests based on their asymptotic

average power, finite-sample maximum null rejection probabilities (MNRP’s), and finite-

sample average power. It also defines the empirical likelihood ratio (ELR) statistic,

discusses its computation, and defines the bootstrap employed with the ELR test.

Section 6.4 provides a table of the  values that maximize asymptotic average power

for various tests. These are the  values that yield the asymptotic power reported in

Table II of AJ1. Section 6.4 also provides a table that is analogous to Table II of AJ1

but reports asymptotic MNRP’s rather than asymptotic power.

Section 6.5 provides results that supplement those of AJ1 by comparing () func-

tions for a larger number of Ω matrices. These are results based on the best  values in

terms of asymptotic average power.

Section 6.7 provides additional asymptotic MNRP and power results for some GMS

and RMS tests that are not considered explicitly in AJ1.

Section 6.8 provides comparative computation times for tests based on the AQLR

and MMM test statistics and the “asymptotic normal” and bootstrap versions of the

-test (i.e., (1)) moment selection critical values.22

6.1 Approximately Optimal κ(Ω) and η(Ω) Functions

6.1.1 Definitions of κ(Ω) and η(Ω)

Here, we describe how the recommended (Ω) and (Ω) functions defined in AJ1 are

determined. These functions are for use with the recommended AQLR/-Test test.

First, for  = 2 and given  ∈ (−1 1) where  denotes the correlation that appears
in Ω we compute numerically the values of  that maximize the asymptotic average

(size-corrected) power of the nominal 05 AQLR/-Test test over a fine grid of 31 

values. We do this for each  in a fine grid of 43 values.23 Because the power results

21The constant   0 ensures that the matrix eΣ() whose inverse appears in the AQLR statistic, is
nonsingular even if the estimator bΣ() of the asymptotic variance of the sample moment conditions is
singular.
22Note that Section 7.6 below provides additional numerical results concerning the computation of

2()
23The grid of 31  values is {0, .2, .4, .6, .8, 1.0, 1.1, 1.2, ...,2.9, 3.0, 3.2, ..., 3.8, 4.2}. The grid of 43 

values is {.99, .975, .95, .90, .85, ..., -.90, -.95, -.975, -.99}. The results are based on 40,000 critical value
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are size-corrected, a by-product of determining the best  value for each  value is the

size-correction value  that yields asymptotically correct size for each 24

Second, by a combination of intuition and the analysis of numerical results, we postu-

late that for  ≥ 3 the optimal function ∗(Ω) defined in Section 5.3 is well approximated
by a function that depends on Ω only through the [−1 1]-valued function (Ω)= smallest
off-diagonal element of Ω

The explanation for this is as follows: (i) Given Ω the value ∗(Ω) that yields

maximum asymptotic average power is such that the size-correction value ∗(Ω) is not

very large. (This is established numerically for a variety of  and Ω) The reason is that

the larger is ∗(Ω) the closer is the test to the PA test and the lower is the power of

the test for  vectors that have less than  elements negative. (ii) The size-correction

value ∗(Ω) is small if the rejection probability at the least-favorable null vector  is

close to  when using the size-correction factor (Ω) = 0 (This is self-evident.) (iii) We

postulate that null vectors  that have two elements equal to zero and the rest equal to

infinity are nearly least-favorable null vectors. If true, then the size of the AQLR/-Test

test depends on the two-dimensional sub-matrices of Ω that are the correlation matrices

that correspond to the cases where only two moment conditions appear. (iv) The size

of a test for given  and  = 2 is decreasing in the correlation  In consequence, the

least-favorable two-dimensional sub-matrix of Ω is the one with the smallest correlation.

Hence, the value of  that makes the size of the test equal to  for a small value of

 is (approximately) a function of Ω through (Ω) Note that this is just a heuristic

explanation. It is not intended to be a proof.

Next, because (Ω) corresponds to a particular 2 by 2 submatrix of Ω with correlation

 (= (Ω)) we take (Ω) to be the value that maximizes asymptotic average power when

 = 2 and  =  as specified in Table I of AJ1 and described in the second paragraph

of this section.25 We take (Ω) to be the value determined by  = 2 and  i.e., 1()

repetitions and 40,000 size and power repetitions. Size-corrrection is done for the given value of  not

uniformly over  ∈ [−1 1] because  can be consistently estimated and hence is known asymptotically.
24The asymptotic size of the QLR/tTest for given  is found numerically to be decreasing in 

for  ∈ [−1 1] Hence, for  ∈ [1 2) we take  to be the size-correction value that yields correct
asymptotic size for  = 1 See Section 7.5 for a discussion of how the maximum null rejection probability

over  ≥ 0 was calculated.
25For  ∈ [−8 10] we use the  values that maximize average asymptotic power for  = 2 as the

automatic  values. For  ∈ [−10−8) however, we use somewhat larger  values than the ones that
maximize average power. The reason is as follows. Numerical results show that the best  values (in

terms of power) for  ∈ [−10−85] (and  = 2) are somewhat smaller than for  = −80 Thus, there
is a small deviation from the feature that the best  value is monotone decreasing in When using the
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in Table I of AJ1, but allow for an adjustment that depends on  viz., 2() that

is defined to guarantee that the test has correct asymptotic significance level (up to

numerical error).26 In particular, 1() ∈  is defined to be such that

inf
1∈2+∞

 (1Ω 1()) = 1−  (6.1)

where Ω is the 2 by 2 correlation matrix with correlation  (and (Ω) that appears in

the definition of  (1Ω ) in (4.11) is as just defined). The numerical calculation

of 1() is described above in the second paragraph of this section. Next, 2() ∈  is

defined to be such that

inf
1∈

+∞Ω∈Ψ
 (1Ω 1((Ω)) + 2()) = 1−  (6.2)

where (Ω) and 1((Ω)) are defined as described above. The numerical calculation of

2() is described in Section 7.5 below.

6.1.2 Automatic κ Power Assessment

We now discuss numerical evaluations of how well the proposed method does in

approximating the best  viz., ∗(Ω) Three groups of results are provided and each

group considers  = 2 4 10 The first group consists of the three Ω matrices considered

in AJ1 and the results are given by comparing the rows of Table II of AJ1 labelled

AQLR/-Test/Best and AQLR/-Test/Auto. The second group consists of a fixed set

of 19 Ω matrices (defined in Section 7.2 below) chosen such that (Ω) takes values on a

grid in [−99 99] The third group consists of 500 randomly generated Ω matrices for

 = 2 4 and 250 randomly generated Ω matrices for  = 10 See Section 7.2 below for

details concerning their distributions.

For the second group of results, the asymptotic power results are size-corrected and

 values for  = 2 with  = 4 10 numerical results show that imposing monotonicity of  in  yields

better results for  = 4 in the sense that a smaller value 2() is needed for size-correction (which leads

to higher power over the entire range of  values). For this reason, we define () in Table I to take

values for  ∈ [−10−80) that are slightly larger than the power maximizing values. The resultant
loss in power for  = 2 is small, being around 01 for  ∈ [−10−80)
26One could define (Ω) to depend separately on (Ω) and  say (Ω) = ((Ω) ) for some function

 This would yield a much more complicated function (Ω) than the function (Ω) = 1((Ω))+ 2()

that we use. Numerical results indicate that more complicated functions  are not needed. The simple

function that we use works quite well.
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are based on (40000, 40000, 40000) critical-value, size-correction, and power simulation

repetitions for  = 2 and 4 For  = 10 they are based on (1000, 1000, 1000) repeti-

tions. Average power is computed for  vectors that consist of linear combinations of

the  vectors defined in Section 7.1 below, see Section 7.2 for definitions of the linear

combinations.

For all three groups, we assess the proposed method of selecting  referred to as

the Auto method, by comparing the asymptotic average power of the Auto test with

the corresponding Best test, whose  value is determined numerically to maximize

asymptotic average power.

The results for the 19 Ω matrices are given in Table S-I. These results show that the

Auto method works very well. There is very little difference between the asymptotic

average power of the AQLR/-Test/Auto and AQLR/-Test/Best tests. Only in three

cases out of 57 is a difference of 010 or more detected.

The results for the randomly generated Ω matrices are similarly good for the Auto

method. For  = 2 across the 500 Ωmatrices, the average power differences have average

equal to 0010 standard deviation equal to 0032 and range equal to [000 022] For

 = 4 across the 500 Ω matrices, the average power difference is 0012 the standard

deviation is 0016 and the range is [000 010] For  = 10 across the 250 Ω matrices,

the average power differences have average equal to 0183 standard deviation equal to

0069 and range equal to [000 037]

In conclusion, the Auto method performs very well in terms of selecting  values

that maximize the asymptotic average power.

Table S-I. Asymptotic Power Differences Between AQLR/-Test/Auto and AQLR/-

Test/Best Tests for Nominal Level .05 Size-Corrected Tests

 -.99 -.975 -.95 -.9 -.8 -.7 -.6 -.5 -.4 -.2

p=2 .022 .017 .009 .002 .000 .000 .000 .001 .000 .000

p=4 .011 .007 .007 .009 .001 .001 .002 .003 .003 .001

p=10 .004 .006 .004 .006 .004 .006 .012 .009 .006 .007

 .0 .2 .4 .6 .8 .9 .95 .975 .99

p=2 .001 .000 .000 .000 .000 .000 .000 .000 .000

p=4 .001 .001 .001 .000 .000 .000 .000 .000 .000

p=10 .002 .008 .002 .000 .000 .000 .000 .000 .000
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6.2 AQLR Statistic and Choice of ε

There exist moment inequality models of practical importance in which the asymp-

totic variance matrix of the sample moment conditions is necessarily singular. For

example, this occurs in the missing data example in Imbens and Manski (2004) when

the probability  of observing a variable is 0 or 1 It also occurs in simple entry models,

e.g., see Canay (2010).27

In order to handle models of this sort, AJ1 introduces the AQLR statistic which is

based on the 2 function. The AQLR statistic is designed so that the determinant

of the random  ×  matrix eΣ() that enters the quadratic form in 2 is at least as

large as  Hence, if   0 there is no difficulty in inverting eΣ() eΣ−1 () converges in
probability to the inverse of the probability limit of eΣ() and the asymptotic results of

this paper hold even if the asymptotic variance matrix of the sample moment conditions

is singular.

AJ1 gives a recommended value of  = 012 It is determined as follows. We simulate

the asymptotic average power of the AQLR/-Test/Auto test as a function of  for

certain singular correlation matrices for  = 2 4 and 10 For  = 2 Ω is singular only if

the correlation  is +1 or −1When  = +1 or close to +1 we find that the performance
of the AQLR/-Test/Auto test (under the null and the alternative) is not sensitive to 

provided  is not too large. Even taking  = 0 and using the Moore-Penrose inverse, the

performance of the test is the same as when  is positive. Similar results are obtained

for  = 4 10 when the correlation is positive and close to one or equal to one.

In consequence, we focus on cases with perfect negative correlation. For  = 2 we

consider the correlation matrix Ω with correlation  = −1 For  = 4 we consider
the Toeplitz correlation matrix Ω with  = (−1 1−1) where  indexes the corre-
lations on the diagonals of Ω (as one moves away from the main diagonal). For  =

10 we consider the Toeplitz correlation matrix Ω with  = (−1 1−1  1−1)
For each value of  we find that there is a sharp discontinuity in the asymptotic

average power of the AQLR/-Test/Auto test as a function of  at the point  = 0 and

no discontinuity in its asymptotic null rejection probabilities. (When  = 0 the AQLR

test is defined using the Moore-Penrose inverse of Ω) Also, for all values of   0

27In the missing data model, even the variance sub-matrix consisting of the binding moment inequal-

ities is singular when  = 1 In the entry model, the variance sub-matrix consisting of the binding

moment inequalities is singular when the profit of one firm is not effected by the entry of the other firm,

or vice versa, or both, which are cases of practical interest.
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the asymptotic average power of the AQLR/-Test/Auto test is not very sensitive to

the value of  provided   0 but power decreases when  is made large enough. Based

on these observations, we take the recommended value of  to be the largest value that

has asymptotic average power within 001 of the maximum asymptotic average power

over  ∈ [10−6 1] for  = 2 As shown in Table S-II, this value is  = 012 Table S-II

gives the asymptotic average power of the AQLR/-Test/Auto test as a function of 

for  = 2 4 10 Asymptotic average power is computed for the vectors  inM(Ω)

which is defined in Section 7.1. Table S-II is based on (40000, 40000, 40000) critical-

value, size-correction, and power simulation repetitions, respectively. Table S-II shows

that the choice  = 012 also works well for  = 4 10 For  = 4 the choice of  = 012

yields asymptotic average power that is within 0006 of the maximum over different 

values. For  = 10 it is within 0003 of the maximum.

We note that the discontinuity at  = 0 of the asymptotic average power of the

AQLR/-Test/Auto test also is found in finite samples when perfect negative correlation

is present, see Table S-V below. However, somewhat surprisingly, no discontinuity at

 = 0 is found for the null rejection probabilities, either asymptotic or finite-sample, of

the AQLR/-Test/Auto test when perfect negative (or positive) correlation is present,

see Table S-IV below. (The AQLR/-Test/Auto test with  = 0 equals the MP-QLR/-

Test/Auto test.)
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Table S-II. Asymptotic Average Power of the AQLR/-Test/Auto Test as a Function

of the Adjustment Constant  for  = 2 4 and 10

 = 2 & Ω

: .0 .000,001 .000,01 .000,1 .001 .005 .010 .011

Avg Asy Power .5616 .8752 .8752 .8752 .8751 .8749 .8745 .8744

: .0120 .0121 .0125 .013 .015 .02 .05

Avg Asy Power .8744 .8742 .8701 .8676 .8603 .8486 .8265

 = 4 & Ω

: .0 .000,1 .001 .005 .01 .012 .02

Avg Asy Power .3905 .9401 .9400 .9398 .9396 .9395 .9392

 = 10 & Ω

: .0 .000,1 .001 .005 .01 .012 .02

Avg Asy Power .2903 .9718 .9718 .9717 .9715 .9715 .9713

6.3 Singular Variance Matrices

In this section, we present results that are similar to those in Tables II and III of AJ1

except that they are based on singular matrices Ω and Ω rather than the

nonsingular matrices Ω Ω and Ω As noted in Section 6.2, singular and near

singular matrices arise in a number of moment inequality models of practical importance.

The matrices Ω for  = 2 4 10 are the same matrices that are considered

in Section 6.2. The matrices Ω for  = 2 4 10 are correlation matrices with all

elements equal to one.

6.3.1 Asymptotic Power Comparisons

Table S-III provides asymptotic average power comparisons of MMM, Max, AQLR,

and MP-QLR test statistics combined with PA, -Test/Best, and -Test/Auto critical

values. Note that MP-QLR statistics are QLR statistics that use the Moore-Penrose

inverse of the singular matrix Ω or Ω as the weight matrix of the quadratic

form. The power results are size corrected, as in Table II of AJ1. Average power is

computed for the vectors  in M(Ω) when Ω = Ω and for the  vectors in
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M(Ω) when Ω = Ω where M(Ω) and M(Ω) are defined in Section

7.1. The results in Table S-III for  = 2 4 and 10 are based on (40000, 40000, 40000)

critical-value, size-correction, and power simulation repetitions, respectively.

Table S-III shows that the AQLR/-Test/Auto test dominates the tests based on

the MMM and Max statistics in terms of asymptotic average power. The differences in

power are quite large for Ω and small for Ω (at least when the -Test/Best

critical values are used for the MMM and Max tests). In fact, the superiority of the

AQLR/-Test/Auto test over the MMM and Max tests for Ω is larger than it is

for Ω see Table II in AJ1.

Table S-III shows that the AQLR/-Test/Auto test has vastly superior asymptotic

average power to that of the MP-QLR/-Test/Auto test for Ω and the same power

for Ω Hence, it is clear that the adjustment made to the QLR statistic is beneficial.

Table S-III also shows that the data-dependent method of choosing  and  works

well with the singular matrices Ω and Ω The difference in asymptotic average

power between the Best and Auto versions of the AQLR/-Test test is 00 in three

cases, 01 in two cases, and 02 in one case.
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Table S-III. Asymptotic Power Comparisons (Size-Corrected) for Singular Variance

Matrices: MMM, Max, SumMax, AQLR, & MP-QLR Statistics, and PA & -Test Crit-

ical Values with =Best & =Auto

Crit. Tuning  = 10  = 4  = 2

Stat. Val. Par.  Ω Ω Ω Ω Ω Ω

MMM PA - .03 .27 .17 .40 .48 .51

MMM -Test Best .15 .79 .31 .77 .52 .73

Max PA - .28 .81 .36 .78 .48 .73

Max -Test Best .28 .82 .38 .78 .52 .73

AQLR PA - .96 .81 .92 .78 .85 .73

AQLR -Test Best .98 .82 .95 .78 .89 .73

AQLR -Test Auto .97 .82 .94 .78 .87 .73

MP-QLR PA - .29 .81 .39 .78 .56 .73

MP-QLR -Test Best .29 .82 .39 .78 .56 .73

MP-QLR -Test Auto .29 .82 .39 .78 .56 .73
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6.3.2 Finite-Sample MNRP and Power Comparisons

Next we consider the finite-sample properties of the asymptotic normal and boot-

strap versions of the AQLR/-Test/Auto and MP-QLR/-Test/Auto tests with the

singular matrices Ω and Ω The results are analogous to those given in Ta-

ble III of AJ1 but with different Ω matrices and fewer distributions considered. We

provide results for sample size  = 100 We consider the same numbers of moment

inequalities  = 2 4 and 10 We take the mean zero variance  random vector

† =  −12(( ))(( ) − ( )) to be i.i.d. across elements and con-

sider two distributions for the elements: standard normal (i.e., N(0, 1)) and chi-squared

with three degrees of freedom 23 The latter distribution is centered and scaled to have

mean zero and variance one. Average power is computed for the vectors  inM(Ω)

when Ω = Ω and for the  vectors inM(Ω) when Ω = Ω The average

power results are “size-corrected” based on the true Ω matrix. We use (3000, 3000,

3000) critical-value, size-correction, and rejection-probability repetitions for  = 2 and

4 We use (1000, 1000, 1000) repetitions for results for  = 10

Table S-IV gives the finite-sample maximum null rejection probabilities (MNRP’s)

of the tests. There is very little difference in the MNRP’s of the AQLR and MP-

QLR versions of the tests. For both versions, the bootstrap and asymptotic normal

implementation methods perform similarly and quite well. The bootstrap is slightly

better overall. For the bootstrap version of the AQLR/-test/Auto test, the MNRP’s

lie in the range [042 055] An interesting feature of the results is that there is no over-

rejection by the asymptotic normal version of the AQLR/-test/Auto test with Ω

23 distribution, and  = 4 10 whereas substantial over-rejection is reported in Table

III of AJ1 in the same scenario except with Ω in place of Ω

We conclude that the bootstrap version of the AQLR/-test/Auto test, which is the

recommended test, works very well in terms of MNRP’s with singular variance matrices.

Table S-V reports the finite-sample average power results with the singular matrices

Ω and Ω The AQLR-based tests all out-perform the MP-QLR-based tests

by a wide margin for Ω and perform essentially the same for Ω For example,

for  = 10 and Ω the power difference is 97 to 29 for the recommended AQLR/-

Test/Auto test compared to the MP-QLR/-Test/Auto test for the bootstrap versions

of these tests.

For all tests considered, the bootstrap and asymptotic normal implementations of

the tests perform quite similarly. This is consistent with the MNRP results in Table
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S-IV. For all tests, the results for the normal and 23 distributions are quite similar. This

also is consistent with the MNRP results in Table S-IV, but differs from the results in

Table III of AJ1.

Based on Table S-V, we conclude that the bootstrap version of the AQLR/-test/Auto

test, which is the recommended test, works very well in terms of finite-sample average

power with singular variance matrices.

Table S-IV. Finite-Sample Maximum Null Rejection Probabilities for Singular Vari-

ance Matrices of the Nominal .05 AQLR/-Test/Auto and MP-QLR/-Test/Auto

Tests Based on Normal and Bootstrap-Based Critical Values

 = 10  = 4  = 2

Test Dist  Ω Ω Ω Ω Ω Ω

AQLR Norm N(0,1) 100 .061 .038 .053 .045 .065 .053

AQLR Boot .050 .045 .048 .045 .051 .052

MP-QLR Norm N(0,1) 100 .044 .038 .050 .045 .049 .053

MP-QLR Boot .036 .045 .043 .045 .052 .052

AQLR Norm 23 100 .071 .043 .052 .050 .060 .066

AQLR Boot .045 .043 .048 .042 .050 .055

MP-QLR Norm 23 100 .071 .043 .050 .050 .045 .066

MP-QLR Boot .044 .043 .042 .042 .051 .055
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Table S-V. Finite-Sample (“Size-Corrected”) Average Power for Singular Variance

Matrices of the Nominal .05 AQLR/-Test/Auto, MP-QLR/-Test/Auto, AQLR/PA,

and MP-QLR/PA Tests Based on Normal and Bootstrap-Based Critical Values

 = 10  = 4  = 2

Test Dist  Ω Ω Ω Ω Ω Ω

AQLR PA N(0,1) 100 .97 .79 .92 .77 .85 .73

AQLR Norm .96 .78 .93 .77 .85 .72

AQLR Boot .97 .78 .93 .78 .86 .71

MP-QLR PA N(0,1) 100 .31 .79 .40 .77 .54 .73

MP-QLR Norm .29 .78 .39 .77 .55 .72

MP-QLR Boot .29 .78 .39 .78 .54 .71

AQLR PA 23 100 .97 .78 .92 .75 .85 .72

AQLR Norm .96 .78 .94 .74 .85 .66

AQLR Boot .97 .78 .94 .74 .86 .65

MP-QLR PA 23 100 .31 .78 .41 .76 .56 .72

MP-QLR Norm .29 .78 .40 .74 .57 .67

MP-QLR Boot .29 .78 .39 .74 .56 .65
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6.3.3 ELR Test with Singular Correlation Matrix

In this section, we define the empirical likelihood ratio (ELR) statistic for the case

where no equality constraints appear, i.e.,  = 0 describe the method used to compute

the ELR statistic, and compare the finite-sample properties of the bootstrap versions

of the ELR/-Test/Auto and AQLR/-Test/Auto tests with the singular matrices

Ω and Ω

When  = 0 the ELR statistic can be written as


 () = max

=(1)0:≤0∀≤
2

X
=1

(1 + 0( )) (6.3)

see Canay (2010). This expression is easier to compute than an equivalent expression

given in Canay (2010) and AG, so we use it in the numerical work.

The constrained optimization (CO) module of GAUSS was used to compute the ELR

statistic. We found that it was necessary to do a careful analysis of the optimization

algorithm used. Arbitrarily selecting a pre-programmed generic optimization algorithm

and presuming that it will give accurate and timely results is not a wise procedure

whether the correlation matrix is nonsingular or singular.

The CO module contains five algorithms: BFGS, DFP, NR, scaled BFGS, and scaled

DFP; four line search methods: step length =1, cubic or quadratic step, step halving,

and Brent’s method; and two gradient/Hessian computation methods: numerical and

analytical. We investigated the properties of each of these methods with nonsingular

and singular correlation matrices in many different combinations before selecting one to

use. For nonsingular correlation matrices, scaled BFGS and scaled DFP had substantial

convergence and accuracy problems regardless of the line search method and gradi-

ent/Hessian method employed. DFP often had similar convergence problems. BFGS

and NR worked well in terms of giving accurate results with line search method one and

two and numerical derivatives. BFGS did not work well in terms of accuracy with ana-

lytic gradient/Hessian. NR worked well in terms of accuracy and convergence properties

with line search methods one and two and with numerical and analytic gradient/Hessian.

NR was fastest with line search one and analytic gradient/Hessian, which is the method

we employed to compute the results given in Table III of AJ1 for nonsingular correlation

matrices.

For singular variance matrices, all methods in CO had convergence problems when
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 = 4 and  = 10 This is because with a singular correlation matrix, the Hessian of the

empirical likelihood objective function is singular a.s. For  = 2 NR with line search

one and analytic gradient/Hessian worked well. In consequence, we only report results

for singular correlation matrices for  = 2 We provide results for the matrices Ω

and Ω defined above. We use (5000, 5000) critical-value and rejection probability

repetitions under the null and the alternative.

The bootstrap version of the ELR/-Test/Auto is based on bootstrap samples that

are recentered by the average of the observations from the original sample. That is, the

original sample is {1 } the bootstrap sample { ∗
1  

∗
} is  i.i.d. draws from

the empirical distribution of the original sample, and the recentered bootstrap sample

is { ∗
1 −  

∗
 −} where  = −1

P

=1 ∈ 

For  = 2 Table S-VI shows that the performance of the ELR/-Test/Auto Bt and

AQLR/-Test/Auto Bt tests is essentially the same in terms of MNRP’s and average

power. Hence, the most important distinction between the two tests is the speed and

reliability of their computation. The AQLR test has a substantial advantage in these

dimensions, especially when the correlation matrix is singular.

6.4 κ Values That Maximize Asymptotic Average Power

The  values that maximize asymptotic average power, i.e., the best  values, which

are used in the construction of Table II of AJ1, are given in Table S-VII.

Table S-VIII gives the asymptotic maximum null rejection probabilities (where the

maximum is over all mean vectors in the null hypothesis and a fixed correlation matrix

Ω) of the RMS tests that appear in Table II of AJ1 and are based on the =Best tuning

parameter and no size-correction factor, i.e.,  = 0 The results show that the  value

that maximizes asymptotic average power also has quite good asymptotic size properties

even with  = 0 with the exceptions of the AQLR/(2) AQLR/(3) AQLR/(4) and

AQLR/MMSC tests.
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Table S-VI. Finite-Sample Maximum Null Rejection Probabilities (MNRP’s) and

(“Size-Corrected”) Average Power for Singular Variance Matrices of the Nominal .05

AQLR/-Test/Auto Test with Normal (AQLR/Nm) and Bootstrap-Based (AQLR/Bt)

Critical Values and ELR/-Test/Auto Test with Bootstrap-Based (ELR/Bt) Critical

Values

 = 2

Test Dist H0/H1 Ω Ω

AQLR/Bt N(0,1) H0 .053 .051

ELR/Bt N(0,1) H0 .054 .051

AQLR/Bt 3 H0 .055 .055

ELR/Bt 3 H0 .048 .053

AQLR/Bt 23 H0 .052 .052

ELR/Bt 23 H0 .053 .052

AQLR/Bt N(0,1) H1 .86 .72

ELR/Bt N(0,1) H1 .86 .72

AQLR/Bt 3 H1 .86 .74

ELR/Bt 3 H1 .87 .73

AQLR/Bt 23 H1 .86 .65

ELR/Bt 23 H1 .86 .65
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Table S-VII.  Values That Maximize (Size-Corrected) Asymptotic Average Power:

MMM, Max, SumMax, & AQLR Statistics; -Test, (2) (3) (4) & MMSC Critical

Values1

Crit.  = 10  = 4  = 2

Stat. Val. Ω Ω Ω Ω Ω Ω Ω Ω Ω

MMM -Test 2.5 1.4 .4 2.5 1.4 .2 2.5 1.7 .6

Max -Test 2.4 1.4 .6 2.5 1.5 .8 2.5 1.8 .6

SumMax -Test 2.3 1.3 .4 2.5 1.6 .4 2.5 1.7 .6

AQLR -Test 2.5 1.4 .6 2.5 1.4 .8 2.6 1.7 .6

AQLR (2) 2.1† .6† .0† 2.4♦ 1.0∗ .2∗ 2.0∗ 1.2∗ .2∗

AQLR (3) 12.5† 2.3† 1.1† 9.0♦ 2.8∗ 1.4∗ 10.0∗ 1.4∗ 1.2∗

AQLR (4) 2.7† 1.4† .2† 2.5♦ 1.4∗ .4∗ 2.2∗ 1.9∗ .2∗

AQLR MMSC 5.3† 1.1† .2† 5.7 1.4 .8 2.8 1.7 .6

1 All cases not marked with a ∗ ♦ or † are based on (40000, 40000, 40000) critical-

value, size-correction, and rejection-probability repetitions.
∗Results are based on (5000, 5000, 5000) repetitions.
♦Results are based on (2000, 2000, 2000) repetitions.
†Results are based on (1000, 1000, 1000) repetitions.
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Table S-VIII. Comparisons of Asymptotic Maximum Null Rejection Probabilities:

Max, SumMax, & AQLR Statistics; -Test, (2) (3) & (4) Critical Values with

=Best1 &  = 0

Crit. Tuning  = 10  = 4  = 2

Stat. Val. Par.  Ω Ω Ω Ω Ω Ω Ω Ω Ω

MMM -Test Best .059 .061 .054 .054 .058 .058 .054 .053 .051

Max -Test Best .056 .057 .052 .053 .055 .052 .054 .052 .052

SumMax -Test Best .060 .060 .054 .054 .055 .056 .054 .053 .051

AQLR (2) Best .092† .102† .066† .064♦ .057∗ .052∗ .062∗ .059∗ .054∗

AQLR (3) Best .113† .111† .066† .098♦ .063∗ .052∗ .072∗ .068∗ .055∗

AQLR (4) Best .088† .089† .066† .066♦ .057∗ .052∗ .062∗ .058∗ .056∗

AQLR -Test Best .058 .061 .051 .053 .058 .051 .053 .053 .051

AQLR MMSC Best .088† .097† .066† .055 .058 .051 .052 .053 .051

1 All cases not marked with a ∗ ♦ or † are based on (40000, 40000, 40000) critical-

value, size-correction, and rejection-probability repetitions.
∗Results are based on (5000, 5000, 5000) repetitions.
♦Results are based on (2000, 2000, 2000) repetitions.
†Results are based on (1000, 1000, 1000) repetitions.
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6.5 Comparison of (Sϕ) Functions: 19 Ω Matrices

Here we compare theMMM/-Test/Best, AQLR/-Test/Best, AQLR/-Test/Auto,

& AQLR/MMSC/Best tests. This section is quite similar to Section 4 of AJ1 except

that 19 Ω matrices are considered here, rather than 3, and fewer tests are considered.28

The 19 Ω matrices are the same as those considered in Table S-I in Section 6.1 and are

defined in Section 7.2 below.

The qualitative results reported in AJ1 are found in Table S-IX to apply as well to

the broader range of Ω matrices that are considered.

TABLE S-IX. Asymptotic Power Comparisons (Size-Corrected) for 19 Ω Matrices:

MMM & AQLR Statistics; -Test & MMSC Critical Values with =Best & Auto1

(a)  = 10

Stat. Crit. Val.  (Ω): -.99 -.975 -.95 -.9 -.8 -.7 -.6 -.5 -.4 -.2

MMM -Test Best .16 .16 .17 .18 .20 .23 .28 .34 .42 .57

AQLR -Test Best .96 .94 .76 .55 .47 .48 .50 .52 .55 .61

AQLR -Test Auto .96 .94 .76 .55 .47 .47 .49 .51 .54 .60

Power Envelope - .98 .98 .94 .85 .74 .73 .74 .75 .77 .81

(Ω): 0.0 .2 .4 .6 .8 .9 .95 .975 .99

MMM -Test Best .67 .36 .50 .85 .82 .81 .80 .80 .79

AQLR -Test Best .67 .37 .50 .85 .83 .83 .82 .82 .82

AQLR -Test Auto .67 .36 .50 .85 .83 .83 .82 .82 .82

Power Envelope - .85 .47 .59 .89 .85 .83 .82 .82 .82

1=Best denotes the  value that maximizes asymptotic average power. The re-

sults are based on (40000, 40000, 40000) critical-value, size-correction, and rejection-

probability repetitions for  = 2 4 and 10

28For the AQLR/MMSC/Best test, we only report results for  = 2 4 because the results for  = 10

are very time consuming.
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TABLE S-IX (Cont.)

(b)  = 4

Stat. Crit. Val.  (Ω): -.99 -.975 -.95 -.9 -.8 -.7 -.6 -.5 -.4 -.2

MMM -Test Best .30 .30 .30 .31 .34 .37 .42 .48 .53 .62

AQLR -Test Best .93 .87 .74 .60 .53 .53 .55 .57 .59 .64

AQLR -Test Auto .92 .87 .73 .59 .53 .53 .54 .56 .59 .64

AQLR MMSC Best .93 .88 .75 .63 .55 .54 .55 .57 .60 .64

Power Envelope - .95 .94 .87 .80 .70 .70 .70 .72 .73 .77

(Ω): 0.0 .2 .4 .6 .8 .9 .95 .975 .99

MMM -Test Best .69 .45 .58 .79 .79 .78 .77 .77 .77

AQLR -Test Best .69 .46 .59 .80 .79 .78 .78 .78 .78

AQLR -Test Auto .69 .46 .59 .80 .79 .78 .78 .78 .78

AQLR MMSC Best .69 .46 .59 .80 .79 .78 .78 .78 .78

Power Envelope - .80 .54 .66 .83 .81 .79 .79 .78 .78

(c)  = 2

Stat. Crit. Val.  (Ω): -.99 -.975 -.95 -.9 -.8 -.7 -.6 -.5 -.4 -.2

MMM -Test Best .52 .52 .51 .51 .52 .54 .57 .59 .62 .66

AQLR -Test Best .86 .83 .76 .65 .60 .59 .60 .61 .62 .66

AQLR -Test Auto .84 .81 .76 .65 .60 .59 .60 .61 .62 .66

AQLR MMSC Best .86 .83 .76 .65 .60 .59 .60 .61 .62 .66

Power Envelope - .88 .86 .83 .75 .70 .69 .69 .70 .70 .73

(Ω): 0.0 .2 .4 .6 .8 .9 .95 .975 .99

MMM -Test Best .69 .59 .66 .72 .73 .73 .73 .73 .73

AQLR -Test Best .69 .59 .66 .73 .73 .73 .74 .73 .73

AQLR -Test Auto .69 .59 .66 .73 .73 .73 .74 .73 .73

AQLR MMSC Best .69 .59 .66 .73 .73 .73 .74 .73 .73

Power Envelope - .75 .63 .70 .75 .74 .74 .74 .73 .73
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6.6 Comparison of RMS and GMS Procedures

In this section, we provide asymptotic MNRP and power comparisons (based on

fixed  asymptotics) of several GMS tests and the recommended RMS test, which is the

AQLR/-Test/Auto test.

We consider GMS tests based on ( ) = (MMM, t-Test), (AQLR, t-Test), and

(AQLR, MMSC). The GMS tests depend on a tuning parameter  (= ) that does not

depend on Ω We consider the values =2.35 and =1.87. The former corresponds to

the BIC choice  = (ln)
12 for  = 250 and the latter corresponds to the LIL choice

 = (2 ln ln)12 for  = 300 Note that the BIC choice yields  ∈ [215 263] for
 ∈ [100 1000] and the LIL choice yields  ∈ [175 197] for  ∈ [100 1000]
Tables S-X and S-XI provide the asymptotic MNRP and power results, respectively,

for  = 2 4 10 and Ω = ΩΩΩ The critical values are obtained using 40 000

simulation repetitions and both the MNRP and power results are obtained using 40 000

repetitions, which yields a simulation standard error of 001129 The power results are

size-corrected.

Table S-X shows that the GMS tests, AQLR/Test and MMM/Test with =1.87,

have asymptotic MNRP that is close to 050 for Ω is slightly above 050 for Ω

and is noticeably above 050 for Ω For example, for Ω the AQLR/-Test/=1.87

test has MNRP 075 073 and 076 for  = 2 4 and 10 respectively. These tests

with =2.35 have asymptotic MNRP that is closer to 050 than when =1.87. There

is still some over-rejection with Ω but it is noticeably smaller. For example, for

Ω the AQLR/-Test/=2.35 test has MNRP 056 056 and 060 for  = 2 4 and

10 respectively.

The AQLR/MMSC test shows substantial over-rejection whenever  = 10 or Ω =

Ω for both  = 187 and 235 For example, the MNRP for the AQLR/MMSC/=2.35

test is 148 for Ω

The recommended RMS test has asymptotic MNRP that is close to its nominal level

050 For Ω it has MNRP 051 047 and 044 for  = 2 4 and 10 respectively.

Based on Table S-X, we conclude that some GMS tests have moderate to large prob-

lems of over-rejection asymptotically under fixed  asymptotics for some Ω matrices.

However, some GMS tests with =2.35 perform fairly well and over-reject by a rela-

tively small amount. The recommended RMS test performs well. It shows no sign of

29This is true except for the AQLR/MMSC tests with  = 10 which are based on (1000, 1000) critical

value and rejection probability repetitions.
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Table S-X. Asymptotic MNRP Comparisons for Nominal .05 Tests: MMM & AQLR

Statistics; -Test & MMSC Critical Values with =2.35, =1.87, & Auto

Crit. Tuning  = 10  = 4  = 2

Stat. Val. Par.  Ω Ω Ω Ω Ω Ω Ω Ω Ω

MMM -Test 235 .061 .054 .052 .056 .052 .052 .055 .051 .050

MMM -Test 187 .073 .056 .052 .070 .054 .052 .065 .052 .050

AQLR -Test 235 .060 .054 .050 .056 .052 .051 .056 .051 .050

AQLR -Test 187 .076 .056 .050 .073 .054 .051 .075 .052 .050

AQLR MMSC 235 .148† .081† .064† .111 .052 .051 .057 .051 .050

AQLR MMSC 187 .173† .082† .064† .119 .054 .051 .075 .052 .050

AQLR -Test Auto .044 .046 .038 .047 .049 .047 .051 .051 .050

†These results are based on (1000, 1000) critical-value and rejection-probability rep-

etitions. All other results are based on (40000, 40000) repetitions.

over rejection.

Next, we discuss the asymptotic power results given in Table S-XI. Table S-XI shows

that the GMS tests given by MMM/-Test with =2.35 and =1.87 have quite low

power compared to the recommended RMS test (i.e., the AQLR/-Test/Auto test) for

Ω and noticeably lower power for Ω For Ω the powers of the MMM/-Test

tests are decreasing in  rather quickly.

The GMS tests AQLR/-Test/=2.35 and AQLR/-Test/=1.87 have power that is

similar to that of the recommended RMS test, but lower on average. The GMS tests

AQLR/MMSC/=2.35 and AQLR/MMSC/=1.87 have lower power than the corre-

sponding -Test versions, especially for  = 10

We conclude that (i) the best GMS test in terms of asymptotic MNRP and power

is the AQLR/-Test/=2.35, (ii) the recommended RMS test performs similarly to this

GMS test, but has slightly higher power on average and does not over-reject under the

null hypothesis, and (iii) the recommended RMS test out-performs the other GMS tests

considered by a noticeable margin in terms of asymptotic MNRP and/or power.
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Table S-XI. Asymptotic Power Comparisons (Size-Corrected) for Nominal .05 Tests:

MMM & AQLR Statistics; PA, -Test, & MMSC Critical Values with =2.35, =1.87,

& Auto

Crit. Tuning  = 10  = 4  = 2

Stat. Val. Par.  Ω Ω Ω Ω Ω Ω Ω Ω Ω

MMM -Test 235 .18 .64 .68 .31 .68 .67 .51 .68 .68

MMM -Test 187 .16 .66 .71 .28 .69 .70 .48 .69 .69

AQLR -Test 235 .55 .64 .79 .60 .68 .76 .64 .68 .70

AQLR -Test 187 .52 .66 .80 .56 .69 .77 .59 .69 .71

AQLR MMSC 235 .46† .60† .74† .56 .68 .75 .64 .68 .70

AQLR MMSC 187 .44† .63† .76† .54 .69 .76 .59 .69 .71

AQLR -Test Auto .55 .67 .82 .59 .69 .78 .65 .69 .73

Power Envelope - .85 .85 .85 .80 .80 .80 .75 .75 .75

†These results are based on (1000, 1000, 1000) critical-value, size-correction, and

rejection-probability repetitions. All other results are based on (40000, 40000, 40000)

repetitions.

6.7 Additional Asymptotic MNRP & Power Results

Table S-XII reports asymptotic MNRP results for some tests that are not considered

in AJ1 or above. Table S-XIII does likewise for asymptotic power.

The critical values for the pure ELR test are based on a constant critical value that

does not depend on Ω (i.e., it is least-favorable over Ω) It is approximated by taking the

maximum critical value for the AQLR/PA test over 43 Ω matrices.30 (Each of these PA

critical values is computed using all null mean vectors  which consist of 00 and ∞0)

The critical values are found to be 507 799 and 162 for  = 2 4 and 10 respectively.

30For any given value of  = (Ω) these 43 matrices are defined just as the 19 Toeplitz matrices are

defined in Section 7.2. The (Ω) values considered are the 43 values specified by the endpoints for  in

Table I, but including −99 and excluding −10 and 10
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Table S-XII. Asymptotic MNRP Comparisons of Nominal .05 Tests: MMM, Max,

SumMax, & AQLR Statistics; PA, -Test, (2) (3) (4) & MMSC Critical Values with

=Best =2.35, & =1.87; &  = 01

Crit. Tuning  = 10  = 4  = 2

Stat. Val. Par.  Ω Ω Ω Ω Ω Ω Ω Ω Ω

MMM PA - .052 .048 .046 .051 .050 .050 .053 .050 .049

AQLR PA - .048 .048 .047 .050 .050 .051 .051 .050 .049

ELR Const. - .021 .010 .000 .048 .025 .006 .047 .031 .025

MMM -Test Best .059 .061 .054 .054 .058 .058 .054 .053 .051

MMM -Test 235 .061 .054 .052 .056 .052 .052 .055 .051 .050

MMM -Test 187 .073 .056 .052 .070 .054 .052 .065 .052 .050

Max PA - .051 .049 .047 .051 .051 .051 .053 .050 .050

Max -Test Best .056 .057 .052 .053 .055 .052 .054 .052 .052

Max -Test 235 .056 .053 .051 .054 .052 .052 .055 .051 .050

Max -Test 187 .066 .054 .051 .065 .053 .052 .065 .052 .050

SumMax PA - .051 .047 .047 .051 .050 .051 .053 .050 .049

SumMax -Test Best .060 .060 .054 .054 .055 .056 .054 .053 .051

SumMax -Test 235 .059 .054 .052 .056 .052 .052 .055 .051 .050

SumMax -Test 187 .071 .056 .052 .070 .053 .052 .065 .052 .050
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Table S-XII. (Cont.)

Crit. Tuning  = 10  = 4  = 2

Stat. Val. Par.  Ω Ω Ω Ω Ω Ω Ω Ω Ω

AQLR (2) Best .092† .102† .066† .064¦ .057∗ .052∗ .062∗ .059∗ .054∗

AQLR (2) 235 .090† .081† .065† .058¦ .057∗ .052∗ .062∗ .056∗ .053∗

AQLR (2) 187 .098† .081† .065† .066¦ .057∗ .052∗ .062∗ .056∗ .053∗

AQLR (3) Best .113† .111† .066† .098¦ .063∗ .052∗ .072∗ .068∗ .055∗

AQLR (3) 235 .245† .111† .065† .153¦ .065∗ .052∗ .118∗ .062∗ .054∗

AQLR (3) 187 .262† .114† .065† .162¦ .068∗ .052∗ .127∗ .065∗ .054∗

AQLR (4) Best .088† .089† .066† .066¦ .057∗ .052∗ .062∗ .058∗ .056∗

AQLR (4) 235 .092† .081† .065† .062¦ .057∗ .052∗ .062∗ .056∗ .053∗

AQLR (4) 187 .105† .082† .065† .077¦ .057∗ .052∗ .074∗ .058∗ .053∗

AQLR -Test Best .058 .061 .051 .053 .058 .051 .053 .053 .051

AQLR -Test 235 .060 .054 .050 .056 .052 .051 .056 .051 .050

AQLR -Test 187 .076 .056 .050 .073 .054 .051 .075 .052 .050

AQLR -Test Auto .044 .046 .038 .047 .049 .047 .051 .051 .050

AQLR MMSC Best .088† .097† .066† .055 .058 .051 .052 .053 .051

AQLR MMSC 235 .148† .081† .064† .111 .052 .051 .057 .051 .050

AQLR MMSC 187 .173† .082† .064† .119 .054 .051 .075 .052 .050

1=Best denotes the  value that maximizes asymptotic average power. Unless

stated otherwise, results are based on (40000, 40000) critical-value and rejection-probability

repetitions.
∗Results are based on (5000, 5000) repetitions.
¦Results are based on (2000, 2000) repetitions.
†Results are based on (1000, 1000) repetitions.
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Table S-XIII. Asymptotic Power Comparisons (Size-Corrected) of Nominal .05 Tests:

MMM, Max, SumMax, & AQLR Statistics; -Test, (2) (3) (4) & MMSC Critical

Values with =Best =2.35, =1.87, & Auto1

Crit. Tuning  = 10  = 4  = 2

Stat. Val. Par.  Ω Ω Ω Ω Ω Ω Ω Ω Ω

MMM PA - .04 .36 .34 .20 .53 .45 .48 .62 .59

AQLR PA - .35 .36 .69 .45 .53 .70 .58 .62 .65

ELR Const. - .19 .17 .12 .44 .42 .39 .57 .55 .54

MMM -Test Best .18 .67 .79 .31 .69 .76 .51 .69 .72

MMM -Test 235 .18 .64 .68 .31 .68 .67 .51 .68 .68

MMM -Test 187 .16 .66 .71 .28 .69 .70 .48 .69 .69

Max PA - .19 .44 .70 .30 .57 .71 .48 .64 .66

Max -Test Best .25 .58 .82 .35 .66 .78 .51 .69 .72

Max -Test 235 .24 .57 .80 .35 .65 .76 .51 .68 .71

Max -Test 187 .23 .58 .80 .33 .66 .77 .48 .69 .71

SumMax PA - .10 .43 .62 .20 .55 .60 .48 .62 .59

SumMax -Test Best .20 .65 .81 .31 .69 .77 .51 .69 .72

SumMax -Test 235 .20 .62 .76 .31 .68 .72 .51 .68 .68

SumMax -Test 187 .19 .64 .78 .28 .69 .73 .48 .69 .69
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Table S-XIII. (Cont.)

Crit. Tuning  = 10  = 4  = 2

Stat. Val. Par.  Ω Ω Ω Ω Ω Ω Ω Ω Ω

AQLR (2) Best .51† .65† .81† .60¦ .69∗ .78∗ .66∗ .69∗ .72∗

AQLR (2) 235 .50† .58† .77† .60¦ .65∗ .75∗ .64∗ .68∗ .70∗

AQLR (2) 187 .50† .60† .78† .60¦ .66∗ .76∗ .64∗ .68∗ .70∗

AQLR (3) Best .43† .63† .81† .55¦ .68∗ .78∗ .61∗ .69∗ .72∗

AQLR (3) 235 .36† .63† .80† .52¦ .68∗ .77∗ .59∗ .68∗ .72∗

AQLR (3) 187 .36† .63† .81† .52¦ .68∗ .77∗ .59∗ .69∗ .72∗

AQLR (4) Best .51† .65† .81† .60¦ .70∗ .78∗ .66∗ .69∗ .72∗

AQLR (4) 235 .51† .60† .78† .60¦ .66∗ .75∗ .66∗ .69∗ .70∗

AQLR (4) 187 .51† .63† .79† .58¦ .68∗ .76∗ .61∗ .69∗ .71∗

AQLR -Test Best .55 .67 .82 .60 .69 .78 .65 .69 .73

AQLR -Test 235 .55 .64 .79 .60 .68 .76 .51 .68 .68

AQLR -Test 187 .52 .66 .80 .56 .69 .77 .48 .69 .69

AQLR -Test Auto .55 .67 .82 .59 .69 .78 .65 .69 .73

AQLR MMSC Best .56† .66† .81† .63 .69 .78 .65 .69 .73

AQLR MMSC 235 .46† .60† .74† .56 .68 .75 .64 .68 .70

AQLR MMSC 187 .44† .63† .76† .54 .69 .76 .59 .69 .71

Power Envelope - .85 .85 .85 .80 .80 .80 .75 .75 .75

1=Best denotes the  value that is best in terms of asymptotic average power.

Unless stated otherwise, results are based on (40000, 40000, 40000) critical-value, size-

correction, and rejection-probability repetitions.
∗Results are based on (5000, 5000, 5000) repetitions.
¦Results are based on (2000, 2000, 2000) repetitions.
†Results are based on (1000, 1000, 1000) repetitions.
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6.8 Comparative Computation Times

As reported in the paper, to compute the recommended bootstrap RMS test, i.e.,

AQLR/-Test/Auto/Boot, using 10,000 critical-value simulation repetitions takes 13

17 32 84 172 and 520 seconds when  = 2 4 10 20 30 and 50 respectively, and

 = 250 using a PC with a 3.4 GHz processor. For the asymptotic normal version of

the recommended bootstrap RMS test, i.e., AQLR/-Test/Auto/Norm, the times are

25 31 71 24 61 and 218 seconds, respectively.

In contrast, to compute the bootstrap version of the MMM/-Test/=2.35 test using

10,000 critical-value simulation repetitions takes 86 98 20 59 116 and 284 seconds

when  = 2 4 10 20 30 and 50 respectively, and  = 250 For the asymptotic normal

version of the MMM/-Test/=2.35 test, the times are 008 010 029 060 090 and

18 seconds, respectively. Note that the computation times are not affected by whether

 is taken to be Auto or =2.35. The difference between the results in the previous

paragraph and this paragraph is due to the different statistics used: AQLR and MMM.

The results indicate that the bootstrap version of the MMM-based test is between 14

and 18 times faster than the corresponding bootstrap version of the AQLR-based test.

On the other hand, the asymptotic normal version of the MMM-based test is very much

faster (from 20 to 85 times) than asymptotic normal version of the AQLR-based test.

(This is because the generation of the bootstrap samples dominates the computation

time for the bootstrap version of the MMM-based test.)

When constructing a CS, if the computation time is burdensome (because one needs

to carry out many tests with different values of  as the null value), then the results

above suggest that a useful approach is to map out the general features of the CS using

the asymptotic normal version of the MMM/-Test/=2.35 test, which is very fast to

compute, and then switch to the bootstrap version of the AQLR/-Test/Auto test to

find the boundaries of the CS more precisely.

6.9 Magnitude of RMS Critical Values

Table S-XIV provides information on the magnitude of the recommended RMS crit-

ical value for the AQLR/-Test/Auto test when the size-correction factor b is not
included. (Recall that the RMS critical value equals (b) + b) Specifically, the Ta-
ble provides simulated values of the mean and standard deviation of the asymptotic

distribution of the data-dependent quantile (b) = 2(
(1)(()

bΩ()) bΩ()) in
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various scenarios. The mean values in Table S-XIV can be compared with the values of

the components 1() and 2() (given in Table I of AJ1) of the size-correction factor b
(= 1(

b()) + 2()) to see how large the quantile (b) is (on average) compared to
the size-correction factor b
The asymptotic distribution of (b) depends on 1 and Ω Table S-XIV considers

the same three correlation matrices Ω Ω and Ω as considered elsewhere in AJ1

and above, see AJ1 for their definitions. Table S-XIV considers 1 vectors that consist

of 00 and ∞0 (Other 1 vectors are of interest, but for brevity we do not consider

them here.) When an element of 1 equals ∞ the corresponding moment inequality is

far from binding and the moment selection procedure detects this with probability one

asymptotically and does not include this moment when computing (b) When an
element of 1 equals 0 the corresponding moment inequality is binding and the moment

selection procedure includes this moment with high probability but not with probability

one, even asymptotically. (It is for this reason that (b) is random asymptotically.)

In consequence, the asymptotic distribution depends on 1 through the “# of Zeros in

1” and through the sub-matrix of Ω that corresponds to the “Zeros in 1” The matrices

Ω Ω and Ω are defined such that for any value of  the sub-matrix of Ω of

dimension equal to the “# of Zeros in 1” is the same (provided  ≥“# of Zeros in

1”). In consequence, the results of Table S-XIV hold for any value of  For example,

if  = 20 Ω = Ω and the “# of Zeros in 1” is 5 one obtains the same mean and

standard deviation of the asymptotic distribution of (b) as when  = 15 Ω = Ω

and the “# of Zeros in 1” is 5

The results of Table S-XIV, combined with the magnitudes of the size-correction

factors given in Table I, show that the size-correction factor b = 1(
b()) + 2()

typically is small compared to (b) but not negligible. For example, for  = 10

Ω = Ω = 10 and 1 = (0 0 0 0 0∞∞∞∞∞)0 (which corresponds to five
moment inequalities being binding and five being very far from binding), the mean and

standard deviation of the asymptotic distribution of (b) are 72 and 57 respectively,
whereas the size-correction factor is 614
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Table S-XIV. Mean and Standard Deviation of the Asymptotic Distribution of the

Data-Dependent RMS Critical Values Excluding the Size-Correction Factor b1
Ω Ω Ω

# of Mean SD Mean SD Mean. SD

Zero’s in 1 (b) (b) ( b) ( b) (b) (b)
1 2.7 .00 2.7 .00 2.7 .00

2 5.0 .13 4.1 .53 3.5 .55

3 6.2 .11 5.2 .52 4.1 .68

4 7.5 .11 6.2 .54 4.5 .76

5 8.7 .13 7.2 .57 5.0 .82

6 9.8 .14 8.1 .59 5.3 .86

7 10.9 .16 8.9 .57 5.6 .89

8 11.9 .16 9.7 .63 5.9 .90

9 12.9 .17 10.6 .66 6.1 .92

10 13.8 .17 11.4 .68 6.3 .94

1 Results are based on 40,000 simulation repetitions.
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7 Details Concerning the Numerical Results

This section contains the following: (i) the definition of the  vectors used in AJ1

(which define the alternatives over which asymptotic and finite-sample average power

is computed), (ii) a description of some details concerning the assessment of the prop-

erties of automatic method of choosing  (iii) a discussion of the determination and

computation of the asymptotic power envelope, (iv) a discussion of the computation of

the  values that maximize asymptotic average power that are reported in Table II of

AJ1, and (v) a description of the numerical computation of 2() which is part of the

recommended size-correction function (·)

7.1 μ Vectors

For  = 2 the  vectors considered are

M2(2) = {(−2309 0) (−2309 1) (−2309 2) (−2309 3)
(−2309 4) (−2309 7) (−16263−16263)}

M2(Ω) = {(−1001 0) (−1804 1) (−2303 2) (−2309 3)
(−2309 4) (−2309 7) (−05165−05165)} (7.1)

M2(Ω) =M2(2) except the last vector is (−20040−20040)

The power envelope at each of these  vectors is 750

For  = 4 the  vectors inM4(4) are defined by

M4(Ω)

= {(−1−1 1 1) (−2−2 2 2) (−3−3 3 3) (−4−4 4 4) (−5−5 7 7)
(−6−6 1 7) (−7−7 2 7) (−8−8 3 7) (−9−9 4 7)
(−10 1 1 1) (−11 2 2 2) (−12 3 3 3) (−13 4 4 4) (−14 7 7 7)
(−15 1 1 7) (−16 2 2 7) (−17 3 3 7) (−18 4 4 7) (−19−19 0 0)
(−20 0 0 0) (−21 25 25 25) (−22−22 25 25) (−23−23−23 25)
(−24−24−24−24)} (7.2)

and the following:  = 17388 for  = 1  9 19 22;  = 24705 for  = 10  18 20 21;

23 = 14242; and 24 = 12350
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For  = 4 the  vectors inM4(Ω) are defined by (7.2) and the following: 1 =

05505  = 05526 for  = 2  5 6 = 05505  = 05526 for  = 7 8 9 10 = 18814

11 = 24283  = 24705 for  = 12 13 14 17 18 21 15 = 18814 16 = 24283

19 = 03176 20 = 08624 22 = 05526 23 = 02607 24 = 01756

For  = 4 the  vectors inM4(Ω) are defined by (7.2) and the following:  =

24047 for  = 1  9 19 22;  = 24705 for  = 10  18 20 21; 23 = 22628; and

24 = 21293

For  = 4 the power envelope at each of the  vectors is 800

For  =  = 10 M10(Ω) includes 40 vectors:

M10(Ω)

= {(−1−1 1  1) (−2−2 2  2) (−3−3 3  3) (−4−4 4  4)
(−5−5 7  7) (−6−6 1 1 1 7  7) (−7−7 2 2 2 7  7)
(−8−8 3 3 3 7  7) (−9−9 4 4 4 7  7) (−10−10−10−10 1  1)
(−11−11−11−11 2  2) (−12−12−12−12 3  3)
(−13−13−13−13 4  4) (−14−14−14−14 7  7)
(−15−15−15−15 1 1 1 7 7 7) (−16−16−16−16 2 2 2 7 7 7)
(−17−17−17−17 3 3 3 7 7 7) (−18−18−18−18 4 4 4 7 7 7)
(−19 1  1) (−20 2  2) (−21 3  3) (−22 4  4) (−23 7  7)
(−24 1 1 1 7  7) (−25 2 2 2 7  7) (−26 3 3 3 7  7) (−27 4 4 4 7  7)
(−28−28 0  0) (−29−29−29−29 0  0) (−30 0  0)
(−31 25  25) (−32−32 25  25) (−33−33−33 25  25)
(−34−34−34−34 25  25) (−35−35−35−35−35 25  25)
(−36 −36 25 25 25 25) (−37 −37 25 25 25) (−38 −38 25 25)
(−39 −39 25) (−40 −40)} (7.3)

For  = 10 the  vectors inM10(10) are defined by (7.3) and the following:  =

18927 for  = 1  9 28 32  = 13360 for  = 10  18 29 34  = 26817 for  =

19  27 30 31 33 = 15463 35 = 11963 36 = 10893 37 = 10099 38 = 09465

39 = 08882 and 40 = 08440

For  = 10 the  vectors in M10(Ω) are defined by (7.3) and the following:

 = 06016 for  = 1  9  = 03475 for  = 10  18 19 = 19847 20 = 25835
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 = 26817 for  = 21 22 23 26 27 31 24 = 19847 25 = 25835 28 = 05341

29 = 03322 30 = 11551 32 = 06016 33 = 04195 34 = 03475 35 = 02985

36 = 02674 37 = 02430 38 = 02254 39 = 02106 and 40 = 01993

For  = 10 the  vectors in M10(Ω) are defined by (7.3) and the following:

 = 26227 for  = 1  9  = 24676 for  = 10  18  = 26817 for  = 19  27

28 = 26227 29 = 24676 30 = 26817 31 = 26817 32 = 26227 33 = 25401

34 = 24676 35 = 24005 36 = 23140 37 = 22846 38 = 22565 39 = 22343 and

40 = 22066

For  = 10 the power envelope at each of the  vectors is 850

7.2 Automatic κ Power Assessment Details

The 19 matrices Ω that are considered in Table S-I in Section 6.1.2 are Toeplitz ma-

trices with elements on the diagonals given by the (−1)-vectors  defined as follows. For
 = 2  takes the values for  specified in Table S-I. For  = 4 10 if  ≥ 0  = (  )
For  = 4 if  = −99  = (−99 97−95); if  = −975  = (−975 94−90); if
 = −95  = (−95 9−8); and if −9 ≤   0  = ((−9)) × (−9 7−5) For
 = 10 if  = −99  = (−99 97−95 93−91 89−87 85−83); if  = −975  =
(−975 94−90 86−82 78−76 74−72); if  = −95  = (−95 9−8 7−6
5−4 3−2); and if −9 ≤   0  = ((−9))×(−9 8−7 6 −5 4−3 2−1)
The randomly generated Ω matrices discussed in AJ1 (that are used to assess the

performance of the automatic  method) have the following distributions. For  = 2 4

and 10 the Ω matrices are i.i.d. with Ω = −12(0)0 ×−12(0) where

 is a  by  matrix with independent (25 4) elements. For  = 2 4 500 Ω matrices

are used. For  = 10 250 Ω matrices are used.

The set of alternative hypothesis mean vectors  denoted M(Ω) (used when as-

sessing the asymptotic average power properties of the automatic  method for Ω ma-

trices that do not equal Ω Ω or Ω) contain linear combinations of  vectors

in M(Ω) M(Ω) and M(Ω) Specifically, for a given matrix Ω M(Ω)

is defined by: (i) M(Ω) = M(Ω) if (Ω) ∈ [−10−90] (ii) if (Ω) ∈ [−9 0]
M(Ω) = { :  = (1 + 9) −(9) for  = 1  } where 

denotes the th element of M(Ω) and analogously for M(Ω) and M(Ω)

and  denotes the numbers of elements inM(Ω) (iii) if (Ω) ∈ [0 5] M(Ω) =

{ :  = (1 − 5) + (5) for  = 1  } and (iv) if (Ω) ∈ [05 10]
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M(Ω) =M(Ω)

7.3 Asymptotic Power Envelope

We obtain an upper bound on the asymptotic power envelope by considering the

simple-versus-simple likelihood ratio (SSLR) test for the desired alternative distribution

and some selected null distribution, with the critical value chosen so that the test has the

desired asymptotic null rejection rate  at the specified null distribution. This method

of obtaining an upper bound on a power envelope also has been exploited in different

contexts by Andrews, Moreira, and Stock (2008) and Müller and Watson (2008). If the

specified null distribution is such that the SSLR test has maximum rejection probability

equal to  over all null distributions, then the specified null distribution is least favorable

and the SSLR test actually provides the asymptotic power envelope at the alternative

distribution considered.

We assume that one observes (12(0)Σ) and the null hypothesis is 0 is as

in (5.3). The simple alternative is 1 :  =  where  is a 12-local alternative

with asymptotic mean vector  Asymptotically, the distribution of 
12(0) under

the alternative is (Σ) We take the specified asymptotic null distribution to be

(Σ) where  is defined to minimize (−)
0Σ−1(−) over  ∈ 



[+∞]

In the numerical results reported below, we find that this choice of null distribution

is least favorable. Thus, the upper bound on the asymptotic power envelope, up to

numerical accuracy (based on 40,000 simulation repetitions), is the asymptotic power

envelope.

7.4 Computation of κ Values That Maximize Asymptotic

Average Power

Here we discuss the computation of the  values that maximize asymptotic average

power. These best  values are used in the asymptotic power comparisons given in

Table II of AJ1. For all of the RMS tests in Table II of AJ1, the best  values are

determined by grid search to an accuracy of 2 On a subset of cases this is found to be

sufficiently small that the asymptotic average power is within 01 of the maximum based

on a finer grid. The grid of  values used for the -Test critical values and each test

statistic considered are subsets of {0 2  36 38 42} with lower and upper bounds
on the elements of each subset being determined (by previous computations) to include

55



the best  value. For all of the test statistics considered, the average power values are

well-behaved as a function of  there is no difficulty in finding the best  value, and

the best  value is within the interior of the range considered. To ensure the latter,

for the AQLR/MMSC test, the following alternative grids are used in special cases: for

 = 4 and Ω: {49 51  65} and for  = 10 and Ω: {41 44  65} For the
AQLR/(3) test, the following alternative grids are used in special cases: for  = 2 and

Ω: {50 55  105} for  = 4 and Ω: {35 40  105} and for  = 10 and

Ω: {115 120  140}

7.5 Numerical Computation of η2(p)

The size-correction factor 2() is determined as follows. Let  and Ω be given. For

given (1Ω) we compute the .95 sample quantile of©
2

¡
Ω12 + (1 0)Ω

¢− 2
¡
(1)

¡
−1(Ω)[Ω12 + (1 0)]Ω

¢
Ω
¢

+1((Ω)) :  = 1  }  (7.4)

where  ∼ i.i.d. (0 ) for  = 1   where  = 40 000 Call the sample quantile
1Ω Up to simulation error, 1Ω is the smallest value that satisfies

 (1Ω 1((Ω)) + 1Ω) = 1−  (7.5)

The same simulated random variables { :  = 1  } are used for all (1Ω) consid-
ered. The critical value 2

¡
(1)

¡
−1(Ω)[Ω12 + (1 0)]Ω

¢
Ω
¢
in (7.4) is obtained

by simulation for each  (The number of simulation repetitions employed is  here too

and the same random numbers are used for each ).

Let E1 denote the set of all  vectors whose elements are 00 and∞0 By considering

a variety of subcases, we find that size is (essentially) attained for  ∈ E1 see Section 7.6
below.31 Thus, to obtain good numerical approximations, it suffices to restrict attention

to maximization of 1Ω over E1 rather than over 
+∞ In addition, we approximate

the maximization of 1Ω over the parameter space Ψ for Ω to a maximization of a finite

31In the numerical results, we use 25 in place of ∞ but there is no sensitivity to this choice. Results

for 15 and 35 give identical results because when the mean is sufficiently large, say 15 25 or 35 the

probability of observing a sample mean that is negative is so close to zero that the precise value of the

mean does not affect the rejection probabilities.
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set Ψ∗ ⊂ Ψ Given this, 2() ∈  is defined to be

sup
1∈E1Ω∈Ψ∗

1Ω (7.6)

For  ≤ 10 the set Ψ∗ is a set of correlation matrices that includes: (i) 43 Toeplitz
matrices Ω that are such that (Ω) takes values in a grid between−99 and 99 32 and (ii)
500 randomly generated matrices Ω that are generated by Ω = ( ) where  = 0

and is a ×matrix with i.i.d. N(0, 1) elements. As the number of randomly generated
matrices Ω goes to infinity, the maximum of 1Ω over Ψ

∗ approaches the maximum over

1Ω over Ψ Since the same underlying random variables { :  = 1  } are used for
each (1Ω) considered, an empirical process CLT guarantees that as  and the number

of random matrices Ω considered go to infinity the calculated critical values converge to

the desired value 2() that satisfies

inf
1∈E1Ω∈Ψ

 (1Ω 1((Ω)) + 2()) = 1−  (7.7)

7.6 Maximization Over μ Vectors in the Null Hypothesis

7.6.1 Computation of η2(p)

Next, we report the results of calculations that assess the impact of using the re-

stricted set of null mean vectors E1 rather than all of 
+∞ when computing 2()

First, for the AQLR/-Test/Auto test, we compute the difference between the as-

ymptotic MNRP when the maximum is over  vectors in E1 with the asymptotic MNRP
when the maximum is over several larger sets of  vectors. The larger sets include: (i)

three different grids of fixed  vectors, which are described in the following subsection,

and (ii) 1000 randomly generated  vectors plus E1.33 These results are for the 43 fixed
Toeplitz variance matrices that are described in Section 7.5. The results are given in

Table S-XVII.

Second, for 260 randomly generated variance matrices, we compute the differences in

asymptotic MNRP when the maximum is over E1 and when the maximum is over 1000

32For any given value of  = (Ω) these 43 matrices are defined just as the 19 Toeplitz matrices are

defined in Section 7.2. The (Ω) values considered are the 43 values specified by the endpoints for  in

Table I, but including −99 and excluding −10 and 10
33The random  vectors have elements that are i.i.d. with probability 5 of equalling 0 and probability

5 of being uniform on [0 8]
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randomly generated  vectors (with the same distribution as in the previous paragraph)

plus E134 These results are given in Table S-XVIII.
Third, we report results for the variance matrix, Ω1 that is found to be least

favorable (LF) over the 43 fixed Toeplitz variance matrices used in the computation

of 2() for  = 3  1035 We also report results for the variance matrix, Ω2  that

is found to be least favorable (LF) over the 500 randomly generated variance matrices

used in the computation of 2() for  = 3  10
36 For these two variance matrices and

 = 3  10 we report the differences in asymptotic MNRP when the maximum is over

E1 and when the maximum is over 100,000 randomly generated  vectors (with the same
distribution as above) plus E1 The results are given in Table S-XIX.
Fourth, in Table S-XX, we report the effect of potential inaccuracy in 2() on the

asymptotic MNRP’s of the AQLR/-Test/Auto test.

All results are based on 40,000 simulation repetitions for the critical value calculations

and the rejection probabilities.

Definitions of the Grids of μ Vectors The three sets of fixed grids of  vectors

considered are: (i) a full grid, (ii) a large partial grid, and (iii) a small partial grid. The

partial grids are considered because a finer mesh can be used with these grids than with

a full grid. A full grid is not computable for  = 9 and 10 because there are too many

 vectors. The grids are defined as follows.

(1) Full grid of  vectors: This set of  vectors consists of  vectors whose elements

(i) all come from a vector, GridVec, of dimension # and (ii) contain at least one

zero. The number of such vectors is (#)−(#−1) where # is the number
of elements in GridVec. The GridVec vectors used with the full grid are: for  = 2 3

# = 24 and GridVec = {0 05 1 2 3 5 75 1 15 2 25 3 35 4 45 5 55 6 7
8 9 10 15 20}; for  = 4 # = 18 and GridVec = {0 25 5 75 1 15 2 25 3 35
4 45 5 6 7 8 9 10}; for  = 5 # = 8 and GridVec = {0 5 1 15 2 25 3 4}; for
 = 6 # = 5 and GridVec = {0 1 2 3 4}; for  = 7 # = 4 and GridVec

34The variance matrices are generated via  = 0 where  is a  ×  matrix with i.i.d. N(0, 1)

elements.
35That is, Ω1 is the matrix that yields the largest MNRP over the 43 matrices when the MNRP is

computed using all  vectors with 00 and ∞0 and 2() is set equal to 0 This matrix is found to be

 for 7 of the 8 values of  and within 0001 of being LF for the other case. So, for simplicity, we take

Ω1 =  for  = 3  10
36That is, Ω2 is the matrix that yields the largest MNRP over the 500 random matrices used to

compute 2() when the MNRP is computed using all  vectors with 0
0 and∞0 and 2() is set equal

to 0
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= {0 1 25 4}; and for  = 8 # = 3 and GridVec = {0 25 35}
(2) Large partial grid of  vectors: This set of  vectors consists of  vectors whose

elements (i) all come from a vector, GridVec, of dimension# (ii) are non-decreasing,

and (iii) contain at least one zero. For example, if  = 4 and GridVec = {0 1 2 3 4}
then # = 5 and the  vectors are of the form (0 0 0 0)  (0 0 2 3) (0 0 2 4)

(0 0 3 4)  (0 4 4 4) The number of such vectors does not have a simple closed form

expression.

The GridVec vectors used with the large partial grid are: for  = 2 3 and 4 # =

24 and GridVec = {0 05 1 2 3 5 75 1 15 2 25 3 35 4 45 5 55 6 7 8 9 10 15
20}; for  = 5 # = 11 and GridVec = {0 5 1 15 2 25 3 4 5 6 7}; for  = 6

# = 8 and GridVec = {0 1 2 3 4 5 6 7}; for  = 7 # = 7 and GridVec

= {0 1 2 3 4 5 6}; for  = 8 # = 6 and GridVec = {0 1 2 4 5 6}; for  = 9

# = 5 and GridVec = {0 1 2 4 6}; and for  = 10 # = 4 and GridVec

= {0 2 4 6}
(3) Small partial grid of  vectors: This set of  vectors consists of  vectors whose

elements (i) all come from a vector, GridVec, of dimension # (ii) take only two

different values, (iii) are non-decreasing, and (iv) contain at least one zero (to guar-

antee that the vector is on the boundary of the null hypothesis). For example, if

 = 4 and GridVec = {0 1 2 3 4} then # = 5 and the  vectors are of the

form (0 0 0 0) (0 0 0 1)  (0 0 3 3) (0 0 4 4) (0 1 1 1) (0 4 4 4) The number

of such vectors is (− 1) ∗ (#− 1) + 1
The GridVec vector used with the small partial grid is: ∀ = 2  10 # =

24 and GridVec = {0 05 1 2 3 5 75 1 15 2 25 3 35 4 45 5 55 6 7 8 9 10 15
20}

MNRP Difference Results Tables S-XVII, S-XVIII, and S-XIX provide the re-

sults. Table S-XVII shows that the differences in asymptotic MNRP’s of the AQLR/-

Test/Auto test from maximizing over E1 versus the full grid is 0005 or less. The
differences in MNRP’s from maximizing over E1 versus the large and small partial grids
are very small, being 0000 in all cases. Table S-XVIII shows that the difference in

MNRP’s from maximizing over E1 versus 1000 random  vectors and 260 random Ω

matrices is 0000 for  ≤ 7 and always 0026 or less.
For computation of the 2() values, what is most relevant is the difference between

the MNRP over E1 and 

+∞ evaluated at the least favorable variance matrix. In
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consequence, Table S-XIX reports the differences for the two LF matrices Ω1 and

Ω2  defined above. These results are based on 100 000 randomly generated  vectors.

In all 16 cases considered, the differences are 000037

In sum, extensive simulations fail to find a noticeable effect of restricting the MNRP

calculations for the AQLR/-Test/Auto test to  vectors in E1 compared to calculations
based on broader sets of  vectors in 


+∞

Potential Effects of Inaccuracy in η2(p) Next, we report the potential effects of

inaccuracy in the calculation of 2() Table S-XX provides the differences in MNRP’s

when 2() is given by the value in Table I compared to when it is increased or decreased

by 25% or 50%. These results answer the question: How much would the asymptotic

MNRP’s change if the 2() values in Table I are inaccurate by as much as 25% or 50%.

The results are based on (40000, 40000) critical value and null rejection probability

repetitions.

Table S-XX shows that even relatively large percentage changes in 2() have fairly

small effects on the MNRP’s.

7.6.2 Computation of MNRP’s for Tests Based on Best Kappa Values

Table II of AJ1 reports asymptotic power comparisons for tests using (infeasible)

critical values that employ the asymptotically best  values (=Best). The MNRP’s for

these tests and the size-correction that is based on the MNRP’s are computed using all

mean vectors  in E1 In this section, we report numerical results designed to see whether
the restriction to E1 rather than 


+∞ affects the results. We compute asymptotic

MNRP differences of the types reported in Tables S-XVII and S-XVIII, but for tests

other than the AQLR/-Test/Auto test. We compute results for a subset of the cases

considered in Tables S-XVII and S-XVIII.38 (Unlike the results reported in these tables,

only the three variance matrices Ω Ω and Ω that appear in Table II are

37One might wonder why the simulated differences are not small but positive, due to simulation

error, even if the true differences are zero. We believe the reason is due to the high positive correlation

between the two statistics whose difference is being computed. Given high positive correlation, the

simulation error is small.
38Even if it was the case that considering E1 rather than 


+∞ affects the results for the Best

tests, the comparisons in Table II are still meaningful because they provide an upper bound on the size-

corrected power of the Best tests. Hence, comparisons between the recommended AQLR/-Test/Auto

test and the various infeasible Best tests in Table II are still quite informative. In any event, the

numerical results given below indicate that there is not a significant effect.
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considered here.)

We discuss the computationally fast and slow tests separately. The computationally

fast tests are the MMM, Max, SumMax, and AQLR test statistics combined with the -

Test/Best critical values. The slow tests are the AQLR test statistic combined with the

(2)Best, (3)Best, and (4)Best critical values. The AQLR statistic combined

with the MMSC critical value is discussed separately.

For the fast tests and the AQLR/MMSC/Best test, we compute results for all of

the cases in Tables S-XVII and S-XVIII for  = 2 4 and 10 and Ω Ω and Ω

For the slow tests, we compute results for the full grid for  = 2 and 4 and for 1000

random  vectors for  = 10

For the fast tests, the number of simulations used is (40000, 40000, 40000) for the

critical values, size-correction, and rejection probabilities, respectively, in all cases con-

sidered. For the slow tests, (10000, 10000, 10000) repetitions are used for  = 2 (1000,

1000, 1000) are used for  = 4 and (2000, 2000, 2000) repetitions are used for  = 10

(More repetitions are used here for  = 10 than  = 4 because fewer  vectors are

considered.) For the AQLR/MMSCBest test, (40000, 40000, 40000) repetitions are

used for  = 2 and 4 and (10000, 10000, 10000) repetitions are used for  = 10

The results are easy to state, so no table is provided. In all cases but 5 out of 192,

the difference between the MNRP computed over E1 and over the larger set is found to
be 0000 The five exceptions are the following. For the AQLR/()/Best for  = 2 3 4

with  = 4 Ω and the full grid, the differences obtained are 0040 0030 and 0030

respectively. For the AQLR/MMSC/Best test with  = 4 and Ω using 1000 random

 and the full grid, the differences are 0034 and 0037 respectively.

In conclusion, we do not find evidence that the restriction to the set E1 rather than


+∞ has a significant effect on the MNRP results for the tests based on =Best critical

values. The evidence against there being such an effect is fairly strong for  = 2 and 4

because of the full grid results that are reported. It is less strong for  = 10 because a

full grid could not be considered due to computational constraints.
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Table S-XVII. Differences in Nominal .05 Asymptotic MNRP’s Due to Different Sets

of Mean Vectors  Used in the Computations with 43 Toeplitz Variance Matrices: E1
Versus a Full Grid, a Large Partial Grid, a Small Partial Grid, and 1000 Random 

Vectors Plus E1

(a) E1 Versus (b) E1 Versus (c) E1 Versus (d) E1 Versus
Full Grid Large Partial Grid Small Partial Grid 1000 Random 

& E1 & E1 & E1 & E1

Max Diff Max Diff Max Diff Max Diff

Over 43 Over 43 Over 43 Over 43

p Var Matrices Var Matrices Var matrices Var matrices

2 .0001 .0005 .0005 .0004

3 .0005 .0000 .0000 .0005

4 .0003 .0000 .0000 .0005

5 .0000 .0000 .0000 .0000

6 .0000 .0000 .0000 .0000

7 .0000 .0000 .0000 .0000

8 .0000 .0000 .0000 .0000

9 - .0000 .0000 .0000

10 - .0000 .0000 .0000
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Table S-XVIII. Differences in Nominal .05 Asymptotic MNRP’s Due to Different

Sets of Mean Vectors  Used in the Computations: E1 Versus 1000 Random  Vectors

Plus E1 with 260 Random Variance Matrices

E1 Versus
1000 Random  Vectors Plus E1

Max Diff

Over 260 Random

p Variance Matrices

3 .0000

4 .0000

5 .0000

6 .0000

7 .0000

8 .0025

9 .0026

10 .0024
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Table S-XIX. Differences in Nominal .05 Asymptotic MNRP’s Due to Different Sets

of Mean Vectors  Used in the Computations: E1 Versus 100,000 Random  Vectors

Plus E1 with 2 Variance Matrices

E1 Versus
100,000 Random  Vectors & E1

Difference Difference

p for Ω = Ω1 for Ω = Ω2

3 .0000 .0000

4 .0000 .0000

5 .0000 .0000

6 .0000 .0000

7 .0000 .0000

8 .0000 .0000

9 .0000 .0000

10 .0000 .0000
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Table S-XX. Differences in MNRP’s When 2() Is Increased or Decreased by 25%

or 50%.

p Ω +25% -25% +50% -50%

3 Ω .0009 .0006 .0019 .0017

4 Ω .0013 .0012 .0022 .0022

4 Ω .0011 .0011 .0014 .0026

4 Ω .0010 .0010 .0014 .0023

6 Ω .0012 .0016 .0025 .0036

8 Ω .0018 .0018 .0033 .0041

10 Ω .0022 .0022 .0042 .0044

10 Ω .0020 .0030 .0039 .0052

10 Ω .0024 .0030 .0046 .0054
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8 Computer Programs

This section lists the GAUSS computer programs that were used to carry out the

numerical results reported in AJ1 and above.

• rmsprg_final: This program is designed for users who want to carry out a test

using the recommended RMS test (or any of several related tests). It was not used

to compute any of the numerical results.

• etaprg1_final: This program was used when computing the 2() values based on
500 randomly generated variance matrices.

• etaprg2_final: This program was used when computing the 2() values based on
43 fixed variance matrices.

• finsamp3_final: This programs was used to compute all of the finite sample results
reported in Tables III, S-IV, S-V, and S-VI.

• kappaprg_final: This program was used for many purposes. They include: (i)

computation of the best  value for use with the AQLR statistic, as reported in

Table S-II, (ii) assessment of how well the choice  = 012 based on  = 2 performs

for  = 4 10 as reported in Table S-II, (iii) determination of the best  values

and the corresponding 1() values for the AQLR/-Test/Auto test for  = 2 as

reported in Table I of AJ1, (iv) asymptotic power comparisons based on best 

values for a variety of test statistics and the three main variance matrices Ω

Ω and Ω as reported in Tables II, S-XII, and S-XIII, (v) determination

of the asymptotic MNRP’s and power for a variety of tests when  = 235 and

 = 187 (which are BIC and HQIC values, respectively), as reported in Tables

S-X, S-XI, S-XII, and S-XIII, (vi) asymptotic power comparisons for a variety of

tests and the power envelope for 19 Ω matrices, as reported in Tables S-I and S-

IX, (vii) asymptotic power comparisons for a variety of tests for singular variance

matrices, as reported in Table S-III, (viii) determination of the pure/constant ELR

critical values for the ELR tests whose MNRP’s and power are reported in Tables

S-XII and S-XIII, (ix) determination of the asymptotic MNRP’s and power for the

ELR test with pure/constant critical values, as reported in Tables S-XII and S-

XIII, and (x) changes in asymptotic MNRP’s when 2() is increased or decreased

by 25% or 50%, as reported in Table S-XX.

66



• powprg_final: This program was used to compute the difference in average as-

ymptotic power between the AQLR/-Test/Auto and AQLR/-Test/Best tests

for 500 randomly generated Ω matrices, as reported in Section 6.1.2.

• rmsprg_fs_short_final: This program was not used to compute any of the results
reported in AJ1 or this Supplement. It is a shortened version of finsamp3_final

that computes finite sample results for the main tests of interest: AQLR/-Test/

Auto implemented using the asymptotic distribution or the bootstrap andMMM/

-Test/ = 235

• sizediffprg11_final: This program computes the differences in MNRP’s for a vari-
ety of tests when the mean vectors  considered are (i) all vectors consisting of 00

and ∞0 and (ii) these  vectors plus randomly generated  vectors, as reported

in Table S-XVIII and Section 7.6.2.

• sizediffprg22_final: This program computes the differences in MNRP’s for a va-

riety of tests when the mean vectors  considered are (i) all vectors consisting of

00 and∞0 and (ii) these  vectors plus a full grid of  vectors, or a large partial

grid of  vectors, or a small partial grid of  vectors, as reported in Table S-XVII,

the first column of results in Table S-XIX, and Section 7.6.2.

• sizediffprg22_LF_final: This program computes the same differences as sizediff-

prg22_final but for the least favorable variance matrices that were determined

when calculating 2() using 500 random variance matrices for  = 3  10 These

results are reported in the last column of Table S-XIX.

9 Alternative Parametrization and Proofs

This section provides proofs of the results given in Section 5. In addition, the first

subsection gives an alternative parametrization of the moment inequality/equality model

to that given in (2.1). This parametrization is conducive to the calculation of the

asymptotic properties of CS’s and tests. It was first used in AG. The first subsection

also specifies the parameter space for the case of dependent observations and for the

case where a preliminary estimator of a parameter  appears. The second subsection

provides proofs of the results stated in the paper.
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9.1 Alternative Parametrization

In this section we specify a one-to-one mapping between the parameters (  ) with

parameter space F and a new parameter  = (1 2 3) with corresponding parameter
space Γ The latter parametrization is amenable to establishing the asymptotic unifor-

mity results of Theorem 1 above.

As stated above, the true value 0 (∈ Θ ⊂ ) is assumed to satisfy the moment

conditions in (2.1). For the case where the sample moment functions depend on a

preliminary estimator b() of an identified parameter vector  with true parameter
 0 we define ( ) = (   0) ( ) = (1(   0) (   0))

0

() = −1
P

=1( b()) and () = (1() ())
0 (Hence, in

this case, () 6= −1
P

=1( ))

We define 1 = (11  1)
0 ∈ 


+ by writing the moment inequalities in (2.1) as

moment equalities:

−1()( )− 1 = 0 for  = 1   (9.1)

where 2() is the variance of the asymptotic distribution of 
12() under (  )

Also, let Ω = Ω(  ) =  (
12()) denote the correlation matrix of the

asymptotic distribution of 12() under (  ) When no preliminary estimator of a

parameter  appears, 2() = lim→∞   (
12()) andΩ(  ) = lim→∞

(12()) where   (
12()) and  (

12()) denote the finite-sample

variance of 12() and correlation matrix of 
12() under (  ) respectively.

Let 2 = (21 22) = ( ∗(Ω(  ))) ∈  where ∗(Ω) denotes the vector of

elements of Ω that lie below the main diagonal,  = + ( − 1)2 and 3 = 

For i.i.d. observations and no preliminary estimator of a parameter   the parameter

space for  is defined by Γ = { = (1 2 3) : for some (  ) ∈ F  where F is defined
in (2.2), 1 satisfies (9.1), 2 = ( ∗(Ω(  ))) and 3 = }
For dependent observations and for sample moment functions that depend on a

preliminary estimator b() we specify the parameter space Γ for the moment inequality
model using a set of high-level conditions. To verify the high-level conditions using

primitive conditions one has to specify an estimator bΣ() of the asymptotic variance

matrix Σ() of 12() For brevity, we do not do so here. Since there is a one-to-one

mapping from  to (  ) Γ also defines the parameter space F of (  ) Let Ψ be a

specified set of  ×  correlation matrices. The parameter space Γ is defined to include
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parameters  = (1 2 3) = (1 ( 22)  ) that satisfy:

(i)  ∈ Θ

(ii) −1()( )− 1 = 0 for  = 1  

(iii) ( ) = 0 for  = + 1  

(iv) 2() =  
¡
12()

¢
exists and lies in (0∞) for  = 1  

(v) 
¡
12()

¢
exists and equals Ω22

∈ Ψ and

(vi) { :  ≥ 1} are stationary under  (9.2)

where 1 = (11  1)
0 and Ω22

is the  ×  correlation matrix determined by

22
39 Furthermore, Γ must be restricted by enough additional conditions such that

under any sequence { = (1 ( ∗ (Ω)) ) :  ≥ 1} of parameters
in Γ that satisfies 121 → 1 and ( ∗(Ω)) → 2 = (21 22) for some

 = (1 2) ∈ 

+∞ ×



[±∞] we have

(vii)  = (1  )
0 → 22 ∼ (0Ω22) as →∞ where

 = 12
¡
()−( )

¢
()

(viii) b()()→ 1 as →∞ for  = 1  

(ix) b−12
 ()bΣ() b−12

 ()→ Ω22 as →∞ and (9.3)

(x) conditions (vii)-(ix) hold for all subsequences {} in place of {}

where Ω22 is the  ×  correlation matrix for which ∗(Ω22) = 22 b2() =
[bΣ()] for 1 ≤  ≤  and b() = {b21()  b2()} (= (bΣ()))

4041

For example, for i.i.d. observations, conditions (i)-(vi) in (2.2) imply conditions (i)-

(vi) in (9.2). Furthermore, conditions (i)-(vi) in (2.2) plus the definition of bΣ() in

39In Andrews and Guggenberger (2009), a strong mixing condition is imposed in condition (vi) of

(9.2). This condition is used to verify Assumption E0 in that paper and is not needed with RMS critical

values.
40When a preliminary estimator b() appears,  can be written equivalently as

12
¡
−1

P
=1( b()) −(  0)

¢
() which typically is as-

ymptotically normal with an asymptotic variance matrix Ω22 that reflects the fact that 0 has been

estimated. When a preliminary estimator b() appears, bΣ() needs to be defined to take account
of the fact that 0 has been estimated. When no preliminary estimator b() appears,  can be

written equivalently as 12(()−())()
41Condition (x) of (9.3) requires that conditions (vii)-(ix) must hold under any sequence of parameters

{ :  ≥ 1} that satisfies the conditions preceding (9.3) with  replaced by 
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(3.2) and the additional condition (vii) in (2.2) imply conditions (vii)-(x) in (9.3). For

a proof, see Lemma 2 of AG.

For dependent observations or when a preliminary estimator of a parameter  ap-

pears, one needs to specify a particular variance estimator bΣ() before one can specify

primitive “additional conditions” beyond conditions (i)-(vi) in (9.2) that ensure that Γ

is such that any sequences { :  ≥ 1} in Γ satisfy (9.3). For brevity, we do not do

so here.

We now specify the set∆ defined in (4.13), in the parametrization introduced above.

Define

 = { ∈ 


[±∞] ×


[±∞] : ∃ a subsequence {} of {} and a sequence
{ ∈ Γ :  ≥ 1} for which 12 1 → 1 and 2 → 2} (9.4)

Then, ∆ can be written equivalently as

∆ = {(1Ω22) ∈ 

+∞ × (Ψ) :  = (1 21 22) ∈ 

for some 21 ∈ (Θ) where 22 = ∗(Ω22)} (9.5)

In words, ∆ is the set of “slackness” parameters 1 and correlation matrices Ω that

correspond to some limit point  in 

9.2 Proofs

The proof of Theorem 1 above uses the following Lemmas. Let

() = (() ≤ ()) (9.6)

As above, for a sequence of constants { :  ≥ 1}  → [1∞ 2∞] denotes that

1∞ ≤ lim inf→∞  ≤ lim sup→∞  ≤ 2∞

Lemma 4 Suppose Assumptions S,   and 1 hold. Let { = (1 2 3) :
 ≥ 1} be a sequence of points in Γ that satisfies (i) 121 → 1 for some 1 ∈ 


+∞

and (ii) 2 → 2 for some 2 = (21 22) ∈ 


[±∞] Let  = (1 2) and let Ω22 be

the correlation matrix that corresponds to 22 Then,

(a) ()→ [ (1Ω22 (Ω22)−)  (1Ω22 (Ω22))] and
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(b) for any subsequence { :  ≥ 1} of {} the result of part (a) holds with  in

place of  provided conditions (i) and (ii) above hold with  in place of 

Lemma 5 Suppose Assumptions S(b)-(e) hold. Then, (Ω) is continuous on (


[+∞]
×)×Ψ

Proof of Theorem 1. First, we prove part (a). Let {∗ = (∗1 ∗2 ∗3) ∈ Γ :  ≥ 1}
be a sequence such that lim inf→∞(

∗
) = lim inf→∞ inf∈Γ() (= )

Such a sequence always exists. Let { :  ≥ 1} be a subsequence of {} such that
lim→∞(

∗

) exists and equals lim inf→∞(

∗
) =  Such a subsequence

always exists.

Let ∗1 denote the th component of 
∗
1 for  = 1   Either (1) lim sup→∞


12
 ∗1  ∞ or (2) lim sup→∞ 

12
 ∗1 = ∞ If (1) holds, then for some subse-

quence {} of {}

12 ∗1 → ∗1 for some 
∗
1 ∈ + (9.7)

If (2) holds, then for some subsequence {} of {}

12 ∗1 → ∗1 where 
∗
1 =∞ (9.8)

In addition, for some subsequence {} of {}

∗2 → ∗2 for some 
∗
2 ∈ cl(Γ2). (9.9)

By taking successive subsequences over the  components of ∗1 and 
∗
2
, we find that

there exists a subsequence {} of {} such that for each  = 1   either (9.7) or

(9.8) applies and (9.9) holds. In consequence, (i) 
12
 1 → ∗1 for some 

∗
1 ∈ 


+∞

(ii) 2 → ∗2 for some 
∗
2 ∈ 



[±∞] (iii) 
∗ = (∗1 

∗
2) ∈  (for  defined in (9.4)),

and (iv) lim→∞(
∗

) =  Hence, by Lemma 4(b),

 = lim
→∞

(
∗

) ≥  (∗1Ω∗22 (Ω∗22)−)
≥ inf

(1Ω)∈∆
 (1Ω (Ω)−) (9.10)

where the second inequality holds because (∗1Ω∗22) ∈ ∆ by the definition of ∆ in (9.5).
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Next, by the definition of ∆ in (9.5), for each (1Ω22) ∈ ∆ there exists a subse-

quence { :  ≥ 1} of {} and a sequence of points { = (1 2 3) ∈ Γ :

 ≥ 1} such that conditions (i) and (ii) of Lemma 4 hold with  in place of  Hence,

 =lim inf
→∞

inf
( )∈F

 (() ≤ ())

≤ lim inf
→∞

()

≤  (1Ω22 (Ω22)) (9.11)

where the second inequality holds by Lemma 4(b). Since (9.11) holds for all (1Ω22) ∈
∆ we have

 ≤ inf
(1Ω)∈∆

 (1Ω (Ω)) (9.12)

Combining (9.10) and (9.12) establishes part (a) of the Theorem.

Part (b) of the Theorem follows from part (a) and Assumption 2. Part (c) of the

Theorem follows from part (a) and Assumption 3. ¤

Proof of Lemma 4. For notational simplicity, let Ω0 denote Ω22  To establish part

(a), we show below thatÃ
()

()

!
→

Ã
 ( + (1 0)Ω0)

 ( (
−1(Ω0)[ + (1 0)]Ω0) Ω0) + (Ω0)

!
as →∞

(9.13)

under { :  ≥ 1} where  ∼ (0Ω0) Hence, by the definition of convergence in

distribution, for every continuity point  of the asymptotic distribution of () −
() we have


(() ≤ () + )

→ 
¡
 ( + (1 0)Ω0) ≤ 

¡

¡
−1(Ω0)[ + (1 0)]Ω0

¢
Ω0

¢
+ (Ω0) + 

¢
=  (1Ω0 (Ω0) + ) (9.14)
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There exist continuity points   0 and   0 arbitrarily close to zero. Hence, we have

lim sup
→∞


(() ≤ ())

≤ lim
↓0
lim sup
→∞


(() ≤ () + )

= lim
↓0

 (1Ω0 (Ω0) + )

=  (1Ω0 (Ω0)) (9.15)

where the first equality holds by (9.14) and the second equality holds because  (1Ω0

(Ω0) + ) is a df and hence is right-continuous. Analogously,

lim inf
→∞


(() ≤ ()) ≥ lim

↓0
 (1Ω0 (Ω0)− )

=  (1Ω0 (Ω0)−) (9.16)

where the equality holds by definition. Equations (9.15) and (9.16) combine to establish

part (a).

Next, we prove (9.13). Using Assumption S(a), we have

() = 
³ b−12

 ()12() b−12
 ()bΣ() b−12

 ()
´
 (9.17)

For i.i.d. or dependent observations with or without preliminary estimators of iden-

tified parameters, (9.3) holds (using the fact that  ∈ Γ if and only if (  ) ∈ F
and using Lemma 2 of AG to show that (9.3) holds for i.i.d. observations). By (9.3),

the th element of b−12
 ()

12() equals (1 + (1))( + 121) where

1 = (11  1)
0 and by definition 1 = 0 for  = +1   If 1 =∞

and  ≤  where 1 = (11  1)
0 then +121 → ∞ under { :  ≥ 1}

by condition (vii) of (9.3) and the definition of { :  ≥ 1} Hence, if any element
of 1 equals ∞ b−12

 ()
12() does not converge in distribution (to a proper

finite random vector) and the continuous mapping theorem cannot be applied to obtain

the asymptotic distribution of the right-hand side of (9.17) or of the RMS critical value,

which is defined by

() = 

³

³
()

bΩ()
´
 bΩ()

´
+ (bΩ()) (9.18)
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To circumvent these problems, we consider -vector-valued functions of b−12
 ()

×12() and () that converge in distribution whether or not some elements

of 1 equal ∞ Then, we write the right-hand sides of (9.17) and (9.18) as continuous

functions of these -vectors and apply the continuous mapping theorem. Let (·) be a
strictly increasing continuous df on  such as the standard normal df.

For  ≤  we have

 = (()) = 
³
−1(bΩ())b−1()12()

´
(9.19)

= 
³
−1(bΩ())b−1()() £ + 121

¤´


where  is defined in (9.3) and by definition 1 = 0 for  = + 1  

Let  = (1  )
0 ∼ (0Ω0) Define 1 = 0 for  =  + 1   If  ≤  and

1 ∞ or if  = + 1   then

 → 
¡
−1(Ω0)[ + 1]

¢
(9.20)

using (9.19), conditions (vii) and (viii) of (9.3) (which yield  + 121 →  +

1) Assumption  and condition (ix) of (9.3) (which yield 
−1(bΩ())→ 

−1(Ω0))

and the continuous mapping theorem.

If  ≤  and 1 =∞ then

 → 1 (9.21)

using (9.19),  = (1) 
−1(bΩ()) → 

−1(Ω0)  0 and () → 1 as  → ∞

The results in (9.20)-(9.21) hold jointly and combine to give

 = (1  )
0 → ∞ where

∞ = ((−1(Ω0)[1 + 11])  (
−1(Ω0)[ + 1]))

0 (9.22)

and (22 + 1) denotes (∞) = 1 when 1 =∞

Let −1 denote the inverse of  For  = (1  )0 ∈ 


[+∞] ×  let ()() =

((1)  ())
0 ∈ (0 1] × (0 1) For  = (1  )0 ∈ (0 1] × (0 1) let −1()() =

(−1(1)  −1())0 ∈ 


[+∞] × Define e(Ω) as
e(Ω) = 

³
(−1

()
()Ω)Ω

´
(9.23)
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for  ∈ (0 1] × (0 1) and Ω ∈ Ψ

Assumption  and Lemma 5 imply that e(Ω) is continuous at (Ω) for all
 ∈ Z((1 0)Ω0) and Ω = Ω0 where

Z((1 0)Ω0) =
n
 ∈ (0 1] × (0 1) : −1

()
() ∈ Ξ((1 0)Ω)

o
and

 (∞ ∈ Z((1 0)Ω0)) = 
¡
−1(Ω0)[ + (1 0)] ∈ Ξ((1 0)Ω0)

¢
= 1 (9.24)

where Ξ(Ω) is defined in Assumption 

We now have

() = 

³
(()

bΩ()) bΩ()
´
+ (bΩ())

= 

³
(−1

()
() bΩ()) bΩ()

´
+ (bΩ())

= e ³ bΩ()
´
+ (bΩ())

→ e (∞Ω0) + (Ω0)

= 

³
(−1

()
(∞)Ω0)Ω0

´
+ (Ω0)

= 
¡
(−1(Ω0)[ + (1 0)]Ω0)Ω0

¢
+ (Ω0) (9.25)

where the first equality holds by the definition of () the second equality holds by

the definitions of  and 
−1
()
(·) the third and fourth equalities hold by the definition

of e(· ·) the convergence holds by (9.22), condition (ix) of (9.3), Assumption 1 and
the continuous mapping theorem using (9.24), the last equality holds by the definitions

of ∞ and −1
()
(·) and the definition that if 1 =∞ then the corresponding element

of  + (1 0) equals ∞

We now use an analogous argument to that in (9.19)-(9.25) to show that

()→ ( + (1 0)Ω0) (9.26)

The argument only differs from that given above in that (i) (·) is replaced by 1
throughout, (ii) the function ((Ω)Ω) is replaced by (Ω) (iii) the functione(Ω) = ((

−1
()
()Ω)Ω) is replaced by e(Ω) = (−1

()
()Ω) and (iv) the

continuity argument in the paragraph containing (9.24) is replaced by the assertion thate(Ω) is continuous at all (Ω) ∈ ((0 1] × (0 1))×Ψ by Assumption S(c).
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The convergence in (9.25) and (9.26) is joint because the two results can be obtained

by a single application of the continuous mapping theorem. Hence, the verification of

(9.13) is complete and part (a) is proved.

Next, we prove part (b). By the same argument as above but using condition (x)

of (9.3) in place of conditions (vii)-(ix), the results of (9.25) and 9.26 hold with {}
in place of {} for any subsequence {} Hence, (9.13) and (9.14) hold with the same
changes, which implies that part (b) holds. ¤

Proof of Lemma 5. Given (0Ω0) ∈ (

[+∞] ×)×Ψ we consider three cases: (i)

(0Ω0)  0 (ii) (0Ω0) = 0 and either   0 or both  = 0 and 0 6= ∞ and

(iii) (0Ω0) = 0  = 0 and 0 =∞

In case (i), given   0 we want to show that if (Ω) is sufficiently close to (0Ω0)

then |(Ω) − (0Ω0)|   Let ∗ ∼ (0 ) By Assumption S(e), the df of

(Ω
12
0 ∗ + 0Ω0) is strictly increasing at  = (0Ω0)  0 Hence, for some   0


³
(Ω

12
0 ∗ + 0Ω0) ≤ (0Ω0) + 

´
= 1− +   (9.27)

The df of (Ω12∗+Ω) at   0 is continuous in (Ω) at (0Ω0) by the bounded

convergence theorem because

(a) (Ω12∗ + Ω)→ (Ω
12
0 ∗ + 0Ω0) a.s.,

(b) 1
¡
(Ω12∗ + Ω) ≤ 

¢→ 1
³
(Ω

12
0 ∗ + 0Ω0) ≤ 

´
a.s.

except if (Ω
12
0 ∗ + 0Ω0) = 

(c) 
³
(Ω

12
0 ∗ + 0Ω0) = 

´
= 0 and

(d) the indicator function is bounded, (9.28)

where (a) holds by Assumption S(c), (b) holds by (a), and (c) holds because the df of

(Ω
12
0 ∗ + 0Ω0) is continuous at all   0 by Assumption S(e).

In consequence, for all (Ω) sufficiently close to (0Ω0) we have¯̄

¡
(Ω12∗ + Ω) ≤ (0Ω0) + 

¢
− 

³
(Ω

12
0 ∗ + 0Ω0) ≤ (0Ω0) + 

´¯̄̄
 2 (9.29)
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Equations (9.27) and (9.29) imply that


¡
(Ω12∗ + Ω) ≤ (0Ω0) + 

¢ ≥ 1− + 2 (9.30)

The definition of a quantile and (9.30) imply that

(Ω) ≤ (0Ω0) +  (9.31)

By a completely analogous argument, for (Ω) sufficiently close to (0Ω0) (Ω)

≥ (0Ω0)−  Hence, |(Ω) − (0Ω0)|   and the proof is complete for case

(i).

In case (ii),  ((Ω
12
0 ∗ + 0Ω0) ≤ 0) ≥ 1 −  because (0Ω0) = 0 Also, in

case (ii), (Ω
12
0 ∗ + 0Ω0) has a strictly increasing df for   0 by Assumption S(e)

(because  = 0 and 0 =∞ does not hold in case (ii)). These results imply that given

  0 there exists 1  0 such that

 ((Ω
12
0 ∗ + 0Ω0) ≤ ) = 1− + 1 (9.32)

Because the df of (Ω12∗ + Ω) at   0 is continuous in (Ω) by (9.28), for all

(Ω) sufficiently close to (0Ω0) we have¯̄̄

¡
(Ω12∗ + Ω) ≤ 

¢− 
³
(Ω

12
0 ∗ + 0Ω0) ≤ 

´¯̄̄
 12 (9.33)

Equations (9.32) and (9.33) imply


¡
(Ω12∗ + Ω) ≤ 

¢ ≥ 1−  (9.34)

This and the definition of a quantile imply that (Ω) ≤  Since (Ω) ≥ 0 for all
(Ω) by Assumption S(b), the proof for case (ii) is complete.

In case (iii), (Ω
12
0 ∗+0Ω0) = (∞Ω0) = 0 a.s. by Assumptions S(b) and S(d).

This and the continuity in (Ω) at (0Ω0) of the df of (Ω
12∗ + Ω) at   0

which holds by (9.28), give: for all   0

lim
(Ω)→(0Ω0)


¡
(Ω12∗ + Ω) ≤ 

¢
= 

³
(Ω

12
0 ∗ + 0Ω0) ≤ 

´
= 1 (9.35)
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Equation (9.35) implies that given any   0 for all (Ω) sufficiently close to (0Ω0)

the df of (Ω12∗ + Ω) at   0 is greater than 1−  and hence (Ω) ≤  Since

(Ω) ≥ 0 for all (Ω) and   0 is arbitrary, the proof for case (iii) is complete. ¤

Proof of Lemma 2. Assumption LA3(a) holds by the Liapounov triangular array CLT

for row-wise i.i.d. random variables with mean zero and variance one using Assumptions

LA1(a), LA1(c), and LA3∗ and the Cramér-Wold device. Assumptions LA3(b) and

LA3(c) hold by standard arguments using a weak law of large numbers for row-wise

i.i.d. random variables with variance one using Assumptions LA1(a), LA1(c), and LA3∗.

Note that Assumption LA3 does not follow from (9.3) because in Assumption LA3 the

functions are evaluated at 0 which is not the true value (unless  = 0). ¤

Proof of Theorem 3. The proof follows a similar line of argument to that of Lemma

4(a). We start by showing that under the given assumptions (9.13) holds with (1 0)

replaced by (1 0) +Π0 By element-by-element mean-value expansions about  = 

and Assumptions LA1 and LA2, we obtain

−12(0 )( 0) = −12( )( )

+Π(∗ )(0 − )

12−12(0 )( 0) → (1 0) +Π0 (9.36)

where (  ) = {21()  2()} ∗ may differ across rows of Π(∗ ) 
∗


lies between 0 and  
∗
 → 0 and Π(∗ )→ Π0

For the same reason as described above following (9.17), to obtain the asymptotic

distribution of (0) we use the same type of argument as in the proof of Lemma

4(a). Let (·) be a strictly increasing continuous df on  such as the standard normal

df. Using (9.36), Assumption LA3, and −1(bΩ(0)) → −1(Ω(0)) (which holds by

78



Assumptions  and LA3), for  = 1   we have

0
 = 

³
−1(bΩ(0))b−1(0)12(0)

´
= 

³
−1(bΩ(0))b−1(0)(0) £0 + 12−1(0)( 0)

¤´


0
 → 1 if  ≤  and 1 =∞ (9.37)

0
 → 

¡
−1(Ω(0))[ + 1 +Π00]

¢
if  ≤  and 1 ∞

0
 → 

¡
−1(Ω(0))[ +Π00]

¢
if  = + 1  

0
 = (0

1  
0
)→ 

0
∞ =

((−1(Ω(0))[1 + 11 +Π001])  (
−1(Ω(0))[ +Π00]))

0

where  = (1  )
0 and  + 1 + Π00 = ∞ by definition if 1 = ∞ Now, the

same argument as in (9.23)-(9.25) of the proof of Lemma 4(a) gives

(0)→ 
¡
(−1(Ω0)[ + (1 0) +Π0]Ω0)Ω0

¢
+ (Ω0) (9.38)

The only difference in the proof is that Z((1 0)Ω0) and Ξ((1 0)Ω) are replaced

by Z((1 0) +Π0Ω0) and Ξ((1 0) +Π0Ω) respectively.

Next, by the same argument as in (9.26) in the proof of Lemma 4(a), we obtain

(0)→ ([ + (1 0) +Π0]Ω0) (9.39)

Furthermore, the convergence in (9.38) and (9.39) is joint, which establishes that (9.13)

holds with (1 0) replaced by (1 0) + Π0 Finally, given the latter result, the re-

sult of the Theorem holds by the same argument as in (9.14)-(9.16) in the proof of

Lemma 4(a) with (1 0) replaced by (1 0) +Π0 and  (1Ω0 (Ω0)) replaced by

(Ω0   (Ω0) (Ω0)) ¤
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