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Abstract

This paper provides a sensitivity analysis of stationary states in a discrete time model of

capital accumulation. We classify the stationary states in terms of the concept of regularity,

and investigate the properties of the regular stationary states that are robust to any small

perturbation in economies. We prove that the set of regular stationary economies is an open

dense subset of the space of economies. More specifically, if the space of economies is identified

with the set of discount rates, then the regular stationary economies form a subset of full

measure. Moreover, if the space of economies is identified with the set of pairs of a discount

rate and a return function, then the economies that generate a regular stationary state exist

generically.

Keywords: Optimal growth; Stationary state; Genericity; Regularity.

JEL classification: C61, D91, O41.

I . Introduction

In optimal growth theory, di$culties arise in the sensitivity analysis of stationary states

when the stationary states are not locally unique given the parameters of a model. In

particular, in the presence of the continuum of stationary states, the e#ect of a parametric

change in economies on the stationary states is quite ambiguous, which poses a limitation of

the analysis in various contexts of applications. The purpose of this paper is to characterize the

economies that generate finite numbers of stationary states in a discrete time model of capital

accumulation. In this paper, we classify the stationary states in terms of the concept of

“regularity”, developed by general equilibrium theory with a di#erentiable approach, along the
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lines of Balasko (1988), Debreu (1970), Dierker (1982), and Smale (1974a), and investigate

the properties of regular stationary states that are robust to any small perturbation in

parameters.

The attention here is focused on the regular stationary economies because first, “almost

all” stationary economies are regular, and second, regular stationary economies generate

locally finite stationary states. We show that the set of regular stationary economies is an open

dense subset of the space of economies. In other words, if a regular stationary economy is

subjected to any small perturbation, it remains regular, but if an economy is not regular, an

arbitrarily small perturbation can make it regular. More specifically, if the space of economies

is identified with the set of discount rates, then the regular stationary economies form a subset

of full measure. Since the critical stationary economies then have zero measure, the probability

of choosing a critical stationary economy at random from the space of economies is zero.

Moreover, if the space of economies is identified with the set of pairs of a discount rate and a

return function, then the economies that generate a regular stationary state exist “generically”

in the space of economies.

The most relevant work to the analysis developed here is Magill, and Scheinkman (1979)

and McKenzie (1986). The former is involved in the sensitivity analysis of stationary states

with a di#erentiable approach in continuous time and the latter develops an exhaustive study

of comparative statics of stationary states in discrete time. While the generic property

established by Magill, and Scheinkman (1979) is restricted to the class of C2-return functions

that have the symmetric second order derivatives, we treat a class of C2-return functions

without the symmetric condition. With additional assumptions on the second order derivatives

of the return function, McKenzie (1986) obtains sharper results on the e#ect of a parametric

change in discount rates on the stationary states than the results of this paper.

This paper is organized as follows. Section II collects the preliminary results for dynamic

programming and examines the di#erentiability of the value function that is employed

throughout the paper. Section III contains the main result. We first introduce mathematical

definitions and terminologies from di#erentiable topology. We then establish the generic

property of regular stationary states that are subjected to any small perturbation of discount

rates, and present a characterization of the regular stationary states in terms of the linearized

Euler equation. We also analyze the generic property of regular stationary states when a

discount rate and a return function are perturbed simultaneously. A conclusion is provided in

Section IV.

II . Description of the Model

In this section, we present the model and a brief summary of the fundamental results of

optimal growth theory, which is required for the analysis in the succeeding sections. A basic

reference for the most of the results stated is Stokey et al. (1989, Chapter 4).

1. Preliminary Results

Let X denote the set of feasible capital stocks, which is a subset of the n-dimensional

Euclidean space with positive orthant, �n
�. The technology is described by the set-valued
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mapping G: X � 2X from X to itself. We write y�G(x) to mean that given the current

investment of the capital stock x, the capital stock y is available in the next period. The graph

of G is denoted by A�{(x, y)�X�X � y�G(x)}. Let u: X�X� � be a return function and

d�(0, 1) be a discount rate. Time is indexed by t�0, 1, ....

The model of optimal growth with discounting the future is described by the following

problem with the subsequent Assumptions 1 to 6:

vd(x)�max S
�

t�0

dt u(xt, xt�1)

s.t. xt�1�G(xt) for each t and x0�x� int X given.

Assumption 1. X is nonempty and convex.

Assumption 2. G is continuous and G(x) is compact for any x�X.

Assumption 3. A is a convex subset of X�X with int A�f.

Assumption 4. u is continuous on A and twice continuously di#erentiable on int A.

Assumption 5. There exists some a	0 such that (x, y) �� u(x, y)� a

2

y
2 is a concave

function on A.

Assumption 6. There exists some M	0 such that�T(a, b)D2u(x, y)(a, b)�1 for (x, y)� int

A and (a, b)��n��n implies �T aD11 u(x, y)a�M.

Assumptions 1 to 4 are standard. Assumptions 1 and 3 together guarantee the convex

technology that rules out increasing returns to scale. Assumptions 2 and 4 together assure the

existence of an optimal path. Assumptions 5 and 6 ensure the di#erentiability of the policy

function and the twice di#erentiability of the value function.

The optimization problem we are facing with can be equivalently described as one of

dynamic programming. Let C0(X, �) be the space of bounded continuous functions on X with

the sup norm. Define the mapping Td: C0(X, �) � C0(X, �) by the formula

Td v(x)�max
y�G(x)

[u(x, y)�dv( y)].

Then Td v(x) is well defined, and by the contraction mapping theorem, for any d�(0, 1) there

exists a unique vd�C0(X, �) such that Td vd�vd. The bounded continuous function vd is

referred as the value function and the above functional equation induces the Bellman equation

vd(x)�max
y�G(x)

[u(x, y)�dvd( y)].

The dynamic behavior of the model is described by the policy function hd: X � X defined as

the unique solution y�G(x) attaining the maximum in the Bellman equation, i.e., vd(x)�
u(x, hd(x))�dvd(hd(x)).

Under our assumptions, the value function vd is concave on X and di#erentiable at every

x� int X. Applying the theorem of Benveniste and Scheinkman (1979), the derivative of the

value function is given by

Dvd(x)�D1 u(x, hd(x)). (1)
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A recent contribution to the theory of dynamic programming in infinite horizon is the

resolution of C1-di#erentiability of the policy function, which is provided by Santos (1991)

under ay-concavity condition (Assumption 5) and Assumption 6 on the return function.

Throughout this paper, we utilize C1-di#erentiability of the policy function for each fixed d.

For an earlier study that uses the Lipschitz continuous policy function, see Montrucchio

(1987).

We assume that the policy function satisfies the interiority condition in the following

sense.

Assumption 7. (x, hd(x))� int A for any x�int X.

Theorem 1 (Santos). If Assumptions 1 to 7 hold, then the policy function hd is di#erentiable at

every x� int X.

Theorem 1 and equation (1) together imply that the value function vd has the second

order derivative at every x� int X. Note that the policy function is a solution of the equation

D2 u(x, hd(x))�dDvd(hd(x))�0. (2)

By combining equations (1) and (2), we have the Euler di#erence equation

D2 u(x, hd(x))�dD1 u(hd(x), hd
2(x))�0 for any x� int X, (3)

where h2
d(x)�hd(hd(x)). Fixed points of hd are said to be stationary state for d. The set of

stationary states for d is defined by

Sd�{x�X � hd(x)�x}.

In view of (3), we obtain

D2 u(x, x)�dD1 u(x, x)�0 for any x�Sd.

III . Genericity of Regular Stationary Economy

In this section, we first introduce some fundamental definitions and terminologies from

di#erentiable topology, which is used in the sequel. A basic reference is Hirsch (1976). We

then define a regular stationary state and perturb a discount rate as a parameter. We also

investigate the relationship between the regular stationary states and the characteristic

equation derived from the Euler equation evaluated at the regular stationary states. We finally

perturb a discount rate and a return function simultaneously as parameters and establish the

generic property of regular stationary states.

1. Mathematical Remarks

We say that a property holds generically if there exists an open dense subset of U of a

topological space X such that the property holds for every x�U.

Let X��n, Y��k, U � X be an open set and f�C1(U, Y). A point x�U is called a

regular point for f if Df(x): X� Y is surjective. A point x�U is a critical point for f if x is not
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a regular point for f. A point y�Y is a regular value of f if each point of f�1( y) is a regular

point for f. A point y�Y is a critical value of f if it is not a regular value of f; that is, f�1( y)

contains a critical point for f. From these definitions, it follows that x is a critical point for f

if and only if rank Df(x)�k.

Let f: M � N be a C1-mapping of manifolds M and N, and let W�N be a submanifold

of N. f is transversal to W at a point x�M if either f(x) ��W or f(x)�W and the tangent space

Tf(x)(N) is spanned by Tf(x)(W) and the image dfx(Tx(M)), i.e., dfx(Tx(M))�Tf(x)(W)�
Tf(x)(N). We write f	
W if f is transversal to W at every x�M.

2. Perturbation in Discount Rates

In the standard one-sector growth model, it is well known that an increase in a discount

rate increases the level of capital stock in a unique stationary state. To investigate the

relationship between myopia and stationary states in a general reduced model of capital

accumulation, we need an appropriate di#erentiable structure for sensitivity analysis.

Regular Stationary State

The space of economies is identified with the set of discount rates, an open interval (0, 1)

of the real line. A pair (d, x)�(0, 1)�X is said to be a stationary equilibrium if hd(x)�x. We

denote the set of stationary equilibria by S, i.e.,

S�{(d, x)�(0, 1)�X � hd(x)�x}

�{(d, x)�(0, 1)�X � D2 u(x, x)�dD1 u(x, x)�0}.

Definition 1. x�Sd is a regular (resp. critical) stationary state for d�(0, 1) if the matrix

Dhd(x)�I is nonsingular (resp. singular).

Assumption 8. The n�n matrices D22 u(x, x)�dD2 vd(x)�dD12 u(x, x) and D22 u(x, x)�
D21 u(x, x)�dD11 u(x, x)�dD12 u(x, x) are nonsingular for any (d, x)�S.

The nonsingularity of the second matrix in Assumption 8 imposed also by McKenzie

(1986) to establish the monotonicity of the stationary state with respect to the discount rate.

Define the mapping F: (0, 1)�X � �n by

F(d, x)�D2 u(x, x)�dD1 u(x, x)

and put Fd(x)�F(d, x). Note that Fd(x)�0 if and only if x�Sd is a stationary state for d�
(0, 1).

By the following lemma, the di#erentiable structure of stationary states can be described

in terms of the di#erentiable mapping Fd, as is described by the policy function.

Lemma 1. Suppose that Assumptions 1 to 8 hold. Then x�Sd is a regular (resp. critical)

stationary state for d�(0, 1) if and only if Fd(x)�0 and DFd(x) is nonsingular (resp. singular).

Proof. Di#erentiating (1), observing that hd(x)�x, we have

D2 vd(x)�D11 u(x, x)�D12 u(x, x)Dhd(x). (4)

Di#erentiating (2) at the stationary state yields
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(D22 u(x, x)�dD2 vd(x))Dhd(x)��D21 u(x, x). (5)

By combining (4) and (5), we obtain

DFd(x)��(D22 u(x, x)�dD2 vd(x)�dD12 u(x, x))(Dhd(x)�I). (6)

Since (D22 u(x, x)�dD2 vd(x)�dD12 u(x, x)) is nonsingular, (6) reduces to rank DFd(x)�
rank (Dhd(x)�I). �

Since the rank of the (n�1)�n matrix

DF(d, x)�
�
��
�

D1 u(x, x)

D22 u(x, x)�D21 u(x, x)�dD11 u(x, x))�dD12 u(x, x)

�
��
	

is n for any (d, x)�S by Assumption 8, the set of stationary equilibria

S�{(d, x)�(0, 1)�X 
 F(d, x)�0}

is a one-dimensional manifold of C1-class by the regular value theorem (Hirsch 1976, Theorem

3.2).

Let P: S � (0, 1) be a projection mapping from the set of stationary equilibria to the

space of economies. It is evident that P: S � (0, 1) is a smooth mapping on the manifolds.

Definition 2. d�(0, 1) is a regular (resp. critical) stationary economy if it is a regular (resp.

critical) value of the projection mapping P: S � (0, 1). The set of regular (resp. critical)

stationary economies is denoted by �R(resp. �C).

The following theorem states that on the set of regular economies, the stationary states are

locally finite and can be represented by a di#erentiable mapping from �R to �n
�. This is an

immediate consequence of the regular value theorem, which is a generalized version of the

implicit function theorem (see Hirsch, 1976, p. 22).

Theorem 2. If Assumptions 1 to 8 hold, then P�1(d) is a smooth submanifold of S for any d�
�R.

The natural tool for proving the next theorem is developed in the theory of regular

economies introduced by Debreu (1970). The basic ideas are also explained in Balasko (1988)

and Dierker (1982).

Theorem 3. Suppose that Assumptions 1 to 8 hold. Then x�Sd is a regular (resp. critical)

stationary state for d�(0, 1) if and only if d�(0, 1) is a regular (resp. critical) stationary

economy.

Proof. Let us define mappings F: (0, 1)�X� �n by F (d, x)�D2 u(x, x)�dD1 u(x, x) and F:

(0, 1)�X � �n�(0, 1) by the formula F(d, x)�(F(d, x), d). For any (d, x)�S, we must

have F(d, x)�(0, d). Hence, the restriction of F to S, F 
 S: S� {0}�(0, 1) can be identified

with the projection mapping P: S � (0, 1) defined above. Moreover, we obtain F	F�1(0, d)

�(F(d, x), d)�(0, d). Thus F	F�1 is an identity mapping on {0}�(0, 1), i.e., F	F�1�
i{0}�(0, 1). Di#erentiating F at (d, x)�S yields an (n�1)�(n�1) matrix
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DF(d, x)�

�
�
�
�
�
�
�
�

�
��
�

(F1(d, x)

(d
, ...,

(Fn(d, x)

(d

�
�	



0�

0

1
�
�
�
�
�
�
	



�
�
��
�

D1 F(d, x) 1

D2 F(d, x) 0

�
�	



.
�
��
�

(F j(d, x)

(xi

�
�	

1�i, j�n

Therefore, by Assumption 8, det DF(d, x)�det D2 F(d, x)�0 on S. Thus (d, x)�S if and

only if d is a regular value of P, which is a consequence of Lemma 1. �

Theorem 4 (Sard). Let M and N be manifolds of dimensions m and n respectively, and let f: M

� N be a Cr-mapping. If r�max{0, m	n}, then the set of critical values of f has Lebesgue

measure zero in N and the set of regular values of f is dense in N.

For a proof, see Hirsch (1976, pp. 68-72).

The following result is an immediate consequence of Sard’s theorem applied to the

projection mapping P.

Theorem 5. Suppose that Assumptions 1 to 8 hold. Then the set of critical (resp. regular)

stationary economies �C (resp. �R ) has Lebesgue measure zero (resp. full Lebesgue measure)

in (0, 1) and �R (resp. �C ) is a dense (resp. nowhere dense) subset of (0, 1).

The interpretation of regular economies due to Kehoe (1985) is also valid in our

framework. Theorem 5 states that the size of the set of critical stationary economies is small,

both from the point of view of measure theory, and from that of topology. This property is

important. It is always possible to give a probabilistic interpretation for the Lebesgue measure

of a set. Therefore, the probability that a randomly chosen stationary economy will be critical

is equal to zero, so that a critical stationary economy is rather exceptional.

Having measure zero, however, does not ensure that a set is topologically small. In fact,

a set can have measure zero and still be very large from an alternative point of view. For

example, though the set of rational numbers has measure zero in the space of economies as a

countable set, it is dense. Theorem 5 ensures that this type of di$culty disappears with sets of

measure zero. Moreover, the fact that the set of critical stationary economies is small in terms

of both measure theory and topology does not necessarily imply that the cardinality of the set

of critical stationary economies is small. In fact, a curious example is the Cantor set of a closed

interval. The Cantor set is of measure zero and nowhere dense in �, but it has su$ciently many

elements; that is, it has the cardinality of continuum.

Nondegenerateness of Regular Stationary States

Let x0�int X be given. A sequence {xt} of X is said to be an optimal path for d if it is

generated by the policy function hd, i.e., ht
d(x0)�xt for each t, where ht

d(x0)�hd(ht	1
d (x0)) for

t
1 and h0
d(x0)
x0 for t�0. We obtain the Euler di#erence equation

D2 u(xt, xt�1)�dD1 u(xt�1, xt�2)�0 for each t.

Linearization around a stationary state yields a linear di#erence equation in vector form with

coe$cient matrices

dU12 yt�2�(dU11�U22) yt�1�U21 yt�0, (7)
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where yt�xt�x, U11�D11 u(x, x), U12�D12 u(x, x), U21�D21 u(x, x) and U22�D22 u(x, x).

Thus the characteristic equation of (7) is

*(l)�det (l2dU12�l(dU11�U22)�U21)�0.

Assumption 9. U21 is nonsingular.

Assumption 9 ensures the nonzero characteristic roots for *(l)�0, which is also imposed

by McKenzie (1986). Unlike Magill and Scheinkman (1979), and McKenzie (1986), however,

we do not impose the symmetric condition U12�T U21 where T U21 is the transpose of U21, which

is a stringent condition.

The following definition is a counterpart in discrete time with the definition in continuous

time in Magill and Scheinkman (1979).

Definition 3. A stationary equilibrium (d, x)�S is said to be nondegenerate (resp. degenerate)

if li�1 for each i�1, ..., 2n (resp. li�1 for some i) where li is a root of the characteristic

equation

*(li)�det (li
2dU12�li(dU11�U22)�U21)�0.

The following theorem characterizes the local property of regular (resp. critical) station-

ary states in terms of the linear di#erence equation (7) generated by the Euler equation.

Theorem 6. Suppose that Assumptions 1 to 9 hold. Then a stationary equilibrium (d, x)�S is

nondegenerate (resp. degenerate) if and only if x�Sd is a regular (resp. critical) stationary state.

Proof. It is evident from the definitions that

*(1)�det (dU12�dU11�U22�U21).

Thus, *(1)�0 if and only if (d, x)�S is nondegenerate. Since *(1)�det DFd(x), thus by

Lemma 1, (d, x)�S is nondegenerate if and only if xd�Sd is a regular stationary state. �

Theorem 6 states the fact that the nondegenerateness of stationary equilibria is a generic

property with regard to perturbing discount rates.

3. Perturbation in Return Functions

Define the subset of return functions in C2(A, �) by

��{u�C2(A, �) � u satisfies Assumptions 5, 6 and 8}.

The class� of return functions guarantees the twice-continuous di#erentiability of the value

function. Note that � is endowed with the relative topology from C2(A, �) with C2-norm.

Assumption 10. int � is nonempty.

The space of economies is identified with (0, 1)��.

The following theorem states that pairs of a return function and a discount rate that

generate regular stationary states exist generically in��(0, 1). The technique of the proof is

essentially the same as (1974a).
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Theorem 7. Suppose that Assumptions 1 to 8 and 10 hold. Then there exists an open dense subset

�* of (0, 1)�� such that (d, u)��* and D2 u(x, x)�dD1 u(x, x)�0 imply that x is a

regular stationary state for d.

Proof. Let us define F: (0, 1)���X � �n by

F(d, u)(x)�D2 u(x, x)�dD1 u(x, x).

Note that F (d, u)�C1(X, �n) for any (d, u)�(0, 1)�U. By virtue of Lemma 1, the proof is

complete if we show that the set {(d, u)�(0, 1)�� � F(d, u)��{0}} is open dense in (0, 1)�
�. This fact follows immediately from the transversality theorem (see Hirsch, 1976, p. 74),

which states that the set { f�C1(X, �n) � f��{0}} is an open dense subset of C1(X, �n). 	

The interpretation of the genericity result in Theorem 7 requires some caution. Note that

the genericity is restricted to the class � of return functions that guarantees the twice-

continuous di#erentiability of the value function. Theorem 7 does not assure the genericity in

the set of return functions in C2(A, �). Indeed, there may exist some return function in C2(A,

�) that is not in� such that it generates a regular stationary state, and there may exist some

return function in C2(A, �) that is not in � such that it generates a critical stationary state.

It is an open problem to characterize the stationary states outside the return functions in� in

our framework.

IV . Conclusion

We have established the generic property of regular stationary states in the presence of the

perturbation of discount rates and return functions. In this paper, however, the perturbation

of production technologies is completely ignored because of its di$culties. In general equilib-

rium with production, Smale (1974b) described a production set with the smooth boundary by

using smooth functions and proved the generic property of price equilibria. The technique used

by Smale (1974b) also appears e#ective in optimal growth theory.

To illustrate this, let gk: X�X � � be a C1-function for k�1, ..., m, and let g�(g1, ...,

gm). When the production set is given by

Ag�{(x, y)�X�X � gk(x, y)�0, k�1, ..., m},

we can define the set-valued mapping Gg: X � 2X describing the production technology by

Gg(x)�{ y�X � (x, y)�Ag}.

If g is taken over all C1-functions with some properties, we can parameterize production

technologies in analytical manner.

It is an open question whether the generic property of regular stationary states holds in

the presence of the perturbation of production technologies. Such a generalization requires

further research.
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