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SOME THOUGHTS IN SEQUENTIAL TWO SAMPLE
PROBLEMS WITH DATA DEPENDENT
ALLOCATION RULE*

HaiiME TAKAHASHI

1. Introduction

Let X5, Xa, « « « » Xm, » - » and yy, ¥o, . . ., ¥, . . . be independent normally distributed
random variables with means Ex,=p,, Ey,=p, and variances Var xn=g,% Var y,=q,?
(m, n=1,2,...). A sequential decision problem of testing H,:6>0 against H,:6 <0, 6=
p1— e With data dependent allocation rule has been considered by many authors includ-
ing Robbins and Siegmund (1974), Louis (1975), Hayre (1979) and Hayre and Gittins (1981).
The problem is invariant with respect to the common change of location for both x and

y, it is reasonable to restrict to the invariant procedure. So after having observed x,, . . .,
Xm, and y, . . . , ¥», We shall consider

mn - o - 1 = .1 =
(1) Zm,‘n_ 022m+0_12n (Xm—y.,,), Xm = m Zlal Xty Y= n ; yi

[Robbins and Siegmund (1974), Hayre and Gittins (1981)]. By simple algebra it follows
that

Es{Zn,n} =[mn/(s,?m+0,*n)]0
and

Var; {Zn,n} =[mnf(a>m+0,°n)] .
Now by applying Wald’s SPRT to the statistic Zn,,, Robbins and Siegmund (1974) proved
that (to the extent that we disregard the excess over the boundaries) the error probabilities
and E{MN/s,2M +0¢,2N} are independent of the allocation rules used (here (M,N) denotes
2-dimensional stopping time), provided they depend on previous x’s and y’s only through
their differences. Related to this result, they have proved the following technical lemma
Lemma 1. Let W(t) be a Brownian motion with drift § and variance 1 per unit time. Let
Tm,n=mn/(mo2+ns,%). Then for any allocation rules which depend on x’s and y’s only
through the Z;, ;’s, the joint distribution of {Z. ,, m,n=1,2, ...} is equal to that of {W(zn,,),
mn=12,...}.

Since Robbins and Siegmund (1974) considers the two-population analogue of Wald’s

SPRT, their result shares the same drawback as SPRT; the test is open ended. To remedy
this, Hayre (1979) considered a sequential decision problem of choosing one of three hypo-
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theses, Hy:0=0, H,:6>0 and H,:5<0. He proposed to use the boundary suggested by
Armitage (1957), which is a version of truncated SPRT. Continuing in this direction,
Siegmund (1985, Ch. 6) applied the boundary for the repeated significance test of Armitage
(1975). To be more specific, let 5>0 and 0< K< K are given constant. We shall let

(3] (M, N)=first {(m,1n) :tm,n>Ky, |Znn|>b VTm o) -
We stop sampling at min {rx, »,K} and
Accept Hy if Zy, v >b V7u,n and ty ¥<K
?3) Accept Hy if Zy,n<—bvtu,x and 4 y<K
Accept Hy if Zy x> K.

Knowing that the error probabilities and the expected sample size Ef{cx v A K} are
approximately the same for all invariant allocation rules, Siegmund (1985) has calculated
these characteristics under the pairwise allocation rule.

Now the extension to the regression model may be of interest. Let xn=p; + fén+ ¢z,
m=1,2,...and y,=ps+ By, +ey, n=1, 2, ..., where 4, and g, are unknown intercepts
and g denotes an unknown common slope, {&n, m>1} and {y,, n=>1} are sequences of
known constants and {e,,, m>1} and {e¢,,, n>1} are independent and normally distributed
random variables with means 0 and known variances Vare.,=¢,% and Vare,, =¢,% By
long and tedious algebra, after having observed (x1,61), . . ., (¥mém) and (¥1,74), - -+ » Unsyn)s
our invariant test statistic is

~ mn L o
“@ Zn,o= et el [Xn—Pn—bm,n(En—7n)]
where
- 1 = n 1 » - 1] = ~ 1 »
x"‘_TZII X1, yn——n—le Vi ‘:m—?%} s 777.——-”*; 7

and
m n B _
bm,n={(02® 41\_.4‘ guxi+ o, ? nY1)(moy? +ne ) — (Mo o2 em + 101252 ) (M0 %m + 16,%9,)}
m n _
= {(o;? Alv.. &40, ; 2 (mo? + no ) — (Mo 2 n +na i,

(See Takahashi (1977) for the special case ¢,2=a,>=1).

Note that
~ mn
E{Zm,'n|51 7]} = m0_22+n_0_'12— Cm,n5, and
= mn
Var{Zn,,|¢, 7} =W Cn,n
where 6 =g, — ps and
m n -
(%) Co,n=10," ; §2+0,® Zl: 72— (Mo e n’ + 1o 2,7}

m ”n
-+ {052 %} &2+ 0,2 4? 7% — (Mo 2 m + 1o 25,22/ (o 2 + nay?)} .
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Since Cn,, Is increasing in m and # {Lai and Robbins (1977)], we have the analogous result
of Lemma 1.
Lemma 2. Given &’s and 3’s, the joint distribution of {Zn,,, mu=1, 2, ...} is the same
as that of {W(%n,,), m,n=1,2,...}, where Tn ,=7n,,Cn,a-
By the simple algebra 0<Cn, ,<1 and C, ,=1 if {»=%, and they are not degenerated.
It follows that we can get the full efficiency (with respect to the simple two sample problem)
by taking the mean of £’s and 5’s about the same but not degenerated to the same point.
Hence the sequential decision problem of choosing which of these three hypotheses
Hy:6=0, H;:6>0 and H,:6 <0 may be carried out exactly in the same manner as above
up to the Brownian approximation.

II. Allocation Rule

Numerous allocation rules have been proposed since the pioneering work by Louis
(1972). Among them the one proposed by Hayre (1979) is of interest. Given & the cost
of taking one observation on x is g(6)>0 and the cost of taking y is 4(3) >0 for which A(5)—
g(9) has the same sign of 8. A specific example considered below is

1 6>0
©) g(a):h(_a):{wdlal 3<0
The optimal allocation rule is defined to be one which minimizes the risk
™ R(8)=g(0)E«(M) + h(3)Es(N).

The answer to this question is in
Lemma 3. [Hayre (1979)]. Let w(é)={#(8)/g(8)} 2. For the test (3), for any invariant
allocation rule

® R(3)=(0:18"2 + 0o *)2Es {Tm, n}
and equality holds if and only if
€)) Ps {M|N=(01/o)w(8)} =1.

Since § is unknown to us, the suggested allocation rule would be:
Allocation Rule [HA). After having observed x,, . . ., Xm and yy, . . . , Yn, if |Zn,n} <b ¥, g,
then we choose xny+, next if and only if

(10) ' min<(a1/o)W(Bm,n)y  Gm,n=2Zm,a/Tn,n-

The law of large number implies that (9) will hold approximately in large samples, then
it is not difficult to see

1n Es{M} =01(01+a:w(8))Es {7, v}
E: (N} =ay(oo+ 0w () E; {ta, v} .
The situation is quite the same for the regression problem. Analogous to (8) we obtain
(12) R(8)= Es {[01(8/Ca, x)' * + 0o(] Cot, ) * 1T, 7}
and equality holds if and only if (9) holds. Hence, we may use the same sampling
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TABLE 1
Simple two sample problems with known variance ¢,*=¢,%=1
b=2.95, K=49, K,=0
Pairwise sampling=1st raw, Hayre’s rule=2nd raw (d=20)
8 H, H, H, E(M) E(N) E(M+N) Risk
0.0 0.02 0.97 0.01 97.5 97.5 195.0 195.0
0.03 0.95 0.02 100.5 105.0 205.5 205.5
0.2 0.00 0.87 0.13 93.4 93.4 186.8 560.5
0.00 0.84 0.16 143.4 72.2 215.6 504.4
0.4 0.00 0.42 0.58 71.5 71.5 143.0 715.4
0.00 0.45 0.55 138.8 50.0 188.8 588.8
0.6 0.00 0.05 0.95 42.3 42.3 84.6 592.2
0.00 0.06 0.94 100.9 30.4 131.3 496.1
0.8 0.00 0.00 1.00 27.6 27.6 55.2 496.5
0.00 0.01 0.99 59.3 16.2 75.5 334.7
1.0 0.00 0.00 1.00 20.0 20.0 40.0 437.8
0.00 0.00 1.00 42.4 11.3 53.7 279.7

In Tables 1-6 all the values are obtained from the average of 400 repetition. We have used subroutine

RANN2 in SSL II and the system FACOM M-360 at Hitotsubashi University.

Regression case with $=0.5, known variance ¢;2=¢5%
b=2.95, K=49, K,=0
Pairwise sampling=1st raw, Hayre’s rule=2nd raw (d=20)

TABLE 2

d H, H, H, E(M) E(N) E(M+N) Risk
0.0 0.02 0.97 0.01 97.5 97.5 195.0 195.0
0.03 0.95 0.02 103.1 106.2 209.3 209.3
0.2 0.00 0.87 0.13 93.4 93.4 186.8 560.5
0.00 0.86 0.14 143.9 73.2 217.1 509.8
0.4 0.00 0.42 0.58 71.5 71.5 143.1 715.4
0.00 0.46 0.54 140.0 50.5 190.5 594.4
0.6 0.00 0.05 0.95 42.3 42.3 84.6 592.1
0.00 0.05 0.95 92.3 28.1 120.4 458.1
0.8 0.00 0.00 1.00 27.6 27.6 55.2 496.5
0.00 0.00 1.00 60.8 18.6 79.4 376.7
1.0 0.00 0.00 1.00 19.9 19.9 39.8 437.8
0.00 0.00 1.00 38.2 13.4 51.6 319.6

rule [HA] here with 3n, , replaced by Zm, ./Zm .. If we may choose &’s and 5’s for which

Cyx, n—a<=(0,1), we can show

(1)

as b— oo,

E; {M} =a0,(0,+0:w(0)) E; (T, v}
E; (N} =aloy(o;+ 01w () E; (T, )}

OI. Unknown Variance

Some of the simulation results are presented in Table 1 and 2.

When variances are not known to us, we may replace all :%s by their unbiased esti-
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TABLE 3
Simple two sample problems with unknown variance
b=2.95, K=49 (M,N >10)
Pairwise sampling=1st raw, Heyre’s rule=2nd raw (d=20)

é H, H, H, EWM) E(N) E(M4+N) Risk ax® / oy®
0.01 0.98 0.01 109.5 109.5 219.0 219.0 1.12
0.0 1.13
0.01 0.98 0.01 116.8 116.9 233.7 233.7 1.11
1.11
0.01 0.88 0.11 105.5 105.5 211.0 633.0 1.11
0.2 113
0.00 0.86 0.14 162.0 80.6 242.6 564.8 1.12
1.14
0.00 0.44 0.56 83.9 83.9 167.8 839.0 1.16
0.4 1.15
0.00 0.41 0.59 131.8 43.4 175.2 655.8 1.12
1.12
0.00 0.04 0.96 51.2 51.2 102.4 716.8 1.12
0.6 1.22
0.00 0.05 0.95 109.9 33.8 143.7 549.4 1.15
119
0.00 0.00 1.00 34.2 34.2 68.4 615.6 1.27
0.8 1.30
0.00 0.00 1.00 70.1 19.4 89.5 399.5 1.18
1.25
0.00 0.00 1.00 22.8 22.8 45.6 501.6 1.29
1.0 1.32
0.00 0.00 1.00 49.6 13.0 62.6 323.5 1.21
1.26

mator 4,2 (i=1, 2). By the strong law of large numbers, 4:2 converges strongly to ¢;2 as
b—co. Hence at least asymptotically, the modified procedure posseses the same properties
discussed in the previous section. Probabilistically the problem is too complicated and
we do not discuss in detail here. Some of their small sample properties are obtained by
Monte Carlo studies. We first use unbiased estimator of ¢,2 (=1, 2) in both simple and
regression cases. In the simple two sample problem, it turns out that usual unbiased esti-
mator seriously underestimate the true ¢,% for all values of 5. We then used the estimator
proposed by Lai et al. (1975). The results are satisfactory as shown in Table 3. As to
the regression case, the ususal unbiased estimator behaves fairly well (Table 4). We do
not know why these phenomena occurs.

1V. Estimation after Testing

In this section we shall suppose that ¢,2=g,2=1 and consider testing sequentially
H,:6=0 against §0 with data dependent allocation rule [HA]. When H, is rejected, we
are interested in estimating the value of & based on the data collected so far. The problem
of estimating § after sequential testing has been considered by Siegmund (1978), Takahashi
(1987), Woodroofe and Keener (1987), where they have utilized the non-linear renewal theory
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TABLE 4
Regression case with $=0.5, unknown variance
b=2.95, K=49 (M,N >10)
Pairwise sampling=1st raw, Hayre’s rule=2nd raw (d=20)

é H, H, H, EM) E(N) E(M+N) Risk ax® /oyt
0.02 0.97 0.01 114.3 114.3 228.6 228.6 1.17
0.0 1.18
0.03 0.94 0.03 120.4 121.6 242.0 242.0 1.16
1.17
0.01 0.87 0.12 109.6 109.6 219.2 657.4 1.17
0.2 1.17
0.00 0.85 0.15 166.6 83.8 250.4 585.5 1.20
1.13
0.00 0.44 0.56 84.6 84.6 169.2 845.9 1.13
0.4 1.14
0.00 0.44 0.56 164.1 58.4 222.5 689.9 1.18
1.10
0.00 0.05 0.95 52.4 52.4 104.8 734.1 1.09
0.6 1.09
0.00 0.04 0.96 97.0 29.5 126.5 480.0 1.11
1.00
0.00 0.00 1.00 294 29.4 58.8 528.8 1.04
0.8 1.04
0.00 0.00 1.00 62.6 18.4 81.0 375.6 1.10
0.99
0.00 0.00 1.00 20.9 20.9 41.8 45818 1.03
1.0 1.02
0.00 0.00 1.00 40.6 13.6 54.2 326.4 1.03
0.97

to approximate the excess over the boundary. In this section, however, we shall use the
Brownian motion W(¢) to approximate the original process Zm,», which is tantamount
to disregarding the excess over the boundary. As has been pointed out by several authors,
Brownian approximation usually does not give us a good numerical accuracy [Siegmund
(1985), Ch. 3], which is the consequence of disregarding the excess over the boundary. But
in this case, the situation is much better. After having observed xy, . . ., xn and y, . . .,
Ya, if We take one more x sample (y sample), then the average increment would be [n2/(m+n)
m+n+1]s (m¥m+n)(m+n+1)]8). This is substantially smaller than § when m>n
(n>» m), which may explain the good approximation we have below (see Table 5).

As in the previous sections, we let {W(z), 1=0} denote the Brownian motion with drift
& and variance 1 per unit time. For 5>0 we shall define a stopping time

(13) T=inf{t>0; |W(t)|=>b vV 1} .
Then the continuous time analogue of the repeated signiffcance test for § =0 would be
(14) Reject Hy: 6=0 iff T<K

for some given constant K>0.
If T< K, then the naive estimator for § would be

(15) X=wT,



1987] SOME THOUGHTS IN SEQUENTIAL TWO SAMPLE PROBLEMS 179

which, however, has a serious upward (downward) bias when §>0 (6<0). In order to
obtain the correction term, Siegmund (1978) utilizes our intuitive feelings that small value
of the stopping time T are evidence in favor of large value of | §|. On the other hand Taka-
hashi (1987) considers the asymptotic expansion of the distribution of (W(T)—sT)/ v T to
get the correction terms.  Although in the discrete time case these two approaches are based
on completely different methods, they depend on the same technical result in this continuous
time problem.

Lemma 4 [Siegmund (1985), Ch. 4]. Let >0. Suppose b—oo k—co such that b/ ¥ k& =4,
remain bounded away from O and co. Then uniformly in § in the closed subintervals of
(0, )

(16) Pi{T<k} =1-9[ ¥ k (5o— )]+ {g] vk (3,— )3/ K} {1 +0(1)}

as b—oo,

TABLE 5
90%, confidence intervals of &
Simple two sample problem with Hayre’s rule (d=20)
b=2.95, K=49, K,=0

é Native estimator Siegmund’s Takahashi’s
0.2 0.077, 0.707 —0.094, 0.398
0.247 0.392 0.152
0.4 0.097, 0.856 0.113, 0.634
0.503 0.477 0.388
0.6 0.125, 1.124 0.222, 0.934
0.728 0.625 0.578
0.8 0.155, 1.404 0.286, 1.195
0.929 0.779 0.740
1.0 0.189, 1.670 0.351, 1.473
1.136 0.922 0.912
1.2 0.223, 1.954 0.455, 1.777
1.378 1.089 1.116
TABLE 6

90%; confidence intervals of &
Simple two sample problem with Hayre’s rule (d=20)
b=3.45, K=148, K,=0

[ Native estimator Siegmund’s Takahashi’s
0.2 0.122, 0.450 0.039, 0.321
0.200 0.286 0.180
0.4 0.192, 0.705 0.260, 0.658
0.466 0.449 0.459
0.6 0.270, 0.996 0.376, 0.960
0.681 0.633 0.668
0.8 0.356, 1.311 0.506, 1.275
0.918 0.833 0.890
1.0 0.441, 1.625 0.608, 1.586
1.144 1.033 1.097
1.2 0.504, 1.864 0.709, 1.845

1.346 1.184 1.277
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Theorem I. Under the same asymptotic relations of Lemma 4
W(T)—6T
P {_____
’ JT

Proof. Let T, denote the one sided version of T

an < 3] =0~ 4909 +o(b6™)

T,=inf{t=0; W(t)=b+ t}.
It is easily seen that for any §>0

Pi{T,>T}=0(b"%) b—oo.
Hence,
(W(Te)— 0T VT =b—5 VT .
Thus

Pf D= <) =Py (T> (6 =107 + 0679

—0(x) — - 4(x) +o(bT) breo.
Corollary 1.

(18)

as b—oo,

From (18) we may define (1 —a)x 100% confidence interval of § based on thejdata
{T,W(T)},

[W(T)/T—2arof VT, W(I)T+2aps/ v T1=1/(6 ¥T) on [T<K, W(T)=0]
(19)  [W(K)/K—zas) VK, WK)[K+2a5/ VK] on [T>K]

(WD) T—2aof VT, W) T+zarof VTI+1/(6 ¥V T) on [T<K, W(T)<0]
where O(z5)=1—4.

The numerical accuracy of (19) is compared with simulation results, Siegmund’s esti-
mator, and the naive estimator W(T)/T. On a whole Siegmund’s estimator (center of 905
confidence interval) performs better than (19) (W(T)/T—1/(b ¥ T)). But the width of the
intervals of Siegmund’s estimators are usually wider than (19). It suggests us to obtain
higher order asymptotic expansion in (17), which will be considered in the next project.
[cf. Takahashi (1987), Woodroofe and Keener (1987)].

W(T)— T 1) o
Pa{—‘/—T—— <x+ —b—} —&(x)+ (b1

HitoTsuBasHl UNIVERSITY
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