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Abstract 
 

A segmentation strategy to price different groups of 

American standard Put options with different methods is 

presented and discussed. The method, which exploits the 

properties of the odd waves of the BI adjusted evaluations 

introduced by Gaudenzi and Pressacco, proves to be very efficient 

in particular, to price critical in the money options.  

 

 

1. Introduction 
 

The purpose of this paper is twofold: a methodological critique 

to the statistical procedures usually applied to test the efficiency of 

pricing methods of standard American options, and on the basis of this 

critique, to propose a new pricing method which is able to greatly 

enhance the precision speed efficiency of the best estimation methods 

known, that is the BBSR of Broadie – Detemple [3] and the BIR of 

Gaudenzi – Pressacco [5], which are both binomial based tree 

methods.  

The best practice to verify efficiency of methods to price 

American Put options (or other types of exotic options lacking closed 

formulas) is to evaluate the Mean Relative Error (MRE) and/or the 

Root Mean Squared Relative Error (RMSRE) on a large sample of 

options selected from a population with convenient parameters. 

As we shall see later, even very large samples do not grant 

reliability of the results. Indeed, it happens that the magnitude of 

errors and their volatility are strongly correlated with the relevance of 

the early exercise opportunity (with the deepness of the American 

ha
l-0

05
78

98
9,

 v
er

si
on

 1
 - 

24
 M

ar
 2

01
1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6835326?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hal.archives-ouvertes.fr/hal-00578989/fr/
http://hal.archives-ouvertes.fr


 2

quality of the options); and if the percentage of options belonging to 

the decisive critical groups is too small, the results of the sample quite 

likely give unreliable volatile results, depending of the length of the 

tree and on the key parameters of the population (time to maturity and 

risk free interest rate). We will provide empirical evidence of these 

facts. 

Before going on, we clarify that a good index of the American 

quality of an option is the ratio between (a reliable estimate of) the 

American price of the option and the Black – Scholes [1] price of the 

European twin, henceforth the characteristic ratio (C.R.) of an option. 

And we will use the C.R. as a proper basis to divide American options 

in different groups. 

This is the bridge to the second goal of our paper: in principle, 

any group of options could be priced according to the estimation 

method which best fits the subgroup: the road to leave a uniform 

strategy for any option in favour of a segmentation strategy is open. 

In Gaudenzi – Pressacco [5] a segmentation based on applying 

longer trees than the standard to critical options, that is those with 

C.R. greater than 1.5, has been proposed, showing promising results in 

term of precision speed trade off. 

Here on the contrary, we are going to propose a different 

segmentation strategy with new methods which greatly enhance the 

precision for various groups of IN and OUT options; the most 

important being the one of IN options with C.R. greater than 1.4 

which are responsible of the relevant part of the errors. As we shall 

see, this class of options is priced exploiting an unexpected 

characteristic of the waves of the odd BI, Binomial Interpolated 

adjusted evaluations introduced by Gaudenzi – Pressacco. For these 

options there are high frequency waves, whose local maxima are from 

the very early (for low values of the length of the tree) quite stable and 

very close to the true American value, so that making recourse to the 

local maxima, we will obtain, without increasing the computational 

time, estimates much more precise than those of BIR and BBSR. This 

is undoubtedly the main result of the paper. Minor improvements of 

the efficiency will be presented for other groups of options. The plan 

of the paper is as follows: chapter 2 gives a short recall of BBSR and 
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 3

BIR; chapter 3 offers a discussion of a precision test of BIR and 

BBSR on a random sample of 5.000 options. A different sample of 

1.000 options with parameters of the population chosen so as to 

increase the relevance of the American quality of the options is given 

in chapter 4. The new segmentation strategy is presented in chapter 5 

along with numerical results that confirm its great efficiency.  

 

2. BBSR and BIR 
 

The BBSR method [3] is a binomial based method to price 

standard American options, which applies Richardson extrapolation to 

couples of adjusted binomial values. Given the length, n of the 

binomial tree, BBS(n) denotes the value obtained through the 

application of the ordinary binomial backward procedure [4], 

modified in that at every node of the last but one step of the tree, the 

Black – Scholes (BS) value replaces the usual binomial continuation 

value. The Richardson extrapolation is then applied to couples of BBS 

values of the same parity; more precisely given n even, to BBS(n), 

BBS(2n) or to BBS(n – 1), BBS(2n –1 ). We denote by BBSR(2n) or 

respectively BBSR(2n – 1) the values obtained through this procedure. 

For instance, BBSR(200) is obtained applying Richardson 

extrapolation to the couple BBS(100), BBS(200). 

It is important to note that the replacement of a BS value at the 

last but one step, makes almost negligible the differences between 

BBS(n) and BBS(n – 1), so as even or odd evaluations give (almost) 

the same results and the parity differences disappear. This in turn 

implies the same consequence also for the BBSR even and odd 

evaluations. 

Also the BIR method is a binomial based method which applies 

the same Richardson extrapolation logic to couples of adjusted 

binomial values BI(n), BI(2n) or respectively BI(n – 1), BI(2n – 1). 

But the adjustment follows a strategy inspired by the desire to escape 

from the evaluation bias induced by the so called strike specification 

error. To reach this goal we compute, given n, a set of ten pure 

binomial values of ten options having computational strikes 

corresponding exactly to the ten nodes of the tree, lying symmetrically 
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 4

around the contractual strike. Intuitively, these evaluations are 

unaffected by strike specification errors, and may be used to 

interpolate at the contractual strike to obtain an adjusted binomial 

value BI(n), in turn unaffected by an error of this type. The sequences 

BI(n) are generally quite different according to the parity, but 

surprisingly this difference washes out when we pass to apply the 

Richardson extrapolation, thus obtaining BIR(2n) values almost 

equivalent to BIR(2n – 1).  

We do not enter in technical details concerning the many 

problems to be solved to reach computational efficiency of BIR (see 

[5]), but we want to remark here that the computational time needed to 

compute BIR(n) or BBSR(n) are quite similar for any n, except for the 

lowest values of n when BIR seems to be slightly faster. Then 

summing up, we may safely say that we can meaningfully compare 

the precision of BIR(n) and BBSR(n), provided the computational 

speed is, given n, almost the same.  

To test the efficiency of BIR and BBSR in pricing American 

options, a standard test is usually applied, based on the computation of 

the (absolute value of) the relative errors, that is normalized deviations 

from a reliable benchmark (pure binomial at 24.000 steps), for any 

options of a large (at least 2.500) random sample of American options. 

The sample is selected randomly from a population with standard 

parameters, and the absolute values of the errors are summarized by 

the Mean Relative Error (MRE) and/or by the Squared Root of the 

Mean Quadratic Error (RMSRE). We cast serious doubts on the 

reliability of this procedure. A deeper analysis of the point follows in 

the next chapter.  

 

3. An efficiency test of BIR and BBSR (5.000 options) 

 

A first test of efficiency of BIR and BBSR was done using a 

sample of 5.000 options, originally studied in the dissertation of Ziani 

[6]. The options were selected randomly from a population with the 

following parameters: risk free interest rate uniform between 0 and 

0.1; volatility uniform between 0.1 and 0.6; strike uniform between 70 

and 100; time to maturity (years) uniform between 0 and 1 with 
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 5

probability 0.75 and uniform between 1 and 5 with probability 0.25; 

the initial price of the underlying, whose evolution is the classical 

lognormal is 100. Some of the selected options were discarded either 

because fully American (immediately exercisable) or because of their 

too low price, less than 0.50 (at BIR(200)). This way 4.196 were 

retained: 2.200 in the money and 1.996 out of the money. Then the 

options were grouped according to their C.R. (ratio between BIR(200) 

and the BS value of the European twin) in nine classes, as reported in 

Table 1.  

 

Table 1 

CLASS C.R.  IN NUMBER IN % OUT NUMBER OUT % 

1 1,00 - 1,10 1708 77,6 1663 83,3 

2 1,10 - 1,15 169 7,7 95 4,8 

3 1,15 - 1,20 75 3,4 68 3,4 

4 1,20 - 1,25 57 2,6 51 2,6 

5 1,25 - 1,30 38 1,7 34 1,7 

6 1,30 - 1,40 55 2,5 42 2,1 

7 1,40 - 1,60 54 2,5 24 1,2 

8 1,60 - 2,00 32 1,5 11 0,6 

9 > 2,00 12 0,5 8 0,4 

 TOTAL 2200 100% 1996 100% 

 

Note that about 80% of the options belong to the first class with 

the lowest ratios, while on the other side, less than 5% of the options 

for IN and slightly more than 2% for OUT belong to the three classes 

with highest ratios. Table 2 reports, separately for IN and OUT 

options, the Global Relative Errors (GRE) of any group along with the 

respective Mean Relative Error for BIR(200) and BBSR(200). 
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Table 2 

 IN 

CLASS N. GRE BIR GRE BBSR MRE BIR MRE BBSR 

1 1708 1.427.740 4.907.554 836 2.873

2 169 821.848 1.039.522 4.863 6.151

3 75 571.115 655.752 7.615 8.743

4 57 696.918 800.315 12.227 14.041

5 38 944.816 770.746 24.864 20.283

6 55 823.632 1.487.429 14.975 27.044

7 54 2.814.751 1.979.862 52.125 36.664

8 32 3.178.378 2.557.737 99.324 79.929

9 12 2.627.194 1.680.603 218.933 140.050

TOTAL 2200 13.906.392 15.879.520 6.321 7.218

 OUT 

CLASS N. GRE BIR GRE BBSR MRE BIR MRE BBSR 

1 1663 4.383.412 14.086.001 2.636 8.470

2 95 520.661 1.146.070 5.481 12.064

3 68 306.920 647.521 4.514 9.522

4 51 395.209 529.139 7.749 10.375

5 34 289.053 562.506 8.502 16.544

6 42 670.916 949.907 15.974 22.617

7 24 809.633 906.592 33.735 37.735

8 11 337.171 1.059.771 30.652 96.343

9 8 2.509.819 2.136.950 313.727 267.119

TOTAL 1996 10.222.794 22.024.457 5.122 11.034

      

  GRE BIR GRE BBSR MRE BIR MRE BBSR 

TOTAL 4196 24.129.186 37.903.977 5.751 9.034 

Global Relative Error (GRE 100 - 200) and Mean Relative Error (MRE 100 – 200), times 810−   

 

Some comments: a) the total error GRE BIR coming from 4.196 

options is less than 2/3 that of BBSR, but is less than 1/2 for the OUT 

and 0,88 for the IN, which seems to imply at first sight that BIR is 

surely much better than BBSR to price OUT options, but only slightly 

better to price IN options; b) 62% of the global error of the IN options 

for BIR comes from the less than 5% options with greatest C.R., while 

respectively 25% of the global OUT error comes from the less than 

0,5% of the options of the extreme class with the biggest C.R. On the 
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 7

other side, 56% of the total (IN + OUT) BBSR error comes from the 

first two classes with lowest C.R.; c) looking more carefully at the 

MRE values, they seem to denote a clear superiority of BIR in the first 

groups, especially in class 1, both for IN and OUT options. For the 

other groups the behaviour is different for IN, where there is a strong 

superiority of BBSR in the upper classes, while for OUT BBSR 

prevails only in class 9; d) despite the variability of the MRE values, 

there is a character of the distribution of errors common to BIR and 

BBSR: a strong correlation between the C.R. and the MRE. Except for 

a very few cases the average error is a monotone increasing function 

of the C.R.  

Comments and conclusions would be very different once we 

use, as a measure of efficiency, RMSRE instead of MRE.  

To appreciate this claim let’s look at the following table. 

 
Table 3 

100 - 200 IN OUT 

CLASS 

MRE BIR /    

MRE BBSR 

RMSRE BIR / 

RMSRE BBSR 

MRE BIR /    

MRE BBSR 

RMSRE BIR / 

RMSRE BBSR 

1 0,29 0,44 0,31 0,39 

2 0,79 0,85 0,45 0,51 

3 0,87 0,94 0,47 0,55 

4 0,87 0,74 0,75 0,78 

5 1,23 1,21 0,51 0,59 

6 0,55 0,62 0,71 0,75 

7 1,42 1,38 0,89 0,81 

8 1,24 1,21 0,32 0,32 

9 1,56 1,68 1,17 0,98 

ALL  0,88 1,41 0,46 0,85 

 
It may be immediately seen that the overall index of quadratic 

errors (RMSRE) is much more in favour of BBSR than the index of 

average errors (MRE). This comes from the errors of the upper classes 

which are largely the most influential on the overall index and where 

we find the highest ratios of the sample. 

To evaluate the structural reliability of these results, we look for 

data coming from the same test applied to two other different lengths 
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 8

of the tree, doubling or respectively multiplying by four the original 

(100 – 200) steps of the tree. Keeping account of the small number of 

OUT options belonging to classes 8 and 9, we have chosen to put 

together in a single group (8 for the future) these options. 

 

Table 4 

200 - 400 IN OUT 

CLASS 

MRE BIR /    

MRE BBSR 

RMSRE BIR / 

RMSRE BBSR 

MRE BIR /    

MRE BBSR 

RMSRE BIR / 

RMSRE BBSR 

1 0,39 0,51 0,36 0,40 

2 0,76 0,87 0,33 0,46 

3 0,80 0,78 0,45 0,50 

4 1,37 1,62 0,74 0,77 

5 1,01 0,94 0,65 0,66 

6 1,07 0,91 0,75 0,72 

7 0,79 0,87 1,03 1,04 

8 1,08 0,95 1,25 1,20 

9 1,11 1,02 /// /// 

ALL  0,84 0,98 0,52 1,01 

 
Table 5 

400 - 800 IN OUT 

CLASS 

MRE BIR /    

MRE BBSR 

RMSRE BIR / 

RMSRE BBSR 

MRE BIR /    

MRE BBSR 

RMSRE BIR / 

RMSRE BBSR 

1 0,82 0,75 0,71 0,63 

2 0,75 0,74 0,41 0,46 

3 0,92 1,01 0,44 0,47 

4 1,10 1,24 0,51 0,55 

5 0,79 0,67 0,71 0,71 

6 0,85 0,72 0,94 0,90 

7 1,10 1,14 0,86 0,88 

8 0,66 0,66 1,10 1,61 

9 0,61 0,59 /// /// 

ALL  0,79 0,68 0,74 1,37 

 

Comments: a) OUT 200 – 400: at the MRE level things are 

more or less as in the shorter tree but at RMSRE there is a draw; b) 

OUT 400 – 800: once more on average the best results are that of BIR, 
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but the quadratic error favours BBSR; a result totally driven by class 8 

which confirms its over helming importance. Note that it is the only 

class where BBSR beats BIR in quadratic errors. Thus less than 20 

options out of 1996 decide the precision of the method; c) IN 200 – 

400: while class 1 (remember with almost 80% of the options) 

confirms the strong superiority of BIR, things change dramatically in 

the other classes, where there is more equilibrium except for class 4, 

where BBSR largely dominates. Equilibrium prevails at the overall 

level; d) IN 400 – 800: here, results are completely reversed compared 

with those of the short tree. While the superiority of BIR in class 1 

diminishes, in the upper classes there is now an unequivocal 

superiority of BIR both at the MRE and at the RMSRE level. This 

determines an overall large superiority of BIR. 

The overall results are summarized once more in Table 6. 

 

Table 6 

 IN OUT 

 
MRE BIR /        

MRE BBSR 

RMSRE BIR / 

RMSRE BBSR 

MRE BIR /             

MRE BBSR 

RMSRE BIR /             

RMSRE BBSR 

100 - 200 0,88 1,41 0,46 0,85 

200 - 400 0,84 0,98 0,52 1,01 

400 - 800 0,79 0,68 0,74 1,37 

 
It is not easy to give a synthetic comment of these results. An 

increase of the length of the trees seems to act in favour of BIR in the 

case of IN options, but just the opposite happens for OUT options.  

At the MRE level anyway, BIR dominates uniformly and 

unequivocally both for IN and OUT options. At RMSRE level on the 

contrary, there is a puzzling behaviour: short tree IN and long OUT in 

favour of BBSR; short OUT and long IN in favour of BIR; in the 

middle break – even both for IN and for OUT.  

 

4. A test of efficiency on 1.000 options 

 
As we said the results are discouraging. When the efficiency is 

measured by RSMRE the ranking between BIR and BBSR seems to 
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 10

depend (randomly?) on the type of the option (IN or OUT) and on the 

length of the trees. Moreover a few options, in turn characterized by 

high volatile errors, seem to play a decisive role in the ranking.  

We decided then to pursue another test on a sample of 1.000 

options (500 IN and 500 OUT) selected randomly from a different 

population. Indeed, some of the parameters were changed so as to 

enhance the American quality of the options: more precisely the risk 

free rate is now uniform between 0.04 and 0.10, and time to maturity 

is uniform between 1 and 5 (with probability 1). Moreover the strike is 

maintained uniform between 100 and 130 for the IN and between 70 

and 100 for the OUT. No options were discarded among the OUT, 

while among the IN 451 survived as not immediately exercisable. The 

grouping according to the C.R. is given by the following table. 

 

Table 7 

CLASS CR  IN NUMBER IN % OUT NUMBER OUT % 

1 1,00 - 1,10 71 15,7 143 28,6 

2 1,10 - 1,15 64 14,2 122 24,4 

3 1,15 - 1,20 69 15,3 66 13,2 

4 1,20 - 1,25 44 9,7 48 9,6 

5 1,25 - 1,30 47 10,4 52 10,4 

6 1,30 - 1,40 50 11,1 28 5,6 

7 1,40 - 1,60 41 9,1 31 6,2 

8 1,60 - 2,00 39 8,6 8 1,6 

9 > 2,00 26 5,8 2 0,4 

 TOTAL 451 100% 500 100% 

  

Table 8 reports, separately for IN and OUT options, the Global 

Relative Errors (GRE) of any group along with the respective Mean 

Relative Error for BIR(200) and BBSR(200). 
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Table 8 

 IN 

CLASS N. GRE BIR GRE BBSR MRE BIR MRE BBSR 

1 71 104.801 342.065 1.476 4.818

2 64 148.472 305.099 2.320 4.767

3 69 452.372 454.743 6.556 6.590

4 44 596.054 437.856 13.547 9.951

5 47 792.895 669.613 16.870 14.247

6 50 639.835 1.208.913 12.797 24.178

7 41 1.928.379 1.707.743 47.034 41.652

8 39 3.471.590 3.095.332 89.015 79.367

9 26 5.867.809 6.989.677 225.685 268.834

TOTAL 451 14.002.207 15.211.041 31.047 33.727

      

 OUT 

CLASS N. GRE BIR GRE BBSR MRE BIR MRE BBSR 

1 143 255.539 1.203.782 1.787 8.418

2 122 408.325 1.013.918 3.347 8.311

3 66 377.038 555.352 5.713 8.414

4 48 417.170 446.947 8.691 9.311

5 52 286.350 780.874 5.507 15.017

6 28 460.196 559.226 16.436 19.972

7 31 1.626.781 1.072.803 52.477 34.607

8 8 415.057 924.405 51.882 115.551

9 2 389.382 324.897 194.691 162.449

TOTAL 500 4.635.838 6.882.204 9.272 13.764

      

  GRE BIR GRE BBSR MRE BIR MRE BBSR 

TOTAL 951 18.638.045 22.093.245 19.598 23.232 

Global Relative Error (GRE 100 - 200) and Mean Relative Error (MRE 100 – 200), times 810−    

 

Comments: a large part of the total error comes from the IN 

options (75% for BIR 68% for BBSR). Moreover class 9 of the IN 

alone counts for more than the global OUT errors both for BIR and 

BBSR, which confirms the decisive role of the IN options with the 

largest C.R. More generally the IN options with C.R. > 1.4 cause over 

60% of the total (IN + OUT) error of BIR, and over 53% of the total 

error of BBSR.  
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 12

For a deeper information about errors let’s look at the following 

tables, which report both for MRE and for RSMRE the ratios between 

BIR and BBSR errors.   

 

Table 9 

100 - 200 IN OUT 

CLASS 

MRE BIR /    

MRE BBSR 

RMSRE BIR / 

RMSRE BBSR 

MRE BIR /    

MRE BBSR 

RMSRE BIR / 

RMSRE BBSR 

1 0,31 0,34 0,21 0,26 

2 0,49 0,49 0,40 0,49 

3 0,99 0,94 0,68 0,67 

4 1,36 1,07 0,93 0,87 

5 1,18 1,14 0,37 0,40 

6 0,53 0,50 0,82 0,86 

7 1,13 1,11 1,52 1,30 

8 1,12 1,02 0,45 0,54 

9 0,84 0,94 1,20 1,05 

ALL  0,92 0,95 0,67 0,85 

 

A comparison with the analogue table 3 would reveal that there 

are big differences in the ratios in the classes 2, 4, 7 and 9 for the IN, 

and in class 7 for the OUT. The overall effect is still clearly in favour 

of BIR for the OUT and has become slightly in favour of BIR for the 

IN, an effect due largely to a dramatic change in the class 9.  

Now we will offer, always with reference to our new sample of 

1.000 options, the same ratios as before also for the other standard 

lengths of the tree. 
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Table 10 

200 - 400 IN OUT 

CLASS 

MRE BIR /    

MRE BBSR 

RMSRE BIR / 

RMSRE BBSR 

MRE BIR /    

MRE BBSR 

RMSRE BIR / 

RMSRE BBSR 

1 0,27 0,31 0,31 0,36 

2 0,56 0,59 0,31 0,38 

3 0,63 0,64 0,40 0,48 

4 1,05 1,21 0,72 0,75 

5 1,09 1,05 0,90 0,84 

6 1,18 1,10 0,73 0,63 

7 1,03 1,01 0,80 0,84 

8 1,24 1,23 1,16 1,21 

9 0,90 0,79 /// /// 

ALL  0,99 0,84 0,63 0,97 

 

Table 11 

400 - 800 IN OUT 

CLASS 

MRE BIR /    

MRE BBSR 

RMSRE BIR / 

RMSRE BBSR 

MRE BIR /    

MRE BBSR 

RMSRE BIR / 

RMSRE BBSR 

1 0,59 0,56 0,56 0,52 

2 0,42 0,44 0,46 0,51 

3 0,75 0,74 0,44 0,49 

4 1,14 1,92 0,54 0,61 

5 1,11 1,00 0,56 0,60 

6 1,05 1,08 0,95 0,99 

7 1,30 1,08 0,93 1,07 

8 1,23 1,29 0,62 0,71 

9 1,15 1,25 /// /// 

ALL  1,14 1,25 0,63 0,75 

 

Let’s try to give a synthesis of this enormous and someway 

controversial amount of data regarding our two samples: it seems that 

for OUT options BIR is uniformly and unequivocally better except for 

options with C.R. greater than 1.40, where there is no clear ranking.  

For IN options there are three layers: for C.R. lesser than 1.20 

BIR is unequivocally better, between 1.20 and 1.40 BBSR seems to be 

uniformly even if slightly better; over 1.40 there is a big variability of 

the ranking, but in any case, this is the source of the main and 
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dominant errors and, at the end of the story, the driver of the overall 

ranking.  

It is surely worth then to concentrate our attention on the 

options with C.R. > 1.40, henceforth critical options, especially the IN 

ones. Indeed, as we shell see in the next chapter, we shall be able to 

present a new pricing method which strongly decreases the errors in 

comparison with both BIR and BBSR for these critical options.  

 

5. A new efficient method to price critical options 

 
A careful study of the characteristics of the curves of the BI and 

BBS adjusted binomial values (as a function of the length of the tree), 

suggested us a more sophisticated segmentation strategy to price 

critical options.  

The sophistication lies in that we leave the standard intervals 

used up to this point, and look also for strategies different from the 

extrapolation BIR and BBSR. More precisely, we suggest to group 

options according to the following table: 

 

Table 12 

IN OUT 

CLASS C.R.  CLASS C.R.  

1 1,00 - 1,17 1 1,00 - 1,40 

2 1,17 - 1,25 2 1,40 - 1,45 

3 1,25 - 1,30 3 1,45 - 1,53 

4 1,30 - 1,40 4 > 1,53 

5 > 1,40 /// /// 

 

We found that for each one of these classes a different pricing 

method may be efficiently applied at least for trees of short or medium 

length (that is up to 400 steps). Precisely in addition to the standard 

BIR(2n) and BBSR(2n), we will use BI(2n – 1), BBS(2n – 1) and 

BIM(n – 1). 

 To understand the meaning of these symbols, the idea is that to 

make comparisons more easy, the methods should spend, more or less, 

the same computational time of the reference one, which is the time 
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needed to compute BIR or BBSR for a given extrapolation (say e.g. 

100 – 200). After that, if BIR(2n) is the reference, BBS(2n – 1) (recall 

that it is more or less equal to BBS(2n)) and BI(2n – 1) are simply the  

adjusted odd binomial evaluations introduced in second paragraph; the 

time needed to compute BBS(2n – 1) or BI(2n – 1) is thus 4/5 of the 

reference time. BIM(n – 1), in turn, denotes the local maximum of the 

odd BI evaluations near (n – 1). Indeed, we checked empirically that 

the average number of steps needed to localize and compute BIM(n – 

1) is about 5, which means a computational time close to the 

reference.  

To understand the reasons to apply different pricing method to 

different groups of options, let’s begin with IN options.  

For weak American options, say with C.R. < 1.17, the adjusted 

BI curves display, with same minor waves, the same monotonic 

regular behaviour of the at the money European options,  allowing 

thus to reach high speed, high precision pricing through Richardson 

extrapolation. But when the American quality of the option becomes 

relevant, with higher values of the C.R., the waves become 

increasingly more predominant, so that the extrapolation does no more 

work with the same precision speed efficiency. Apparently this means 

that binomial based methods should be satisfied either with high 

precision but with relatively low speed, or with high speed but at the 

expense of precision. Luckily this is not true: especially for strong 

American options (that is with C.R. > 1.3), that is those options where 

Richardson extrapolation gives relatively big errors, we found that a 

proper use of the odd evaluations adds a lot of precision to binomial 

based pricing without increasing the computational time. More 

precisely, we keep account of the fact that within the interval 1.3 – 1.4 

the odd BI curves are high frequency and amplitude waves, oscillating 

around the true value so that a simple BI(2n – 1) evaluation gives 

results much more precise, than (the more time expensive) BIR or 

BBSR(2n). For very strong IN American options (that is with C.R. > 

1.4), that is those responsible of the large part of the errors of our 

samples, the odd BI curves are high frequency and amplitude waves 

whose relative maxima are, from the very early quite stable and very 

close to the true American value. We verified empirically that the 
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average number of computations needed to localize and compute 

BIM(n – 1) is more or less the one needed to compute BIR or 

BBSR(2n), but especially for short trees, the evaluations of BIM(n – 

1) are dramatically more precise than those obtained through BIR or 

BBSR. Keeping account of the fact that the critical options, as 

repeatedly said previously, are responsible of the most relevant portion 

of the errors, the new segmentation method reveals then much more 

efficient than BIR or BBSR. As for OUT options, the positive results 

obtained from segmentation are quite smaller. Indeed, while BIR 

proves to be surely the better method for C.R. < 1.40, BIR or BIM 

turn out to be advantageous only for OUT with C.R. between 1.40 – 

1.45 or respectively 1.45 – 1.53, while for the options with the highest 

C.R., still responsible of the largest errors (among the OUT), the odd 

big waves follow an increasing trend, so that nothing better than the 

extrapolation can be made. As for the superiority of BIR or BBSR it 

remains an open question to be tested with larger samples of critical 

OUT options than the one found with our parameters.  

An evidence of the results comparing the efficiency of the new 

segmentation strategy with the classical ones, both at the level of each 

of the new non standard intervals and at the overall level, for the 2.200 

and the 451 samples previously introduced is given in the following 

tables. Short (100 – 200) and medium (200 – 400) trees will be 

examined; at the longer tree we found that, as expected, the traditional 

extrapolation strategies tend to recover the best efficiency.  

 

Table 13 

 MRE 

IN 451 < 1.17 1.17 - 1.25 1.25 - 1.30 1.30 - 1.40 > 1.40 TOTAL 

BIR (100 - 200) 2.059 10.947 16.870 12.797 106.300 31.047 

BBSR (100 - 200) 4.919 8.513 14.247 24.178 111.252 33.727 

BIM (99) /// /// /// /// 57.895 /// 

BBS (199)  /// 5.907 16.346 /// /// /// 

BI (199) /// /// /// 10.517 /// /// 

BIR + BIM 2.059 10.947 16.870 12.797 57.895 19.670 

SEGMENTATION 2.059 5.907 14.247 10.517 57.895 18.150 
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 RMSRE 

IN 451 < 1.17 1.17 - 1.25 1.25 – 1.30 1.30 - 1.40 > 1.40 TOTAL 

BIR (100 - 200) 2.593 12.671 20.383 15.539 184.554 90.052 

BBSR (100 - 200) 5.607 11.964 17.931 30.968 192.560 94.308 

BIM (99) /// /// /// /// 97.863 /// 

BBS (199)  /// 7.437 18.402 /// /// /// 

BI (199) /// /// /// 13.324 /// /// 

BIR + BIM 2.593 12.671 20.383 15.539 97.863 48.529 

SEGMENTATION 2.593 7.437 17.931 13.324 97.863 48.140 

       

 MRE 

IN 2200 < 1.17 1.17 - 1.25 1.25 - 1.30 1.30 - 1.40 > 1.40 TOTAL 

BIR (100 - 200) 1.334 10.334 24.864 14.975 87.962 6.321 

BBSR (100 - 200) 3.290 11.818 20.283 27.044 63.451 7.218 

BIM (99) /// /// /// /// 35.801 /// 

BBS (199)  /// 6.655 12.406 /// /// /// 

BI (199) /// /// /// 10.486 /// /// 

BIR + BIM 1.334 10.334 24.864 14.975 35.801 5.507 

SEGMENTATION 1.334 6.655 12.406 10.486 35.801 5.218 

       

 RMSRE 

IN 2200 < 1.17 1.17 - 1.25 1.25 - 1.30 1.30 - 1.40 > 1.40 TOTAL 

BIR (100 - 200) 3.071 12.743 30.250 21.173 138.851 30.015 

BBSR (100 - 200) 4.423 16.874 25.029 33.895 92.914 21.288 

BIM (99) /// /// /// /// 65.340 /// 

BBS (199)  /// 8.660 14.056 /// /// /// 

BI (199) /// /// /// 14.082 /// /// 

BIR + BIM 3.071 12.743 30.250 21.173 65.340 15.466 

SEGMENTATION 3.071 8.660 14.056 14.082 65.340 14.790 
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Table 14 

 MRE 

IN 451 < 1.17 1.17 - 1.25 1.25 - 1.30 1.30 - 1.40 > 1.40 TOTAL 

BIR (200 - 400) 852 2.555 6.059 10.106 44.309 12.971 

BBSR (200 - 400) 1.808 3.141 5.543 8.549 43.399 13.124 

BIM (199) /// /// /// /// 29.228 /// 

BBS (399)  /// 2.900 7.033 /// /// /// 

BI (399) /// /// /// 5.780 /// /// 

BIR + BIM 852 2.555 6.059 10.106 29.228 9.426 

SEGMENTATION 852 2.555 5.543 5.780 29.228 8.893 

       

 RMSRE 

IN 451 < 1.17 1.17 - 1.25 1.25 - 1.30 1.30 - 1.40 > 1.40 TOTAL 

BIR (200 - 400) 1.138 3.791 7.026 12.067 72.782 35.632 

BBSR (200 - 400) 2.059 3.867 6.681 10.931 87.026 42.454 

BIM (199) /// /// /// /// 52.241 /// 

BBS (399)  /// 3.752 7.780 /// /// /// 

BI (399) /// /// /// 6.877 /// /// 

BIR + BIM 1.138 3.791 7.026 12.067 52.241 25.807 

SEGMENTATION 1.138 3.752 6.681 6.877 52.241 25.586 

       

 MRE 

IN 2200 < 1.17 1.17 - 1.25 1.25 - 1.30 1.30 - 1.40 > 1.40 TOTAL 

BIR (200 - 400) 600 4.661 5.994 10.246 34.498 2.616 

BBSR (200 - 400) 1.236 4.060 5.933 9.605 34.502 3.128 

BIM (199) /// /// /// /// 17.029 /// 

BBS (399)  /// 3.375 5.494 /// /// /// 

BI (399) /// /// /// 4.907 /// /// 

BIR + BIM 600 4.661 5.994 10.246 17.029 1.857 

SEGMENTATION 600 3.375 5.494 4.907 17.029 1.645 
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 RMSRE 

IN 2200 < 1.17 1.17 - 1.25 1.25 - 1.30 1.30 - 1.40 > 1.40 TOTAL 

BIR (200 - 400) 1.257 7.795 7.734 12.642 52.262 11.430 

BBSR (200 - 400) 1.786 5.572 8.247 13.905 53.012 11.631 

BIM (199) /// /// /// /// 31.370 /// 

BBS (399)  /// 4.087 6.343 /// /// /// 

BI (399) /// /// /// 5.948 /// /// 

BIR + BIM 1.257 7.795 7.734 12.642 31.370 7.309 

SEGMENTATION 1.257 4.087 6.343 5.948 31.370 6.894 

 

Table 15 

 MRE 

OUT 500 < 1.40 1.40 - 1.45 1.45 - 1.53 > 1.53 TOTAL 

BIR (100 - 200) 4.083 51.438 52.963 71.594 9.271 

BBSR (100 - 200) /// 28.446 39.685 95.760 13.764 

BIM (99) /// /// 13.169 /// /// 

BI (199) /// 8.237 /// /// /// 

BIR + BBSR 4.083 28.446 39.685 95.760 9.053 

BIR+BI+BIM+BBSR 4.083 8.237 13.169 95.760 7.839 

BIR+BI+BIM+BIR 4.083 8.237 13.169 71.594 7.114 

      

 RMSRE 

OUT 500 < 1.40 1.40 - 1.45 1.45 - 1.53 > 1.53 TOTAL 

BIR (100 - 200) 7.500 53.553 58.868 95.752 22.167 

BBSR (100 - 200) /// 33.834 49.447 123.976 26.225 

BIM (99) /// /// 19.862 /// /// 

BI (199) /// 9.981 /// /// /// 

BIR + BBSR 7.500 33.834 49.447 123.976 24.619 

BIR+BI+BIM+BBSR 7.500 9.981 19.862 123.976 22.926 

BIR+BI+BIM+BIR 7.500 9.981 19.862 95.752 18.427 
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 MRE 

OUT 1996 < 1.40 1.40 - 1.45 1.45 - 1.53 > 1.53 TOTAL 

BIR (100 - 200) 3.362 33.977 37.080 120.684 5.122 

BBSR (100 - 200) /// 30.465 33.863 140.974 11.034 

BIM (99) /// /// /// /// /// 

BI (199) /// 14.142 /// /// /// 

BIR + BBSR 3.362 30.465 33.863 140.974 5.345 

BIR+BI+BIM+BBSR 3.362 14.142 42.655 140.974 5.311 

BIR+BI+BIM+BIR 3.362 14.142 42.655 120.684 5.057 

      

 RMSRE 

OUT 1996 < 1.40 1.40 - 1.45 1.45 - 1.53 > 1.53 TOTAL 

BIR (100 - 200) 5.614 36.752 43.812 195.892 22.939 

BBSR (100 - 200) /// 35.041 43.988 215.564 26.899 

BIM (99) /// /// /// /// /// 

BI (199) /// 23.368 /// /// /// 

BIR + BBSR 5.614 35.041 43.988 215.564 25.042 

BIR+BI+BIM+BBSR 5.614 23.368 61.568 215.564 25.148 

BIR+BI+BIM+BIR 5.614 23.368 61.568 195.892 23.044 

 

Table 16 

 MRE 

OUT 500 < 1.40 1.40 - 1.45 1.45 - 1.53 > 1.53 TOTAL 

BIR (200 - 400) 1.830 10.092 11.815 24.686 2.990 

BBSR (200 - 400) /// 10.314 14.051 25.330 4.778 

BIM (199) /// /// 7.364 /// /// 

BI (399) /// 3.003 /// /// /// 

BIR + BBSR 1.830 10.314 14.051 25.330 3.073 

BIR+BI+BIM+BBSR 1.830 3.003 7.364 25.330 2.709 

BIR+BI+BIM+BIR 1.830 3.003 7.364 24.686 2.690 
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 RMSRE 

OUT 500 < 1.40 1.40 - 1.45 1.45 - 1.53 > 1.53 TOTAL 

BIR (200 - 400) 2.650 12.884 14.494 37.785 7.685 

BBSR (200 - 400) /// 11.645 16.883 33.456 7.937 

BIM (199) /// /// 10.913 /// /// 

BI (399) /// 3.616 /// /// /// 

BIR + BBSR 2.650 11.645 16.883 33.456 7.139 

BIR+BI+BIM+BBSR 2.650 3.616 10.913 33.456 6.593 

BIR+BI+BIM+BIR 2.650 3.616 10.913 37.785 7.260 

      

 MRE 

OUT 1996 < 1.40 1.40 - 1.45 1.45 - 1.53 > 1.53 TOTAL 

BIR (200 - 400) 1.475 9.039 17.385 52.146 2.216 

BBSR (200 - 400) /// 8.750 11.908 44.014 4.269 

BIM (199) /// /// /// /// /// 

BI (399) /// 5.645 /// /// /// 

BIR + BBSR 1.475 8.750 11.908 44.014 2.088 

BIR+BI+BIM+BBSR 1.475 5.645 20.127 44.014 2.116 

BIR+BI+BIM+BIR 1.475 5.645 20.127 52.146 2.217 

      

 RMSRE 

OUT 1996 < 1.40 1.40 - 1.45 1.45 - 1.53 > 1.53 TOTAL 

BIR (200 - 400) 2.246 10.611 20.938 70.540 8.351 

BBSR (200 - 400) /// 10.621 13.898 59.691 8.230 

BIM (199) /// /// /// /// /// 

BI (399) /// 11.001 /// /// /// 

BIR + BBSR 2.246 10.621 13.898 59.691 7.137 

BIR+BI+BIM+BBSR 2.246 11.001 31.470 59.691 7.387 

BIR+BI+BIM+BIR 2.246 11.001 31.470 70.540 8.501 

 

Comments: the values of the MRE or RMSRE give immediately 

an idea of the best strategy for any group of options. The segmentation 

strategy is the union of the best choices for each group.  

By BIR + BIM we denote the strategy consisting in applying 

BIR for IN options with C.R. < 1.40 and BIM for the other IN ones. It 

is clear that this simple segmentation is able to provide evaluations 

much more efficient than the traditional non segmented ones and only 
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a bit less efficient than a more sophisticated segmentation including 

BBS and BI for other intervals of C.R.  

For OUT options the gain from the segmentation is much 

smaller, even if the local efficiency of BI and BIM is promising; but 

BIR and BBSR are dominant where really there are the big errors 

(C.R. > 1.53).  
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