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INTRODUCTION 

A common approach to assessing the outcomes of health care is to obtain patient reported 

descriptions of health status across various dimensions and then to apply a standardised 

numerical scoring system. There are many different measures of health, including several 

hundred condition specific measures of health designed for use in specific medical 

conditions or groups of condition (Spilker et al, 1990), and a number of generic measures 

designed to cover the core dimensions of health that are relevant across all medical 

conditions.  Health measures can also be distinguished in terms of whether they generate 

a profile of dimension scores or a single index and if they produce a single index, 

whether or not the index has been derived using simple summation of item scores or by 

using preference weights obtained from patients or the general public (known as 

preference-based measures or multi-attribute utility scales).   

 

Patient reported measures of health have become widely used in clinical trials as primary 

or secondary outcomes.  There is little agreement on which specific instruments should 

be used for this purpose.  For assessing clinical efficacy, there is disagreement on 

whether to use a generic or condition specific measure, and between condition specific 

measures there is often disagreement amongst clinical researchers on the most 

appropriate instrument. As a result clinical trials around the world often use different 

measures for the same patient groups.  This presents a substantial barrier to the synthesis 

of evidence.   

 

Preference-based measures of health are necessary to generate the health state utility 

values required to calculate QALYs for assessing the cost effectiveness of interventions.  

These are usually based on generic instruments (e.g. EQ-5D) that permit comparisons 

between patient groups, though there are examples of condition specific preference-based 

measures (Revicki et al 1998).  Even for assessing clinical effectiveness, it could be 

argued that a preference-based index is necessary to deal with trade-offs made between 

outcomes. There has been a debate amongst health economists about the most appropriate 

preference-based generic measure to use in cost effectiveness analyses.  Whilst the EQ-

5D is the most widely applied in recent years (Brooks et al, 1996), the HUI3 (Feeny et al, 
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2002), QWB (Kaplan and Andersen, 1988), SF-6D (Brazier et al, 2002) and others 

continue to be used. However, different preference-based measures have been shown to 

generate different values on the same sample of patients (Marra et al, 2005; Feeny et al, 

2004; Barton et al, 2004).  Furthermore, many key clinical trials on the efficacy of new 

interventions do not have a generic measure and the recent FDA Guidance on using 

Patient Reported Outcome measures seems to further discourage the use of generic 

measures for pivotal trials designed for seeking licensing approval (FDA, 2006). This 

presents a barrier to populating economic models with the best evidence on effectiveness.   

 

One solution to the problem of having different measures of health has been to try to 

‘map’ between measures.  This can be done, for instance, by using the judgement of 

‘experts’. The use of judgement based methods, however, has been criticised for its 

arbitrariness (Coast, 1992). Furthermore, it does not involve any attempt to estimate the 

uncertainty around the mapping.   The validity of such mappings is questionable and the 

only way to test them is by empirically comparing the judgements against real data. 

Ultimately, a better approach is to estimate the relationship between the measures 

empirically by statistical inference. This approach involves estimating the relationship 

between a health measure and a generic preference-based measure (also known as ‘cross-

walking’ or estimating exchange rates between instruments) and requires the two 

measures to be administered on the same population.   

 

There are different estimation models that can be used in mapping studies (see Table 1, 

adapted from Tsuchiya et al, 2002).  Model (1) is the simplest additive model, which 

regresses the target measure (such as the EQ-5D) onto the total score of the starting 

measure (e.g. SF-36, HAQ, HAD etc.). This is also the most limiting specification since it 

assumes that the dimensions of the starting measure are equally important; all items carry 

equal weight; and response choices to each item lie on an interval scale (so for example 

the intervals between ‘all of the time’, ‘most of the time’, ‘some of the time’, ‘a little of 

the time’ and ‘none of the time’ are equal).  These assumptions can be relaxed by 

modelling either dimension scores (model 2), item scores (model 3), or item responses 

(model 4) as independent variables. For these models dimension and item scores will be 
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treated as continuous variables and item responses are modelled as discrete dummy 

variables (e.g. ‘all the time’ is one, other wise zero, and so forth). Using item responses 

can, however, result in a large number of independent variables (over 100 for SF-36) and 

so it may be useful to be selective in the items included in the model.  In this case, items 

can be excluded for having coefficients that are non-significant or counter-intuitive in 

their sign prior to estimating a model with item responses (model 4).   

 

The assumptions of a simple additive model can be relaxed by including squared terms 

for dimension or item scores and interaction terms.  Again these can generate a large 

number of variables and so researchers may also limit them to variables with significant 

main effects, at least for the item level models.  A more complex approach to modelling 

the relationship would be to estimate separate models for each dimension of the target 

instrument (such as the 5 EQ-5D dimensions) (i.e. models 5 and 6). For the EQ-5D this 

creates a dependent variable that can be treated as continuous (model 5), but is more 

accurately treated as a discrete variable (model 6).  These can be estimated using any of 

the previous 4 specifications. 

 

This paper presents a systematic review of current practice in mapping between non-

preference based measures and generic preference-based measures. It reviews the studies 

identified by a systematic search of the published literature and the grey literature. This 

review seeks to address the feasibility and overall validity of this approach, the 

circumstances when it should be considered and to bring together any lessons for future 

mapping studies.   

 

LITERATURE REVIEW 

Search 

A systematic literature search was carried out. Based on a few core papers identified by 

the research group a citation search was carried out using the Science Citation Index, 

Social Science Citation Index and Web of Science citation database. The citation search 

was undertaken both forwards and backwards. The forward search ensures that all papers 

that cite the core papers are reviewed. The backwards search ensures that all papers cited 
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by the core papers are reviewed. A key words search was also undertaken using the titles 

and abstracts in 15 electronic bibliographic databases covering biomedical and health-

related sciences, social science, and the grey literature. Key words were combinations of: 

‘mapping / cross walking’ and ‘EQ-5D / SF-36 / HUI / QWB / NHP / SIP / health status / 

health profile’. The following databases were searched: Cinahl, Cochrane Central 

Database of Controlled Trials (CENTRAL), Cochrane Database of Systematic Reviews 

(CDSR), DH-Data, Embase, Kings Fund, Medline, Medline Plus, NHS Database of 

Abstracts of Reviews of Effectiveness (DARE), NHS Economic Evaluations Database 

(NHS EED), NHS Health Technology Assessment (HTA) Database, OHE Health 

Economic Evaluations Database (HEED), Science Citation Index, Scopus, Social 

Sciences Citation Index, UK HESG. Where possible, the searches were not restricted by 

publication type, language, or date of publication. These searches were supplemented by 

contacting known experts in the field.  

 

Review 

The overall aims of the review were to examine the feasibility and validity of the 

mapping approach, the circumstances when it should be considered and to bring together 

any lessons for future mapping studies.  These questions were addressed by extracting 

data on 56 items listed in Table 2 on each model presented.  These items cover a 

description of the instruments used, the population completing the instruments, model 

specification, methods of estimation, model fit and predictive performance within and 

outside the estimation sample. In addition any important comments from the author(s) 

were noted.  Data extraction on all 28 papers was undertaken by a member of the 

research team and summarized in Excel using headings shown in Table 2 that had been 

agreed by all team members.  

 

Findings  

Studies included 

One thousand three hundred and eleven papers were identified. The number of relevant 

papers was reduced to 34 based on a review of abstracts. Among these 34 papers, 3 

papers were excluded as only conference abstracts could be found (after contacting the 
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authors). Another 3 papers were excluded because they were not based on empirical 

methods. This left a total of 28 papers for review that covered 119 different models.  A 

30-page Appendix tabulating all the estimation models is available on request from the 

corresponding author. 

 

Details of the 28 studies are presented in Table 3. Mapping between measures is a new 

research area with most papers (26 out of 28) published or produced after 2000, with the 

remaining 2 papers published in 1997 and 1998. Out of the 28 papers, 20 have been 

published in non-clinical journals including: Medical Decision Making (6 papers), Value 

in Health (3 papers), Health Economics (2 papers), Medical Care (2 papers), Quality of 

Life Research (2 papers); and the others (5 papers) were published in specific clinical 

journals. Out of the remaining 8, 3 were conference papers (with sufficient detail), 2 were 

published discussion papers and 3 were unpublished project reports. 

 

General description of studies  

Twenty-seven out of the 28 studies involved the mapping of a non-preference based 

measure of health (the “starting measure”) onto to a preference-based measure of health 

(the “target measure”); the exception being a study mapping between two preference-

based measures (SF-6D to EQ-5D). The most popular target measure used for mapping 

was the EQ-5D with 16 studies (15 used the UK MVH value set and one used the US 

value set), followed by HUI2/HUI3 with 6 studies, SF-6D with 5 studies, and QWB with 

one study. On the right hand side of the mapping equation, the most widely used starting 

measures were SF-12 (n=7) and SF-36 (n=5). The remainder consisted of various 

condition specific instruments intended to capture patient-perceived quality of life 

covering asthma, rheumatoid arthritis, osteoarthritis, overactive-bladder, irritable bowl 

syndrome, intermittent claudication, dental, dyspepsia, obesity, cancer and heart disease. 

One study mapped clinical measures onto EQ-5D in angina patients.   

 

The sample size (number of people giving responses) used in the mapping studies ranged 

from 98 to 23,547.  Clinical trials were the most common source of data. Respondents 

were also recruited from populations in the community, hospital and primary care. Six 
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studies used large panel survey data, such as the US Medical Expenditure Panel Survey 

and the Health Survey for England.   

 

Model specification 

The most widely used was the additive model.  Most studies used total, dimension and 

item scores as the independent variables and some entered dummy variables representing 

the level of each item. Out of the 119 models reviewed: 33 models included interaction 

terms; 19 models incorporated transformations of the main effect such as square terms; 6 

models included other health measures; 15 models included clinical measure; and 34 

models considered respondents’ personal characteristics, such as age, gender, race and 

income.  Quite modest or negligible improvements were achieved from increasing model 

complexity. Moving from total to dimension, to item level models or adding interaction 

and other terms also improved the model fit. Only rarely was a major impact on the range 

of scores being predicted and goodness of fit. One example is the mapping between 

IBDQ to EQ-5D where R2 increased from 0.45 to 0.69 after incorporating squared terms 

of dimension scores (Buxton, et al, 2007).  Furthermore, some studies included additional 

variables, such as other clinical indicators (Grootendorst et al, 2007; Buxton et al, 2007) 

and demographic variables (Brazier et al, 2004).  Only 4 studies used dimension scores or 

responses as the target measure and in all cases these were the 5 dimensions of the EQ-

5D (Tsuchiya et al, 2002; Edlin et al, 2002, Gray et al, 2004; 2006). 

 

Estimation 

Most mapping functions have been estimated by OLS, though some researchers have 

explored Generalised Linear Models with random effects, Adjusted Least Square 

Regression Model (ALS), Tobit Model, Censored Least Absolute Deviation Model 

(CLAD) and non-linear models.  For models with a discrete dependent variable (e.g. EQ-

5D dimension level) then researchers have used Ordinal Logit and Multi-nomial Logit 

regression models. These latter models generate a probability distribution across 

dimension levels and there is a subsequent stage of imputing a single level for calculating 

a single index value for the respondent. One way for doing this has been to choose the 
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highest probability level (Tsuchiya et al, 2002). In a recent study, researchers used a 

Monte Carlo procedure to select from the distribution (Gray et al, 2006). 

 

Performance 

Studies commonly report the model’s explanatory power in terms of adjusted R-Squared.  

Overall, models mapping a generic onto a generic preference-based measure (e.g. SF-

12/36 to EQ-5D, NHP to SF-6D, and SF-36 to QWB) achieved an R2 or adjusted R2 of 

more than 0.5 within sample. There was little reduction in the goodness of fit from testing 

the mapping function on samples randomly selected from the same data set as the 

estimation samples.   The fit of functions mapping from condition specific to generic 

measures is more variable. One of the poorest fitting models was for the Overactive 

Bladder Questionnaire (OABq) onto the SF-6D which achieved an adjusted R2 of 0.17 

(Roberts et a, 2005). One of the better models was between the International Weight 

Quality of Life Questionnaire (IWQoL) and the SF-6D that managed 0.51 (Brazier et al, 

2004). Figure 1 shows the distribution of R2 statistics for generic to generic measures and 

condition-specific to generic measures. Explanatory power, however, has little value in 

comparing models estimated using different methods of estimation (see below for details).   

 

Authors have also assessed performance in terms of the sign, significance and 

consistency of the estimated coefficients.  At least for main effects, coefficients should be 

negative (i.e. the more severe the health problem the lower the preference index) and the 

more severe the item levels in model (4) the larger the negative coefficient.  However, for 

some descriptive systems there is some ambiguity regarding the ordering of statements 

(e.g. between ‘your health limits you a little in bathing and dressing’ versus ‘your health 

limits you a lot in moderate activities’ in the SF-6D).  Furthermore, interaction terms 

would interfere with these orderings and so are not reliable.  For some models, item 

levels were merged to remove inconsistencies.     

 

Explanatory power is not a useful basis for assessing model performance, since the 

purpose of mapping functions is to predict values in other data sets.  A better method 

used in many of these studies has been to examine the difference between predicted and 
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observed values at either the aggregate level by calculating Mean Error (ME) or at the 

individual level by calculating the Mean Absolute Error (MAE) or the Root Mean 

Squared Error (RMSE). Models can also be compared in terms of the numbers or 

proportion of absolute errors greater than some cut-off (e.g. 0.05 or 0.10) or within 5% or 

10% of the observed value at the individual level. The mean error for the 119 models 

ranged from 0.0007 to 0.042 and was nearly zero for the OLS models (as would be 

predicted).  MAE at the individual level ranged from 0.0011 to 0.19 and RMSE ranged 

from 0.084 to 0.2.  These typically represented a percentage error of up to 15% of the 

overall scale of the dependent variable.    

 

The normality of prediction errors by the Jarque-Bera test, but this is not used in OLS 

models since these are unbiased by definition. What is potentially more important is the 

pattern of errors across the range of the dependent variable.  Only a few studies have 

examined this and some of those have found that the degree of error is not evenly 

distributed across the scale of the dependent variable.  This problem was shown in two 

studies, one using a condition specific (Tsuchiya et al, 2002) and the other a generic 

instrument (Gray et al, 2006) as the start measure. Overall, the level of error is far greater 

at the lower (or severer) end.  Gray et al (2006), for example, found that the MAE varied 

from 0.065 to 0.109 for EQ-5D index values from 0.7 to 1.00, but for values less than 0.7 

the MAE was over 0.30. Scatter plots have found that there was a tendency for EQ-5D 

models to over predict values at the lower end and under predict at the upper end of the 

EQ-5D. This was despite the inclusion of interaction and squared terms.  These papers 

also found that the predicted values from the mapping functions tend to have lower levels 

of variance than the original observed values. 

 

Model performance is often assessed on the same data set as that used to estimate the 

model and referred to in the literature as within-sample testing. Another strategy which 

was occasionally used is to estimate the model on a sub-sample of the full data (the 

‘estimation’ sample) and then to test the model on the remaining sample (the ‘validation’ 

sample).  These-out-of-sample tests found little reduction, if any, in the performance of 
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the models.  However, these tests do not examine the performance of the model in truly 

independent samples nor did they examine them across subgroups.  

 

DISCUSSION 

This review found 28 studies reporting a total of 119 different models. The studies 

undertook a range of different modelling methods, but the most common was a simple 

additive model with the preference-based index as the dependent variable and the 

independent variables being dimension or item scores and estimated by OLS.  More 

complex specifications were examined that included interaction and squared terms, non-

health variables (e.g. socio-demographics) and different methods of estimation. These 

studies clearly show that this approach is feasible, but the validity of the models in terms 

of goodness of fit and error of prediction at the individual level was highly variable.  

Explanatory power ranged from 0.17 to 0.51 and RMSE from 0.084 to 0.2.  For those 

studies that examined the pattern of the error, they found the RMSE increased with the 

severity of the condition while mappings from SF-12 or SF-36 onto EQ-5D. 

 

The question of whether mapping is a valid method for generating preference-based 

indices depends on the circumstances.  In a situation where the analyst does not have any 

other data, some of the poorer models might still be acceptable. This may happen in 

economic evaluations alongside clinical trials where a non-preference-based condition 

specific measure has been used or where an analyst is seeking to synthesise data across 

studies and does not want to limit the evidence base to those studies using a particular 

preference-based measure. However, the potential degree of uncertainty and likely error 

must be fully explored.  At the individual level, the RMSE was often quite high and 

larger than published minimally important differences for these measures of between 

0.041 and 0.071 (Walters and Brazier, 2004). However, the purpose of mapping functions 

is to predict differences across groups of patients or differences between arms over time 

in clinical trials, and not individual level index values.  Work undertaken after this review 

was completed indicates that the size of the errors in predicting mean EQ-5D indices for 

patient groups from SF-36 data may be quite modest (Ara and Brazier et al, 2007).  

However, this was only for a limited range of patient groups.  Patients with more severe 



11 

problems may have gains under-estimated by the mapping function on the basis of 

existing evidence relating SF-36 to EQ-5D.  Most published studies have not even 

examined whether such systematic patterns exist in the predictions of their models. This 

may have important implications for cost effectiveness. 

 

For prospective decisions about the instruments to use in future studies the decision 

maker also needs an estimate of the error relevant to the population of interest (e.g. 

disease, severity and size of sample) to decide whether the error in these models is 

acceptable. The likely implications of any error in the estimation of differences or 

changes over time must be weighed against the additional cost of using a generic 

preference-based measure directly in the study or application being considered.  

 

For mapping from conditions specific measures the degree of error tended to be larger, 

although it varied across patient groups and/or conditions. However, the use of mapping 

to derive preference-based generic indices from condition specific measures raises a more 

fundamental concern. Mapping assumes that the preference-based target measure covers 

all important aspects of health of the non-preference-based start measure.  In other words, 

the strength of the mapping function depends on the degree of overlap between the two 

descriptive systems.  Where there are important dimensions of one instrument not 

covered by the other, then this may undermine the model. Where the generic measure 

does not cover certain dimensions of the non-preference based condition specific 

measures that are regarded as important this could be an important weakness. EQ-5D 

does not, for example, contain a dimension for energy or vitality.  So it is not surprising 

that in published mapping functions from any of the SF instruments to EQ-5D, energy 

has a small and non-significant coefficient.  Another source of weakness can arise from 

differences in the severity range covered for given health dimension. The SF-36 physical 

functioning dimension, for example, has been demonstrated to suffer from floor effects 

(i.e. large numbers of patients at, or are near, the lowest score) and so it is not likely to be 

as good at predicting at the lower end. These problems can be more dramatic in condition 

specific measures. 
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Where generic measures are not regarded as appropriate for the condition, either due to a 

lack of relevance or insensitivity, then mapping from the condition specific measure onto 

a generic measure does not solve this problem.  Indeed the mapping function is likely to 

perform poorly, as was found in the case of the Over-Active Bladder Questionnaire 

(Roberts et al, 2005).  An alternative approach in these circumstances is to estimate a 

preference-based index directly from the condition specific measure, as has been done 

with the King’s Health Questionnaire (Brazier et al, 2007) or the Overactive Bladder 

Questionnaire (Yang et al, 2007).  

 

There are important lessons to be learnt about the methodology for undertaking mappings.  

The first is that the population used in the mapping process should cover the range of 

clinical and demographic characteristics of the sample on which the mapping function is 

ultimately going to be applied. In terms of model specification, most studies found that a 

simple additive model with an index score as the dependent variable and main effects of 

either total or dimension scores as independent variables, performed nearly as well as 

those for more complex models. Greater complexity came with little gain in most cases, 

but small gains come at little cost in terms of computing time.   

 

The most common method of estimation was OLS. There is a concern in the literature 

that the standard OLS regression models under-estimate the level of uncertainty in the 

estimates (Briggs et al, 2004). This results from a centering around the mean caused by  

assuming that respondents who complete the start measure (e.g. SF-36) in the same way 

would also complete target instrument in the same way (EQ-5D).  The result is a lower 

variance around the mean estimates. The importance of this problem depends on the way 

the data are going to be used. In large pooled analyses this may be of little importance.  

More of a problem is the systematic pattern referred to earlier of over-predicting at the 

lower end and under-predicting at the upper end may be partly a result of this.  This 

problem still existed for the multinomial model used to predict the probability of 

response across the dimension levels of the EQ-5D.  There may be other solutions to the 

problem, such as the application of a Bayesian approach (as has been successfully used in 

modelling health state values (Kharroubi et al, 2007)). 
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This review addressed a number of questions about the use of functions to map between 

non-preference based and generic preference-based measures. It found a surprisingly 

large body of literature.  The performance of the mappings functions in terms of 

goodness of fit and prediction was variable and so it is not possible to generalise across 

instruments.  Performance is related to the degree of overlap in content between the 

instruments being mapped.  The current literature is also limited in the way these models 

have been tested, since most testing has focused on their use at the individual level and 

yet the main purpose of these functions is to predict mean values  for subgroups of 

patients (such as arms of trials).  Further work is required to test the accuracy of these 

functions in more relevant contexts and over a larger range of instruments. The use of 

mapping functions is always a second best solution to using a preference-based generic 

measure in the first place (or arguably using preference-weighted condition specific 

measure), but it is often necessary for pragmatic reasons and so this remains an important 

of area of research.   
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Figure 1 Distribution of R2 of mapping models by type of start measure 
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Table 1: Alternative specifications of mapping functions 

independent variables Mo

del 

dependent 

variable 
D/C † 

Main effects D/C † Interactions Other measures 

(1) 

(2) 

(3) 

(4) 

 (5) 

(6) 

index 

index 

index 

index 

Dimension level 

Dimension level 

C 

C 

C 

C 

C 

D 

overall score 

dimension scores 

item levels 

item levels 

Models 1-4 

Models 1-4 

C 

C 

C 

D 

C/D 

C/D 

 

dimensions 

items 

items level 

Models 1-4 

Models 1-4 

 
For any model: 
squared terms, 
other health 
measures, clinical 
measures, 
demographics 

  †  C, continuous; D, discrete 
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Table 2 : Items extracted from papers 
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Dependent variable (C/D) 
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Method of selection of main effects variable 
Main effects interactions 
Transformations  
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Independent variables in model (βs) 
Proportion of βs (P<0.1) 
Proportion of βs unexp. sign (P<0.1) 
Proportion of Inconsistent βs (P<0.1) 
R2  and Adjusted R2 
Uncertainty 
In-sample tests: Mean error 
Mean absolute error (MAE) (95% CI) 
Proportion MAE>0.05 
Proportion MAE>0.10 
MAE by sev./cat. 
MAE /obs (%) 
RMSE 
Maximum predicted score compared to observed 
Minimum  predicted score compared to observed 
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Intra class correlation 
Use of plots 
External-sample size  
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Setting 
R2  and Adjusted R2 
Mean error 
MAE (95% CI) 
Prop. MAE>0.05 
Prop. MAE>0.10 
MAE /obs (%) 
RMSE(95%CI) 
Max. prediction vs. observation 
Min prediction  vs. obervation 
MAE by severity group or category 
Correlation 
Intraclass correlation coefficient 
Plots 
Authors' comments on the study 
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                              Table 3:  Summary of mapping studies 
 
 

ID First Author Year Journal  Start Measure  Target  Population Sample 
size 3 

1 Bansback N 2007 Arthritis Care 
Research 

HAQ-DI (Health Assessment 
Questionnaire Disability 
Index) 

EQ-5D  Rheumatoid Arthritis (RA) patients 923 

2 Bartman BA  1998 Quality of Life 
Research 

SF-36 HUI3 Older patients with intermittent 
claudication (>=55) 

510 

3 Brazier J 2004 Value in Health BI (Barthel Index) EQ-5D Older patients of intermediate care -  
admission 

964 

4 Brazier J 2004 Health Economics IWQOL- Lite SF-6D 1. Community volunteers; 2. 
Participants in clinical trials for obesity; 
3.gastric bypass surgery taker 

468 

5 Brennan DS 2006 BMC Health 
Services Research 

SF-6D EQ-5D  7 samples of patients with different 
diseases 

2192 

6 Buxton MJ 2007 Value in Health OHIP-14 (14 item version of 
the oral Health Impact Profile) 

EQ-5D  Dental patients 248 

7 Dixon S 2003 Journal of 
Outcomes 
Research  

IBDQ (Inflammatory Bowel 
Disease Questionnaire) 

SF-6D Moderate to severe Crohn's disease 
patients 

905 

8 Dobrez D 2007 Value in Health (In 
press) 

NHP (Nottingham Health 
Profile) 

SF-6D  Primary care patients 1327 

9 Dooslaser E 2003 Journal of Health 
Economics 

FACR-G (Functional 
Assessment of Cancer 
Therapy - General) 

TTO 
utilities 

Cancer patients 717 

10 Edlin R 2002 Unpublished 
manuscript  

SAH (self-assessed health 
question) 

HUI3  General public >=12 15539 

11 Edlin R 2002 Unpublished 
manuscript 

NDI (Nepean Dyspepsia 
Index) 

SF-6D Dyspepsia patients 271 

12 Franks P 2004 Medical Decision 
Making 

MLWHF (Minnesota Living 
with Heart Failure 
Questionnaire) 

EQ-5D  Heart patients 3000 

13 Franks P 2003 Medical Care SF-12 EQ-5D General public (>=18) 12988 

14 Fryback DG  1997 Medical Decision 
Making 

SF-12 EQ-5D Patients >=18 240 
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15 Gray A 2006 Medical Decision 
Making 

SF-36 QWB  General public >=45 years 1356 

16 Gray A 2004 HESG1, January 
2004, Paris 

SF-12 EQ-5D General public adults >=18 12967 

17 Grootendorst 
P 

2007 The journal of 
Rheumatology 

SF-36 EQ-5D General public adults >=18 12753 

18 Kaambwa B 2006 HESG1, July 2006, 
York 

WOMAC(Western Ontario 
and McMaster University 
Osteoarthritis Index) 

HUI3 Knee Osteoarthritis (OA) patients 168 

19 Lauridsen J 2004 Health Economics SAH (self-assessed health 
question) 

15D Finnish General public >=15 2697 

20 Lawrence 
WF   

2004 Medical Decision 
Making 

SF-12 EQ-5D General public (>=18) 7313 

21 Longo M 2000 HESG1, July 2000, 
Nottingham 

SF-36 EQ-5D Women with breast disorder 271 

22 Longworth L  2005 European Journal 
of Health 
Economics 

CCS (Canadian 
Cardiovascular Society 
Score) & the Breathlessness 
Grade 

EQ-5D  Patients with stable angina 533 

23 Nichol MB 2001 Medical Decision 
Making 

SF-36 HUI2 Managed care patients with at least 1 
prescription in the previous year, >18 

6921 

24 Roberts J 2005 Unpublished 
manuscript 

OABQ (Overactive-bladder 
Questionnaire) 

SF-6D Over-Active Bladder patients 688 

25 Sengupta N 2004 Medical Care SF-12 HUI3 Managed care patients,>18, with at 
least one prescription in the previous 
year 

6323 

26 Sullivan PW 2006 Medical Decision 
Making 

SF-12 EQ-5D 
(US) 

Representative sample of US 
population >=18 

23647 

27 Tsuchiya A 2006 HEDS2 discussion 
paper 

AQLQ (Asthma Quality of Life 
Questionnaire ) 

EQ-5D  Asthma patients 3059 - 
6939 

28 Tsuchiya A  2002 HEDS2 discussion 
paper 

IBS_QoL (Irritable Bowel 
Syndrome questionnaire) 

EQ-5D IBS patients 121 

1. Health Economists’ Study Group meeting;   
2. Health Economics and Decision Science unit, University of Sheffield 
3. Sample size is the respondents included in the dataset. The number of observations used for model estimation may vary if repeated observations are used. 


