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ABSTRACT 

Background 

Health Related Quality of Life (HRQoL) measures are becoming more frequently 

used in clinical trials and health services research, both as primary and secondary 

endpoints. Investigators are now asking statisticians for advice on how to plan and 

analyse studies using HRQoL measures, which includes questions on sample size. 

Sample size requirements are critically dependent on the aims of the study, the 

outcome measure and its summary measure, the effect size and the method of 

calculating the test statistic. The SF-6D is a new single summary preference-based 

measure of health derived from the SF-36 suitable for use clinical trials and in the 

economic evaluation of health technologies. 

 

Objectives 

To describe and compare two methods of calculating sample sizes when using the 

SF-6D in comparative clinical trials and to give pragmatic guidance to researchers on 

what method to use. 

 

Methods 

We describe two main methods of sample size estimation. The parametric (t-test) 

method assumes the SF-6D data is continuous and normally distributed and that the 

effect size is the difference between two means. The non-parametric (Mann-Whitney 

MW) method assumes the data are continuous and not normally distributed and the 

effect size is defined in terms of the probability that an observation drawn at random 

from population Y would exceed an observation drawn at random from population X. 
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We used bootstrap computer simulation to compare the power of the two methods 

for detecting a shift in location. 

 

Results 

This paper describes the SF-6D and retrospectively calculated parametric and non-

parametric effect sizes for the SF-6D from a variety of studies that had previously 

used the SF-36. Computer simulation suggested that if the distribution of the SF-6D 

is reasonably symmetric then the t-test appears to be more powerful than the MW 

test at detecting differences in means. Therefore if the distribution of the SF-6D is 

symmetric or expected to be reasonably symmetric then parametric methods should 

be used for sample size calculations and analysis. If the distribution of the SF-6D is 

skewed then the MW test appears to be more powerful at detecting a location shift 

(difference in means) than the t-test. However the differences in power (between the 

t and MW tests) are small and decrease as the sample size increases.  

 

Conclusions 

We have provided a clear description of the distribution of the SF-6D and believe 

that the mean is an appropriate summary measure for the SF-6D when it is to be 

used in clinical trials and the economic evaluation of new health technologies. 

Therefore pragmatically we would recommend that parametric methods be used for 

sample size calculation and analysis when using the SF-6D. 

 
Keywords:  Sample size, Health-Related Quality of Life, SF-36, preference-based 

measures of health, bootstrap simulation 
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1. INTRODUCTION 

Health Related Quality of Life (HRQoL) measures are becoming more frequently 

used in clinical trials and health services research, both as primary and secondary 

endpoints. Investigators are now asking statisticians for advice on how to plan and 

analyse studies using HRQoL measures, which includes questions on sample size. 

Sample size calculations are now mandatory for many research protocols and are 

required to justify the size of clinical trials in papers before they will be accepted by 

journals.1  

 

Thus, when an investigator is designing a study to compare the outcomes of an 

intervention, an essential step is the calculation of sample sizes that will allow a 

reasonable chance (power) of detecting a predetermined difference (effect size) in 

the outcome variable, at a given level of statistical significance. Sample size is 

critically dependent on the purpose of the study, the outcome measure and how it is 

summarised, the proposed effect size and the method of calculating the test statistic.  

 

Whatever type of study design is used the problem of sample size must be faced. 

Sometimes we may wish to show that a new treatment is clinically equivalent in 

efficacy to the standard treatment. Machin et al2 describe statistical methods for 

calculating the appropriate sample sizes for demonstrating equivalence between two 

treatments. For simplicity in this paper we will assume that we are interested in 

comparing the effectiveness (or superiority) of a new treatment compared to a 

standard treatment. 
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The increasing use of economic evaluation in the assessment of health care 

interventions has resulted in a growing demand for methods of measuring and 

valuing health that can be readily used in clinical trials. However, many conventional 

health-related quality of life measures are not suitable for use in economic 

evaluation.3 These measures of health status or health related quality of life (HRQoL) 

are standardised questionnaires used to assess patient health across broad areas 

such as symptoms, physical functioning, work and social activities, and mental well-

being. Responses to items are combined into either a single index or a profile of 

several sub-indices of scores. Most of these measures of HRQoL are scored using a 

summation of coded responses to the items. Such instruments have become widely 

used by clinical researchers and can provide useful descriptive information on the 

effectiveness of health care interventions. The main shortcoming of using such 

instruments in economic evaluation is that they do not explicitly incorporate 

preferences into their scoring algorithms. Another type of instrument is the utility or 

preference-based measure of health, that combine a descriptive system with 

preference weights obtained from members of the general population, such as the 

EQ-5D4 and the Health Utility Index (HUI)5.  

 

HRQoL outcome (both preference and non-preference) data may not meet the 

distributional requirements (usually that the data have a Normal distribution) of 

parametric methods of analysis. Therefore non-parametric methods are most often 

used to analyse HRQoL data. The main aim of this paper is to describe and compare 

two methods of sample size estimation (parametric and non-parametric) when using 

the SF-6D as an outcome in comparative clinical trials and to provide pragmatic 

guidance to researchers on what method to use.  
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The remainder of this paper is structured into the following sections. Section 2 briefly 

describes the SF-36 measure and the single preference weighted SF-6D index. 

Section 3 talks about cost-effectiveness analysis. Section 4 summarises the methods 

and the sample size formulae. Section 5 describes some of the effect sizes that have 

been observed in previous studies using the SF-6D. The next section (6) compares 

the different methods of sample size calculation using computer simulation. The final 

sections (7 and 8) talk about the choice of sample size method with the SF-6D and 

conclusions. 

 

2. SF-36 HEALTH SURVEY AND THE SF-6D HEALTH STATE CLASSIFICATION 

The SF-36 originated in the USA,6 but it has been anglicised for use in the UK.7 It 

contains 36 questions measuring health across eight dimensions - physical 

functioning, role limitation because of physical health, social functioning, vitality, 

bodily pain, mental health, role limitation because of emotional problems and general 

health. Responses to each question within a dimension are combined to generate a 

score from 0 to 100, where 100 indicates “good health”. Two further summary 

components, the Mental Component Summary (MCS) and Physical Component 

Summary (PCS) have also been derived from the eight dimensions using factor 

analysis.8 The PCS and MCS scales of the SF-36 are standardised such that a mean 

score of 50 (standard deviation 10) reflects the mean score of a standard population. 

Thus, the SF-36 generates a profile of HRQoL outcomes (on up to 10 dimensions), 

which makes statistical analysis and interpretation difficult.9 
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Furthermore the method of scoring the SF-36 is not based on preferences. The 

simple scoring algorithm for the eight dimensions assumes equal intervals between 

the response choices, and that all items are of equal importance, which may not be 

appropriate. Brazier et al10, 11 have derived a preference-based or utility measure of 

health from the SF-36, called the SF-6D, which reduces all the outcomes to a single 

summary measure for use in clinical trials and economic evaluations. All responders 

to the original SF-36 questionnaire can be assigned SF-6D score provided the 11 

items used in the six dimensions of the SF-6D have been completed. The SF-6D 

preference-based measure can be regarded as a continuous outcome scored on a 

0.29 to 1.00 scale, with 1.00 indicating "full health". 

 

3. QUALITY ADJUSTED LIFE YEARS AND COST-EFFECTIVENESS ANALYSIS 

Preference-based health state scores or utilities do not have natural units. Since 

health is a function of both length of life and quality of life the QALY (Quality-adjusted 

life year) has been developed in an attempt to combine the value of these attributes 

into a single index number. If utilities are multiplied by the amount of time spent in 

that particular health state then they become QALYs (and are measured in units of 

time). QALYs allow for varying times spent in different states by calculating an overall 

score for each patient. If a patient progress through four health states (i= 1 to 4) that 

have estimated utilities, U1, U2, U3 and U4, spending time Ti in each state then: 

QALY = U1T1 + U2T2 + U3T3 + U4T4. 

QALYs are analogous to the Area Under the Curve (AUC), which is a useful way of 

summarising the information from a series of measurements on one individual.12  
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The Central Limit Theorem (CLT)13 suggests that if we have a series of independent, 

identically distributed random variables, then their sum tends to a Normal distribution 

as the number of variables increases. Although utilities measured on the same 

individual are not independent and likely to be serially correlated, the distribution of 

the ‘sum’ of these utilities (i.e. the AUCs or QALYs), are more likely to be symmetric 

and a fairly good fit to the Normal. This result implies that parametric methods for 

both sample calculations and analysis can be used when the outcome is a QALY. 

Multiple linear regression methods can be used to adjust QALYs for other 

covariates.14 

 

Cost-effectiveness and Cost Utility Analysis 

If information on the resources consumed and the cost of the resources is collected 

then an economic evaluation may be performed alongside the clinical trial. Cost-

effectiveness analysis (CEA) is one form of full economic evaluation, where both the 

costs and consequences of heath programmes or treatments are examined.15 If we 

know the expected costs of the standard control treatment (µCC) and the new 

experimental treatment (µCT), and similarly their expected effectiveness µEC and µET, 

respectively, then differences in costs and effects can be defined as ∆C = µCT – µCC 

and ∆E = µET – µEC. 

 

When ∆C > 0 and ∆E > 0 or ∆C < 0 and ∆E < 0, neither the experimental nor 

standard is dominant, the convention is to examine the incremental cost 

effectiveness ratio (ICER), R, defined as 

E

C
R

ECET

CCCT

∆
∆=

−
−

=
µµ
µµ

  (1). 
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The ICER, R measures the extra cost for achieving an extra unit of effectiveness by 

adopting the experimental treatment over the standard. 

 

In cost-utility analysis (CUA) the incremental cost of a programme, from a particular 

viewpoint, is compared to the incremental health improvement attributable to the 

programme, where the health improvement is measured in QALYs gained. The 

results are usually expressed as a cost per QALY gained. 

 

In the case of preference-based measures one might argue that the ultimate 

objective is to influence resource allocation decisions.16 Therefore, it is the difference 

in cost-effectiveness (e.g. incremental cost per QALY) that is important not the 

change in HRQoL. Hence changes in the HRQoL measure alone may not be of 

interest without also considering the cost of bringing about those changes. Thus, the 

sample size calculation if one was performed, would be designed such that it would 

be possible to assess whether the incremental cost per QALY for the new treatment, 

compared with the existing one, is within an acceptable interval (e.g. less than 

£30,000 per QALY). There are several statistical methods for constructing confidence 

intervals for incremental cost-effectiveness ratios (e.g. Taylor series approximation, 

Fieller’s Method and the bootstrap).17  

 

If decision makers at the design stage of a study, can specify their maximum 

threshold willingness to pay for an additional unit of effectiveness, say RMax, and we 

have the necessary estimates of ∆C and ∆E, their variances (σ2
EC, σ2

ET, σ2
CC, σ2

CT) 

and covariances (or the correlation between cost and effects, ρCE). Then using 

formulae developed by Willan and O’Brien18 we can determine the required sample 
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size n, such that the upper limit of the 95% CI for the R is less than RMax. A strong 

limitation of this method is the quantities that must be pre-specified. Even if we 

assume that the variances of costs and effectiveness respectively are the same in 

the Treatment and Control groups, we still require more than double the information 

to calculate a sample size to demonstrate cost-effectiveness, rather than 

effectiveness alone.  

 

A likely consequence of designing studies to test hypotheses jointly about costs and 

effects is that the sample required may be larger than that to show differences in 

effects only. O’Brien19 et al raise an important ethical question: would it be ethical to 

continue a clinical trial to reach sufficient power to test a cost-effectiveness question 

when the number to show efficacy has been reached? They suggest a pragmatic 

way forward in that both the clinical and economic questions can be assessed by the 

same sample size (n for efficacy), but the investigator must simply accept greater 

uncertainty and wider 95% confidence intervals for the economic outcomes. 

Therefore, for the rest of this paper we will consider the estimation of sample sizes 

for differences in efficacy, not cost-effectiveness. 

 

In this paper we will assume the SF-6D is being used as the primary HRQoL 

endpoint in a two group comparative clinical study, at a single time point, to assess 

the superiority (not equivalence) of a new treatment over a control treatment.  
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4. WHICH SAMPLE SIZE FORMULAE? 

In principle, there are no major differences in planning a study using the SF-6D as an 

outcome to those using conventional clinical outcomes. Pocock outlines five key 

questions regarding sample size:20 

1. What is the main purpose of the trial? 

2. What is the principal measure of patient outcome? 

3. How will the data be analysed to detect a treatment difference? 

4. What type of results does one anticipate with standard treatment? 

5. How small a treatment difference is it important to detect and with what degree 

of certainty? 

 

Thus, after deciding on the purpose of the study and the principle outcome measure, 

the investigator must decide how the data is to be analysed to detect a treatment 

difference. We must also identify the smallest treatment difference that is of such 

clinical value that it would be very undesirable to fail to detect it. Given answers to all 

of the five questions above, we can then calculate a sample size. 

 

Campbell et al21 outline the ways of calculating sample sizes in two group studies for 

binary, ordered categorical and continuous outcomes. Further details, examples and 

tables are given in the book by Machin et al.2 We describe two methods of sample-

size estimation when using the SF-6D in the comparative clinical trials of two health 

technologies (Table 1). The first method (Method 1) assumes the SF-6D is 

continuous and Normally distributed and the second method (Method 2) assumes the 

SF-6D is continuous and non-Normally distributed. 
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Figure 1 shows the overall distribution of the SF-6D in a general population sample 

aged 16 to 74 years.7 The SF-6D does not appear to be Normally distributed and 

appears to be negatively skewed, with more people reporting better health in this 

general population sample. Conversely Figure 2 shows the distribution of the SF-6D 

in a group of patients with venous leg-ulcers.22 The distribution of the SF-6D in this 

group is more symmetric with patients reporting poorer health than the general 

population sample. 

 

Method 1: Normally distributed continuous data –comparing two means  

Suppose we are planning a two-group study comparing HRQoL (using the SF-6D as 

the primary outcome) between the groups. We believe that the mean difference in 

SF-6D scores between the two groups is an appropriate comparative summary 

measure. Therefore using Method 1 and assuming a standard deviation σ of 0.12 

and that a mean difference (µET - µEC) of 0.05 or more points between the two groups 

is clinically and practically relevant gives a standardised effect size (from equation 2) 

of 0.417. Using this standardised effect size in equation 3 with a two-sided 5% 

significance level and 80% power gives the estimated number of subjects per group 

as 93.  

 

Transformations 

If the SF-6D outcome data were continuous but had a skewed distribution they may 

be transformed using a logarithmic transformation. The transformed variable may 

have more symmetric distribution that is better approximated by the Normal form. 

One problem with transforming data is that some preference-based utility measures 
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are scored on 0.0 to 1.0 scales and the natural logarithm of zero does not exist. 

Unfortunately log-transforming the general population data in Figure 2 did not make 

the distribution of the data more symmetric. The mean log-transformed SF-6D score 

was now -0.27 (SD 0.17).  

 

Equation 3 can now be applied to the log-transformed scale once the standardised 

effect size δNormal is specified. Unfortunately, there is no simple interpretation for the 

log-transformed SF-6D scale, and so the inverse transformation is used to obtain 

scores corresponding to the original (0.3 to 1.0) SF-6D scale. The mean SF-6D score 

(on the 0.3 to 1.0 scale) using the inverse transformation is now exp (-0.27) = 0.76 

compared to the original value of 0.78. 

 

As before, if, 0.05 unit change on the original SF-6D scale is considered the 

minimum clinically important difference to detect. Using the log-transformed scale of 

the SF-6D, a 0.05 increase is approximately from 0.76 to 0.81. This is then 

expressed as an anticipated effect on the log transformed scale as δNormal = (µET – 

µEC)/σΕ = [loge(0.76 + 0.05) – loge(0.76)]/0.17 = 0.37. Using equation 3 with δNormal = 

0.37 gives nNormal = 117 patients per group. This can be compared with an 

untransformed standardised effect size of 0.42, and an estimated sample size of 93 

patients per group.  

 

We have used a logarithmic transformation for non-normal data and made the 

sample size calculations accordingly. Other possible transformations for this purpose 

are the reciprocal or square root. A difficulty with the use of transformations is that 

they distort HRQoL scales and make interpretation of treatment effects difficult. In 
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fact, only the logarithmic transformation gives results interpretable on the original 

scale.23 The logarithmic transformation expresses the effect as a ratio of the 

geometric mean for patients in the treatment group to the geometric mean for 

patients in the control group. This is because the difference between two logarithms 

is the logarithm of the ratio: log (T) – log (C) = log (T/C). 

 

However, this ratio will vary in a way that depends on the geometric mean value of 

the control treatment C. For example, if the geometric mean for the control treatment 

C is 0.6 and treatment T induces a change in SF-6D of 0.10 compared to this level, 

then this implies an effect size of loge (0.70/0.60) = 0.15. On the other hand, for 

geometric mean of 0.8 for the treatment C but the same numerical change of 0.10 

implies an effect size of loge (0.9/0.8) = 0.12. Thus, although in this example the 

effect size is a 0.10 unit difference in HRQoL in both cases when expressed on the 

untransformed SF-6D scale, the logarithmic transformation results in a second effect 

size that is almost 80% (0.12/0.15 = 0.80) of the first. This makes interpretation 

difficult. 

 

Method 2: Non-normally distributed continuous data  

If the SF-6D outcome is assumed to be continuous and plausibly not sampled from a 

Normal distribution then the most popular (not necessarily the most efficient) non-

parametric test for comparing two independent samples is the two-sample Mann-

Whitney U (also known as the Wilcoxon rank sum test).24  

 

Suppose we have two independent random samples X1, X2,…,Xm and Y1, Y2,….,Yn 

and we want to test the hypothesis that the two samples have come from the same 
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population against the alternative that the Y observations tend to be larger than the X 

observations. As a test statistic we can use the Mann-Whitney (MW) statistic U, i.e., 

U = #(Yj > Xi), i = 1,..,m; j = 1,…,n, 

which is a count of the number of times the Yjs are greater than the Xis. The 

magnitude of U has a meaning, because U/nm is an estimate of the probability that 

an observation drawn at random from population Y would exceed an observation 

drawn at random from population X.  

 

Noether25 derived a sample size formula for the Mann-Whitney test (see equation 5 

in Table 1), using an effect size pNoether, that makes no assumptions about the 

distribution of the data (except that it is continuous), and can be used whenever the 

sampling distribution of the test statistic U can be closely approximated by the 

Normal distribution, an approximation that is usually quite good except for very small 

n.26  

 

Thus to determine the sample size, we have to find the ‘effect size’ pNoether. There are 

several ways of estimating pNoether,27 under various assumptions, one possibility is 

pNoether = U/nm.28  If we let µX, σ2
X, µY, and σ2

Y be the mean and variance of the X and 

Y variables respectively. Then if X ~ N(µX, σ2
X) and Y ~ N(µY, σ2

Y) then Simonoff et 

al27 show that the maximum likelihood estimator of Prob (Y > X) using the sample 

estimates of the mean and variance ( 22 ˆ,ˆ,ˆ,ˆ YYXX σµσµ ) is: 

( ) ( ) 










+
−Φ=>=

2/122 ˆˆ

ˆˆ
obPr

YX

XYXYp
σσ
µµ

  (6), 

where Φ is the Normal cumulative distribution function. 
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If we assume the SF-6D is Normally distributed then equation 6 allows the calculation 

of two comparable 'effect sizes' pNoether and δNormal thus enabling the two methods of 

sample size estimation (Equations 3 and 5) to be directly contrasted. If this SF-6D is 

not Normally distributed then we cannot use equation 6 to calculate comparable 

effect sizes and must rely on the empirical estimates calculated post hoc from the 

data. 

 

Suppose we are planning a two-group study comparing HRQoL (using the SF-6D as 

the primary outcome) between the groups. We believe the SF-6D to be continuous, 

but not Normally distributed and are intending to compare SF-6D scores in the two 

groups with a Mann-Whitney U test. Therefore Noether's method will be appropriate. 

As before if we assume a mean difference of 0.05 and a standard deviation of 0.12 

for the SF-6D, then using equation 6 this leads to an effect size pNoether = Prob(Y > X) 

of 0.616. Substituting pNoether = 0.616 in equation 5 with a two-sided 5% significance 

level and 80% power gives the estimated number of subjects per group as 98.  

 

The two methods have given similar sample size estimates. The two methods can be 

regarded as equivalent when the two distributions have the same shape and equal 

variances. When the two distributions are Normally distributed with equal variances, 

the MW test will require about 5% more observations than the two-sample t-test to 

provide the same power against the same alternative. For non-Normal populations, 

especially those with long tails, the MW test may not require as many observations 

as the two-sample t-test. 29 

 

Withdrawals and protocol departures 
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Some allowance should be made for a proportion of subjects who withdraw or are 

lost to a study during the course of the investigation. If a proportion, θ, are lost so that 

the outcome (SF-6D) is not recorded, then the final analysis will be based on 1 - θ 

times the number of subjects entering the study. To ensure an adequate sample size 

at the end of the study it would be necessary to start with a sample size n’, given by14 

θ−
=′

1

n
n   (7), 

where n is the sample size determined by the methods given earlier in this section. 

 

5. EFFECT SIZES 

There is general agreement that further research is required to establish what are 

realistic and clinically meaningful effect sizes for the SF-36 and SF-6D. To date two 

broad strategies have been used to interpret differences or changes in HRQoL 

following treatment:30  

1. Distribution based approaches - the effect size (ES);  

2. Anchor-based measures - the minimum clinically important difference (MCID). 

 

Distribution based approaches rely on relating the difference between treatment and 

control groups to some measure of variability. The most popular approach uses 

Cohen's31 standardised effect size, the mean change divided by the standard 

deviation (i.e. equation 2) to serve as an “effect size index”, that is suitable for 

sample size estimation. Cohen suggested that standardised effect sizes of 0.2 to 0.5 

should be regarded as "small", 0.5 to 0.8 as "moderate" and those above 0.8 as 

"large". Cohen’s effect size is strongly influenced by the degree of homogeneity or 

heterogeneity in the sample. 
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Anchor-based methods examine the relationship between an HRQoL measure and 

an independent measure (or anchor) to elucidate the meaning of a particular degree 

of change. One anchor-based approach uses an estimate of the MCID, the difference 

on the HRQoL scale corresponding to self-reported small but important change on a 

global scale.32 

 

We used a distribution-based approach to determine the observed effect sizes (both 

Cohen's and Noether's), using the SF-6D, for a variety of studies including 

randomised controlled trials,33 34 cross-sectional surveys7 35 and observational 

studies.36, 37, 38, 39 Tables 2, 3 and 4 show the observed effect sizes (both Cohen's 

and Noether's), and that most of the standardised effect sizes (δNormal) using Cohen's 

criteria are in the small to moderate interval. The information on mean differences, 

standard deviations and effect sizes shown in the tables may be helpful when 

estimating sample sizes for future studies using the SF-6D. To illustrate the various 

methods of sample size calculation we assumed a mean difference of 0.05 in SF-6D 

scores was the MCID difference worth detecting, although further empirical research 

is require to determine this. Research on the HUI has suggested that a difference of 

0.03 is considered important.16 A number of studies in a variety of disease areas 

have suggested that the MCID appears to average approximately 0.5 on a seven-

point scale or 1 part in 14. 32, 40, 41With the SF-6D’s minimum and maximum of 0.29 

to 1.00 (i.e. a range of 0.71), one-fourteenth of the scale equates to 0.05. 

 

6. COMPARISON OF THE TWO METHODS OF SAMPLE SIZE ESTIMATION 

We used bootstrap methods to compare the power of the t-test and Mann-Whitney 

for detecting a shift in location using the SF-6D as an outcome. 26, 42 The bootstrap is 
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a computer intensive method for statistical analysis.43 It involves repeatedly drawing 

random samples from the original data, with replacement. It seeks to mimic in an 

appropriate manner the way the sample is collected from the population in the 

bootstrap samples from the observed data. The ‘with replacement’ means that any 

observation can be sampled more than once.  

 

Suppose (as before) we have two independent random samples X1, X2,…,Xm and Y1, 

Y2,….,Yn. The Xs are Ys are random samples from continuous distributions having 

cumulative distribution functions, FX and FY respectively. We will consider situations 

where the distributions have the same shape, but the locations may differ. Thus if d 

denotes the location difference (i.e. mean (Y) - mean (X) = d), then FY(y) = FX(y - d), 

for every y. We shall focus on the null hypothesis H0: d = 0 against the alternative HA: 

d > 0. We can test these hypotheses using an appropriate significance test (e.g. 

Mann-Whitney or t-test), and will let π (F, d, α, n ) denote the power function of the 

test. 

 

The bootstrap strategy is to use pilot data to a provide a non-parametric estimate of F 

and to use a simulation method for finding the power of the test associated with any 

specified sample size n if the data follow the estimated distribution function. If we 

denote the distribution function estimate by G, under the alternative hypothesis d, we 

can estimate the approximate power, ( )ndG ,,,ˆ απ  by the following computer 

simulation procedure.26, 42 

 

1. Draw a random sample with replacement of size 2n from G. The first n 

observations in the sample form a simulated sample of X's, denoted by 
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X1*,…,Xn*. Then d is added to each of the other n observations in the sample 

to form the simulated sample of Y's, denoted by Y1*,…,Yn*. (The Y*'s and X*'s 

have been generated from the same distribution except that the distribution of 

the Y*'s is shifted d units to the right.) 

2. The test statistic (Mann-Whitney or t-test) is calculated for the X*'s and Y*'s, 

yielding T*. If T* ≥ T1-α/2, (where T1-α/2 is the critical value of the test statistic) a 

success is recorded; otherwise a failure is recorded.  

3. Steps 1 and 2 are repeated J times. The estimated power of the test, 

( )ndG ,,,ˆ απ , is approximated by the proportion of successes among the J 

repetitions. (In all cases discussed in this paper, J = 10,000). 

 

The software Resampling Stats was used for the bootstrapping.44 The bootstrap 

computer simulation procedure involved separately using two datasets. The first used 

SF-6D data from a general population survey based on 1373 people aged 16-74 

years as the pilot dataset.7 Figure 1 shows the non-symmetric distribution of the SF-

6D. The second pilot data used SF-6D data from a sample of 232 patients with 

venous leg-ulcers. 22 Figure 2 shows the more symmetric distribution of the SF-6D in 

the leg ulcer sample. 

 

Figure 3 shows the estimated power curves for the t and Mann-Whitney tests at the 

5% two-sided significance level for detecting a location shift (mean difference) d = 

0.05 in the SF-6D general population data for sample sizes per group varying from 

20 to 240. For these general population data a location shift of d = 0.05 is equivalent 

to a standardised effect size δNormal = 0.42 and pNoether = Prob (Y > X) = 0.63. For a 

sample size per group of 100 the Mann-Whitney test has an estimated power of 0.89 
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compared to an estimated power of 0.83 for the t-test. The Mann-Whitney test 

appears to be more powerful at detecting a location shift of d = 0.05 than the t-test. 

So for the general population data (with its skewed SF-6D distribution) the MW test is 

preferable to the t-test. Therefore for a fixed power, significance level and effect size 

using Noether’s method would produce the smaller sample size estimates. However 

the differences in power are small and decrease as the sample size increases.  

 

Figure 4 shows that for the leg-ulcer data (with their more symmetric SF-6D 

distribution), the t-test appears to be slightly more powerful at detecting a location 

shift of d = 0.05 than the MW test. For these data a location shift of d = 0.05 is 

equivalent to a standardised effect size δNormal = 0.38 and pNoether = Prob (Y > X) = 

0.61. However again the differences in power between the t-test and MW tests are 

small and decrease as the sample size increases. 

 

7. CHOICE OF SAMPLE SIZE METHOD WITH THE SF-6D OUTCOMES 

It is important to make maximum use of the information available from other related 

studies or extrapolation from other unrelated studies. The more precise the 

information the better we can design the trial. We would recommend that researchers 

planning a study with SF-6D as the primary outcome pay careful attention to any 

evidence on the validity and frequency distribution of the SF-6D. 

 

The frequency distribution of SF-6D scores from previous studies should be 

assessed to see whether parametric or non-parametric methods should be used for 

sample size calculations and analysis. Computer simulation has suggested that if the 

distribution of the SF-6D is reasonably symmetric then the t-test appears to be 
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slightly more powerful than the Mann-Whitney test at detecting differences in means. 

Therefore if the distribution of the SF-6D is symmetric or expected to be reasonably 

symmetric then parametric methods should be used for sample size calculations and 

analysis. The use of parametric methods for analysis (i.e. t-test) also enables the 

relatively easy estimation of confidence intervals, which is regarded as good 

statistical practice.1  

 

If the distribution of the SF-6D is skewed then the Mann-Whitney test appears to be 

more powerful at detecting a location shift (difference in means) than the t-test. So in 

these circumstances the MW test is preferable to the t-test and non-parametric 

methods could be used for sample size calculations and analysis. However the 

differences in power (between the t and MW tests) are small and decrease as the 

sample size increases. The use of non-parametric methods for sample size 

estimation requires the effect size to be defined in terms of P (Y > X), which is difficult 

to quantify and interpret. The arithmetic mean and mean difference is a better 

summary measure for heath care providers in deciding whether to offer a new 

treatment or not to its population. The mean provides information about the total 

benefit or utility from treating all patients, which is needed as the basis for health care 

policy decisions.45 Therefore pragmatically we would recommend that parametric 

methods be used for sample size calculation and analysis when using the SF-6D in 

clinical trials and economic evaluations. 

 

If the sample size is "sufficiently large" then the CLT guarantees that the sample 

means will be approximately Normally distributed.13 Thus, if the investigator is 

planning a large study and the sample mean is an appropriate summary measure of 
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the SF-6D outcome, then pragmatically there is no need to worry about the 

distribution of the SF-6D outcome and we can use equation (3) to calculate sample 

sizes. Although the Normal distribution is strictly only the limiting form of the sampling 

distribution of the sample mean as the sample size n increases to infinity, but it 

provides a remarkably good approximation to the sampling distribution even when n 

is small and the distribution of the data is far from Normal.14 Generally, if n is greater 

than 25, these approximations will be good. However, if the underlying distribution is 

symmetric, unimodal, and of the continuous type, a value of n as small as 4 can yield 

a very adequate approximation.13 

 

More work is required on what is a clinically meaningful effect sizes for the SF-6D. 

We used a distribution-based approach to calculate effect sizes for the SF-6D, 

although an anchor-based approach may also be necessary to determine the MCID. 

To illustrate the various methods of sample size calculation we assumed a mean 

difference of 0.05 in SF-6D scores was the MCID worth detecting. Retrospectively 

calculating the SF-6D for a variety of studies that had previously used the SF-36 has 

shown mean differences between groups varying between 0.025 and 0.12. These 

differences are mainly 'small' to 'medium' standardised effect sizes using Cohen’s 

definition. So large differences between groups in SF-6D scores are unlikely. 

Therefore larger sample sizes may be required to detect statistically significant 

differences between groups in mean SF-6D scores. We would suggest that 

investigators consider clinically meaningful effect sizes and not rely on generic 

‘small’, ‘medium’ or ‘large’ ones as suggested by Cohen. 
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There maybe considerable uncertainties in estimates of such quantities as the 

standard deviation and the treatment effect. (Although the data displayed in Tables 2 

to 4 may be useful). Sample size calculations are sometimes based on estimates 

“pulled out of thin air”. If an investigator is uncomfortable with the assumptions then it 

is good practice to calculate sample sizes under a variety of scenarios so that the 

sensitivity to assumptions can be assessed. We would recommend that various 

anticipated benefits be considered, ranging from the optimistic to the more realistic, 

with sample sizes being calculated for several scenarios within that range. It is a 

matter of judgement, rather than an exact science, as to which of the options is 

chosen for the final study size.9  

 

In this paper we have concentrated on the issue that HRQoL outcome data (such as 

the SF-6D) may not meet the distributional requirements of parametric methods of 

sample size estimation and statistical analysis. There are other equally important 

problems with HRQoL measures such as ordinal scaling, linearity of the scale, 

floor/ceiling effects, non-constant variance and missing data which are discussed 

more fully in Walters et al 2001.46 47 

 

8. CONCLUSIONS 

Given that the end goal of using HRQoL outcomes in research studies is to assess a 

patient’s health and well being, using the right type of HRQoL outcome in the right 

setting with an appropriate sample size calculation is crucial. Much time and energy 

is devoted to developing and validating HRQoL measures. We have provided a clear 

description of the distribution of the SF-6D and believe that the mean is an 

appropriate summary measure for the SF-6D when it is to be used in comparative 
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clinical trials and the economic evaluation of new health technologies. Therefore 

pragmatically we would recommend that parametric methods be used for sample 

size calculation and analysis when using the SF-6D. 

 

Finally we would stress the importance of a sample size calculation (with all its 

attendant assumptions), and that any such estimate is better than no sample size 

calculation at all, particularly in a trial protocol.48 The mere fact of calculation of a 

sample size means that a number of fundamental issues have been thought about: 

what is the main outcome variable, what is a clinically important effect, and how is it 

measured? The investigator is also likely to have specified the method and frequency 

of data analysis. Thus protocols that are explicit about sample size are easier to 

evaluate in terms of scientific quality and the likelihood of achieving objectives. 
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Figure 1: Histogram of the SF-6D in the Sheffield population aged 16-74 7 
 

SF-6D preference-based measure of health

.975
.925

.875
.825

.775
.725

.675
.625

.575
.525

.475
.425

.375
.325

N= 1373, mean = 0.78, sd = 0.12

F
re

qu
en

cy

200

100

0

 
 
 
Figure 2: Histogram of the SF-6D in patients with leg-ulcers 22 
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Figure 3: Estimated power curve for the SF-6D using general population data 7 
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Figure 4: Estimated power curve for the SF-6D using leg ulcer data 22 
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Table 1: Effect size and sample size formulae 

 Method 1 Method 2 
   
Assumptions Normally distributed 

continuous data 
Non-normally distributed 
continuous data 

   
Summary 
Measure 

Mean and mean difference Median 

   
Hypothesis test Two-independent samples t-

test 
Mann-Whitney U (also known as 
the Wilcoxon rank sum test) 

   
Effect Size 

σ
µµδ CT

Normal

−=  

(Equation 2) 
 

 
pNoether = Pr(Y > X) 
 
(Equation 4) 

   
Sample size 
formulae 

[ ]
2

2
12/12

Normal
Normal

zz
n

δ
βα −− +

=  

(Equation 3) 

[ ]
( )2

2
12/1

5.06 −
+

= −−
−

Noether

normalNon
p

zz
n βα

 

(Equation 5), 
   
 

δNormal is the standardised effect size index, µT and µC are the expected group means of 
outcome variable under the null and alternative hypotheses and σ is the standard deviation 
of outcome variable (assumed the same under the null and alternative hypotheses). 
 
pNoether  is an estimate of the probability that an observation drawn at random from population 
Y would exceed an observation drawn at random from population X.  
 
z1-α/2 and z1-β are the appropriate values from the standard Normal distribution for the 100 (1 - 
α/2) and 100 (1 - β) percentiles respectively. 
 
Number of subjects per group n for a two-sided significance level α and power 1 - β . 
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Table 2: Effect sizes – randomised controlled trial 
 

          Mean 
Standardis
ed     

Study Group n mean sd difference 
Effect 
Sizea Significance b P(X > Y)c 

           
CMSW34  Intervention 267 0.727 0.118 -0.025 -0.21 0.160 0.433 
  Control 255 0.752 0.117      
           
           
Leg Ulcer33 Not healed at 3m 159 0.643 0.126 0.024 0.19 0.320 0.532 
  Healed at 3m 35 0.619 0.135      
           
  Walk Freely 108 0.691 0.128 0.073 0.58 0.001 0.670 
  Walk with aid/chair/bed bound 124 0.618 0.126      
           
  Not healed/recurred at 12 m 85 0.614 0.130 -0.030 -0.23 0.160 0.388 
  Healed/stayed healed at 12m 70 0.644 0.129         
 
CMSW (Community Midwifery Support Worker) study.  
a. Standardised effect size = mean difference divided by the pooled standard deviation. 
b. Based on a two-independent samples t-test. 
c. Based on U/nm, where U = MW test statistic. 
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TABLE 3: EFFECT SIZES – CROSS-SECTIONAL SURVEYS 
 
Study Group n mean sd difference ES a Sigb P(X > Y)c 

Sheffield GP consultation in previous 2 weeks:         

 16-74
7

 Yes 283 0.716 0.131 -0.070 -0.59 0.001 0.343 

  No 1183 0.786 0.115      

           

  Inpatient stay in previous 12 months:         

  Yes 164 0.726 0.145 -0.053 -0.44 0.001 0.394 

  No 1306 0.779 0.117      

           

  Outpatient attendance in previous 3 months:         

  Yes 210 0.712 0.138 -0.072 -0.60 0.001 0.346 

  No 1247 0.783 0.115      

           

Sheffield Elderly GP consultation in previous 2 weeks:         

 65+
35

 Yes 1586 0.622 0.131 -0.060 -0.44 0.001 0.371 

  No 5329 0.682 0.138      

           

  Lives Alone         

  Yes 2579 0.651 0.140 -0.027 -0.20 0.001 0.442 

  No 4359 0.678 0.138      

           

  Current smoker         

  Yes 1179 0.656 0.141 -0.015 -0.11 0.001 0.467 

  No 5748 0.670 0.139      

           

Elderly Sheffield OPCS Disability Survey severity scored         

 Women 70+ 
37

 Less disabled 0-4 169 0.701 0.123 0.124 1.04 0.001 0.218 

  More disabled 5-10 96 0.577 0.113      

          

 GP consultation in previous 2 weeks:         

  Yes 75 0.621 0.110 -0.048 -0.37 0.008 0.398 

  No 190 0.669 0.139      

           

  Inpatient stay in previous 12 months:         

  Yes 40 0.614 0.138 -0.051 -0.38 0.029 0.409 

  No 216 0.665 0.133      

           

  Outpatient attendance in previous 3 months:         

  Yes 79 0.627 0.139 -0.043 -0.33 0.015 0.420 

  No 185 0.671 0.128         
 
GP (General practitioner), OPCS (Office of Population, Censuses and Surveys). 
a. ES (Standardised Effect size) = mean difference divided by the pooled standard deviation. 
b. Sig (Significance) based on a two-independent samples t-test. 
c. Based on U/nm, where U = MW test statistic. 
d. Cut off values are the median average for the samples. 
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Table 4: Effect sizes – longitudinal observation studies 
 
          Mean Effect     

Study Group n mean Sd difference Size a Significance b P(X > Y)c 

IBS
36

 IBS Patients 145 0.661 0.126 -0.088 -0.69 0.001 0.305 

  Control 202 0.749 0.129      

           

OA Knee
39

 Non-musculoskeletal comorbidity         

  Yes 80 0.493 0.081 -0.044 -0.50 0.001 0.360 

  No 99 0.537 0.095      

           

  Severity of knee osteoarthritis         

  Mild/Moderate 60 0.535 0.096 0.055 0.59 0.004 0.693 

  Severe 42 0.481 0.086      

           

  Health Assessment Score (HAQ)d         

  Good HAQ <=2 123 0.545 0.082 0.090 1.08 0.001 0.778 

  Poor HAQ > 2 65 0.455 0.087      

           

COPD
38

 Having to stop for breath when walking on level ground at own pace      

  Yes 26 0.571 0.060 -0.080 -1.16 0.001 0.232 

  No 18 0.651 0.080      

           

  
Distance on 6 minute walking 
testd         

  <= 302 metres 20 0.561 0.061 -0.078 -1.13 0.001 0.226 

  > 302 metres 24 0.639 0.076      

           

  Breathlessness (100mm) VASd         

  
0 = not breathless; 100 = severely 
breathless        

  <= 65 19 0.638 0.088 0.059 0.79 0.014 0.694 

  > 65  24 0.579 0.062      

           

  FEV1 % Predictedd         

  <= 41 47 0.553 0.119 -0.044 -0.41 0.050 0.383 

  > 41 50 0.597 0.099         

 
IBS (Irritable Bowel Syndrome), OA (Osteo-Arthritis), COPD (Chronic Obstructive Pulmonary Disease), 
a. Standardised effect size = mean difference divided by the pooled standard deviation. 
b. Based on a two-independent samples t-test. 
c. Based on U/nm, where U = MW test statistic. 
d. Cut off values are the median average for the samples. 
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