
 

 
 

 
 

Discussion Papers in Economics 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Department of Economics 

University of Surrey 
Guildford 

Surrey GU2 7XH, UK 
Telephone +44 (0)1483 689380 
Facsimile +44 (0)1483 689548 
Web www.econ.surrey.ac.uk 

ISSN: 1749-5075 

  
IDENTIFICATION OF MONETARY POLICY IN SVAR 

MODELS: A DATA-ORIENTED PERSPECTIVE 
 

By  
 

Matteo Fragetta 
 (University of Salerno, Italy) 

& 
Giovanni Melina 

 (University of London and University of Surrey)  
 

DP 08/11 
 
 
 
 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6833741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Identification of Monetary Policy in SVAR Models: A

Data-Oriented Perspective∗

Matteo Fragettaa and Giovanni Melina†b,c

aUniversity of Salerno, Italy
bBirkbeck, University of London, UK

cUniversity of Surrey, UK

27th May 2011

Abstract

This paper applies graphical modelling theory to recover identifying restrictions for

the analysis of monetary policy shocks in a VAR of the US economy. Results are in line

with the view that only high-frequency data should be assumed to be in the information

set of the monetary authority when the interest rate decision is taken.
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1 Introduction

The literature employing vector-autoregressions (VAR) to identify and estimate the effects of

monetary policy shocks tipically distinguish among three sets of variables: (i) the information

set, i.e. the set of variables known to the monetary authorities when the policy decision is

taken; (ii) the policy instrument; (iii) the set of variables the value of which is known only

after the policy is set. Such a distinction often suggests a block-recursive structure exploitable

in identifying the VAR. Most of the existing empirical papers can be classified into two broad

groups, which differ in the content of the information set of the monetary authority.

The first group of papers, that can be thought of following a “workhorse” approach, include,

among many others, Christiano and Eichenbaum (1992), Christiano et al. (1996) as well as

the influential paper by Christiano et al. (2005). These studies hold that the central bank has

at its disposal sources of information about the economy well beyond the published data. In

fact, policymakers have access to monthly or even daily estimates of a series of indicators on

economic activity and prices sufficient to provide them with a clear and prompt indication

of the state of the economy. Consistently with this argument, the assumption made is that,

among other variables, the monetary authority is capable to observe the contemporaneous

(within quarter) values of output and domestic prices (GDP deflator) at the time of the

monetary policy decision.

The second group of papers can be thought of adopting an “alternative” approach. This

approach is adopted for instance by Sims and Zha (1998), the extension proposed by Kim and

Roubini (2000) with monthly data and international variables, and the macroecometric model

of the UK proposed by Garratt et al. (2003). These papers argue that only high-frequency data

should be assumed to be in the information set of the central bank. For example Sims and Zha

(1998) use quarterly data and find it more reasonable to assume that only contemporaneous

money supply and commodity prices are known to the central bank when the interest rate

is set, since such indeces are released at monthly and daily frequencies, respectively. On the

contrary, proper measures of variables such as the real GDP and the GDP deflator are assumed
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to be known to policymakers only with a lag.1

Both approaches make use of reasonable and convincing arguments, hence in principle there

is no clear-cut reason why one should be preferred to the other. This makes the task of imposing

a-priori short-term identifying restrictions contetious and complex. In fact, especially in small-

scale VARs, conditional also on the degree of correlation betweeen reduced-form residuals,

results depend (at least quantitatively) on the various possible timing restrictions imposed.

This paper applies Graphical Modelling (GM) theory to a small-scale VAR of the US

economy to establish whether the data are informative on which of the two approaches is

preferable. In fact, GM is a data-oriented tool as it allows one to obtain short-term identifying

restrictions directly from statistical properties of the data. Reale and Wilson (2001) and

Wilson and Reale (2008) show how the theory can be used in a VAR, while Oxley et al.

(2009) and Fragetta and Melina (2011) are examples of how the method can be applied to

macroeconomic analysis.

Results are in line with the “alternative” approach. In other words, GM suggests that only

high-frequency data are in the information set of the central bank when it sets the interest

rate. When it comes to impulse-response analysis, however, the two approaches generate

similar responses to an interest rate shock, featuring only minor quantitative differences.

The remainder of the paper is structured as follows. Section 2 describes the econometric

methodology. Section 3 presents the data. Section 4 illustrates the results. Finally, Section 5

concludes.

2 Econometric methodology

This section presents the econometric strategy adopted in the analysis. Subsection 2.1 illus-

trates the basic tools of graphical modelling theory, while Subsection 2.2 shows how these tools

can be applied in the identification of a SVAR.
1For an extended survey of the literature see Christiano et al. (1999).
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Figure 1: Conditional independence graphs and directed acyclic graphs

2.1 Graphical modelling

GM is a statistical approach aiming at uncovering statistical causality from partial correlations

observed in the data, which can be interpreted as linear predictability in the context of least-

square estimation. Primal contributions to the methodology are due to Dempster (1972) and

Darroch et al. (1980).

The most informative object of the procedure is the Direct Acyclic Graph (DAG). Figure

1.C2 shows a typical and simple DAG, where nodes A, B and C represent random variables

and the arrows connecting A and B, and B and C indicate the direction of a statistical caus-

ality. When undirected edges replace the arrows of a graph, a Conditional Independence Graph

(CIG) is obtained. In a CIG, a link represents a significant partial correlation between any

two random variables – conditioned on all the remaining variables of the model. Figure 1.A

shows an example of a CIG. For instance, the edge connecting nodes A and B represents a
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significant partial correlation between A and B conditioned on C. A significant partial correl-

ation implies conditional dependence if the variables are jointly distributed as a multivariate

Gaussian distribution, hence the name CIG.

DAGs and CIGs imply a different definition of joint probability, however there is a corres-

pondence between the two, represented by the so-called moralization rule, as firstly shown by

Lauritzen and Spiegelhalter (1988). In fact, there is always a unique CIG deriving from a given

DAG, obtained by transforming arrows into undirected edges and linking unlinked parents of

a common child with a moral edge. In the DAG shown in Figure 1.B1, A and C are parents of

B. In order to obtain the corresponding unique CIG arrows must be transformed into edges

and a moral edge has to be added between parents A and C as in Figure 1.B2. Statistically,

when both A and C determine B, a significant partial correlation due to moralization should

be observed between A and C.

While there is a unique CIG deriving from a given DAG, the reverse is not true. What the

econometrician can observe in the data is a CIG, where every edge can assume two possible

directions. Therefore, for any given CIG, there are 2n hypothetical DAGs, where n is the

number of edges. Figure 1.C shows all the hypothetical DAGs corresponding to the CIG in

Figure 1.A. The DAG in Figure 1.C1 is not compatible with the CIG, because the moralization

rule requires a moral edge between A and C, which is not captured by the CIG.2

Any DAG, by definition, has to satisfy the principle of acyclicality. Therefore, the graph

depicted in Figure 2 cannot be a DAG as it is clearly cyclic. The acyclicality in a DAG allows

to completely determine the distribution of a set of variables and implies a recursive ordering of

the variables themselves, where each element in turn depends on none, one or more elements.

For example, in the DAG in Figure 1.C2, A depends on no other variables, B depends on A

and C on B.
2In the process of obtaining plausible DAGs from an observed CIG, it may also be possible that some of

the links captured by the CIG are due to moralization and hence must be eliminated in a corresponding DAG.
Such demoralization process, in most cases, can be assessed by considering some quantitative rules. Let us
suppose we observe a CIG such as the one in Figure 1.B2. If the true corresponding DAG were the one in
Figure 1.B1, then the partial correlation between A and C, ρ(A,C|B), should be equal to −ρ(A,B|C) × ρ(B,C|A).
In such a case, when tracing DAG 1.B1, the edge between A and C must be removed.
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Figure 2: Directed cyclic graph

2.2 Identification of a SVAR with graphical modelling

GM theory can be applied to obtain identification of a structural VAR (SVAR), as shown by

Reale and Wilson (2001) and Oxley et al. (2009) among others.

Any SVAR may be turned into a DAG where current and lagged variables are represented

by nodes and causal dependence by arrows. After collecting the endogenous variables of

interest in the k-dimensional vector Xt, the associated reduced-form, or canonical, VAR can

be written as:

Xt = A(L)Xt−1 + ut, (1)

where A(L) is a polynomial in the lag operator L and ut is a k-dimensional vector of reduced-

form disturbances with E[ut] = 0 and E[utu′
t] = Σu.

As reduced-form disturbances are correlated, in order to identify structural shocks, the

reduced-form model has to be trasformed into a structural model. Pre-multiplying both sides

of equation (1) by the (k × k) matrix A0, yields the structural form:

A0Xt = A0A(L)Xt−1 + Bet. (2)

The relationship between the structural disturbances et and the reduced-form disturbances ut

is described by the following:

A0ut = Bet, (3)

where A0 also describes the contemporaneous relations among the endogenous variables and

B is a (k × k) matrix. In the structural model, disturbances are assumed to be uncorrelated
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with each other. In other words, the covariance matrix of the structural disturbances Σe is

diagonal.

As it is, the model described by equation (2) is not identified because there may be possibly

many matrices A and B that satisfy (2). Therefore, first matrix B can be restricted to be

a (k × k) diagonal matrix. Second, in order to impose identifying restrictions on matrix A0,

graphical modeling theory can be applied to trace DAGs of the reduced-form residuals.

The acyclicality of DAGs implies a recursive ordering of the variables that makes A0 a

lower-triangular matrix. A0 has generally zero elements also in its lower triangular part, hence,

in general, the model is over-identified. The GM methodology has the distinctive feature that

the variable ordering and any further restrictions come from statistical properties of the data.

First, in order to construct the CIG among contemporaneous variables conditioned on

all the remaining contemporaneous and lagged variables, one can derive the sample partial

correlation between the innovations, conditioned on the remaining innovations of the canonical

VAR, calculated from the inverse Ŵ of the sample covariance matrix V̂ of the whole set of

innovations as in Greene (2003):

ρ̂ (ui,t, uj,t|{uk,t}) = − Ŵij√
(ŴiiŴjj)

, (4)

where {uk,t} is the whole set of innovations excluding the two considered. Whenever a sample

partial correlation is statistically significant a link is retained. Swanson and Granger (1997)

have applied a similar strategy to sort out causal flows among contemporaneous variables, i.e.

applying a residual orthogonalization of the innovations from a canonical VAR.

All possible DAGs (satisfying the moralization rule) which represent alternative compet-

itive models are compared via likelihood based methods, such as the Akaike Information Cri-

terion (AIC), the Hannan and Quinn Information Criterion (HIC) or the Schwarz Information

Criterion (SIC), and choose the best-performing one.3

3In some cases, the distributional properties of the variables for different DAGs are likelihood equivalent,
although the residual series are different. In such cases, it is possible to construct DAG models by considering
only the lagged variables that play a significant role in explaining contemporaneous variables determined by
the significant partial correlation. This can help, via comparison of information criteria, determine the best
DAG for contemporaneous variables.
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3 Data

The empirical analysis presented in the remainder of the paper employs quarterly US data

over the period 1965:1-2007:4. The starting year coincides with that used by Christiano et al.

(1999, 2005) while the end date falls in a pre-crisis quarter.

The model is a four-variable VAR including: (i) the log of real GDP, yt; (ii) the effective

federal funds rate (quaterly average), rt; (iii) the log the GDP implicit price deflator, pt, and

(iv) the log of a commodity price index (producer price index), cpt. The variables are repres-

entative of the real activity, monetary policy and price dynamics. Such a model specification

represents a minimal setting similar to those adopted by Stock and Watson (2001) – for il-

lustrative purposes – and by more recent contributions such as Primiceri (2005) and Koop

et al. (2009). The addition of a commodity price proves helpful in ruling out the price puzzle.4

The absence of monetary aggregates is due to a preference for parsimony coupled with the

fading role of monetary aggregates in the conduct of monetary policy as empirically shown by

Estrella and Mishkin (1997), among others, and theoretically explored by Woodford (2008).

A constant is included in the VAR and results are reported both for a VAR in levels, with

and without a deterministic trend,5 and for a VAR in which the logs of GDP, the GDP deflator

and the commodity price index have been first differenced. The sampling properties of GM

are valid regardless of the presence of unit roots in the data, as shown by Wilson and Reale

(2008). In fact, we show below that the three model specifications give rise to the same CIGs

and DAGs.

All series are extracted from the ALFRED database of the Federal Reserve Bank of St.

Louis. The real GDP and the two price indices are seasonally adjusted by the source.
4The term price puzzle is due to Sims (1992). Christiano et al. (1999) show that omitting a commodity price

index from the VAR specification delivers a rise in the price level that lasts several years after a contractionary
monetary policy shock.

5We prefer to report results for both cases, as in the literature both options are explored. For instance,
while Bernanke (1986) includes a deterministic trend in the level specification, Christiano et al. (2005) carry
out the estimation including only the levels of the variables.
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ur
t uy

t up
t ucp

t

ur
t 1.000

uy
t 0.176** 1.000

up
t 0.030 -0.126 1.000

ucp
t 0.214*** -0.016 0.437*** 1.000

(c) Model in levels with deterministic trend

Note: *,** and *** denote significance at 0.10, 0.05 and 0.01 levels, respectively. The corresponding threshold
values for the baseline model are 0.1270, 0.1504 and 0.1963, respectively.

Table 1: Estimated partial correlations of the series innovations

4 Results

DAGs of the VAR residuals are obtained by fitting the data to equation (1). The lag order is

selected via the AIC.6 Table 1 reports the estimated partial correlation matrices of the series

innovations and their significance at 0.10, 0.05 and 0.01 levels. Both the matrix coming from

the model in first differences and those coming from the model in levels (with and without

trend) translate into the same CIG depicted in Figure 3. The three edges in the CIG cannot be

moral, as moral edges link parents of a common child. The 23 = 8 possible DAGs implied by

the CIG are reported in Figure 4. The moralization rule implies that DAGs (A), (E), (G) and

(H) can be discarded. The four remaining models are then compared via the likelihood-based

information criteria mentioned in Section 2.
6The AIC typically selects a larger number of lags with respect to SIC and HIC, which we prefer based on

the view that the consequences of overestimation of the order are less serious than underestimation (Kilian,
2001).
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Figure 4: All possible DAGs deriving from the estimated CIG

Table 2 shows that the three information criteria for both model specifications are minim-

ised by the model implied by DAG (C), which in turn implies that, within the same quarter,

the Federal funds rate is not affected by shocks to the general price level and the real output,
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Model AIC HIC SIC Model AIC HIC SIC
B -418.56 -398.24 -368.48 B -466.06 -445.74 -415.98
C -453.05 -433.17 -403.42 C -521.79 -501.46 -471.71
D -358.26 -337.94 -308.19 D -484.43 -464.11 -434.35
F -405.32 -385.00 -355.24 F -471.50 -451.17 -421.42

(a) Model in first differences (b) Model in levels

Model AIC HIC SIC
B -469.87 -444.47 -407.27
C -525.34 -499.94 -462.74
D -488.20 -462.79 -425.60
F -463.66 -438.26 -401.06

(c) Model in levels with deterministic trend

Note: AIC = Akaike Information Criterion; HIC = Hannan-Quinn Information Criterion (HIC);
SIC = Schwarz Information Criterion.

Table 2: Information criteria associated to feasible DAGs

εr
t εy

t εp
t εcp

t εr
t εy

t εp
t εcp

t

εr
t 1.000 εr

t 1.000
εy
t 0.026 1.000 εy

t 0.022 1.000
εp
t 0.092 -0.112 1.000 εp

t 0.036 -0.144 1.000
εcp
t -0.043 -0.048 0.000 1.000 εcp

t -0.018 -0.020 0.000 1.000

(a) Model in first differences (b) Model in levels

εr
t εy

t εp
t εcp

t

εr
t 1.000

εy
t 0.020 1.000

εp
t 0.035 -0.146 1.000

εcp
t -0.018 -0.010 0.000 1.000

Note: The two-standard-error band for a sample size of 204 is ± 0.1538

Table 3: Correlations between residuals of the DAGs fitted to the VAR estimated innovations

while it is affected by shocks to the commodity price.

In sum, GM selects only data available at high frequencies for the information set of the

central bank, providing support for the “alternative” approach. A diagnostic check on the

cross-correlations matrix of the resulting residuals reported in Table 3 unveils that all cross-
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Note: Dashed lines represent 90% confidence intervals computed according to Hall (1992) algorithm with 2000
bootstrap replications. Responses are shown for a 20-quarter horizon.

Figure 5: Impulse responses to a Federal funds rate shock: “Workhorse” vs. “Alternative”
(GM-consistent) identification

correlations lie within two standard errors from zero. In addition, DAG (C) implies three

overidentying restrictions which are not rejected at any conventional significance level.

Figure 5 reports the impulse responses to a positive Federal funds rate shock obtained by

adopting both the “workhorse” and the “alternative” identification approaches, the latter being
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consistent with GM. The two approaches generate impulse responses with small quantitative

differences.

5 Conclusion

The empirical approaches aiming at identifying monetary policy shocks can be classified into

two groups: the “workhorse” approach, which assumes that the central bank has sufficient

information to accurately infer what contemporaneous real output and GDP deflators are when

it takes the monetary policy decision; and the “alternative” approach, which assumes that only

variables observed with high frequency, such as commodity prices, are in the information set of

the central bank at the time of policy setting. This paper makes use of GM theory to identify

a small-scale VAR of the US economy and finds that the application of such a data-based tool

give rise to identifying restrictions consistent with the “alternative” approach. When impulse-

response analysis is concerned, however, the “workhorse” approach and the model identified by

imposing restrictions suggested by GM – coinciding with the “alternative” approach – generate

responses to a Federal funds rate shock featuring small quantitative differences.
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