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Abstract 
 
This paper describes three approaches to estimating confidence intervals for willingness to pay 
measures, the delta, Krinsky and Robb and bootstrap methods. The accuracy of the various 
methods is compared using a number of simulated datasets. In the majority of the scenarios 
considered all three methods are found to be reasonably accurate as well as yielding similar 
results. The delta method is the most accurate when the data is well-conditioned, while the 
bootstrap is more robust to noisy data and misspecification of the model. These conclusions are 
illustrated by empirical data from a study of willingness to pay for a reduction in waiting time for a 
general practitioner appointment in which all the methods produce fairly similar confidence 
intervals. 
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1 Introduction

It is well-known that the marginal rate of substitution between two attributes

in a discrete choice model is given by the ratio of the attribute coe¢ cients

when the model is linear in the attributes. This result is frequently used in the

Discrete Choice Experiment (DCE) literature to derive estimates of willingness

to pay (WTP) for an improvement in a given attribute. Most analysts are aware

that since WTP is derived as the ratio of two random variables, WTP is itself

a random variable. In spite of this, however, standard errors and con�dence

intervals for WTP estimates are rarely derived in applied work (for an exception

see [1]). For a recent review of studies applying DCEs in health care see [2].

This paper describes three approaches to estimating con�dence intervals

for willingness to pay measures, the delta, Krinsky and Robb and bootstrap

methods. The accuracy of the various methods is compared using a number

of simulated datasets with varying characteristics. In the majority of the cases

considered all three methods are found to be reasonably accurate as well as

yielding similar results. While the bootstrap is found to be the least accurate

method when the model is correctly speci�ed and the data well-conditioned,

it has the advantage of being the only method which is robust to ignoring

unobserved heterogeneity when present. The �ndings of an empirical application

support the conclusions drawn from the simulation study in that all the methods

produce fairly similar con�dence intervals.

The paper is organised as follows: section 2 provides an outline of random

utility maximisation and the logit model, section 3 describes the various methods

for estimating con�dence intervals, section 4 describes the simulated data, while

sections 5 and 6 present the simulation results and the empirical application,

respectively. Finally section 7 o¤ers some concluding remarks.

2 Random utility maximisation and the logit

model

We assume a sample of N consumers with the choice of J discrete alternatives

in T choice scenarios. Let Unjt be the utility individual n derives from choosing

alternative j in choice scenario t. It is assumed that the utility can be partitioned

into a systematic component or �representative utility�, Vnjt, and a random
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component, "njt, such that:

Unjt = Vnjt + "njt (1)

The systematic component, Vnjt, is a function of the attributes of alternative j

while "njt represents characteristics and attributes unknown to the researcher,

measurement error and/or heterogeneity of tastes in the sample. Since the

unknown variable, "njt, is treated as random by the researcher, this class of

utility models is called random utility models. The probability that individual

n chooses alternative i rather than alternative j is the probability that the utility

of choosing i is higher than the utility of choosing j:

Pnit = P (Unit > Unjt) = P (Vnit+"nit > Vnjt+"njt) = P ("njt�"nit < Vnit�Vnjt)
(2)

Assuming that the di¤erence of the random terms, "nt = "njt�"nit, is logistically
distributed and the number of alternatives, J = 2, we get the binomial logit

model (see e.g. [3]) in which the probability that alternative i is chosen in

scenario t is given by:

Pnit =
1

1 + e��(Vnit�Vnjt)
(3)

where � is a positive scale parameter which can be shown to be inversely pro-

portional to the error variance, �2":

� =
�p
3�2"

(4)

The representative utility, Vnjt, is usually speci�ed to be linear in the alter-

native attributes:

Vnjt = �0i + �1X1njt + � � �+ �KXKnjt + �CCnjt (5)

where �0i is a constant which re�ects the mean impact of the unobservable

components on the utility of alternative i. �1,...,�K are vectors of coe¢ cients

for attributes X1,...,XK and �C is the coe¢ cient for the cost of the alternatives.

The total derivative of Unjt with respect to changes in attribute Xk and cost

is given by dUnjt = �kdXk + �CdC. Setting this expression equal to zero and

solving for dC=dXk yields the change in cost that keeps utility unchanged given

a change in Xk:
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dC

dXk
=WTPk = �

�k
�C

(6)

which equals the willingness to pay for an improvement in Xk, WTPk. It can

be seen from equation 6 that WTPk is given by the negative of the ratio of

the coe¢ cients for Xk and C respectively. Since the logit model is typically

estimated using maximum likelihood, which implies that the coe¢ cients in the

model are asymptotically normally distributed, it is reasonable to assume that

WTP is given by the ratio of two normally distributed variables when the model

is estimated using a large sample. The distribution of the ratio of two normally

distributed variables has been derived by Fieller [4] and Hinkley [5], who show

that the distribution is approximately normal when the coe¢ cient of variation

of the denominator variate (in this case �C), is negligible. In other words, if

the ratio of the standard deviation of �C to its mean is low, the distribution of

WTP is likely to be approximately normal. As will become clear in the following

section, this result is of importance when comparing the various approaches to

estimating con�dence intervals for WTP.

3 WTP con�dence intervals

3.1 The delta method

The delta method estimate of the variance of a non-linear function of two (or

more) random variables is given by taking a �rst order Taylor expansion around

the mean value of the variables and calculating the variance for this expression

(see e.g. [6]). In the case of WTP the variance is given by:

var(WT̂P k) = [(WT̂P �k)
2var(�̂k) + (WT̂P �C )

2var(�̂C)

+2WT̂P �kWT̂P �C covar(�̂k; �̂C)]

= [(�1=�̂C)2var(�̂k) + (�̂k=�̂
2

C)
2var(�̂C) +

2(�1=�̂C)(�̂k=�̂
2

C)covar(�̂k; �̂C)] (7)

where WT̂P �k and WT̂P �C are the partial derivatives of WT̂P k w.r.t. �k and

�C respectively, evaluated at the estimates. The con�dence interval can then

be created in the standard fashion:

WT̂P k � z�=2
q
var(WT̂P k) (8)
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where z�=2 = ��1[1 � �=2], ��1 is the inverse of the cumulative standard
normal distribution and the con�dence level is 100(1 � �)%. This assumes

that WTP is normally distributed and thus symmetrical around its mean. As

discussed in the previous section it is likely that WTP is approximately normally

distributed when the model is estimated using a large sample and the estimate

of the coe¢ cient for the cost attribute is su¢ ciently precise. The assumption

of normality is clearly strong, however, as there is no guarantee that WTP

will be normally distributed if these conditions do not hold. There is little

theory to inform us as to what distribution WTP will have if the coe¢ cients

are not normally distributed, which may be expected if the model is estimated

using smaller samples. Shanmugalingham [7] has conducted some Monte Carlo

experiments to investigate how the shape of the distribution of the ratio of two

normal variables is a¤ected by the relative magnitude of the mean and standard

deviation of the variables as well as the correlation between them, and �nds

that in many cases the distribution is far from normal. In particular, when

the standard deviation of the denominator variable is large relative to its mean

the distribution will be skewed. This suggests that when the cost coe¢ cient is

not precisely estimated the delta method con�dence interval may be inaccurate,

since it will not re�ect the skewness of the distribution of WTP.

3.2 The Krinsky and Robb method

Krinsky and Robb [8, 9] suggest an alternative to the delta method which is

based on taking a large number of draws from a multivariate normal distribu-

tion with means given by the estimated coe¢ cients and covariance given by the

estimated covariance matrix of the coe¢ cients. This method is also referred to

as the parametric bootstrap [10]. Based on r draws taken from the joint dis-

tribution of the coe¢ cients, r simulated values of WTP are calculated. These

r values can then be used to calculate the percentiles of the simulated distrib-

ution re�ecting the desired level of con�dence. For instance, if 1000 simulated

values of WTP are estimated, the lower and upper limits of a 95% con�dence

interval are given by the 26th and 975th sorted estimates of WTP, respectively.

Con�dence intervals derived in this fashion are usually referred to as percentile

intervals [10, 11]. The con�dence interval could also be derived by using the

draws to calculate the variance of WTP and plugging the estimated variance

into equation 8, but this approach, like the delta method con�dence interval
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above, hinges on the assumption that WTP is symmetrically distributed. The

percentile interval, on the other hand, does not assume that WTP is symmet-

rically distributed. The only assumption required is that the coe¢ cients are

joint normally distributed, which may not be unrealistic when the sample is rel-

atively large. This suggests that the (percentile) Krinsky and Robb method will

yield more accurate con�dence intervals than the delta method when WTP is

not symmetrically distributed. The downside of the Krinsky and Robb method

relative to the delta method is that it is more computationally demanding, since

it requires a large number of draws being taken from the joint distribution of

the coe¢ cients. Considering the speed of modern PCs, however, this is not a

major obstacle.

3.3 The bootstrap

The bootstrap [10, 11, 12] has been used extensively to estimate standard errors

and con�dence intervals in economics in recent years (see e.g. [13]). The boot-

strap is similar to the Krinsky and Robb method in that a simulated distribution

for the variable of interest is generated. In contrast to the Krinsky and Robb

method, however, the bootstrap makes no assumptions about the distribution

of the coe¢ cients in the model. The simulated distribution of WTP is gener-

ated by drawing a large number of samples of size N (with replacement) from

the estimation sample. Each of these samples are used to derive an estimate

of WTP by estimating the model and calculating WTP using equation 6. The

con�dence interval can then be derived in an analogous fashion to the Krin-

sky and Robb percentile interval. Again, an alternative would be to calculate

the variance of the simulated distribution and plug this into equation 8, but as

discussed above this approach is likely to be less accurate since it imposes the

additional assumption of symmetry.

The bootstrap, therefore, has the same advantage as the Krinsky and Robb

method in that it does not rely on the assumption that WTP is symmetrically

distributed, but unlike the Krinsky and Robb method it does not require that

the coe¢ cients themselves are joint normally distributed. It is therefore possible

that the bootstrap will perform better than the Krinsky and Robb method when

the sample size is small. The bootstrap is by far the most computationally

demanding method, however, since it requires that the model is re-estimated for

each bootstrap sample. The gains of the bootstrap must therefore be weighed
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against the additional computational cost it imposes on the analyst.

4 The simulated discrete choice experiment

To compare the various approaches to constructing con�dence intervals for WTP

described in the previous section numerous arti�cial datasets are constructed.

Common to all the datasets is the assumption that a number of hypothetical

individuals are presented with a set of scenarios in which they must choose

between two alternatives which di¤er only in three attributes: X1, X2 and cost.

X1 and X2 are two-level attributes while cost has four levels. A summary of

the attributes and their respective levels is given in table 1.

[Table 1 about here]

The full factorial design is given by 42 � 24 = 256, which was reduced

to a design with 16 choice scenarios using the MKTEX SAS macro [14] in

order to keep the data as similar as possible to an actual choice experiment.

Suppressing the individual and scenario subscripts for simplicity, the di¤erence

in representative utility between choosing alternative 1 and 2 respectively is

given by:

V1 � V2 = �0 + �1(X11 �X12) + �2(X21 �X22) + �C(C1 � C2) (9)

Where X1j , X2j and Cj are the values of attributes X1, X2 and cost for

alternative j, respectively. The values of the coe¢ cients are set to �0 = 0:5,

�1 = 1, �2 = 0:5 and �C = �1. It follows that the willingness to pay for an
improvement in attribute X1 (WTP1) is £ 1 and the willingness to pay for an

for an improvement in attribute X2 (WTP2) is £ 0.5. The �nal step necessary

in order to create the simulated data is to take a number of draws from the

logistical distribution where each draw represents the error di¤erence for a hy-

pothetical individual in a given choice scenario. If the error di¤erence is less

than the di¤erence in indirect utility, V1�V2; alternative 1 is chosen. Otherwise,
alternative 2 is chosen.
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5 Simulation results

As discussed in the previous sections there are a number of factors which are

expected to in�uence the accuracy of the con�dence intervals. Both the delta

and Krinsky and Robb methods assume that the coe¢ cients in the model are

normally distributed, which is in�uenced by the sample size. In addition the

delta method assumes that WTP itself is normal which also requires that the

precision of the cost coe¢ cient estimate is su¢ ciently high. The precision of the

coe¢ cients depends on the sample size as well as the amount of �noise�in the

data, or in other words, the magnitude of the error variance. These two factors

are considered in turn in sections 5.1 and 5.2. Finally section 5.3 considers the

impact of neglected unobserved heterogeneity in the model. Since neglecting

unobserved heterogeneity will lead to biased estimates of the coe¢ cient standard

errors, con�dence intervals based on these standard errors will also be biased.

It is therefore expected that the bootstrap will be the superior method in this

case, since it is the only method that does not rely on the estimated covariance

matrix.

5.1 The impact of changes in the sample size

Four di¤erent sample sizes are considered, N=10, 25, 50 and 100. Since each hy-

pothetical respondent �completes�16 choice scenarios, however, the total number

of observations are 160, 400, 800 and 1600 respectively. For now it is assumed

that the logit model is the correct speci�cation. The scale parameter is set equal

to unity, which is equivalent to an error variance of �2=3. The results forWTP1
and WTP2 are given in Tables 2 and 3 respectively.

[Tables 2 and 3 about here]

The �rst two columns in the tables give the sample size and the method

used for calculating the con�dence interval. Both the Krinsky and Robb and

bootstrap con�dence intervals are derived using the percentile method based

on 1000 resamples in each trial.1 Columns 3 and 4 gives the lower and upper

1 It was found that increasing the number of resamples to 10,000 did not have a marked
impact on the accuracy of the Krinsky and Robb method. This is in line with the �ndings
documented by Krinsky and Robb. Increasing the number of boostrap resamples beyond 1,000
was considered impractical since this would lead to a considerable increase in computation
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limits of the estimated 95% con�dence intervals averaged over 10000 trials. The

Monte Carlo estimates of the con�dence limits are derived by calculating the 2.5

and 97.5 percentiles of the 10000 WTP estimates. These estimates serve as a

benchmark for the accuracy of the other methods. The �gures in brackets are the

mean squared errors of the con�dence limits based on the Monte Carlo estimates.

Finally, column 5 gives the proportion of times the estimated con�dence intervals

do not include the true WTP, which is probably the most important indicator

of the precision of the con�dence interval [11]. If the estimates are accurate

this proportion should not be signi�cantly di¤erent from the nominal � = 0:05.

Since the proportion is binomially distributed it is possible to derive con�dence

intervals for the estimates of alpha (see e.g. [15]). The 95% con�dence intervals

are given in brackets in column 5.

A number of interesting �ndings can be derived from the tables. Firstly, it

can be seen that the Monte Carlo estimates of the con�dence intervals become

narrower as the sample size increases. The marginal improvement in precision

decreases with the sample size, however: the biggest gain comes from increasing

the sample size from 10 to 25. Moreover it can be seen that all the methods

yield fairly similar results. This is reassuring and in line with the �ndings in

some [16, 17], but not all [18] of the other contexts in which these methods

have been compared. The only other study known to the author which com-

pares various methods of estimating con�dence intervals for willingness to pay

estimates is the study by Armstrong et al. [19], who compares two methods

devised by the authors with the Jackknife [10] and Krinsky and Robb methods

(they call the latter �simulation of multivariate normal variates�) using real data

on commuters�mode choice in Chile. Since Armstrong et al. do not employ

the delta and bootstrap methods the results in their paper cannot be directly

compared with those reported here, but it should be noted that they �nd that

the Jackknife and Krinsky and Robb methods yield di¤erent results. Since

the bootstrap is likely to be more accurate than the Jackknife in this context,

however, this �nding is not at odds with the bootstrap and Krinsky and Robb

con�dence intervals being similar. Also, since Armstrong et al. use real rather

than simulated data they are unable to evaluate which of the methods produce

the more accurate results.

time (it should be noted that the bootstrap already involves estimating 10,000 (runs) � 1,000
(resamples) = 10,000,000 logit models, which for N=100 takes about 4 days to run on a PC
with a 3.06 GHz Xeon processor).
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It can be seen from the tables that, somewhat surprisingly, the delta method

is the most accurate overall, and only fails to include the true WTP the correct

number of times for WTP2 when N=100 (at the 5% signi�cance level). The

Krinsky and Robb method performs well when N>25, but for lower sample

sizes the con�dence intervals for WTP2 have signi�cantly lower than nominal

alphas while the null hypothesis of � = 0:05 is only marginally �accepted�for

WTP1 when N=10. This may suggest that the Krinsky and Robb method

is more sensitive to departures from normality than the delta method. The

bootstrap method did not work well when N=10, since some of the resamples

caused problems for the convergence of the model (this happened when one or

two of the �respondents�was resampled a large number of times), and because of

this the bootstrap results for N=10 are not reported. For N>10 the bootstrap

con�dence intervals have a slightly higher than nominal alpha in all the cases.

This suggest that some form of bias adjustment might be appropriate. Briggs

et al. found that the bias adjusted and accelerated bootstrap [20] performed

better than the percentile bootstrap in their application. The bias adjusted and

accelerated bootstrap is substantially more computationally demanding than the

percentile bootstrap, however, since it requires an additional round of Jackknife

replications for each bootstrap replication. In the cases considered here the

bias adjusted and accelerated bootstrap was not found to be signi�cantly more

accurate than the percentile bootstrap (the results are available from the author

upon request).

5.2 The impact of changes in the error variance

In addition to the sample size, the amount of noise in the data is expected

to have an in�uence on the precision of the estimated con�dence intervals. It

should be recalled from section 3 that the scale parameter, �, is inversely related

to the error variance in the model (eq. 4). Three values of � are considered:

� =1, � =0.5 and � =0.25, which implies an error variance of �2=3, 4�2=3 and

16�2=3 respectively. The sample size is held constant at N=50. The results for

WTP1 and WTP2 are given in tables 4 and 5 respectively.

[Tables 4 and 5 about here]

It can be seen that the Monte Carlo estimates of the con�dence intervals

become wider when the error variance increases, re�ecting the lower precision
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of the parameter estimates. Moreover, the con�dence intervals derived using the

delta method become less precise when the error variance increases. The delta

method con�dence intervals include the true WTP the correct number of times

when � > 0:25, but have lower than nominal alphas when � = 0:25. The Krin-

sky and Robb method is somewhat more accurate, with alphas insigni�cantly

di¤erent from the nominal value in all the cases. Like the Krinsky and Robb

method the accuracy of the bootstrap seem largely una¤ected by the increase

in error variance. As before the bootstrap con�dence intervals have a somewhat

larger than nominal alpha in all the cases.

As discussed in section 3 the delta method relies on the assumption that

WTP is normally distributed, which is likely to hold when the sample size is

large and the coe¢ cient of variation for the cost coe¢ cient is su¢ ciently small.

In the cases considered here the Monte Carlo estimates of the coe¢ cients of

variation for �C are -0.077, -0.108 and -0.190 for � = 1, 0.5 and 0.25 respectively.

This corresponds to t-statistics of -13.02, -9.25 and -5.27, which may be a more

intuitive representation of the precision of the estimates. Although one should

be careful to draw strong conclusions on the basis of one study, this seems to

imply that when the cost coe¢ cient has a t-statistic of around 10 or higher in

absolute value (this is high, but not uncommon for models estimated using data

from DCEs) the delta method will produce accurate con�dence intervals, while

in cases where the cost coe¢ cient is less precisely estimated it is likely that the

Krinsky and Robb and bootstrap methods will produce more accurate results.

5.3 The impact of neglected unobserved heterogeneity

Until this point it has been assumed that the logit model is the correct speci�ca-

tion. It is often argued, however, that it is appropriate to correct for unobserved

individual heterogeneity when estimating discrete choice models with DCE data

by using either the random e¤ects logit or probit estimator (see e.g. [2]). If the

random e¤ects logit is the true speci�cation the di¤erence in utility between the

alternatives is given by:

Unit � Unjt = (Vnit � Vnjt) + zn � ("njt � "nit) (10)

where zn is an individual-speci�c and time invariant unobserved e¤ect which

is normally distributed with mean zero and standard deviation �z (see [6] for

a detailed description of this model). In previous simulation studies the coef-
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�cients have been found to be unbiased if the random e¤ect is ignored and a

standard logit is used for the analysis, but the estimated standard errors of the

coe¢ cients will be biased in this case [21, 22] (see [23] for a similar result for the

probit model).2 Since the estimated standard errors are biased it follows that

a con�dence interval based on these standard errors will also be biased, and it

is therefore expected that the delta and Krinsky and Robb methods will pro-

duce less accurate estimates of the con�dence intervals in this case. In order to

investigate the in�uence of neglected unobserved heterogeneity on the precision

of the con�dence intervals, draws from the normal distribution with mean zero

and standard deviation 2 was added to eq. 9 in the data generation process.

Tables 6 and 7 present the results for N=50.

[Tables 6 and 7 about here]

Similar to the previous studies conducted it is found that the logit estimates

of WTP are unbiased in spite of ignoring the random e¤ect. It can be seen

from the tables that the Monte Carlo estimates of the con�dence intervals are

slightly wider than in the case of no unobserved heterogeneity, but not much

so, implying that the misspeci�cation does not lead to a substantial loss in

e¢ ciency. Both the delta and Krinsky and Robb con�dence intervals are less

accurate in this case, which is to be expected since they are both based on

the biased estimate of the covariance matrix. The bootstrap method is the

most accurate, and although the bootstrap con�dence intervals have a higher

than nominal alpha they are about as accurate as in the previous cases without

unobserved heterogeneity. This suggests that the bootstrap is the appropriate

method to employ if one suspects that there may be unobserved heterogeneity

present in the data. It would also be possible, of course, to estimate a random

e¤ects logit model and use any of the three methods to construct the con�dence

interval, but investigating the properties of con�dence intervals derived in this

fashion is beyond the scope of the present paper.

2 It should be noted that the coe¢ cicents will be also be biased if zn is correlated with
the alternative attributes, in which case the �xed e¤ects logit model [24] is the appropriate
speci�cation. Unless the attributes are interacted with the socio-demographic characteristics
of the respondents, however, this possibility can be ruled out due to the experimental nature
of the data.

12



6 An empirical application

To illustrate how the various methods compare with empirical data we use data

from the pilot study of the National Primary Care Research and Development

Centres�s PAPRICA project. The aims of the PAPRICA project include ex-

amining priorities among key attributes of primary care for a representative

sample of UK patients. The attributes of the pilot experiment include waiting

time for the appointment, the cost of seeing the GP, whether the patient is

o¤ered a choice of appointment times, the doctor�s manner, whether the doctor

knows the patient�s medical history and the thoroughness of the examination.

The data consists of 30 respondents who completed 16 choices each, yielding a

total of 480 choices. A simple logit model is estimated on this data with the

aim of estimating the willingness to pay for a reduction in waiting time. The

estimate of the coe¢ cient for waiting time is -0.193, while the cost coe¢ cient is

-0.054, implying that the willingness to pay for a one day decrease in waiting

time equals £ 3.57 (the standard errors of the waiting time and cost coe¢ cients

are 0.042 and 0.008, respectively, implying t-statistics of -4.63 and -6.77). Ta-

ble 8 presents con�dence intervals for the willingness to pay for a reduction in

waiting time derived by the various methods. As before, both the Krinsky and

Robb and bootstrap intervals are derived using the percentile method based on

1000 resamples. It can be seen that all the methods yield fairly similar results,

which is consistent with the �ndings in the simulation study. The con�dence

limits of the Krinsky and Robb and bootstrap intervals imply that the distrib-

ution of WTP is somewhat skewed, which is not re�ected in the delta method

estimate. This �nding, together with the �ndings from the simulation study

suggesting that the delta method is less accurate than the other methods when

the t-statistic for the cost coe¢ cient is less than 10 in absolute value, suggests

that the Krinsky and Robb and bootstrap con�dence intervals are the most

accurate in this case. The estimates are so similar, however, that the choice of

method is unlikely to make a di¤erence from a policy point of view.

7 Concluding Remarks

This paper compares three approaches to estimating con�dence intervals for

willingness to pay measures, the delta, Krinsky and Robb and the bootstrap

methods. It is found that all of the methods produce reasonably accurate con-

�dence intervals in the majority of the cases considered. The delta method is,

13



somewhat surprisingly, found to be the most accurate when the data is well

conditioned, while the bootstrap is more robust to noisy data and misspeci�ca-

tion of the model. Although one should be careful to draw strong conclusions

on the basis of a single study, it is interesting to note that none of the ap-

proaches produces wildly misleading results in any of the cases, which suggests

that estimating con�dence intervals using any of the methods considered here

is far superior to not estimating con�dence intervals at all. The conclusions

drawn from the simulation study are supported by the �ndings of the empirical

application in that all the methods produce fairly similar con�dence intervals.

Finally, it should be noted that the simulation results were all based on the

condition that the logit (and in some cases the random e¤ects logit) is the cor-

rect speci�cation. Although it is expected that similar results will apply to the

probit model, this should be properly investigated in future research.
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Table 1. The attributes of the simulated discrete choice experiment

Attribute Levels Coding

X1 Low, High 1,2

X2 Low, High 1,2

Cost £ 1, £ 2, £ 3, £ 4 1,2,3,4
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Table 2. The impact of changes in the sample size - results for WTP1 (� = 1).

n Method Lower (0.025)� Upper (0.975)� Proportion of type I errory

10 Monte Carlo 0.418 1.616 -

10 Delta 0.419 (0.0838) 1.587 (0.1102) 0.0508 (0.0465 - 0.0551)

10 K&R 0.399 (0.0906) 1.654 (0.1368) 0.0459 (0.0418 - 0.0500)

10 Bootstrap - - -

25 Monte Carlo 0.637 1.379 -

25 Delta 0.637 (0.0340) 1.375 (0.0397) 0.0501 (0.0458 - 0.0543)

25 K&R 0.629 (0.0342) 1.388 (0.0420) 0.0464 (0.0423 - 0.0505)

25 Bootstrap 0.644 (0.0373) 1.375 (0.0452) 0.0668 (0.0619 - 0.0717)

50 Monte Carlo 0.741 1.268 -

50 Delta 0.744 (0.0175) 1.264 (0.0192) 0.0518 (0.0475 - 0.0561)

50 K&R 0.735 (0.0175) 1.268 (0.0198) 0.0482 (0.0440 - 0.0524)

50 Bootstrap 0.747 (0.0184) 1.264 (0.0205) 0.0611 (0.0564 - 0.0658)

100 Monte Carlo 0.815 1.189 -

100 Delta 0.821 (0.0087) 1.188 (0.0093) 0.0538 (0.0494 - 0.0582)

100 K&R 0.814 (0.0088) 1.189 (0.0092) 0.0496 (0.0453 - 0.0539)

100 Bootstrap 0.822 (0.0089) 1.188 (0.0096) 0.0574 (0.0528 - 0.0620)

�Mean squared errors of the con�dence limits based on the Monte Carlo estimates are
reported in parenthesis.

y95% con�dence intervals for the estimates are reported in parenthesis.
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Table 3. The impact of changes in the sample size - results for WTP2 (� = 1)

n Method Lower (0.025)� Upper (0.975)� Proportion of type I errory

10 Monte Carlo -0.113 1.126 -

10 Delta -0.114 (0.0838) 1.103 (0.1102) 0.0509 (0.0466 - 0.0552)

10 K&R -0.159 (0.1029) 1.148 (0.1318) 0.0424 (0.0385 - 0.0463)

10 BS - - -

25 Monte Carlo 0.110 0.872 -

25 Delta 0.106 (0.0356) 0.876 (0.0423) 0.0478 (0.0436 - 0.0520)

25 K&R 0.092 (0.0382) 0.886 (0.0427) 0.0430 (0.0390 - 0.0470)

25 BS 0.118 (0.0398) 0.879 (0.0483) 0.0616 (0.0569 - 0.0663)

50 Monte Carlo 0.214 0.763 -

50 Delta 0.217 (0.0184) 0.760 (0.0208) 0.0520 (0.0476 - 0.0564)

50 K&R 0.211 (0.0187) 0.762 (0.0208) 0.0496 (0.0453 - 0.0539)

50 BS 0.223 (0.0196) 0.761 (0.0225) 0.0612 (0.0565 - 0.0659)

100 Monte Carlo 0.293 0.680 -

100 Delta 0.297 (0.0094) 0.680 (0.0101) 0.0552 (0.0507 - 0.0597)

100 K&R 0.293 (0.0094) 0.681 (0.0102) 0.0535 (0.0491 - 0.0579)

100 BS 0.299 (0.0099) 0.680 (0.0106) 0.0603 (0.0556 - 0.0650)

�Mean squared errors of the con�dence limits based on the Monte Carlo estimates are
reported in parenthesis.

y95% con�dence intervals for the estimates are reported in parenthesis.
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Table 4. The impact of changes in the error variance - results for WTP1
(n = 50)

� Method Lower (0.025)� Upper (0.975)� Proportion of type I errory

1 Monte Carlo 0.741 1.268 -

1 Delta 0.744 (0.0175) 1.264 (0.0192) 0.0518 (0.0475 - 0.0561)

1 K&R 0.735 (0.0175) 1.268 (0.0198) 0.0482 (0.0440 - 0.0524)

1 Bootstrap 0.747 (0.0184) 1.264 (0.0205) 0.0611 (0.0564 - 0.0658)

0.5 Monte Carlo 0.565 1.489 -

0.5 Delta 0.546 (0.0452) 1.471 (0.0723) 0.0467 (0.0426 - 0.0508)

0.5 K&R 0.547 (0.0488) 1.517 (0.0844) 0.0466 (0.0425 - 0.0507)

0.5 Bootstrap 0.573 (0.0506) 1.500 (0.0842) 0.0596 (0.0550 - 0.0642)

0.25 Monte Carlo 0.192 2.082 -

0.25 Delta 0.108 (0.1442) 1.974 (0.4833) 0.0387 (0.0349 - 0.0425)

0.25 K&R 0.152 (0.2979) 2.307 (1.3659) 0.0498 (0.0455 - 0.0541)

0.25 Bootstrap 0.186 (0.5572) 2.273 (1.4710) 0.0599 (0.0552 - 0.0646)

�Mean squared errors of the con�dence limits based on the Monte Carlo estimates are
reported in parenthesis.

y95% con�dence intervals for the estimates are reported in parenthesis.
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Table 5. The impact of changes in the error variance - results for WTP2
(n = 50)

� Method Lower (0.025)� Upper (0.975)� Proportion of type I errory

1 Monte Carlo 0.214 0.763 -

1 Delta 0.217 (0.0184) 0.760 (0.0208) 0.0520 (0.0476 - 0.0564)

1 K&R 0.211 (0.0187) 0.762 (0.0208) 0.0496 (0.0453 - 0.0539)

1 Bootstrap 0.223 (0.0196) 0.761 (0.0225) 0.0612 (0.0565 - 0.0659)

0.5 Monte Carlo 0.067 0.987 -

0.5 Delta 0.020 (0.0514) 0.961 (0.0708) 0.0495 (0.0452 - 0.0538)

0.5 K&R 0.007 (0.0057) 0.970 (0.0739) 0.0503 (0.0460 - 0.0546)

0.5 Bootstrap 0.043 (0.0545) 0.981 (0.0803) 0.0632 (0.0584 - 0.0680)

0.25 Monte Carlo -0.365 1.508 -

0.25 Delta -0.426 (0.1922) 1.433 (0.3670) 0.0362 (0.0325 - 0.0399)

0.25 K&R -0.492 (0.4364) 1.570 (0.7197) 0.0480 (0.0438 - 0.0522)

0.25 Bootstrap -0.397 (0.5211) 1.613 (0.8650) 0.0623 (0.0576 - 0.0670)

�Mean squared errors of the con�dence limits based on the Monte Carlo estimates are
reported in parenthesis.

y95% con�dence intervals for the estimates are reported in parenthesis.
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Table 6. The impact of neglected unobserved heterogeneity - results for WTP1
(n = 50, � = 1)

Method Lower (0.025)� Upper (0.975)� Proportion of type I errory

Monte Carlo 0.730 1.332 -

Delta 0.643 (0.0282) 1.398 (0.0334) 0.0132 (0.0110 - 0.0154)

K&R 0.639 (0.0300) 1.421 (0.0407) 0.0124 (0.0102 - 0.0146)

Bootstrap 0.734 (0.0222) 1.327 (0.0289) 0.0590 (0.0544 - 0.0636)

�Mean squared errors of the con�dence limits based on the Monte Carlo estimates are
reported in parenthesis.

y95% con�dence intervals for the estimates are reported in parenthesis.
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Table 7. The impact of neglected unobserved heterogeneity - results for WTP2
(n = 50, � = 1)

Method Lower (0.025)� Upper (0.975)� Proportion of type I errory

Monte Carlo 0.180 0.804 -

Delta 0.100 (0.0293) 0.873 (0.0341) 0.0145 (0.0122 - 0.0168)

K&R 0.091 (0.0321) 0.877 (0.0353) 0.0134 (0.0111 - 0.0157)

Bootstrap 0.192 (0.0239) 0.801 (0.0295) 0.0612 (0.0565 - 0.0659)

�Mean squared errors of the con�dence limits based on the Monte Carlo estimates are
reported in parenthesis.

y95% con�dence intervals for the estimates are reported in parenthesis.
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Table 8. Con�dence intervals for the willingness to pay for a one-day reduction

in waiting time

Method Lower (0.025) Upper (0.975)

Delta 2.09 5.05

K&R 2.22 5.27

Bootstrap 2.14 5.19
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