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Abstract

The central concern of the paper is with the formulation of tests of neglected pa-
rameter heterogeneity appropriate for model environments speci�ed by a number of
unconditional or conditional moment conditions. We initially consider the uncondi-
tional moment restrictions framework. Optimal m-tests against moment condition
parameter heterogeneity are derived with the relevant Jacobian matrix obtained as
the second order derivative of the moment indicator in a leading case. GMM and
GEL tests of speci�cation based on generalized information matrix equalities ap-
propriate for moment-based models are described and their relation to the optimal
m-tests against moment condition parameter heterogeneity examined. A funda-
mental and important di�erence is noted between GMM and GEL constructions.
The paper is concluded by a generalization of these tests to the conditional moment
context.
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1 Introduction

For econometric estimation with cross-section and panel data the possibility of individual

economic agent heterogeneity is a major concern. In particular, when parameters repre-

sent agent preferences investigators may wish to entertain the possibility that parameter

values might vary across observational economic units. Although it may in practice

be di�cult to control for such parameter heterogeneity, the formulation and conduct

of tests for parameter heterogeneity are often relatively straightforward. Indeed, in the

classical parametric likelihood context, Chesher (1984) demonstrates that the well-known

information matrix (IM) test due to White (1982) can interpreted as a test against ran-

dom parameter variation. In particular, the White (1980) test for heteroskedasticity

in the classical linear regression model is a test for random variation in the regression

coe�cients. Such tests often provide useful ways of checking for unobserved individual

heterogeneity.

The central concern of this paper is the development of optimal m-tests for parameter

heterogeneity in models speci�ed by moment conditions. We consider both unconditional

and conditional model frameworks. Based on the results in Newey (1985a), to formulate

an optimal m-test we �nd the linear combination of moment functions with maximal

noncentrality parameter in the limiting noncentral chi-square distribution of a class of

m-statistics under a local random parameter alternative. In a leading case, the optimal

linear combination has a simple form, being expressed in terms of the second derivative

of the moments with respect to those parameters that are considered possibly to be

random, multiplied by the optimal weighting matrix. Thus, the moment conditions

themselves provide all that is needed for the construction of test statistics for parameter

heterogeneity.

We also consider generalized IM equalities associated with generalized method of

moments (GMM) and generalized empirical likelihood (GEL) estimation. The GMM-

based version of the generalized IM test statistic is identical to the optimal m-statistic

employing the second derivative of the moments described above. The GEL form is
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associated with a more general form of parameter heterogeneity test involving additional

components that may be interpreted in terms of correlations between the sample Jacobian

and the random variable driving potential parameter heterogeneity.

To provide a background for the subsequent discussion section 2 reconsiders the IM

test of White (1982) and its interpretation as a test for parameter heterogeneity in

Chesher (1984). We then consider the e�ect of parameter heterogeneity on the mo-

ment conditions in section 3 and derive the optimal linear combination to be used in

constructing the tests in a leading case when the sample Jacobian is uncorrelated with

the random heterogeneity variate. We give alternative Lagrange multiplier and score

forms of the optimal m-statistic that, using the results of Newey (1985a), maximize

local power. Section 4 of the paper provides moment speci�cation tests obtained by

consideration of generalized forms of the IM equality appropriate for GMM and GEL

estimation. These statistics are then compared with those for moment condition pa-

rameter heterogeneity developed in section 3. The GMM form coincides with that of

section 3 whereas the GEL statistic incorporates additional terms that implicitly allow

for particular forms of correlation between the sample Jacobian and the random variate

potentially driving parameter heterogeneity. These results are illustrated by considera-

tion of empirical likelihood, a special case of GEL that allows a direct application of the

classical likelihood-based approach to IM test construction discussed in section 2. The

results of earlier sections are then extended in section 5 to deal with models speci�ed in

terms of conditional moment conditions. The Appendices contain relevant assumptions

and proofs of results and assertions made in the main text.

Throughout the text (xi; zi), (i = 1; :::; n), will denote i.i.d. observations on the

observable s-dimensional covariate or instrument vector x and the d-dimensional vector

z that may include a sub-vector of x. The vector � denotes the parameters of interest

with B the relevant parameter space. Positive (semi-) de�nite is denoted as p.(s.)d. and

f.c.r. is full column rank. Superscripted vectors denote the requisite element, e.g., aj is

the jth element of vector a. UWL will denote a uniform weak law of large numbers such

as Lemma 2.4 of Newey and McFadden (1994), and CLT will refer to the Lindeberg-L�evy
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central limit theorem. \
p!" and \ d!" are respectively convergence in probability and

distribution.

2 The Classical Information Matrix Test

We �rst consider the classical fully parametric likelihood context and brie
y review the

information matrix (IM) test initially proposed in the seminal paper White (1982). See,

in particular, White (1982, section 4, pp. 9-12). The interpretation presented in Chesher

(1984) of the IM test as a Lagrange multiplier (LM) or score test for neglected (parameter)

heterogeneity is then discussed.

For the purposes of this section it is assumed that z has (conditional) distribution

function F (�; �) given covariates x known up to the p�1 parameter vector � 2 B. We omit

the covariates x from the exposition where there is no possibility of confusion. Suppose

also that F (�; �) possesses Radon-Nikod�ym conditional density f(z; �) = @F (z; �)=@v

and that the density f(z; �) is twice continuously di�erentiable in � 2 B.

2.1 ML Estimation

The ML estimator �̂ML is de�ned by

�̂ML = argmax
�2B

1

n

nX
i=1

log f(zi; �):

Let �0 2 B denote the true value of � and E0[�] denote expectation taken with

respect to f(z; �0). The IM I(�0) is then de�ned by I(�0) = �E0[@2 log f(z; �0)=@�@�0],

its inverse de�ning the classical Cram�er-Rao e�ciency lower bound. Under standard

regularity conditions, see, e.g., Newey and McFadden (1994), �̂ML is a root-n consistent

estimator of �0 with limiting representation

p
n(�̂ML � �0) = �I(�0)�1n�1=2

nX
i=1

@ log f(zi; �0)=@� +Op(n
�1=2): (2.1)

Consequently the ML estimator �̂ML has an asymptotic normal distribution described

by
p
n(�̂ML � �0) d! N(0; I(�0)�1):

[3]



2.2 IM Equality and IM Speci�cation Test

With E[�] as expectation taken with respect to f(z; �), twice di�erentiation of the identity

E[1] = 1 with respect to � demonstrates that the density function f(z; �) obeys the

familiar IM equality

E[
1

f(z; �)

@2f(z; �)

@�@�0
] = E[

@2 log f(z; �)

@�@�0
] + E[

@ log f(z; �)

@�

@ log f(z; �)

@�0
]

= 0:

Therefore, under correct speci�cation, i.e., z distributed with density function f(z; �0),

and given the consistency of �̂ML for �0, by an i.i.d. UWL, the contrast with zero

1

n

nX
i=1

1

f(zi; �̂ML)

@2f(zi; �̂ML)

@�@�0
=

1

n

nX
i=1

[
@2 log f(zi; �̂ML)

@�@�0

+
@ log f(zi; �̂ML)

@�

@ log f(zi; �̂ML)

@�0
]

consistently estimates a p� p matrix of zeroes. The IM test of White (1982) is a (condi-

tional) moment test [Newey (1985b)] for correct speci�cation based on selected elements

of the re-scaled moment vector1

n1=2
nX
i=1

1

f(zi; �̂ML)
vec(

@2f(zi; �̂ML)

@�@�0
)=n: (2.2)

2.3 Neglected Heterogeneity

The IM test may also be interpreted as a test for neglected heterogeneity; see Chesher

(1984). To see this we now regard � as a random vector and the density f(z; �) as the

conditional density of z given �. Absence of parameter heterogeneity corresponds to

� = �0 almost surely.

Suppose that the marginal density of � is ��p=2h((� � �0)0(� � �0)=�) where � � 0 is

a non-negative scalar, this density being a location-scale generalisation of the spherically

symmetric class [Kelker (1970)]. Given the symmetry of h(�) in �, E[�] = �0. Equiva-

lently, writing � = �0 + �
1=2w, w has the symmetric continuous density h(w0w). Thus,

1Apart from symmetry, in some cases there may be a linear dependence and, thus, a redundancy
between the elements of @2f(z; �)=@�@�0, in particular, those associated with parametric models based
on the normal distribution, e.g., linear regression, Probit and Tobit models.
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likewise, E[w] = 0. The formulation of neglected heterogeneity via the scalar � = 0,

rather than the matrix counterpart var[�1=2w], is adopted solely to simplify exposition.

Absence of (parameter) heterogeneity corresponds to � = 0 (rather than var[�1=2w] = 0)

since then � = �0 almost surely.

The marginal density of the observation vector z is

Z
f(z; �0 + �

1=2w)h(w0w)dw

with consequent score associated with � given by

1

2
��1=2

1R
f(z; �0 + �1=2w)h(w0w)dw

Z
w0
@f(z; �0 + �

1=2w)

@�
h(w0w)dw:

Evaluation at � = 0 yields the indeterminate ratio 0=0 suggesting the use of L'Hôpital's

rule on the ratio2

1

2
�1=2

Z
w0
@f(z; �0 + �

1=2w)

@�
h(w0w)dw=�:

Taking the limit lim�!0+ gives the score for � as

1

2
tr(

1

f(z; �0)

@2f(z; �0)

@�@�0
var[w]): (2.3)

Consequently, given the non-singularity of var[w], cf. Chesher (1984, Assumption

(ii), p.867), the expression (2.3) suggests a (conditional) moment or score test statistic

[Newey (1985b)] for the absence of parameter heterogeneity based on the non-redundant

elements of the moment indicator

1

f(z; �0)

@2f(z; �0)

@�@�0
; (2.4)

cf. (2.2). See Chesher (1984, p.686).

2Alternatively specifying the marginal density of � as ��ph((���0)=�) with h(�) symmetric and � a
non-negative scalar and writing � = �0 + �w, then w has continuous density h(w) with E[w] = 0. Thus
the marginal density of z is

R
f(z; �0 + �w)h(w)dw with score with respec to �

1R
f(z; �0 + �w)h(w)dw

Z
w0
@f(z; �0 + �w)

@�
h(w)dw:

In this set-up the absence of (parameter) heterogeneity corresponds to � = 0 and evaluation of the score
with respect to � at � = 0 yields 0 since E[w] = 0, i.e., the score for � is identically zero at � = 0. This
di�culty is resolved by the reparameterisation � = �2. Cf. Lee and Chesher (1986).

[5]



3 Moment Condition Models

In many applications, researchers �nd the requirement to provide a full speci�cation for

the (conditional) density f(z; �) of the observation vector z necessitated by ML to be

unpalatable. The alternative environment we consider is one that is now standard, where

the model is de�ned by a �nite number of non-linear unconditional moment restrictions;

cf. the seminal paper Hansen (1982).

Let g(z; �) denote an m � 1 vector of known functions of the data observation z

and, as above, � a p � 1 parameter vector with m � p. In the absence of parameter

heterogeneity, we assume there is a true parameter value �0 which uniquely satis�es the

moment condition

Ez[g(z; �)] = 0; (3.1)

where Ez[�] denotes expectation taken with respect to the (unknown) distribution of z.

Given their �rst order asymptotic equivalence under correct speci�cation, we adopt

the generic notation �̂ for both GMM and GEL estimators for �0 obtained under the

moment constraint (3.1) where there is no possibility of confusion; see sections 4.1 and

4.2 below where GMM and GEL are brie
y described. For the convenience of the reader,

we repeat the su�cient conditions for the consistency and asymptotic normality of GMM

and GEL given in Newey and Smith (2004), henceforth NS, Assumptions 1 and 2, p.226,

and Assumption 4, p.227, as Assumptions A.1-A.3 in Appendix A.

3.1 Optimal m-Tests

To describe the form of an optimal m-statistic relevant for testing moment condition

neglected heterogeneity we initially consider a general hypothesis testing environment.

Write � = (�0; �0)0 where � is an r-vector of additional parameters. Suppose that

the maintained hypothesis is de�ned by a value �0 = (�00; �
0
0)
0 satisfying the moment

condition

Ez[g(z; �0)] = 0:
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Also suppose the null hypothesis under test is �0 = 0; we then write the vector of

moment functions under �0 = 0, cf. (3.1), as g(z; �) = g(z; 0; �). Let gi(�) = g(zi; �),

(i = 1; :::; n), and ĝ(�) =
Pn
i=1 gi(�)=n. Then, by a random sampling CLT, under the

hypothesis �0 = 0,
p
nĝ(�0)

d�! N(0;
) where 
 = E[g(z; �0)g(z; �0)
0] which is assumed

to be non-singular.

In this general setting, tests for �0 = 0 may be based on a linear combination L

of the sample moments ĝ(�) evaluated at �̂, i.e., L0ĝ(�̂); see, e.g., Newey (1985a). Let

G = (G�; G�) be f.c.r. p+ r where G� = E[@g(z; 0; �0)=@�
0] and G� = E[@g(z; �0)=@�

0].

The optimality concept employed here is de�ned in terms of asymptotic local power

against local alternatives of the form �0n = �=
p
n where � 6= 0. Among the class

of test statistics with a limiting chi-square null distribution with r degrees of freedom

those statistics with largest non-centrality parameter are optimal. An optimal m-test

for �0 = 0 is then de�ned by setting L0 = G0�

�1, see Proposition 3, p.241, of Newey

(1985a). An asymptotically equivalent statistic to that given in Newey (1985a) is the

Lagrange multiplier (LM) version of Newey and West (1987), i.e.,

nĝ(�̂)0
̂�1Ĝ(Ĝ0
̂�1Ĝ)�1Ĝ0
̂�1ĝ(�̂);

where Ĝ and 
̂ denote estimators for G and 
 respectively consistent under the null

hypothesis �0 = 0.

3.2 Neglected Heterogeneity

The approach adopted here is similar to that of Chesher (1984) in the likelihood context

described above in section 2.3. As there, for ease of exposition, we centre � at �0 and

write

� = �0 + �w;

in terms of the non-negative scalar parameter �, � � 0, and the p-vector of random

variables w.

Assumption 3.1 (Parameter Heterogeneity.) The parameter vector � is a random vec-

tor with (unconditional) mean �0.

[7]



Under Assumption 3.1, Ew[w] = 0, where Ew[�] is expectation taken with respect to the

marginal distribution of w. An absence of neglected heterogeneity corresponds to the

hypothesis � = 0; cf. section 2.3 and Chesher (1984).

With parameter heterogeneity, since it often represents an economic-theoretic con-

straint, we re-interpret the moment condition (3.1) as being agent speci�c. Hence, we

rewrite (3.1) in terms of expectation taken with respect to the distribution of z conditional

on �, i.e., w,

Ez[g(z; �)jw] = 0; (3.2)

where Ez[�jw] is expectation conditional on w; cf. section 2.3.

Let Ez;w[�] be expectation with respect to the joint distribution of z and w. The

Jacobian with respect to � is then given by

G�(�0; �) = Ez;w[
@g(z; �)

@�
]

= Ez;w[
@g(z; �0 + �w)

@�0
w]

= Ew[Ez[
@g(z; �0 + �w)

@�0
jw]w]:

Evaluation of the Jacobian G�(�0; �) at � = 0 results in

G� = G�(�0; 0) (3.3)

= Ez;w[
@g(z; �0)

@�0
w]

= Ew[Ez[
@g(z; �0)

@�0
jw]w]:

In general, of course, the di�culty that arises in the classical context described in

section 2.3, is absent. That is, the null hypothesis Jacobian G� is not identically zero

unless w and @g(z; �0)=@�
0 are uncorrelated. However, the Jacobian expression (3.3)

does not permit an optimal m-statistic to be constructed without further elaboration

concerning the joint distribution of z and w.

The remainder of this section considers circumstances in which the null hypothesis

Jacobian G� is identically zero, i.e., conditions under which w and @g(z; �0)=@�
0 are

[8]



uncorrelated. We return to the general case in section 4 when we consider generalized

IM statistics appropriate for the moment condition context; see, in particular, section

4.2.

First, G� is identically zero if the derivative matrix @g(z; �0)=@�
0 is conditionally

mean independent of w since from (3.3) then

G� = Ez[
@g(z; �0)

@�0
]Ew[w] = 0

as Ew[w] = 0 from Assumption 3.1. Such a situation would arise when random variation

in the parameters is independent of the observed data. Indeed, this assumption may

be reasonable for many applications, but is likely not to be satis�ed in models with

simultaneity, where the data are partly determined by the value of the parameters.

We now summarise the above discussion in the following results.

Lemma 3.1 Under Assumption 3.1, the Jacobian with respect to � is identically zero in

the absence of parameter heterogeneity, under � = 0, i.e., G� = 0, if w and @g(z; �0)=@�
0

are uncorrelated.

Corollary 3.1 If Assumption 3.1 is satis�ed, the Jacobian with respect to � is identically

zero in the absence of parameter heterogeneity, under � = 0, i.e., G� = 0, if @g(z; �0)=@�
0

is conditionally mean independent of w.

To gain some further insight, consider a situation relevant in many applications in

which the moment condition (3.1) arises from a set of moment restrictions conditional on

a set of instruments or covariates x. Consequently, we re-interpret the moment condition

under parameter heterogeneity (3.2) as being taken conditional on both instruments x

and w, i.e.,

Ez[g(z; �)jw; x] = 0;

where Ez[�jw; x] denotes expectation conditional on w and x. Assumption 3.1 is corre-

spondingly revised as

[9]



Assumption 3.2 (Conditional Parameter Heterogeneity.) The parameter vector � is a

random vector with conditional mean �0 given covariates x.

Now Ew[wjx] = 0 with Ew[�jx] expectation taken with respect to w conditional on x.

The conditional mean independence of w and x of Assumption 3.2 is rather innocuous

as it may not be too unreasonable to hazard that the heterogeneity component w should

not involve the instruments x. The Jacobian (3.3) with respect to � is then

G�(�0; �) = Ex[Ez;w[
@g(z; �0 + �w)

@�
jx]] (3.4)

= Ex[Ez;w[
@g(z; �0 + �w)

@�0
wjx]]:

Evaluation of the Jacobian G�(�0; �) at � = 0 results in

G� = Ex[Ez;w[
@g(z; �0)

@�0
wjx]]:

The next result is then immediate.

Lemma 3.2 Under Assumption 3.2, the Jacobian with respect to � is identically zero in

the absence of parameter heterogeneity, under � = 0, i.e., G� = 0, if w and @g(z; �0)=@�
0

are conditionally uncorrelated given instruments x.

The condition of Lemma 3.2 is satis�ed in the following circumstances. Rewrite the

Jacobian (3.4) using the law of iterated expectations as

G� = Ex[Ew[Ez[
@g(z; �0)

@�0
jw; x]wjx]]

= Ex[Ez[
@g(z; �0)

@�0
jx]Ew[wjx]];

the second equality holding if the derivative matrix @g(z; �0)
0=@� is conditionally mean

independent of w given x. We may therefore state

Corollary 3.2 Under Assumption 3.2, the Jacobian with respect to � is identically zero

in the absence of parameter heterogeneity, under � = 0, i.e., G� = 0, if @g(z; �0)
0=@� is

conditionally mean independent of w given covariates x.

[10]



Cf. section 2.3. Such a situation would arise if the derivative matrix @g(z; �0)
0=@� is

solely a function of x. Examples include static (nonlinear) panel data models but the

conditions of Lemma 3.2 and Corollary 3.2 would generally not be satis�ed for dynamic

panel data or simultaneous equation models.

To deal with the general case of identically zero Jacobian with respect to � identi�ed

in Lemma 3.1, like Lee and Chesher (1986), as in other cases considered there, the simple

reparametrisation � = �2 su�ces to �x the problem, i.e., � = �0+�
1=2w; see also Chesher

(1984, pp.867-868) and section 2.3. The Jacobian with respect to � is

G�(�0; �) = E[
@g(z; �)

@�
]

=
1

2
��1=2E[

@g(z; �0 + �
1=2w)

@�0
w]; (j = 1; :::;m):

Evaluation at � = 0 results in the indeterminate ratio 0=0. De�neGj�(�; �) = @g
j(z; �)=@�,

(j = 1; :::m). Applying L'Hôpital's rule to the ratio

1

2
�1=2E[

@g(z; �0 + �
1=2w)

@�0
w]=�; (3.5)

and taking the limits lim�!0+ of numerator and denominator in (3.5), results in the

following expression for the Jacobian with respect to � at � = 0

Gj� = Gj�(�0) = lim
�!0+

Gj�(�0; �)

=
1

2
Ez;w[w

0 lim
�!0+

@gj(z; �0 + �
1=2w)

@�@�0
w]

=
1

2
tr(Ez;w[

@2gj(z; �0)

@�@�0
ww0]); (j = 1; :::;m):

See Appendix C.1.

If @2gj(z; �0)=@�@�
0, (j = 1; :::;m), are conditionally mean independent of w, then,

under Assumption 3.1,

Gj� =
1

2
tr(Ew[Ez[

@2gj(z; �0)

@�@�0
jw]ww0]) (3.6)

=
1

2
tr(Ez[

@2gj(z; �0)

@�@�0
]varw[w]); (j = 1; :::;m):

[11]



Cf. Corollary 3.1.

Alternatively, if @2gj(z; �0)=@�@�
0, (j = 1; :::;m), are conditionally mean independent

of w given instruments or covariates x, then

Ez[@
2gj(z; �0)=@�@�

0jw; x] = Ez[@2gj(z; �0)=@�@�0jx]; (j = 1; :::;m):

Hence, under Assumption 3.2, since Ew[wjx] = 0, using the law of iterated expectations,

Gj� =
1

2
tr(Ex[Ew[Ez[

@2gj(z; �0)

@�@�0
jw; x]ww0jx]])

=
1

2
tr(Ex[Ez[

@2gj(z; �0)

@�@�0
jx]varw[wjx]]); (j = 1; :::;m):

Cf. Corollary 3.2. Moreover, if the random variation in �, i.e., w, is also second moment

independent of x, varw[wjx] = varw[w],

Gj� =
1

2
tr(Ez[

@2gj(z; �0)

@�@�0
]varw[w]]); (j = 1; :::;m): (3.7)

We summarise the above development in the following result.

Theorem 3.1 Either (a) under Assumption 3.1, if (a) @g(z; �0)
0=@� and @2gj(z; �0)=@�@�

0,

(j = 1; :::;m), are conditionally mean independent of w, or (b) under Assumption 3.2, if

@g(z; �0)=@�
0 and @2gj(z; �0)=@�@�

0, (j = 1; :::;m), are conditionally mean independent

of w given instruments or covariates x and w is second moment independent of x, the

Jacobian of an optimal m-test against neglected parameter heterogeneity consists of the

non-redundant elements of

Ez[
@2g(z; �0)

@�k@�l
]; (k � l; l = 1; :::; p):

3.3 Test Statistics

Let 
̂(�) =
Pn
i=1 gi(�)gi(�)

0=n. De�ne

G�i(�) =
@gi(�)

@�0
; [G�i(�)]rs =

@2gi(�)

@�k@�l
; (k � l; l = 1; :::; p):

We stack the vectors [G�i(�)]kl, (k � l; l = 1; :::; p), as columns of the m � p(p + 1)=2

matrix G�i(�), (i = 1; :::; n).
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Let G� = Ez[@g(z; �)=@�
0] and [G�]kl = Ez[@

2g(z; �)=@�k@�l], (k � l; l = 1; :::; p),

that are stacked similarly to [G�i(�)]kl, (k � l; l = 1; :::; p), as the columns of the m �

p(p+1)=2 matrixG�. As in the classical case, there may be a linear dependence among the

columns of the population matrix G� taken together with G�. Moreover, for economic

theoretic reasons, parameter heterogeneity may only be suspected in a subset of the

elements of �. Therefore, we adopt the notation Gc� for those non-redundant r columns

chosen from G� with G
c
�i(�), (i = 1; :::; n), their sample counterparts.

To de�ne the requisite GMM and GEL statistics, de�ne the sample moment estimators

Ĝ�(�) =
Pn
i=1G�i(�)=n, Ĝ

c
�(�) =

Pn
i=1G

c
�i(�)=n and write Ĝ(�) = (Ĝ�(�); Ĝ

c
�(�)) with

the consequent �̂(�) = (Ĝ(�)0
̂(�)�1Ĝ(�))�1.

The optimal GMM or GEL LM-type statistic for neglected heterogeneity is

LMn = nĝ(�̂)
0
̂(�̂)�1Ĝ(�̂)�̂(�̂)Ĝ(�̂)0
̂(�̂)�1ĝ(�̂); (3.8)

see Newey andWest (1987) and Smith (2010). Given the optimal GMM or GEL estimator

�̂, de�ne �̂ = arg sup�2�̂n(�̂) P̂n(�̂; �) where P̂n(�; �) is the GEL criterion stated in (4.5)

below and the set �̂n(�̂) given in section 4.2. Since n
1=2�̂ = �
̂(�̂)�1n1=2ĝ(�̂)+Op(n�1=2)

under local alternatives to (3.1), a score-type test asymptotically equivalent to (3.8) may

also be de�ned

Sn = n�̂0Ĝ(�̂)�̂(�̂)Ĝ(�̂)0�̂: (3.9)

Cf. the �rst order conditions de�ning the GEL estimator �̂; see section 4.2 below.

The limiting distributions of the statistics LMn (3.8) and Sn (3.9) in the absence of

parameter heterogeneity may then be described. Let N denote a neighbourhood of �0.

Theorem 3.2 If Assumptions A.1, A.2 and A.3 of Appendix A are satis�ed together

with E[sup�2N k@2g(z; �)=@�k@�lk] < 1, (k � l; l = 1; :::; p), rank(E[(G�; Gc�)] = p + r

and p+ r � m, then

Sn;LMn
d! �2r:

See, e.g., Newey and West (1987) and Smith (2010).
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Note that the Jacobian estimator Ĝ(�) may equivalently be replaced by its GEL coun-

terpart ~G(�) = ( ~G�(�)
0; ~G�(�)) =

Pn
i=1 �̂i(�; �̂(�))(G�i(�)

0; Gc�i(�)
0), where the implied

probabilities �̂i(�; �̂(�)), (i = 1; :::; n), are de�ned in (4.7) below. Likewise the variance

matrix estimator 
̂(�) may be replaced by ~
(�) =
Pn
i=1 �̂i(�; �̂(�))gi(�)gi(�)

0.

The above development critically relies on an assumption of (unconditional or condi-

tional) uncorrelatedness of the heterogeneity variate w and the sample Jacobian @g(z; �0)=@�
0,

i.e.,

Ez;w[
@g(z; �0)

@�0
w] = 0; (3.10)

necessitating the use of L'Hôpital's rule to obtain the Jacobian with respect to � evaluated

at � = 0. Cf. Lemmata 3.1 and 3.2 and Corollaries 3.1 and 3.2. The next section,

in particular, section 4.2, develops an alternative approach to the construction of test

statistics against moment condition parameter heterogeneity that potentially permits an

implicit correlation between w and @g(z; �0)=@�
0.

4 Generalized Information Matrix Tests

Optimal GMM or GEL tests for neglected heterogeneity based on the moment indicator

second derivative @2g(z; �0)=@�k@�l, (k � l; l = 1; :::; p), described in section 3.3, may

also be interpreted in terms of GMM and GEL versions of a generalized IM equality. As is

well known, see, e.g., Tauchen (1985), the GMM objective function satis�es a generalized

form of the IM equality described in (2.2). As described below a similar relation is

revealed for GEL.

Let G� = E[@g(z; �0)=@�
0] and 
 = E[g(z; �0)g(z; �0)

0].

4.1 GMM

The standard estimator of � is the e�cient two step (2S) GMM estimator due to Hansen

(1982). Suppose ~� is a preliminary consistent estimator for �0. The 2SGMM estimator
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is de�ned as

�̂2S = argmin
�2B

ĝ(�)0
̂( ~�)�1ĝ(�): (4.1)

Under (3.1) and, in particular, Assumptions A.1-A.3 it is straightforward to show that

�̂2S
p! �0 and that �̂2S is asymptotically normally distributed, i.e.,

p
n(�̂2S � �0) d!

N(0; (G0�

�1G�)

�1). See, e.g., Newey and McFadden (1994). The matrix G0�

�1G� may

be thought of as a generalized IM appropriate for the moment condition context. Cf.

the classical information matrix I(�0) de�ned in section 2.1. Indeed, its inverse, i.e., the

asymptoic variance of e�cient 2SGMM estimator �̂2S, corresponds to the semiparametric

e�ciency lower bound, see Chamberlain (1987).

Although similar in structure to GMM, the continuous updating estimator (CUE)

criterion of Hansen, Heaton, and Yaron (1996) di�ers by requiring that the 2SGMM

criterion is also simultaneously minimized over � in 
̂(�), i.e., the CUE is given by

�̂CUE = argmin
�"B

ĝ(�)0
̂(�)�ĝ(�); (4.2)

where A� now denotes any generalized inverse of a matrix A, satisfying AA�A = A.

Now consider the rescaled GMM objective function

Q̂n(�) = ĝ(�)
0
̂( ~�)�1ĝ(�)=2: (4.3)

To describe a generalized IM equality similar to (2.2) for the GMM criterion Q̂(�), �rst,

under Assumptions A.1-A.3, by a UWL and a CLT, the limiting normal distribution

associated with the score @Q̂(�0)=@� = Ĝ�(�0)
0
̂( ~�)�1ĝ(�0) obtained from (4.3) may be

stated as
p
n
@Q̂n(�0)

@�
d! N(0; G0�


�1G�):

Secondly, the asymptotic variance and generalized IM G0�

�1G� is equal to the asymp-

totic limit of the Hessian matrix @2Q̂n(�0)=@�@�
0, viz.

@2Q̂n(�0)

@�k@�l
= [Ĝ�(�0)

0
̂( ~�)�1Ĝ�(�0)]kl +
@2ĝ(�0)

0

@�k@�l

̂( ~�)�1ĝ(�0)

= [G0�

�1G�]kl +Op(n

�1=2); (k � l; l = 1; :::; p);
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with the �rst term by application of a UWL and the second term by a UWL and CLT.

Hence, analogously with the classical IM test statistic of White (1982), see section

2.2, a GMM-based IM test for the moment speci�cation Ez[g(z; �0)] = 0 may be based

on the contrast between an estimator of the asymptotic variance of
p
n@Q̂(�0)=@�, i.e.,

the generalized IM G0�

�1G�, with the Hessian evaluated at the 2SGMM estimator �̂,

@2Q̂(�̂)

@�k@�l
= [Ĝ�(�̂)

0
̂( ~�)�1Ĝ�(�̂)]kl +
@2ĝ(�̂)0

@�k@�l

̂( ~�)�1ĝ(�̂); (k � l; l = 1; :::; p):

A standard estimator for the generalized IM G0�

�1G� is Ĝ�(�̂)

0
̂( ~�)�1Ĝ�(�̂). This es-

timator also has an interpretation as an outer product form of estimator based on the

\scores" Ĝ�(�̂)
0
̂( ~�)�1gi( ~�), (i = 1; :::; n); cf. the score @Q̂(�0)=@� = Ĝ�(�0)

0
̂( ~�)�1ĝ(�0).

The generalized GMM IM speci�cation test statistic is therefore based on the non-

redundant \scores" from

@2ĝ(�̂)0

@�k@�l

̂( ~�)�1ĝ(�̂); (k � l; l = 1; :::; p);

cf. the optimal LM form of neglected heterogeneity test statistic LMn (3.8) above.

Recall though from section 3.2 that this formulation of LMn implicitly incorporates

the (unconditional or conditional) uncorrelatedness of w and @g(z; �0)
0=@�; cf. Lemmata

3.1 and 3.2 and Corollaries 3.1 and 3.2. The implicit Jacobian is therefore constructed

from

Ez[
@2g(z; �0)

@�k@�l
]; (k � l; l = 1; :::; p); (4.4)

cf. Theorem 3.1.

4.2 GEL

An alternative class of criteria relevant for the estimation of models de�ned in terms

of the moment condition (3.1) is the GEL class; see, e.g., NS and Smith (1997, 2010).

Indeed CUE (4.2) is included as a special case of GEL; see fn.3 below.

GEL estimation is based on a scalar function �(v) of a scalar v that is concave on its

domain, an open interval V containing zero. Without loss of generality, it is convenient
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to normalize �(�) with �1 = �2 = �1 where �j(v) = @j�(v)=@vj and �j = �j(0), (j =

0; 1; 2; :::). Let �̂n(�) = f� : �0gi(�) 2 V ; i = 1; :::; ng. The GEL criterion is de�ned as

P̂n(�; �) =
nX
i=1

[�(�0gi(�))� �(0)]=n (4.5)

with the GEL estimator of � given as the solution to a saddle point problem; viz.3

�̂ = argmin
�2B

sup
�2�̂n(�)

P̂n(�; �): (4.6)

Let �̂(�) = arg sup�2�̂n(�) P̂n(�; �) and �̂ = �̂(�̂). Under Assumption B.1 of the

Appendix, by NS Theorem 3.1, p.226, �̂
p! �0 and �̂

p! 0 and, together with the

additional Assumption B.2,
p
n(�̂ � �0) d! N(0; (G0�


�1G�)
�1) and

p
n�̂

d! N(0;
�1 �


�1G����G
0
�


�1), see NS Theorem 3.2, p.226.

Similarly to Back and Brown (1993), empirical or implied GEL probabilities may be

de�ned for a given GEL function �(�) as

�̂i(�; �̂(�)) =
�1(�̂(�)

0gi(�))Pn
j=1 �1(�̂(�)

0gj(�))
; (i = 1; :::; n); (4.7)

cf. NS and Brown and Newey (1992, 2002).4

A similar analysis to that described above in section 4.1 for GMM may be based on

the GEL criterion with its re-interpretation as a pseudo-likelihood function to obtain a

generalized IM equality. To do so consider the pro�le GEL criterion obtained from (4.5)

after substituting out � with �̂(�), i.e.,

P̂n(�) = P̂n(�; �̂(�)): (4.8)

3Both EL and exponential tilting (ET) estimators are included in the GEL class with �(v) = log(1�v)
and V = (�1; 1), [Qin and Lawless (1994), Imbens (1997) and Smith (1997)] and �(v) = � exp(v),
[Kitamura and Stutzer (1997), Imbens, Spady and Johnson (1998) and Smith (1997)], respectively, as is
the CUE, as indicated above, if �(v) is quadratic [NS]. Minimum discrepancy estimators based on the
Cressie and Read (1984) family h(�) = [
(
 + 1)]�1[(n�)
+1 � 1]=n are also members of the GEL class
[NS].

4The GEL empirical probabilities �̂i(�; �̂(�)), (i = 1; :::; n), sum to one by construction, satisfy

the sample moment conditions
Pn

i=1 �̂i(�; �̂(�))gi(�) = 0 that de�ne the �rst order conditions for

�̂(�), and are positive when �̂(�̂)0ĝi(�̂) is small uniformly in i. As in Brown and Newey (1998),Pn
i=1 �̂i(�̂; �̂(�̂))a(zi; �̂) is a semiparametrically e�cient estimator of Ez[a(z; �0)].
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Hence, by the envelope theorem, the score with respect to � is

@P̂n(�)

@�
=

nX
i=1

�1(�̂(�)
0gi(�))G�i(�)

0�̂(�)=n: (4.9)

The corresponding Hessian with respect to � from the pro�le GEL criterion P̂n(�) (4.8)

is

nX
i=1

�2(�̂(�)
0gi(�))G�i(�)

0�̂(�)[�̂(�)0G�i(�) + gi(�)
0@�̂(�)

@�0
]=n

+
nX
i=1

�1(�̂(�)
0gi(�))[

mX
j=1

@2gji (�)

@�@�0
�̂j(�) +G�i(�)

0@�̂(�)

@�0
]=n:

The derivative matrix @�̂(�)=@�0 is given by application of the implicit function theorem

to the �rst order conditions de�ning �̂(�); see (C.1) in Appendix C.2.

Let �̂0 = �̂(�0), gi = gi(�0), �1i = �1(�̂
0
0gi), �2i = �2(�̂

0
0gi), G�i = G�i(�0) and

G�ki(�) = @gi(�)=@�k, (k = 1; :::; p), (i = 1; :::; n).

Evaluating the Hessian (4.10) at �0, Appendix C.2 demonstrates that the �rst term is

Op(n
�1) whilst the second and third terms are both Op(n

�1=2). The fourth term consists

of the Op(1) component

�
nX
i=1

�1iG
0
�i=n[

nX
i=1

�2igig
0
i=n]

�1
nX
i=1

�1iG�i=n;

a consistent estimator for generalized IM G0�

�1G�, and the Op(n

�1=2) component

�
nX
i=1

�1iG
0
�i=n[

nX
i=1

�2igig
0
i=n]

�1
nX
i=1

�2igi�̂
0
0G�i=n:

Let ĝi = gi(�̂), �̂1i = �1(�̂
0ĝi), �̂2i = �2(�̂

0ĝi), Ĝ�i = G�i(�̂) and Ĝ�ki = G�ki(�̂), (k =

1; :::; p), (i = 1; :::; n). Similarly to GMM, a GEL IM test for the moment speci�cation

Ez[g(z; �0)] = 0 is based on the contrast between an estimator of the generalized IM

G0�

�1G� and the GEL Hessian (4.10) evaluated at �̂. A GEL estimator for G

0
�


�1G� is

�
nX
i=1

�̂1iĜ
0
�i[

nX
i=1

�̂2iĝiĝ
0
i=n]

�1
nX
i=1

�̂1iĜ�i=n;

this estimator has the approximate interpretation as an outer product form of estimator

based on the \scores" �[Pn
i=1 �̂1iĜ

0
�i=n][

Pn
i=1 �̂2iĝiĝ

0
i=n]

�1p��̂2iĝi, (i = 1; :::; n); cf. (4.9)

and the asymptotic representation (C.2) in Appendix C.2 for
p
n�̂0.
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Therefore in the GEL context the generalized IM equality gives rise to the score

[
nX
i=1

�̂1i
@2ĝ0i
@�k@�l

=n

+ �G0�k
�
�1

nX
i=1

�̂2iĝiĜ
0
�li
=n

+ �G0�l
�
�1

nX
i=1

�̂2iĝiĜ
0
�ki
=n]�̂; (k � l; l = 1; :::; p);

where �G0�k =
Pn
i=1 �̂1iĜ�ki=n, (k = 1; :::; p), and

�
 = �Pn
i=1 �̂2iĝiĝ

0
i=n. Asymptotically,

therefore, the implicit Jacobian is

E[
@2g(z; �0)

@�k@�l
] (4.10)

+G0�k

�1E[g(z; �0)G�l(z; �0)

0]

+G0�l

�1E[g(z; �0)G�k(z; �0)

0]; (k � l; l = 1; :::; p):

The �rst term in (4.10) is identical to the GMM Jacobian (4.4) but, interestingly,

the second and third terms are absent for GMM. This occurs because of the use of the

preliminary consistent estimator ~� to estimate 
 in 2SGMM whereas GEL implicitly

also optimises a variance component over �, cf. CUE (4.2). This �rst term might be

regarded as arising from that component of the heterogeneity random variate w that is

(unconditionally or conditionally) uncorrelated with the sample Jacobian @g(z; �0)=@�
0.

The additional terms in (4.10) involve the covariances between the moment indicator

derivative matrix G�k(z; �0) and the \score" G
0
�l

�1g(z; �0) and likewise G�l(z; �0) and

the \score" G0�k

�1g(z; �0), (k � l; l = 1; :::; p). Cf. G� (3.3). These terms thereby

implicitly allow for a correlation between the heterogeneity variate w and the sample

Jacobian @g(z; �0)=@�
0. Note that these terms are absent when the derivative matrix

@g(z; �0)
0=@� is solely a function of x and the moment indicator obeys the conditional

moment constraint Ez[g(z; �0)jx] = 0, e.g., static (nonlinear) panel data models. How-

ever, as noted above, these terms are likely to be relevant for dynamic panel data or

simultaneous equation models.

After substitution of �̂ for �0, the above score is expressed in terms of the La-

grange multiplier-type estimator �̂ = �̂(�̂). Hence the resultant statistic will be of the

[19]



LM type LMn. An equivalent score-type test, cf. Sn, is obtained by substitution of

��
(�̂)�1
p
nĝ(�̂) for

p
n�̂(�̂) since

p
n�̂(�̂) = �
�1

p
nĝ(�̂) + Op(n

�1=2) in the absence

of parameter heterogeneity.

4.3 An Example: Empirical Likelihood5

To illustrate the development above we consider empirical likelihood (EL), a special case

of GEL; see fn.3. As is well-known, see inter alia Owen (1988, 2001) and Kitamura

(2007), EL may be interpreted as non-parametric ML. Indeed EL is ML when z has

discrete support. Hence, EL is an example of GEL where the classical ML-based (con-

ditional) IM test moment indicators (2.2) and (2.4) may be applied directly to derive

a test against parameter heterogeneity. The resultant EL-based statistic may then be

compared with the GMM and GEL Jacobians (4.4) and (4.10) obtained in sections 4.1

and 4.2 respectively.

The EL implied propbabilities, cf. (4.7), are

�̂i(�; �) =
1

n(1 + �0gi(�))
; (i = 1; :::; n);

where � is a vector of Lagrange multipliers corresponding to imposition of the moment

restrictions
Pn
i=1 �̂i(�; �)g(zi; �) = 0. The EL criterion is then de�ned as

ELn(�; �) =
1

n

nX
i=1

log �̂i(�; �)

= � 1
n

nX
i=1

log n(1 + �0gi(�)):

Given � the Lagrange multiplier vector � may be concentrated or pro�led out using the

solution �̂(�) to the likelihood equations

0 = �
nX
i=1

�̂i(�; �̂(�))g(zi; �) (4.11)

= �
nX
i=1

1

n(1 + �̂(�)0gi(�))
gi(�);

5We are grateful to Y. Kitamura for suggesting this example.
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obtained from setting @ELn(�; �̂(�))=@� = 0. The resultant pro�le EL criterion is

ELn(�) =
1

n

nX
i=1

log �̂i(�; �̂(�))

= � 1
n

nX
i=1

log n(1 + �̂(�)0gi(�))

with likelihood equations

0 = �
nX
i=1

�̂i(�; �̂(�))G�i(�)
0�̂(�)

= �
nX
i=1

1

n(1 + �̂(�)0gi(�))
G�i(�)

0�̂(�):

Therefore, a classical EL-based IM test or, equivalently, test for the absence of para-

meter heterogeneity uses the non-redundant elements of the moment indicators

1

n

nX
i=1

1

�̂i(�0; �̂0)

@2�̂i(�0; �̂0)

@�k@�l
; (k � l; l = 1; :::; p);

evaluated at the EL estimator �̂; cf. sections 2.2 and 2.3. As detailed in Appendix C.3

1

n

nX
i=1

1

�̂i(�0; �̂0)

@2�̂i(�0; �̂0)

@�k@�l
= [

nX
i=1

1

n(1 + �̂00gi)
G0�ki]

�
(�0)
�1[

nX
i=1

1

n(1 + �̂00gi)
2
giG

0
�li
]�̂0

+[
nX
i=1

1

n(1 + �̂00gi)
G0�li]

�
(�0)
�1[

nX
i=1

1

n(1 + �̂00gi)
2
giG

0
�ki
]�̂0

�[
nX
i=1

1

n(1 + �̂00gi)

@2gi(�0)
0

@�k@�l
]�̂0 +Op(n

�1);

(k � l; l = 1; :::; p), where

�
(�) =
nX
i=1

1

n(1 + �̂(�)0gi(�))2
gi(�)gi(�)

0:

These terms are exactly those given in section 4.2 above for the GEL IM statistic spe-

cialised for EL since, de�ning �(v) = log(1 � v), see fn.3, �1i = �1=n(1 � �̂00gi) and

�2i = �1=n(1� �̂00gi)2, (i = 1; :::; n).

5 Many Instruments

The development of earlier sections has been primarily concerned with unconditional

moment restrictions. In our discussion of moment condition neglected heterogeneity in
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section 3, it was noted that many models expressed in terms of unconditional moment

restrictions arise from consideration of conditional moment constraints. This section

adapts the above analysis of moment condition neglected heterogeneity to the conditional

moment context. Like Appendix A, for ease of reference, Appendix B collects together

assumptions given in Donald, Imbens and Newey (2003), DIN henceforth, su�cient for

the consistency and asymptotic normality of GMM and GEL.

To provide an analysis for this setting, let u(z; �) denote a s-vector of known functions

of the data observation z and �. The model is completed by the conditional moment

restriction

Ez[u(z; �)jx] = 0 w.p.1; (5.1)

satis�ed uniquely at true parameter value �0 2 int(B). In many applications, the condi-

tional moment function u(z; �) would be a vector of residuals.

It is well known [Chamberlain (1987)] that conditional moment conditions of the type

(5.1) are equivalent to a countable number of unconditional moment restrictions under

certain regularity conditions. Assumption 1, p.58, in DIN, repeated as Assumption B.1

of Appendix B, provides precise conditions. To summarise, for each positive integer K,

if qK(x) = (q1K(x); :::; qKK(x))
0 denotes a K-vector of approximating functions, then we

require qK(x) such that for all functions a(x) with E[a(x)2] <1 there are K-vectors 
K

such that as K !1, E[(a(x)� qK(x)0
K)2]! 0. Possible approximating functions are

splines, power series and Fourier series. See inter alia DIN and Newey (1997) for further

discussion. DIN Lemma 2.1, p.58, formally shows the equivalence between conditional

moment restrictions and a sequence of unconditional moment restrictions of the type

considered in this section.

Like DIN we de�ne an unconditional moment indicator vector as

g(z; �) = u(z; �)
 q(x);

where q(x) = qK(x) omitting the index K where there can be no possibility of confusion;

thus, from earlier sections, m = s � K. Assumption B.2, i.e., Assumption 2, p.59, of
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DIN, imposes the normalisation requirement that, for each K, there exists a constant

scalar �(K) and matrix BK such that ~q
K(x) = BKq

K(x) for all x 2 X , where X denotes

the support of the random vector x, with supx2X



~qK(x)


 � �(K) and pK � � (K).

GMM and GEL are applied based on the consequent unconditional moment condi-

tion Ez[g(z; �0)] = 0; cf. (3.1). De�ne the conditional Jacobian matrix D�(x; �) =

Ez[@u(z; �)=@�
0jx] and conditional second moment matrix V (x; �) = Ez[u(z; �)u(z; �)0jx].

By stipulating that K approaches in�nity at an appropriate rate, dependent on n and

the type of estimator considered, then DIN, Theorems 5.4, p.66, and 5.6, p.67, respec-

tively, shows that GMM and GEL are root-n consistent and achieve the semi-parametric

e�ciency lower bound I(�0)�1 where I(�) = Ex[D�(x; �)
0V (x; �)�1D�(x; �)], i.e.,

6

p
n(�̂ � �0) d! N(0; I(�0)�1):

Let u�(z; �) = @u(z; �)=@�0 and ui(�) = u(zi; �), u�i(�) = u�(zi; �), (i = 1; :::; n).

Also let gi(�) = ui(�) 
 qi, where qi = q(xi), (i = 1; :::; n). Write G�i(�) = u�i(�) 


qi, (i = 1; :::; n), Ĝ�(�) =
Pn
i=1G�i(�)=n and, likewise, 
̂(�) =

Pn
i=1 gi(�)gi(�)

0=n =Pn
i=1 ui(�)ui(�)

0 
 qiq0i=n.

5.1 Neglected Heterogeneity

The relevant Jacobian terms follow directly from the analysis for the unconditional mo-

ment case. Thus, for GMM, de�ne

[G�i(�)]kl =
@2gi(�)

@�k@�l

=
@2ui(�)

@�k@�l

 qi; (k � l; l = 1; :::; p):

6GMM and GEL require Assumptions B.1-B.5 and Assumptions B.1-B.6 respectively of Appendix
B. The respective rates for the scalar normalisation �(K) for GMM and GEL are �(K)2K=n ! 0 and
�(K)2K2=n! 0. See DIN, Theorems 5.4, p.66, and 5.6, p.67, respectively.

[23]



or, for GEL,

[G�i(�)]kl =
@2gi(�)

@�k@�l
(5.2)

+G�ki(�)gi(�)
0
�1G�l

+G�li(�)gi(�)
0
�1G�k

=
@2ui(�)

@�k@�l

 qi

+[
@ui(�)

@�k
ui(�)

0 
 qiq0i]
�1G�l

+[
@ui(�)

@�l
ui(�)

0 
 qiq0i]
�1G�k ; (k � l; l = 1; :::; p):

Cf. sections 4.1 and 4.2.

5.2 Test Statistics

As previously stack the vectors [G�i(�)]kl, (k � l; l = 1; :::; p), de�ned in (5.2) or (5.2),

as columns of the m� p(p+1)=2 matrix G�i(�), (i = 1; :::; n). Since there may be linear

dependencies among the population counterparts of these columns taken together with

those of G�i(�), (i = 1; :::; n), let G
c
�i(�) denote those r non-redundant columns chosen

from G�i(�), (i = 1; :::; n). Appropriate estimators for G�k , (k = 1; :::; p), and 
 are

de�ned below.

To de�ne the requisite GMM and GEL statistics, de�ne the sample moment estimators

Ĝ�(�) =
Pn
i=1G�i(�)=n, Ĝ

c
�(�) =

Pn
i=1G

c
�i(�)=n and write Ĝ(�) = (Ĝ�(�); Ĝ

c
�(�)) with

the consequent �̂(�) = (Ĝ(�)0
̂(�)�1Ĝ(�))�1.

The respective optimal GMM or GEL score and LM statistics for neglected hetero-

geneity are de�ned exactly as in the unconditional case above, i.e.,

Sn = n�̂0Ĝ(�̂)�̂(�̂)Ĝ(�̂)0�̂;

and

LMn = nĝ(�̂)
0
̂(�̂)�1Ĝ(�̂)�̂(�̂)Ĝ(�̂)0
̂(�̂)�1ĝ(�̂):

We employ Lemmata A.3, p.73, and A.4, p.75, of DIN in our proofs for the limiting

distributions of Sn and LMn in the absence of parameter heterogeneity. This requires
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the strengthening of the assumptions therein, in particular, Assumption B.5 of Appendix

B.

Let uj��(z; �) = @
2uj(z; �)=@�@�0, (j = 1; :::; s), and uj���k(z; �) = @

3uj(z; �)=@�@�0@�k,

(k = 1; :::; p), (j = 1; :::; s). Also let N denote a neighbourhood of �0 and D� (x) =

Ez[u�(z; �0)jx]. We write Dc
� (x; �) as the non-redundant components selected from

either Ez[u�k�l(z; �)jx] or Ez[u�k�l(z; �)jx] + Ez[u�k(z; �)u(z; �)0jx]V (x; �)�1D�l(x; �) +

Ez[u�l(z; �)u(z; �)
0jx]V (x; �)�1D�k(x; �), (k � l; l = 1; :::; p), withD(x; �) = (D�(x; �); D

c
�(x; �))

and D(x) = D(x; �0).

Assumption 5.1 (a) u(z; �) is thrice di�erentiable in N ; (b) Ez[sup�2N



uj��(z; �)


2 jx]

and Ez[sup�2N kuj(z; �)u�(z; �)k
2 jx], (j = 1; :::; s), are bounded; (c) Ez[




uj���k(z; �0)


2 jx],
(k = 1; :::; p), Ez[ku�(z; �0)k4 jx] and Ez[




uj(z; �0)uk��(z; �0)


2 jx], (j; k = 1; :::; s), are

bounded; (d) Ex[D(x)
0D(x)] is nonsingular.

Consequently, a similar result to that in the unconditional case may be stated for the

LM statistic LMn.

Theorem 5.1 Let Assumptions B.1-B.5, ~� = �0+Op(1=
p
n) and �(K)2K=n! 0 be sat-

is�ed for GMM or, for GEL, let Assumptions B.1-B.6 and �(K)2K2=n! 0 hold, where

the scalar �(K) is de�ned in Assumption B.2 of Appendix B. Then, under Assumption

5.1, in the absence of parameter heterogeneity,

LMn
d! �2r:

Likewise, there is a corresponding result for the score statistic Sn; viz.

Theorem 5.2 Let Assumptions B.1-B.5, ~� = �0+Op(1=
p
n) and �(K)2K=n! 0 be sat-

is�ed for GMM or, for GEL, let Assumptions B.1-B.6 and �(K)2K2=n! 0 hold, where

the scalar �(K) is de�ned in Assumption B.2 of Appendix B. Then, under Assumption

5.1, in the absence of parameter heterogeneity,

Sn d! �2r:

Indeed, as the proofs of these theorems attest, LMn and Sn are asymptotically equiv-

alent in the absence of parameter heterogeneity, i.e., LMn � Sn
p! 0.
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5.3 Test Consistency

Similarly to Lemma 6.5, p.71, in DIN, we may obtain a test consistency result for the

LM statistic LMn.

Theorem 5.3 Suppose �̂
p! �� such that Ez[u(z; ��)jx] 6= 0. Under Assumption 5.1

and Assumptions B.1-B.6 with �� replacing �0, if Ex[D(x; ��)
0V (x; ��)

�1D(x; ��)] has

smallest eigenvalue bounded away from zero, then the �-level critical region LMn > �
2
r(�)

de�nes a consistent test against parameter heterogeneity if

Ex[D
c
�(x; ��)V (x; ��)

�1E[u(z; ��)jx]] 6= 0:

Appendix A: Unconditional Moments: Assumptions

This Appendix repeats NS Assumptions 1 and 2, p.226, and gives a revised NS Assump-

tion 4, p.227.

Let G� = Ez[@g(z; �0)=@�
0] and 
 = Ez[g(z; �0)g(z; �0)

0].

Assumption A.1 (a) �0 2 B is the unique solution to Ez[g(z; �)] = 0; (b) B is compact;

(c) g(z; �) is continuous at each � 2 B with probability one; (d) Ez[sup�2B kg(z; �)k
�] <

1 for some � > 2; (e) 
 is nonsingular; (f) �(v) is twice continuously di�erentiable in

a neighborhood of zero.

Assumption A.2 (a) �0 2 int(B); (b) g(z; �) is continuously di�erentiable in a neigh-

borhood N of �0 and Ez[sup�2N k@gi(�)=@�0k] <1; (c) rank(G�) = p.

Assumption A.3 The preliminary estimator ~� satis�es ~� = �0 +Op(1=
p
n).

Appendix B: Conditional Moments: Assumptions

This Appendix collects together DIN Assumptions 1-6 for ease of reference.
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Assumption B.1 For all K, Ex[q
K(x)0qK(x)] is �nite and for any a(x) with Ex[a(x)

2] <

1 there are K-vectors 
K such that as K !1,

Ex[(a(x)� qK(x)0
K)2]! 0:

Let X denote the support of the random vector x.

Assumption B.2 For each K there is a constant scalar �(K) and matrix BK such that

~qK(x) = BKq
K(x) for all x 2 X , supx2X




~qK(x)


 � �(K), Ex[~qK(x)~qK(x)0] has smallest
eigenvalue bounded away from zero uniformly in K and

p
K � � (K).

Next let u�(z; �) = @u(z; �)=@�
0,D� (x) = Ez[u�(z; �0)jx] and uj��(z; �) = @2uj(z; �)=@�@�0,

(j = 1; :::; s). Also let N denote a neighbourhood of �0.

Assumption B.3 The data are i.i.d. and (a) there exists a unique �0 2 B such that

Ez[u(z; �)jx] = 0; (b) B is compact; (c) Ez[sup�2B ku(z; �)k
2 jx] is bounded; (d) for

all �; ~� 2 B,



u(z; �)� u(z; ~�)


 � �(z)




� � ~�



� for some � > 0 and �(z) such that

E[�(z)2jx] <1.

Assumption B.4 (a) �0 2 int(B); (b) u(z; �) is twice di�erentiable in N , Ez[sup�2N ku�(z; �)k
2 jx]

and Ez[



uj��(z; �0)


2 jx], (j = 1; :::; s), are bounded; (c) Ex[D�(x)

0D�(x)] is nonsingular.

Assumption B.5 (a) �(x) = Ez[u(z; �0)u(z; �0)
0jx] has smallest eigenvalue bounded

away from 0; (b) Ez[sup�2N ku(z; �)k
4 jx] is bounded and, for all � 2 N , ku(z; �)� u(z; �0)k �

�(z) k� � �0k and Ez[�(z)2jx] is bounded.

Assumption B.6 (a) �(�) is twice continuously di�erentiable with Lipschitz second deriv-

ative in a neighbourhood of 0; (b) Ez[sup�2B ku(z; �)k

] < 1 and �(K)2K=n1�2=
 ! 0

some 
 > 2.
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Appendix C: Proofs of Results

C.1 Neglected Heterogeneity Jacobian

Applying L'Hôpital's rule to the ratio

1

2
�1=2E[

@g(z; �0 + �
1=2w)

@�0
w]=�;

and taking the limits lim�!0+ of numerator and denominator yields

Gj�(�0) = lim
�!0+

Gj�(�0; �)

=
1

2
lim
�!0+

1

2�1=2
E[
@g(z; �0 + �

1=2w)

@�0
w] +

1

4
Ez;w[w

0 lim
�!0+

@gj(z; �0 + �
1=2w)

@�@�0
w]

=
1

2
lim
�!0+

Gj�(�0; �) +
1

4
tr(Ez;w[

@2gj(z; �0)

@�@�0
ww0]):

Therefore,

Gj�(�0) =
1

2
tr(Ez;w[

@2gj(z; �0)

@�@�0
ww0]); (j = 1; :::;m):

C.2 GEL IM Test

The �rst order condition determining �̂(�) is
Pn
i=1 �1(�̂(�)

0gi(�))gi(�) = 0. Hence, by

the implicit function theorem

@�̂(�)

@�0
= �[

nX
i=1

�2(�̂(�)
0gi(�))gi(�)gi(�)

0=n]�1 (C.1)

�
nX
i=1

[�1(�̂(�)
0gi(�))G�i(�) + �2(�̂(�)

0gi(�))gi(�)�̂(�)
0G�i(�)]=n:

Recall that by Lemma A1 of NS

�j(�̂
0
0gi)

p! �1; (j = 1; 2);

uniformly, (i = 1; :::; n). From the �rst order condition
Pn
i=1 �1(�̂

0
0gi)gi = 0, w.p.a.1,

p
n�̂0 = [

nX
i=1

�2igig
0
i=n]

�1pnĝ(�0) +Op(n�1=2): (C.2)
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Thus, by a UWL,
@�̂(�0)

@�0
= �
�1[G+Op(n�1=2)]

where the jth row of the Op(n
�1=2) term may be written as

�̂00Ez[G�ig
j
i ] +Op(n

�1); (j = 1; :::;m):

Hence, by a UWL,

nX
i=1

�2iG
j
�iG

k0
�i=n

p! �E[Gj�iGk0�i];

nX
i=1

�2iG
j
�ig

0
i=n

p! �E[Gj�ig0i]; (j; k = 1; :::;m);

nX
i=1

�1iG�i=n
p! �G�;

nX
i=1

�2igig
0
i=n

p! �


and
nX
i=1

�1i
@2gji (�0)

@�@�0
=n

p! �E[@
2gj(�0)

@�@�0
]; (j = 1; :::;m):

Therefore, evaluating the GEL Hessian (4.10) at �0, the �rst term of the GEL Hessian

is Op(n
�1) and both second and third terms are Op(n

�1=2). The fourth term consists of

two components: the Op(1) component

�
nX
i=1

�1iG
0
�i[

nX
i=1

�2igig
0
i=n]

�1
nX
i=1

�1iG�i=n;

which by a UWL is a consistent estimator for the asymptotic variance matrix G0�

�1G�,

and the Op(n
�1=2) component

�
nX
i=1

�1iG
0
�i[

nX
i=1

�2igig
0
i]
�1

nX
i=1

�2igi�̂
0
0G�i=n

Therefore in the GEL context the generalized information equality gives rise to the score

[
nX
i=1

�1i
@2g0i
@�k@�l

=n

+ �G0�k
�
�1

nX
i=1

�2igiG
0
�li
=n

+ �G0�l
�
�1

nX
i=1

�2igiG
0
�ki
=n]�̂0; (k � l; l = 1; :::; p);
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where �G0�k = �
Pn
i=1 �1iG�ki=n, (k = 1; :::; p), and

�
 = �Pn
i=1 �2igig

0
i=n. Asymptotically

the implicit Jacobian is

E[
@2g(z; �0)

0

@�k@�l
]

+G0�k

�1E[g(z; �0)G�l(z; �0)

0]

+G0�l

�1E[g(z; �0)G�k(z; �0)

0]; (k � l; l = 1; :::; p):

C.3 Empirical Likelihood

The relevant indicators for an EL-based test for the absence of parameter heterogeneity

are the non-redundant elements of

1

n

nX
i=1

1

�̂i(�0; �̂0)

@2�̂i(�0; �̂0)

@�k@�l
; (k � l; l = 1; :::; p):

First

@�̂i(�0; �̂0)

@�k
= � 1

n(1 + �̂00gi)
2
[�̂00G�ki +

@�̂(�0)
0

@�k
gi]; (k = 1; :::; p):

Secondly

@2�̂i(�0; �̂0)

@�k@�l
=

2

n(1 + �̂00gi)
3
[�̂00G�ki +

@�̂(�0)
0

@�k
gi][G

0
�li
�̂0 + g

0
i

@�̂(�0)

@�l
]

� 1

n(1 + �̂00gi)
2
[G0�ki

@�̂(�0)

@�l
+
@2gi(�0)

0

@�k@�l
�̂0

+
@�̂(�0)

0

@�k
G�li + g

0
i

@2�̂(�0)

@�k@�l
]:

Recall from the EL likelihood equations (4.11)
nX
i=1

1

n(1 + �̂00gi)
gi = 0:

Hence,

1

n

nX
i=1

1

�̂i(�0; �̂0)

@2�̂i(�0; �̂0)

@�k@�l
=

nX
i=1

2

n(1 + �̂00gi)
2
[�̂00G�ki +

@�̂(�0)
0

@�k
gi]

�[G0�li�̂0 + g
0
i

@�̂(�0)

@�l
]

�
nX
i=1

1

n(1 + �̂00gi)
[G0�ki

@�̂(�0)

@�l
+
@2gi(�0)

0

@�k@�l
�̂0 +

@�̂(�0)
0

@�k
G�li]:
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From the implicit function theorem applied to the likelihood equations (4.11)

@�̂(�)

@�k
= �
(�)�1

nX
i=1

[
1

n(1 + �̂(�)0gi(�))
G�ki(�)�

1

n(1 + �̂(�)0gi(�))2
�̂(�)0G�ki(�)gi(�)]; (k = 1; :::; p);

(C.3)

where

�
(�) =
nX
i=1

1

n(1 + �̂(�)0gi(�))2
gi(�)gi(�)

0:

Therefore, substituting for @�̂(�0)=@�k, (k = 1; :::; p), from (C.3), after cancelling terms,

1

n

nX
i=1

1

�̂i(�0; �̂0)

@2�̂i(�0; �̂0)

@�k@�l
= 2�̂00

nX
i=1

1

n(1 + �̂00gi))
2
G�kiG

0
�li
�̂0

�2�̂00[
nX
i=1

1

n(1 + �̂00gi)
2
G�kig

0
i]
�
(�0)

�1[
nX
i=1

1

n(1 + �̂00gi)
2
giG

0
�li
]�̂0

+[
nX
i=1

1

n(1 + �̂00gi)
G0�ki]

�
(�0)
�1[

nX
i=1

1

n(1 + �̂00gi)
2
giG

0
�li
]�̂0

+[
nX
i=1

1

n(1 + �̂00gi)
G0�li]

�
(�0)
�1[

nX
i=1

1

n(1 + �̂00gi)
2
giG

0
�ki
]�̂0

�[
nX
i=1

1

n(1 + �̂00gi)

@2gi(�0)
0

@�k@�l
]�̂0

= [
nX
i=1

1

n(1 + �̂00gi)
G0�ki]

�
(�0)
�1[

nX
i=1

1

n(1 + �̂00gi)
2
giG

0
�li
]�̂0

+[
nX
i=1

1

n(1 + �̂00gi)
G0�li]

�
(�0)
�1[

nX
i=1

1

n(1 + �̂00gi)
2
giG

0
�ki
]�̂0

�[
nX
i=1

1

n(1 + �̂00gi)

@2gi(�0)
0

@�k@�l
]�̂0 +Op(n

�1);

(k � l; l = 1; :::; p). Note that the �rst three terms are each Op(n�1=2).

C.4 Proofs of Theorems

Proof of Theorem 5.1: First, note that, asymptotically, in the absence of parameter

heterogeneity, LMn � nĝ(�̂)0
̂(�̂)�1Ĝ�(�̂)S�̂(�̂)S 0Ĝ�(�̂)0
̂(�̂)�1ĝ(�̂)
p! 0 where the r�

(p + r) matrix S, i.e., S = (0; Ir), selects out the components of Ĝ(�) corresponding to

the neglected heterogeneity hypothesis. Secondly,

LMn � nĝ(�̂)0
̂(�̂)�1Ĝ�(�̂)S(Ex[D(x)0V (x)�1D(x)])�1S 0Ĝ�(�̂)0
̂(�̂)�1ĝ(�̂)
p! 0;
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since �̂(�̂)
p! (Ex[D(x)

0V (x)�1D(x)])�1 by a similar argument to that used in the proof of

Lemma A.3, pp.73-75, of DIN. Thirdly, since



Ĝ(�̂)� Ĝ(�0)


 p! 0,





̂(�̂)� 
̂(�0)


 p! 0,

by DIN Lemmata A.6, p.78, and A.7, p.79, and

p
n(�̂ � �0)� �̂(�0)Ĝ�(�0)0
̂(�0)�1

p
nĝ(�0)

p! 0;

cf. DIN Proofs of Theorems 5.4, pp.81-82, and 5.6, pp.86-87, Ĝc�(�̂)
0
̂(�̂)�1

p
nĝ(�̂) is

asymptotically equivalent to

Ĝc�(�0)
0(
̂(�0)

�1 � 
̂(�0)�1Ĝ�(�0)�̂(�0)Ĝ�(�0)0
̂(�0)�1)
p
nĝ(�0):

Now, by Lemma A.3, p.73, of DIN, Ĝ�(�0)
0
̂(�0)

�1Ĝ�(�0)
p! Ex[D

c
�(x)

0V (x)D�(x)] where

Dc
�(x) comprises the selected vectors from [D�(x; �0)]kl = Ez[@

2u(z; �0)=@�k@�ljx], (k �

l; l = 1; :::; p), and Ĝ�(�0)
0
̂(�0)

�1Ĝ�(�0)
p! I(�0) = Ex[D�(x)

0V (x)D�(x)]. Further-

more, by DIN, Lemma A.4, p.75, Ĝ(�0)
0
̂(�0)

�1pnĝ(�0)�
Pn
i=1D(xi)

0V (xi)
�1ui(�0)=

p
n,

where D(xi) = D�(xi; �0), (i = 1; :::; n). Therefore, Ĝ
c
�(�̂)

0
̂(�̂)�1
p
nĝ(�̂) is asymptoti-

cally equivalent to

(�E[Dc
�(x)

0V (x)�1D�(x)]I(�0)�1; Ir)
nX
i=1

D(xi)V (xi)
�1ui(�0)=

p
n:

Hence, by an i.i.d. CLT,

Ĝc�(�̂)
0
̂(�̂)�1

p
nĝ(�̂)

d! N(0; [S(E[D(x)0V (x)�1D(x)])�1S 0]�1): (C.4)

The result then follows.

Proof of Theorem 5.2: By the mean value value theorem applied to the �rst order

conditions determining �̂, i.e.,
Pn
i=1 �1(�̂

0ĝi)ĝi = 0,
p
n�̂�(�[Pn

i=1 �2(
_�0ĝi)ĝiĝ

0
i=n]

�1pnĝ(�̂)) p!

0 for some _� on the line segment joining 0 and �̂. By a similar argument to that used in

the proof of Theorem 5.1

Ĝ(�̂)0
p
n�̂� Ĝ(�0)0
̂(�0)�1

p
nĝ(�̂)

p! 0:

Moreover, Ĝ�(�0)
0
̂(�0)

�1pnĝ(�̂) p! 0. Hence, recalling S = (0; Ir),

Ĝ(�̂)0
p
n�̂� SĜ�(�0)0
̂(�0)�1

p
nĝ(�̂)

p! 0:
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Therefore, the result follows from (C.4).

Proof of Theorem 5.3: Application of Lemma A.3, p.73, of DIN, yields Ĝ(�̂)0
̂(�̂)�1ĝ(�̂)
p!

Ex[D(x; ��)V (x; ��)
�1Ez[u(z; ��)jx]] and Ĝ(�̂)0
̂(�̂)�1Ĝ(�̂)

p! Ex[D(x; ��)V (x; ��)
�1D(x; ��)],

Therefore,

LMn=n
p! Ex[Ez[u(z; ��)jx]0V (x; ��)�1D(x; ��)]

�(Ex[D(x; ��)0V (x; ��)�1D(x; ��)])�1Ex[D(x; ��)V (x; ��)�1Ez[u(z; ��)jx]]:

Since E[D�(x; ��)V (x; ��)
�1E[u(z; ��)jx]] = 0, test consistency requires

E[Dc
�(x; ��)V (x; ��)

�1E[u(z; ��)jx]] 6= 0:
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