
Copula-Based Nonlinear Models of Spatial

Market Linkages ∗

Barry K. Goodwin, Matthew T. Holt,
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Copula-Based Nonlinear Models

of Spatial Market Linkages

1 Introduction

Notions of price parity, spatial arbitrage, and price transmission characterize many basic

principles and relationships in economics. At the core, markets should efficiently function so

as to eliminate any potential for riskless profits through arbitrage and trade. This fundamen-

tal condition is often called the “Law of One Price” (LOP)—a concept whose nomenclature

reflects the considerable confidence that economists place in its adherence. Over the years

there has been considerable interest in and debate about the empirical validity of the Law

of One Price (LOP), especially as it pertains to markets for tradeable goods. On one hand,

economists take it as being nearly axiomatic that freely functioning markets for traded, ho-

mogeneous products should ensure that prices are efficiently linked across regional markets,

the implication being that no persistent opportunities for spatial arbitrage profits exist. 1

The general implication underlying these basic concepts is that prices for homogeneous prod-

ucts at different geographic locations in otherwise freely functioning markets should differ by

no more than transport and transactions costs, the latter including, for example, insurance,

contracting fees, licensing fees, legal fees, and possibly a risk premium. On the other hand,

there is substantial empirical evidence in a huge literature that finds that the adjustment

lags required to restore arbitrage equilibria are often found to be far longer than would seem

natural based upon any reasonable understanding of the mechanics of physical trade as it

pertains to the markets in question.

A related avenue of research considers price transmission in a more general sense. Here

the focus is typically on how shocks or changes in market conditions at one location or level

of the market are transmitted to other locations or market levels. Price transmission models

1Distinctions between tests of LOP the and spatial market integration are not especially meaningful. In
both cases, the economic phenomena being evaluated (spatial market arbitrage) is identical. A survey of
both strands of literature can be found in Fackler and Goodwin (2001).
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are often applied in considerations of vertical market linkages. For example, the extent

to which raw commodity markets are impacted by changes at the retail level is an issue

that has received considerable attention in the empirical literature. Although the economic

phenomena being evaluated in these studies may be slightly different, the empirical tools

used to evaluate such market linkages are often identical to those used in evaluating spatial

market linkages.

Early empirical studies generally failed to find support in favor of LOP. Isard (1977)

found rather conclusive evidence against the LOP using disaggregate data for traded goods.

Isard’s conclusions were subsequently confirmed for a variety of commodities in a wide array

of market settings by, among others, Richardson (1978), Thursby, Johnson, and Grennes

(1986), Benninga and Protopapadakis (1988), and Giovannini (1988). Goodwin, Grennes,

and Wohlgenant (1990) did, however, find some support for the LOP when it was specified

in terms of price expectations as opposed to observed prices. After Engle and Granger’s

seminal paper (1987), cointegration techniques have been used to rationalize the LOP as a

long—run concept. By adopting this view of the LOP, economists were able to find more

compelling evidence in favor of the LOP, including, for example, Buongiorno and Uusivuori

(1992) (U.S. pulp and paper exports), Michael, Nobay, and Peel (1994) (international wheat

prices), Bessler and Fuller (1993) (U.S. regional wheat markets), and Jung and Doroodian

(1994) (softwood lumber markets).

The most recent literature in this area has applied smooth or discrete threshold time

series models that typically consider refinements of autoregressive or vector error correction

models in analyzing price relationships. The underlying motivation is that adjustments to

equilibrium may not be linear, and that this nonlinearity may, in turn, be associated with

hard–to–observe transactions costs associated with arbitrage. The theoretical underpinnings

for transactions–costs–induced nonlinearity in the LOP have been put forward by Dumas

(1992), although the basic idea dates back at least to the work of Heckscher (1916), who

noted that transactions costs may define “commodity points” within which prices are not

directly linked because the price differences are less than the costs of trade.
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A recent example includes an analysis of manufactured lumber products (oriented strand

board or OSB) in the U.S. undertaken by Holt, Prestemon, and Goodwin (2011). Their

analysis applied smooth transition vector autoregression (STAR) models to consider price

relationships among spatially-distinct North American markets for manufactured OSB. The

application was notable in light of recent litigation that charged that OSB manufacturers had

practiced discriminatory and noncompetitive pricing during the latter part of the decade.

The analysis revealed that nonlinearity is an important feature of price relationships in these

markets and that the price parity relationships implied by economic theory and efficient

arbitrage were generally supported by the STAR models. Other empirical investigations of

the role of nonlinearity as pertains to the LOP have been reported by Goodwin and Piggott

(2001), Lo and Zivot (2001), Sephton (2003), Balcombe, Bailey, and Brooks (2007), and

Park, Mjelde, and Bessler (2007). In general, these studies have found support for threshold

effects, with the path of adjustment to equilibrium depending typically on the size if not the

sign of the shock. In particular, large shocks that lead to profitable arbitrage opportunities

net of transactions costs are quickly eliminated whereas smaller shocks, which may not be

large enough to result in profitable arbitrage opportunities, may elicit a much smaller effect

or even no adjustment at all.

This extensive literature has several common themes and generally involves the appli-

cation of conventional time series models to finely sampled, nonstationary price data. In

this paper, we propose an alternative and potentially novel approach to analyzing these

same types of time series data in a nonlinear fashion. We develop copula-based models

that consider the joint distribution of prices separated by space and apply them to weekly

prices for homogeneous OSB products at geographically distinct North American markets.

Although copula models have been extensively used in financial economics and risk man-

agement studies, to our knowledge, this paper is the first attempt to utilize time varying

copulas in explaining spatial market linkages. 2

2Patton (2006) allows for time variation in the conditional joint distribution of the returns on the Deutsche
mark/U.S. dollar and Japanese Yen/U.S. dollar exchange rates by allowing the parameter(s) of a given copula
to vary through time.
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Our approach is a natural extension of the existing (and abundant) time-series evaluations

of spatial price linkages. Our approach involves direct examination of the joint probability

distribution of the key economic variables of interest. In this way, the approach is really no

different than standard maximum likelihood methods applied to structural or non-structural

econometric models. However, we give particular attention to the nature of the jointness

or correlation between these key variables. In particular, we allow this correlation to be

“state-dependent” and therefore to depend upon market conditions at any particular point

in time. In this manner, our approach is analogous to the regime-switching and threshold

models that are frequently applied in evaluating spatial and vertical market linkages.

The plan of our paper is as follows. The next section outlines conventional empirical

approaches typically used to evaluate spatial price linkages. We then propose an alterna-

tive approach that is based upon copula models of the joint likelihood function. The third

section presents an empirical application of these models to an important, regionally-traded

homogeneous commodity market—the North American Oriented Strand Board (OSB) mar-

ket. In particular, we consider price linkages among four regionally separate OSB markets.

OSB is of interest because it has become one of the leading building materials used in the

construction sector of the U.S. and in many other countries. OSB surpassed plywood as the

leading engineered wood product in the mid-1990s in the U.S. The final section contains a

summary of the results and conclusions.

2 Econometric Models of Spatial Price Relationships

As we have noted, a vast empirical literature has considered a wide array of empirical models

of price relationships across space, time, and market form. This literature has evolved from

a simple consideration of correlation coefficients and linear regression models to regime-

switching, time-series models that allow for a form of “state-dependence” in characterizing

price linkages. The most recent literature is usually based upon a standard autoregressive
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model of the form:

∆(pit − p
j
t) = α + β(pit−1 − p

j
t−1) (1)

where pi and pj are logarithmic prices and β is a parameter that reflects the degree

of market integration.3 In particular, β represents the degree of “error-correction” that

characterizes departures from price parity, which are reflected in large values of pit−1 − p
j
t−1.

The “error” term, represents proportional deviations from market equilibrium. In some

cases, α is taken to represent a proportional price difference that reflects transactions costs.4

Recent empirical evaluations of spatial price linkages have recognized that the presence

of transactions costs, which are notoriously difficult to measure but nonetheless are likely

to be relevant in any consideration of spatial commodity trade, may result in nonlinearities

in estimates of equation 1. Two specific avenues have been adopted to account for such

nonlinearities. In the first, a “threshold” parameter that reflects the presence of transactions

costs, is estimated. The linkage between prices varies depending upon whether the departure

from equilibrium represented by pit−1 − p
j
t−1 is large enough to evoke spatial arbitrage. In

this case, a discrete break occurs between regimes where one regime may represent a case

of no trade while another represents conditions of profitable trade and arbitrage. These

models are typically referred to as “threshold autoregressive” (TAR) or “threshold vector

error-correction” (TVEC) models.

Alternatives to this simple model permit the switching between regimes to occur at a

gradual and smooth pace. The speed and degree of adjustment is implied by parameters of

a “transition” function. A number of different specifications of such “smooth transition au-

toregressive ” (STAR) models have been developed in the literature. Such models essentially

nest the TAR versions such that they permit a more flexible evaluation of price linkages.

The behavior underlying spatial price linkages is likely to be discrete—representing the two

3See, for example, Taylor (2001), who applies regime-switching, time-series models of this form to empir-
ical tests of purchasing power parity—an aggregate version of the LOP.

4A specification that is often referred to as an “iceberg” model, reflecting the fact that the value of the
commodity melts away via a lower price as it is shipped.
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states of trade/no-trade. However, in that empirical evaluations of such models almost al-

ways involves some degree of aggregation, the patterns of adjustment may be of a more

smooth nature and therefore may favor the STAR-type models.

These models have provided considerable flexibility in modeling spatial and vertical

price linkages. The results of allowing for such flexibility and accounting for unobservable

transactions costs have generally provided much greater support for the concept of market

integration and efficiency. However, in empirical practice, they often suffer from complica-

tions resulting from parameters that may be unidentified under certain null hypotheses and

a resulting need to rely upon non-standard inferential techniques.

Our approach involves a simple extension or re-characterization of the fundamental re-

lationship expressed in equation 1. We make use of the widely-recognized correspondence

between β in equation 1 and the standard, linear Pearson correlation coefficient:

β̂ = ρ̂
σ̂y
σ̂x

(2)

where y and x correspond to the random variables ∆(pit − pjt) and pit−1 − pjt−1, ρ is the

Pearson correlation coefficient, and σp represents the standard deviation of random variable

p. The “error-correction” relationship that characterizes the linkage between markets i and

j is represented in the sample correlation coefficient ρ. To the extent that β realizes regime

switching, the coefficient ρ will also reflect switching. To the extent that such switching is

dependent upon market conditions (i.e., as reflected in the price differential), the correlation

coefficient ρ may exhibit state dependence.

The empirical approach adopted here involves considering the joint distribution function

of ∆(pit−p
j
t) and pit−1−p

j
t−1. We make use of a widely-recognized, fundamental result known

as Sklar’s (1959) Theorem, which implies that any joint probability function can be repre-

sented in terms of the marginal densities and a function known as a “copula.” In particular,

Sklar’s Theorem implies that, for any continuous p−variate cumulative probability function

F , a unique copula function C(·) exists for which

F (x1, x2, ..., xp) = C(F1(x1), ..., Fp(xp); ξ), (3)
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where Fi(·) are marginal distributions and ξ is a set of parameters that measures dependence.

2.1 Copulas

Copula models have recently realized widespread application in empirical models of joint

probability distributions.5 The models essentially use a “copula” function to tie together two

marginal probability functions that may (or may not) be related to one another. Much of the

work on copulas has been motivated by their applicability to the issues in risk management,

insurance and financial economics (see among others; Cherubini et al. (2004), Rodriguez

(2003), Hu (2006), Patton (2006), Jondeau and Rockinger (2006)). In agricultural economics

literature, copula models have been used extensively in the design and rating of crop revenue

insurance contracts, where the inverse correlation of prices and yields plays an important

role in pricing revenue risk.

Copulas are functions that join or couple multivariate distributions to their one–dimensional

marginal distribution functions. A p−dimensional copula, C(u1, u2, . . . , up) , is a multi-

variate distribution function in the unit hypercube [0, 1]p with uniform U(0, 1) marginal

distributions. As long as the marginal distributions are continuous, there is a unique copula

associated to the joint distribution, F , that can be obtained as,

C(u1, u2, . . . up) = F (F−1
1 (u1), . . . , F−1

p (up)) (4)

On the other hand, given a p−dimensional copula, C(u1, . . . up), and p univariate distribu-

tions, F1(x1), . . . , Fp(xp), the function 3 is a p-variate distribution function with margins

F1, . . . Fp whose corresponding density function written as

f(x1, x2, . . . xp) = c(F1(x1), . . . , Fp(xp))
p∏
i=1

fi(xi) (5)

Provided that it exists, the density function of the copula, c, can be derived using 4 and

marginal density functions, fi:

5For details on construction and properties of copulas, see among others Nelsen (1999, 2006) and Joe
(1997).
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c(u1, u2, . . . up) =
f(F−1

1 (u1), . . . , F−1
p (up))∏p

i=1 fi(F
−1
i (ui))

There is a large number of parametric families of copulas in the literature (see, for

example, Nelsen (2006)). Two of the most commonly used copula families are elliptical

copulas and Archimedean copulas. Gaussian and t-copulas are elliptical whereas the Clayton

and Gumbel are among Archimedean copulas.

2.1.1 Elliptical Copulas

Gaussian Copula:

The Gaussian (or normal) copula, which is obtained from the multivariate normal distri-

bution with correlation matrix, R, is the most basic copula and it is written as

CGa
R (u1, u2, . . . up) =

∫ Φ−1(u1)

−∞
. . .
∫ Φ−1(up)

−∞

1√
2πp(1− |R|)

× exp
{
−u′R−1u

2

}
du (6)

where u = (u1, . . . up) and Φ−1 is the inverse of the cumulative distribution function of the

univariate standard normal distribution.

t - copula:

The Gaussian copula assumes that there is no dependence in the tails of the distribution.

Therefore, it is often more useful to consider the t−copula, which can be obtained from the

multivariate t−distribution with ν degrees of freedom and correlation matrix, R:

Ct
ν,R(u1, u2, . . . up) =

∫ t−1
ν (u1)

−∞
. . .
∫ t−1

ν (up)

−∞

Γ(ν+p
2

)(1 + u
′
R−1u
ν

)−
ν+p
2

Γ(ν
2
)
√

(πν)p|R|
du (7)

where t−1
ν (u1) denotes the inverse of the distribution function of the standard univariate t-

distribution with ν degrees of freedom. Note that the Gaussian copula is a special case of the

t−copula where ν goes to infinity. The properties of t−copula were studied by Embrechts et

al. (2002), Fang et al. (2002), and Demarta and McNeil (2005). The t−copula model has re-

ceived much attention recently, particularly in the context of modeling multivariate financial
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data (e.g., daily relative or logarithmic price changes on a number of stocks). One reason for

the success of the t−copula is its ability to capture the phenomenon of dependent extreme

values. The dependence in elliptical distributions is essentially determined by covariances

(see Embrechts et al. (2002) and Glasserman (2004) for discussions on using t−distributions

for applications in risk management).

2.1.2 Archimedean Copulas

Let function φ : [0, 1] → [0,∞) be a strict Archimedean copula generator function and

suppose its inverse φ−1 is monotonic on [0,∞). A strict generator is a decreasing function

φ : [0, 1]→ [0,∞) that satisfies φ(0) =∞ and φ(1) = 0. An Archimedean copula is defined

as follows:

C(u1, u2, . . . , up) = φ−1
(
φ(u1) + · · ·+ φ(up)

)

We use the following Archimedean copulas: Clayton and Gumbel copulas.6

Clayton Copula:

Let the generator function φ(u) = θ−1
(
u−θ − 1

)
. A Clayton copula is defined as

CC
θ (u1, u2, . . . up) =

[ p∑
i=1

u−θi − p+ 1

]−1/θ

(8)

with θ > 0.

Gumbel Copula:

Let the generator function φ(u) = (− log u)θ. A Gumbel copula is defined as

CGu
θ (u1, u2, . . . , up) = exp

−
[ p∑
i=1

(− log ui)
θ

]1/θ
 (9)

with θ > 1.

6We also consider rotated versions of each of these copula functions. A copula is rotated by using 1− uxi
in place of uxi , where uxi is the quantile corresponding to the marginal distribution for x at observation i.
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2.1.3 Dependence

Various dependence measures between two random variables, X1 and X2, depend only on

their copula function. Kendall’s tau is a very useful alternative to the linear correlation

coefficient and it is defined as

τ = 4
∫ 1

0

∫ 1

0
C(u1, u2), c(u1, u2)du1du2 − 1

Kendall’s tau has the same form for a bivariate Gaussian copula and a bivariate t−copula

with correlation coefficient ρ:

τ =
2

π
arcsinρ

Another useful dependence measures between two variables are the coefficients of upper

tail dependence, λu, and lower tail dependence, λl, which are defined as

λu = lim
q→1

P (X2 > F−1
X2

(q)|X1 > F−1
X1

(q)) (10)

λl = lim
q→0

P (X2 ≤ F−1
X2

(q)|X1 ≤ F−1
X1

(q)) (11)

λu and λl can be expressed as a function of copula as follows.

λu = lim
q→1

1− 2q + C(q, q)

1− q
(12)

λl = lim
q→0

C(q, q)

q
(13)

The Gaussian copula is characterized by zero tail dependence. The t−copula exhibits tail

dependence which is determined by,

λu = λl = 2tυ+1

(
−
√
υ + 1

√
1− ρ√

1 + ρ

)

where tυ+1 denotes the cumulative distribution function of the standard univariate Student–t

distribution with υ+1 degrees of freedom. The Clayton copula exhibits greater dependence in

the negative tail than in the positive; and the Gumbel copula is exhibits greater dependence

in the positive tail than in the negative.
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3 Empirical Application

Assume there is a homogeneous commodity traded in two regional markets represented,

respectively, by location indices i and j. The regional market prices for the goods are

denoted by Pi and Pj. The per–unit revenue to arbitragers selling in region j is therefore

(1− κ)Pj, where κ denotes the per–unit loss in value for the commodity due to transactions

(transport) costs, 0 < κ < 1. In general, the greater the distance between locations i and

j, the closer is κ to one. A simple model of spatial price relationships that incorporates the

effects of transaction costs (and possibly other frictions), then, can be written as

1/(1− κ) ≥ Pi/Pj ≥ (1− κ) (14)

or, after taking natural logaritms and denoting pi = ln(Pi) and pj = ln(Pj),

−ln(1− κ) ≥ (pi − pj) ≥ ln(1− κ) (15)

The implication from 15 is there is a band, [−ln(1 − κ), ln(1 − κ)], within which no

profitable arbitrage activity will occur; arbitrage is, however, profitable when log price dif-

ferences, pi − pj, fall outside of the limits of the band. Over time we would expect that log

price differences within the limits of the band would follow something very close to a unit

root process, likely without drift. But, log price differences that fall outside of the limits

of the band should be mean reverting. The relation in 15 implies a transactions cost band,

which has often been assumed in the literature (see., e.g., Balcombe, Bailey, and Brooks,

2007, or Goodwin and Piggott, 2001), and which typically yields an empirical model consis-

tent with the threshold autoregressive models described above (see, for example, Goodwin

and Piggott (2001)). As noted, these models typically find that market price adjustments

to shocks to parity condition tend to be faster or more apparent when the shocks are large.

Threshold models typically allow the speed or degree of adjustment to vary in accordance

with the size of the disequilibrium implied in parity relationships.

The copula approach offers a way of representing the multivariate distribution in terms

of its (possibly) dependent marginals. This may be accomplished by following a variety of

11



estimation approaches, including conventional joint maximum likelihood estimation or by

following a two-stage statistical procedure that separately estimates the marginal distribu-

tions and the copula function. In this analysis, we chose nonparametric (empirical) c.d.f.

functions so as to allow for maximum flexibility. That said, properties of individual marginal

distributions may be of interest in their own right. Such properties can be discerned the ap-

plying maximum likelihood or method of moments estimation techniques in conjunction with

or preceding ML estimation of the joint distribution (i.e., by way of the copula).

In the case of the joint probability distribution among spatially linked price pairs, we

fit a copula model between ∆(pit − p
j
t) and (pit−1 − p

j
t−1).The particular choice of the copula

function determines the nature of correlation. Standard linear correlation generally implies

a constant correlation coefficient. In contrast, different functional relationships between

random variables, including those that vary across the marginals, can be achieved with

copula functions. In particular, the parametric form of the copula can, in some cases, permit

considerably flexibility in how adjustments may differ as price differences become larger or

smaller. In particular, in our application, we consider six different copula models (Gaussian,

t, Clayton, rotated Clayton, Gumbel and rotated Gumbel) which allow for varying degrees

of tail (or state) dependence as the degrees of freedom parameter changes. In a t-copula, for

example, a smaller degrees of freedom parameter (which we denote as ν) will imply a greater

degree of tail dependence. Conversely, as the degrees of freedom parameter increases, the

t-copula approaches a Gaussian copula and tail dependence therefore approaches zero.

As an alternative to the standard copula model, we also consider a second and more

deliberate approach to allowing for state-dependence in the joint distribution of regional

prices. We accomplish this by allowing one or more parameters of the copula function to

vary as market conditions change. We adopt an approach that is very similar to that applied

in standard nonlinear threshold models of prices in that we allow lagged price differences

(analogous to an “error correction” term) to directly impact the parameters of copulas that

characterizes the relationship between price pairs in the regional markets. For Gaussian and

t-copulas, we allow the off-diagonal element of the correlation matrix R in equations 6 and
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7 above to be a function of market conditions, reflected in the lagged price differentials, as

follows:

ρt = α0 + α1ϕ(pit−1 − p
j
t−1) (16)

where (pit−1 − pjt−1) , i, j = 1, . . . , 4 is the log price differences at time t − 1 and ϕ is the

empirical c.d.f. function which implies various states of regional price differences.7 The

degrees of freedom parameter in the t-copula is also allowed to vary in the following manner:

νt = β0 + β1ϕ(pit−1 − p
j
t−1) (17)

Finally, we allow the shape parameter, θ, in the Clayton and Gumbel copula to vary with

time using the following functional relationship for the parameter θ.

θt = γ0 + γ1ϕ(pit−1 − p
j
t−1) (18)

In accordance with the conventional “error correction” behavior anticipated in spatially

integrated markets, we expect to see the parameters α1, β1 and γ1 to be statistically sig-

nificant. In the case of asymmetric copulas, a parametric structure that only allows tail

dependence in one direction may be implied. This is justified if trade tends to mostly be

unidirectional, as is typical in most regional market relationships. In such cases, depending

on the direction of trade flows and which price is usually higher, the sign of these parameters

could be negative or positive. This reflects the fact that an increase in the higher price

or a decrease in the lower price will trigger a tighter relationship between the two prices

(in first-differenced form) in the subsequent period. This assumes that markets display a

relatively stable basis relationship, such that one price is generally above another (a charac-

teristic that exists in most regional markets, where one market us usually “upstream” and

another is “downstream”). We estimate the parameters of the copula models using maximum

likelihood estimation.

7We considered a number of such “forcing variables”—variables that force the change in correlation or
dependence. In the end, the empirical c.d.f. of the price differential, which represents a normalized measure
of the size of deviations from parity, yielded the best results from among the alternatives considered. The
optimal choice of a forcing variable remains a topic of ongoing research.
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3.1 Data

For the empirical analyses, we consider regional North American markets for a prominent

traded commodity—oriented strand board (OSB). OSB is a manufactured wood product

that was first introduced in 1978 (the forerunner to oriented strand board was waferboard).8

The Structural Board Association (SBA) reports that in 1980 OSB panel production in

North America was 751 million square feet (on a 3/8th’s inch basis), but that by as early as

2005 this number had grown to 25 billion square feet. The SBA also reports that by 2000

OSB production exceeded that of plywood, and that by 2006 OSB production enjoyed a

sixty–percent market share among all panel products in North America. OSB now accounts

for the largest share of the overall panel wood products market.

Spatial linkages in this market are of particular interest because it is a good that is widely

traded across considerable distances within the North American continent. Consumption is

widespread and spatially dispersed while production tends to be concentrated in particular

regions such as the U.S. South and Eastern Canada. Depletion of old–growth timber stocks

that traditionally served as a source for panel wood products brought about tremendous

growth in the use of engineered wood products such as OSB. A burgeoning housing market

(and its more recent contraction) have brought about a number of significant shocks to this

rapidly expanding industry. Construction market responses to large hurricanes such as An-

drew in 1992 and Katrina in 2005 are another source of OSB market price volatility that

merits clearer understanding for better quantifying the economic impacts of these catas-

trophic events. These and related factors underscore the importance of understanding and

quantitatively measuring linkages among regional OSB markets.

The data set consists of OSB in four regional North American markets. Specifically, the

regions examined are: (1) Eastern Canada (production deriving from plants in Ontario and

Quebec); (2) North Central (production deriving from plants in Wisconsin, Michigan, and

8OSB is engineered by using waterproof and heat cured resins and waxes, and consists of rectangular
shaped wood strands that are arranged in oriented layers. OSB is produced in long, continuous mats which
are then cut into panels of varying sizes. In this regard OSB is similar to plywood, although OSB is generally
considered to have more uniformity than plywood and is, moreover, cheaper to produce.
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Minnesota);(3) Southeast (production deriving from plants in Georgia, Alabama, Mississippi,

South Carolina, and Tennessee); and (4) Southwest (production deriving from plants in

Texas, Louisiana, Arkansas, and Oklahoma). The result is there are six pairwise spatial

price relationships that may be examined. The price data are for panels of 7/16th’s inch

oriented strand board, and are expressed in U.S. dollars per thousand square feet. All price

data are observed on a weekly basis and were obtained from the industry source Random

Lengths.9 The data span the period from February 3, 1995 through August 20, 2010, which

yields 812 weekly observations. The basic unit of analysis used throughout the analysis is

the natural logarithm of the price ratio, that is, ln(P i
t /P

j
t ), where i and j indicates regional

location (i.e., i, j = 1, . . . , 4) and a subscripted t is a time index such that t = 1, . . . , T ,

where T = 812.

3.2 Results

Our initial empirical analysis begins with a consideration of the relationship between the first-

difference of the price differential (∆(pit − p
j
t) and the lagged price differential (pit−1 − p

j
t−1).

Because certain Archimedean copula functional relationships are only able to accommodate

positive correlation, we utilize the negative value of the price differential (or pjt−1 − pit−1)

as the right hand side regressor. Figure 1 illustrates the sample data for each of the six

market pair combinations. The anticipated positive correlation is apparent for each market

pair, suggesting adherence to the conditions required for spatial market integration. We

applied OLS estimation techniques to the standard error-correction specification presented

in equation 1 above (again, with the sign of the lagged price differential switched). Parameter

estimates and summary statistics are presented in Table 1. The results indicate a reasonably

strong degree of integration among the regional OSB markets. In fact, the half-lives of

deviations from equilibrium conditions implied by these estimates are very similar to those

9Random Lengths is an independent, privately owned price reporting service, providing information on
commonly produced and consumed wood products in the U.S., Canada, and other countries since 1944.
Reported open–market sales prices are based on hundreds of weekly telephone interviews with product
buyers and sellers. These interviews are with producers, wholesalers, distributors, secondary manufacturers,
buying groups, treaters, and some large retailers. The regional OSB price data used are FOB mill price
averages.
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presented by Goodwin et al. (2011) in an application of STAR models to a similar set of

OSB data.10

Marginal cumulative distributions for (∆(pit − p
j
t) and (pit−1 − p

j
t−1) were represented us-

ing nonparametric, empirical cdf’s. Again, this approach affords us maximum flexibility in

evaluating the functional relationships underlying market linkages. Standard maximum like-

lihood estimation techniques were used to fit the six different copula models described above

to the resulting data. Table 2 presents ML estimates of the copula parameters and summary

statistics. In particular, values of the log-likelihood functions and of the AIC model fitting

criterion are presented for each copula/market-pair combination. Likewise, measures of tail

dependence, as described above, are also presented in the table. The correlation, degrees

of freedom (in the case of the T copula), and shape parameters are all highly statistically

significant. Recall that a t distribution converges to a Gaussian distribution as the degrees

of freedom increases. In four of the six cases, the degrees of freedom parameters for the T

copula are less than 30, which indicates greater platykurtosis than would be suggested by a

Gaussian copula.

Tail dependence is an important indicator of how the relationship between the variables

of interest (price differentials) behaves under extreme events. Recall that, by construction,

the Gaussian copula has zero tail dependence. The T copula allows for positive dependence

but imposes symmetry in dependence in the upper and lower tails of the distributions. The

Clayton and rotated Gumbel copulas allow for lower tail dependence but impose zero upper

tail dependence while the opposite is true for the rotated Clayton and the Gumbel copulas.

Selection among the alternative copula models can be guided through a consideration of

the log likelihood function values and the AIC criteria. The rotated Clayton copula is sup-

ported in three of the six cases (Eastern Canada and the Southeast US, the North Central

and Southeast US, and the North Central and Southwest US). Price comparisons for East

Canada and the North Central and Southwest US markets favor Gaussian and T copulas,

though in the latter case, the high degrees of freedom for the T copula estimates indicates a

10Deviation half-lives represent the weeks required to eliminate one-half of the deviation from equilibrium
and are given by ln(0.5)/ln(1− β).
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relationship very similar to that of the Gaussian, with no tail dependence. Estimates of the

asymmetric Archimedean copulas (variants of the Clayton and Gumbel copulas) all indicate

strong tail dependence. Interpretation of tail dependence in cases where such dependence

is only allowed in one tail can be aided by a consideration of the typical basis relationships

among markets. In particular, to the extent that one market tends to export to another

(i.e., a case of upstream/downstream market relationships), we generally expect to see price

differences tending to be either positive or negative, but not both. This reflects the presence

of transactions costs which are a component of basis price differences. This asymmetry in

commodity flows is a relatively common feature in most basic commodity markets, including

manufactured wood products. Figure 2 presents nonparametric densities for the price differ-

entials for all six pairs of markets. In five of six cases, definite patterns of basis, reflecting a

relationship where one market price is generally above another, are indicated. This suggests

that the asymmetric tail dependence associated with the Clayton and Gumbel copulas (and

their rotated versions) may be appropriate.11

Outside of examining tail dependence measures, the easiest way to characterize the mar-

ket integration relationships among the market pairs is to consider the joint pdf functions

implied by the copula estimates. To this end, we simulated the joint distributions implied by

the copula estimates that were favored by the log-likelihood and AIC values. We assumed

standard normal marginals for the differenced and lagged price differentials.12 Contours of

the resulting joint densities are presented for the favored copula functions in Figure 3. The

densities illustrate patterns of tail dependence, where linkages between markets is stronger

for larger deviations from price parity. In particular, estimates of the rotated Clayton and

Gumbel copulas in panels (d), (e), and (f) of Figure 3 illustrate tighter correlation in the

tails, corresponding to stronger price adjustments when price differences are higher. That

11Ongoing work is considering mixtures of copulas in order to permit greater flexibility in representing
asymmetric tail dependence.

12Although the sample of 812 observations allows accurate estimation of the copula parameters, it is
relatively thin for the purposes of illustrating the joint distribution. Instead, we utilize a much denser grid
of values generated from a standard normal.
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said, the patterns are subtle and may reflect the fact that each copula function is relatively

restrictive in terms of the extent of tail dependence permitted.

We next considered allowing greater flexibility in the market relationships represented by

the copula function estimates by allowing shape, correlation, and degrees of freedom param-

eters to vary according to the distribution of the price differential. In particular, we allowed

parameters to vary with the empirical quantile of the price differential. Again, standard

maximum likelihood estimation techniques were used to obtain parameter estimates.13 The

resulting parameter estimates are presented in Table 3. It is important to note that the stan-

dard copula functions presented in Table 2 are nested within the specifications presented in

Table 3. This allows standard likelihood ratio tests of the parameters and alternative speci-

fications.

The state-dependent versions of the copula models provide substantial improvements in

fit over the standard versions in many (but not all) cases. Likelihood function values favor

the augmented T copula in four of six cases. The expanded Gumbel copula is favored in two

cases by the AIC and the augmented rotated Clayton and Gumbel copulas receive support

in two cases each. It is relevant to note that the parameter estimates corresponding to

the state dependence effect (i.e., the coefficients on the empirical cdf values of the lagged

price differences) are frequently statistically significant, even in cases where the copula is not

favored over alternatives by the log-likelihood and AIC values.

In order to consider the distributional properties that underlie price linkages among

the market pairs, we again simulated the implied joint pdf functions. We chose to present

examples for each pair that were either given support by the model fitting criteria or that had

highly significant state-dependent parameter coefficients. Figure 4 presents the resulting joint

pdf contours. A different picture of the price linkages emerges from the augmented models.

In particular, very strong patterns of tail dependence, corresponding to large deviations

from equilibrium among the prices, are revealed. In some cases, the correlation is stronger

13We also used a simulated annealing stochastic search algorithm to obtain starting values for standard
quasi-Newton optimization procedures.
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for positive deviations while in others correlation appears much stronger for negative price

differences. Again, this reflects the basis patterns illustrated in Figure 2.

In accordance with existing research, the results indicate that market adjustments are

generally larger in response to large price differences which reflect more substantial disequi-

librium conditions (and therefore bigger arbitrage opportunities). The implications are very

similar to those provided in other estimation approaches that allow for nonlinearities. In

particular, regime switching and threshold models generally imply that price linkages and

adjustment patterns are stronger and quicker when deviations from equilibrium are large.

This reflects the presence of transactions costs and Heckscher’s “commodity points.”

4 Summary and Concluding Remarks

We evaluated the adherence to the economic conditions typically required for efficiently

linked markets by considering the degree and nature of correlation implied by copula models

of joint distributions of spatially related prices. To allow and model nonlinear behavior that

might be caused by transactions costs, we adopted specific classes of copula functions that

allow for “state-dependent” correlation, where the state is defined by the degree of market

disequilibrium represented by spatial price differences at any point in time. We find that

transactions costs bands are implied by certain nonlinear patterns of correlation. In addition,

we consider more flexible copula models that allow parameters of the joint distributions to

vary according to the “state” of market disequilibrium. We find that such models provide

even stronger evidence of nonlinearities in market linkages.

One weakness of the copula approach is that it is usually difficult to select a specific

parametric copula. We highlight alternative model fitting criteria that may be of value

in comparing alternative copula models. Such an approach is, however, hindered by the

fact that such comparisons do not necessarily comprise formal specification tests. Further,

model fitting criteria may not be fully comparable across different copula families. Ongoing

research is considering more formal approaches to specification testing, including tests based
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upon standard Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling specification

tests. In such an approach, the dimensionality of the problem is reduced by comparing joint

cdf values to the empirical cdf. This approach to testing offers promise in allowing for more

formal model comparisons.
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Table 1. OLS Estimates of Autoregressive Error-Correction Price Parity Modela

∆(pit − p
j
t) = α− β(pit−1 − p

j
t−1)

Standard Deviation

Parameter Estimate Error t-Ratio Half-Life R2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eastern Canada and NC US . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α −0.0066 0.0013 −5.26 0.0555

β 0.1136 0.0165 6.89 5.75

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Eastern Canada and SE US . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α −0.0019 0.0012 −1.60 0.0217

β 0.0467 0.0110 4.24 14.51

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eastern Canada and SW US . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α −0.0045 0.0013 −3.40 0.0391

β 0.0815 0.0142 5.74 8.15

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eastern Canada and SW US . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α 0.0008 0.0010 0.82 0.0264

β 0.0534 0.0114 4.68 12.62

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NC US and SE US . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α 0.0002 0.0010 0.23 0.0576

β 0.1148 0.0163 7.03 5.68

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SE US and SW US . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α −0.0007 0.0007 −0.94 0.0279

β 0.0563 0.0117 4.81 11.97
a An asterisk indicates statistical significance at the α = .10 or smaller level. Deviation half-
lives represent the weeks required to eliminate one-half of the deviation from equilibrium
and are given by ln(0.5)/ln(1− β).
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Table 3. State-Varying Copula Parameter Estimates (With Empirical Marginals)a

Standard t Log
Copula Parameter Estimate Error Ratio Likelihood AIC

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . East Canada and North Central US . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gaussian α0 0.4722 0.1160 4.07∗ 21.8477 −39.6955

α1 −0.0306 0.1752 −0.17
T β0 3.1118 0.2334 13.33∗ 22.4884† −36.9769

β1 −0.0627 0.1775 −0.35
α0 0.4598 0.1155 3.98∗

α1 −0.0294 0.1771 −0.17
Clayton γ0 −1.6088 0.3156 −5.10∗ 15.2875 −26.5751

γ1 0.4299 0.5653 0.76
Rotated Clayton γ0 −1.5461 0.2948 −5.25∗ 20.8664 −37.7327

γ1 0.6750 0.5094 1.33
Gumbel γ0 −1.4855 0.2844 −5.22∗ 22.2578 −40.5155†

γ1 −0.7259 0.4846 −1.50
Rotated Gumbel γ0 −1.6248 0.3179 −5.11∗ 19.6744 −35.3487

γ1 −0.6186 0.5182 −1.19
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . East Canada and Southeast US . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gaussian α0 0.1614 0.1213 1.33 10.4785 −16.9569†

α1 0.2605 0.1724 1.51
T β0 1.7962 0.0046 393.17∗ 12.2880† −16.5759

β1 5.9694 0.0279 213.92∗

α0 0.1136 0.1255 0.91
α1 0.3149 0.1759 1.79∗

Clayton γ0 −3.0667 2.2884 −1.34 7.9397 −11.8794
γ1 2.1981 2.8932 0.76

Rotated Clayton γ0 −1.7492 0.2849 −6.14∗ 9.4391 −14.8781
γ1 0.0051 0.5748 0.01

Gumbel γ0 −2.3758 0.5101 −4.66∗ 8.0505 −12.1010
γ1 −0.1272 0.6718 −0.19

Rotated Gumbel γ0 −1.6544 0.3429 −4.83∗ 10.0751 −16.1502
γ1 −1.6406 0.9143 −1.79∗

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . East Canada and Southwest US . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gaussian α0 0.3817 0.1142 3.34∗ 15.5670 −27.1340†

α1 0.0005 0.1675 0.00
T β0 2.8031 8.7312 0.32 16.0060† −24.0119

β1 1.7504 0.8010 2.19∗

α0 0.3816 0.1248 3.06∗

α1 −0.0052 0.1695 −0.03
Clayton γ0 −1.7806 0.3317 −5.37∗ 12.9265 −21.8530

γ1 0.5979 0.5495 1.09
Rotated Clayton γ0 −1.8161 0.3244 −5.60∗ 12.2014 −20.4028

γ1 0.6317 0.5720 1.10
Gumbel γ0 −1.6868 0.3298 −5.11∗ 13.6599 −23.3198

γ1 −0.8052 0.5349 −1.51
Rotated Gumbel γ0 −1.7798 0.3265 −5.45∗ 13.8704 −23.7409

γ1 −0.6024 0.5319 −1.13
a An asterisk indicates statistical significance at the α = .10 or smaller level. Maximum likelihood and
minimum AIC values are identified by “†”.
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Table 3. (continued)a

Standard t Log
Copula Parameter Estimate Error Ratio Likelihood AIC

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . North Central US and Southeast US . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gaussian α0 0.1235 0.1144 1.08 17.2462 −30.4924

α1 0.4496 0.1767 2.54∗

T β0 4.9419 0.7371 6.70∗ 18.6964 −29.3928
β1 −2.9548 0.7400 −3.99∗

α0 0.1194 0.1144 1.04
α1 0.4479 0.1795 2.50∗

Clayton γ0 −15.4014 6.0202 −2.56∗ 12.1436 −20.2873
γ1 15.8854 6.3794 2.49∗

Rotated Clayton γ0 −1.0931 0.2066 −5.29∗ 24.6527† −45.3055†

γ1 −0.4065 0.4634 −0.88
Gumbel γ0 −2.4396 0.4616 −5.29∗ 22.0515 −40.1030

γ1 0.7301 0.5664 1.29
Rotated Gumbel γ0 −0.4673 0.3334 −1.40 16.8480 −29.6960

γ1 −12.0656 4.8408 −2.49∗

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .North Central US and Southwest US . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gaussian α0 0.3899 0.1137 3.43∗ 24.7267 −45.4534

α1 0.1814 0.1710 1.06
T β0 2.4357 0.5523 4.41∗ 27.6791 −47.3581

β1 −0.6625 0.6551 −1.01
α0 0.3910 0.1174 3.33∗

α1 0.1411 0.1816 0.78
Clayton γ0 −1.8396 0.3520 −5.23∗ 15.9671 −27.9342

γ1 0.9918 0.5320 1.86∗

Rotated Clayton γ0 −1.1999 0.2164 −5.54∗ 26.5556 −49.1113
γ1 0.1915 0.4032 0.48

Gumbel γ0 −1.6045 0.2810 −5.71∗ 29.4723† −54.9447†

γ1 −0.1922 0.3840 −0.50
Rotated Gumbel γ0 −1.3222 0.2614 −5.06∗ 20.9626 −37.9253

γ1 −1.0827 0.4962 −2.18∗

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Southeast US and Southwest US . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gaussian α0 0.5267 0.1201 4.39∗ 18.0378 −32.0756

α1 −0.2445 0.1719 −1.42
T β0 1.6808 0.5253 3.20∗ 21.1449† −34.2898

β1 1.1726 0.5989 1.96∗

α0 0.5129 0.1268 4.04∗

α1 −0.2336 0.1792 −1.30
Clayton γ0 −1.2689 0.2319 −5.47∗ 17.3373 −30.6746

γ1 −0.3083 0.5377 −0.57
Rotated Clayton γ0 −2.0613 0.3757 −5.49∗ 13.2789 −22.5577

γ1 1.1977 0.5587 2.14∗

Gumbel γ0 −1.3420 0.2777 −4.83∗ 16.3131 −28.6261
γ1 −1.4288 0.5729 −2.49∗

Rotated Gumbel γ0 −2.0178 0.3677 −5.49∗ 19.3503 −34.7007†

γ1 0.1479 0.4620 0.32
a An asterisk indicates statistical significance at the α = .10 or smaller level. Maximum likelihood and
minimum AIC values are identified by “†”.

29



(a) Eastern Canada and NC US (b) Eastern Canada and SE US

(c) Eastern Canada and SW US (d) NC US and SE US

(e) NC US and SW US (f) SE US and SW US

Figure 1: Regional OSB Prices Sample Data (∆(pit − p
j
t), (p

i
t−1 − p

j
t−1))
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(a) Eastern Canada and NC US (b) Eastern Canada and SE US

(c) Eastern Canada and SW US (d) NC US and SE US

(e) NC US and SW US (f) SE US and SW US

Figure 2: Distribution of Lagged Price Differentials (pit−1 − p
j
t−1)
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(a) Eastern Canada and NC US (b) Eastern Canada and SE US

(c) Eastern Canada and SW US (d) NC US and SE US

(e) NC US and SW US (f) SE US and SW US

Figure 3: Contours of Estimated Copula Joint Probability Functions (With Standard Normal

Marginals)
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(a) Eastern Canada and NC US (b) Eastern Canada and SE US

(c) Eastern Canada and SW US (d) NC US and SE US

(e) NC US and SW US (f) SE US and SW US

Figure 4: Contours of Estimated State-Dependent Copula Joint Probability Functions (With

Standard Normal Marginals)
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