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Abstract

We  introduce a new model for examining the dynamics of uptake of technological innovations in 

agricultural systems, using the adoption of zero-till wheat  in the rice-wheat system in Haryana state, 

India, as a case study. A new equation is derived which describes the dynamics of adoption over time 

and takes into account the effect of aggregation (e.g. on a spatial and/or cultural basis) in the 

adopting population on the rate of adoption. The model extends previous phenomenological models 

by removing the assumption of homogeneity in the non-adopting fraction of the population.  We show 

how factors affecting the per capita rate of adoption can be captured using cognitive mapping and 

simulate the dynamics of the adoption process.
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Introduction

The adoption of novel technologies and techniques is a major concern in agricultural 

extension and development work. It is a common experience that the adoption of an 

apparently useful agricultural technology is slower than predicted, or desired, by extension 

agents (Röling, 1988). One of the reasons behind this delay is the continuing pro-innovation 

bias of much extension research. That is, the implication that an innovation should be 

diffused rapidly, and that innovations should neither be re-invented, nor rejected (Rogers, 

1995). Related to the pro-innovation bias is Röling’s (1988) criticism on the general practice 

of the progressive farmer strategy in agricultural extension. In this strategy, change agents 

approach progressive farmers to deliver extension on relevant innovations, after which the 

innovation is supposed to spread to other segments of the farming community through word-

of-mouth communication. Because farming populations are not homogeneous, rewards for 

innovations change over time, extension messages are distorted over time, and for numerous 

other reasons, innovations often fail to spread to all segments of the farming population. 

Traditional extension strategies tend to fail to give sufficient attention to socio-economic 

structuring and the degree of interconnectedness of the farming community, and also to 

differences in psychological characteristics of individual farmers (Röling, 1988).

Diffusion models may assist in gaining an understanding of the driving variables behind 

diffusion processes and allow, at least in theory, the prediction of the future adoption rate of 

innovations. Models of diffusion currently used in agricultural extension research are, of 

course, heavily simplified representations of the reality of diffusion processes (Rolling, 1988) 

and may be criticised for having little ability to predict future adoption of innovations 

(Mahajan et al., 1990). The Bass model is the most commonly used adoption/diffusion model 

(Bass, 1969) having originally been derived for applications in marketing science. Use of the 



Bass model in agricultural extension is justified by the assumption that the launch of a new 

product on a market can be compared with the launch of an innovation in a farming 

community.  Akinola (1986) provides a clear case study of the use of the Bass model in 

studying the adoption of pesticide use by Nigerian cocoa growers.

The Bass model recognises two sources of technological innovations. In agricultural 

extension, adoption of innovations through external factors is adoption initiated by factors 

outside the farming community, for instance by extension agents or mass media promotion. 

Adoption through internal factors is adoption resulting from inter-personal communication 

between farmers. Farmers adopting an innovation through external factors are sometimes 

referred to as (real) innovators, while farmers adopting through internal factors are referred to 

as imitators.

The Bass  model (and similar models) deal with the adoption process at the population level.   

Such models neglect several important factors determining the adoption rate of innovations 

and reflect the pro-innovation bias of most other diffusion research. The Bass model, for 

example, assumes: that the market potential of new products/innovations remains constant 

over time; that the nature of the innovation does not change over time; that the diffusion of 

new innovations is independent of other innovations; and that the diffusion process is not 

influenced by marketing/promotion strategies, such as changing product prices, changes in 

advertisements, etc. (Mahajan et al., 1990).  As noted above, in real situations the market 

potential of innovations changes over time and distortion of information and reinvention of 

innovations changes the extension message and the nature of novel techniques. In addition, 

the distinction the Bass model makes between adoption through either external or internal 

factors may not reflect the reality of how farmers decide to adopt or reject an innovation. Few 



farmers decide to adopt a novel farming technique solely based upon information received 

from mass media or extension officers. Rogers (1995) estimates that the percentage of 

innovators in any population is between two and five per cent.  External factors may create 

interest in and awareness of innovations, but the actual decision to adopt a new technique is 

usually not taken by the majority of farmers until information and practical experience from 

peer-farmers is received. Hence, external factors may facilitate the spread of innovative 

agricultural techniques through interpersonal communication, but are not convincing on their 

own.

Many of the limitations of the Bass and similar phenomenological1 models can be overcome 

if a micro-level modelling approach is taken (Chatterjee & Eliasberg, 1990).  However, 

although parameter estimation for micro-level models is straightforward in principle it may 

be far more time consuming, because of greatly increased data requirements, than for 

phenomenological models.  Here, we present a compromise approach, which incorporates 

heterogeneity among individual adopters, but models the innovation-adoption process at the 

population level.  The model is developed in ecological terms in an attempt to provide a 

cross-disciplinary exchange of concepts from production ecology to management science and 

vice versa.

Before a description of the derivation of the model and an analysis of its performance, the 

history of zero-tillage in the rice-wheat system in northern India is explained to show the 

complexity of the context in which adoption is taking place.  The use of the technique of 

cognitive mapping  (Kosko, 1992) is illustrated with reference to the rice-wheat system to 

show its value in capturing the potential dynamics of complex systems.  The development of 

                                                          
1 We use the term phenomenological rather than the term aggregate, which is more common in the 
economics/management science literature, to avoid confusion with the ecological use of the term aggregation.



cognitive maps for the rice-wheat system and their use in predicting the dynamics of model 

parameters is discussed in more detail in later sections of the paper.

History of zero-tillage in Haryana

Zero-tillage in wheat is a novel farming technique in Haryana. The technique allows farmers 

to drill wheat seeds directly into the stubble of the previous crop, which is usually rice, 

without any preceding soil cultivations. Zero-tillage has the advantage of saving labour 

requirements and soil cultivation costs during wheat sowing and reducing the emergence of 

the obnoxious weed Phalaris minor (Franke et al., 2001; 2003). Although the percentage of 

farmers practising zero-tillage is presently still small in Haryana (around 10%), zero-tillage is 

rapidly increasing popularity (Hobbs, 2002).

The first on-farm demonstrations of zero-tillage in wheat in Haryana were conducted in 1996 

by Haryana Agricultural University. The extension workers concentrated their efforts on a 

dozen villages, where good relationships with progressive farmers already existed. Many of 

these farmers belonged to the Sikh caste. They are traditionally innovative and resource-rich 

farmers, who are often more able and willing than farmers from other castes to try out new 

farming techniques. Incentives, in the form of free use of zero-till machinery and free 

herbicides, were provided to farmers joining zero-tillage demonstrations. At the time zero-

tillage was introduced in 1996, farmers in Haryana were having difficulty controlling the 

weed Phalaris minor, (Littleseed canary grass) whose control had drastically worsened due to 

the development of resistance against the widely applied herbicide isoproturon (IPU). The 

pressure that IPU-resistant P.minor exerted on farm income contributed to the farmers’ 

willingness to experiment with zero-tillage. On the other hand, the complex mechanism by 



which zero-tillage affects P. minor population size was not well understood. This made many 

farmers sceptical about the use of zero-tillage as a means to control P. minor, impeding their 

willingness to adopt. Another hindrance to the acceptance of zero-tillage was the widely held 

conviction among farmers that extensive soil cultivation operations before wheat sowing are 

a necessity for good crop establishment. However, after the first on-farm demonstrations 

showed a considerable reduction in P. minor pressure and similar yield as fields under zero-

till, willingness to adopt increased (Singh & Panday, 2002).

In 1998, alternative herbicides for the control of P. minor were launched on the Indian 

herbicide market, and since then the control of isoproturon-resistant P. minor has greatly 

improved. Consequently, the introduction of new herbicides decreased the relative advantage 

of zero-till over conventional tillage by reducing P. minor pressure. However, by 1998 it had 

been realised that adoption of zero-tillage gave a considerable reduction in soil cultivation 

and labour costs. This economic advantage soon became the main driving variable behind the 

adoption of zero-tillage, and from 1998 onwards, diffusion of zero-tillage through 

interpersonal communication began to take off. The innovation was spreading to other 

farmers living in the neighbourhood of those villages initially targeted by the extension 

workers. Farmers could now purchase their own zero-till drill through a local manufacturing 

company and no further incentives were provided to farmers to adopt zero-tillage. At this 

stage, a high degree a trialability (farmers could easily try out the innovation by cultivating a 

small area of their land with a hired zero-till drill) and a high degree of observability of the 

innovation in the field favoured rapid diffusion. Diffusion through interpersonal 

communication soon became a more important means of spreading the innovation than the 

activities of relatively small team of university extension workers (Franke et al., 2003). The 



size of the extension team involved in promoting zero-tillage existed of around ten people, 

while the size of the farmer population potentially adopting zero-tillage is several million

Extension about zero-tillage was also provided through mass media broadcasts, for example 

through television and radio programs on farming and farming newsletters. These media were 

highly effective in creating awareness of zero-tillage among the entire farmer community. 

However, farmers, who were aware of the innovation through mass media, generally lacked 

willingness to adopt until further information and practical experience from their peers was 

received (Franke et al, 2003). Presently, zero-tillage is widely adopted in the surroundings of 

the villages where university extension workers introduced the innovation, while outside 

these areas the fraction of adopters in the population is still low. In areas with a low adoption 

rate, many farmers are aware of the availability of zero-tillage, but lack confidence in the 

technique. The university extension team may still play an important role in accelerating the 

rate adoption by organising demonstrations of zero-tillage in these areas. 

The likelihood of adoption depends not only on farmers’ geographic location, but also on 

their socio-economic position. The main economic advantages of zero-tillage, e.g. reduced 

soil cultivation and labour costs, are higher for farmers with larger landholdings and a higher 

degree of mechanisation, as compared with small farmers using animal draft power. Small 

farmers already have minimal soil cultivation costs, and hiring a tractor and a zero-till drill 

may increase cultivation costs. In addition small farmers have relatively more family labour 

per hectare of land available than large farmers and are therefore less interested in the time 

and labour savings resulting from adopting zero-tillage.



The degree of interconnectedness of the farming community in Haryana appears to be  

another relevant factor in the adoption of zero-tillage. In common with other village-based 

rural communities strong family ties and the prevalent caste system divide farmers into social 

groupings (Jodhka, 1998).  Farmers have strong contacts with peer-farmers belonging to the 

same grouping and tend to communicate less with farmers belonging to other groupings. 

Some groupings had a tradition of innovativeness, while others are more conservative. As 

mentioned above, Sikh farmers were among the first farmers to adopt zero-tillage. Generally, 

Sikh farmers intensively exchange information on farming and the technique, after its 

introduction, rapidly diffused among Sikh farmers. Farmers from other castes were much 

slower to adopt zero-tillage, irrespective of their geographic location. Apparently they had 

less contact with Sikh farmers who had adopted zero-tillage and were less willing to accept 

information on farming from Sikh farmers.

In the next section the new diffusion model is derived and the use of cognitive mapping for 

capturing a quantitative description of the farming system is described.  The final section of 

the paper discusses the implications of the model for diffusion of innovations in a 

development setting.



DERIVATION OF A NEW DIFFUSION MODEL FOR ADOPTION OF 

TECHNOLOGY

The Bass model

Starting point of the new model is the Bass model. The Bass model distinguishes between 

diffusion through external factors and internal factors. The number of new adopters resulting 

from interpersonal communication is described as a constant fraction () of the product of 

farmers who have adopted (A) and those who have not adopted (N-A). According to the 

model, the cumulative number of adopters, adopting through internal factors follows a 

sigmoid curve with time. 

The numerical equation for the number of adopters through internal factors can be written as:

)(
internal

tt ANA
dt

dA
  (1)

Where:

At is the total number of adopters at year t.

At+1 is the total number of adopters at year t+1.

N is the maximum potential number of adopters.

 coefficient of internal diffusion; indicating the chance of adoption as a fraction of the 

possible interactions between non-adopters (N-A) and adopters (A) at time t.



Equation 1 is the familiar logistic growth curve, which is widely applied in studies of 

biological population dynamics (May, 1973; Begon et al., 2000).  The adoption rate through 

external factors is modelled as a fraction () of the farmers who have not adopted:

)(
external

tAN
dt

dA
 (2)

Where  is the coefficient of external diffusion; i.e. the fraction of the total of farmers who 

have not adopted, adopting through external factors at time, t.

The coefficient of external diffusion is relevant in situations in which the initial adoption of 

innovations is induced by extension agents and mass media promotion, targeting all farmers 

who have the potential to adopt the innovation (N): that is, NAA  10   then0if . Since 

the adoption rate through external factors is proportional to the number of non-adopters, the 

rate will be highest when no farmers have adopted and will decrease over time with a 

growing number of adopters. 

The Bass model combines equation 1 and 2 and may be written as:

)()( ttt ANAAN
dt

dA
  (3)

Sultan et al. (1990) found that for fifteen different applications of the Bass model, the 

average coefficient of external diffusion () was 0.03, while the average coefficient of 



internal diffusion () was 0.38. This suggests that, generally, the diffusion process is affected 

more by factors such as word of mouth than by mass media influence.

A novel diffusion model: an ecological analogy

Diffusion processes which rely on personal contact to spread an innovation are analogous to 

infectious processes in the spread of a disease; indeed Rogers (1995) uses the word 

“contagious” to describe the adoption/diffusion process. In common with many simple 

models of disease and population dynamics, the commonly used diffusion models assume 

homogenous mixing of the population through which the disease (or innovation) is spreading.  

However, one of the key factors in determining the rate of such processes is the contact rate 

between those who have already adopted (infected individuals in the case of disease) and 

those who have not already adopted (uninfected individuals by analogy). The contact rate 

between adopters and non-adopters, for a fixed number of adopters, is lower if those adopters 

are aggregated physically and/or socially, so that a large number of their interpersonal 

contacts are with other adopters. It is this aspect of the diffusion process which current 

models do not take into account and for which the new model has been derived.  Alternative 

modelling approaches which consider contact rates directly are widely used in human health 

studies and would also be potential starting points for the derivation of enhanced population 

level adoption/diffusion models (see for example, Black & Singer, 1987).

The effect of non-homogenous mixing (or aggregation) on population dynamic processes has 

been widely considered in the applied ecology literature (Nachman, 1981; Waggoner & Rich, 

1981; Madden et al., 1987; Kuno, 1988; Yang & Te Beest, 1992;  Hughes et al. 1997). These 



studies present various mathematical models population dynamic processes which account 

for non-homogenous mixing of infected and uninfected individuals.

Some of the models in these areas of application make use of Lloyd’s Index of Patchiness 

(LIP) to account for the effects of aggregation on the rate of population increase (analogous 

to rate of innovation adoption).  LIP was originally intended as a measure of the patchiness of 

a meta-population of plants or animals and is derived from the variable ‘mean crowding’ 

(Lloyd, 1967).  Mean crowding is defined as "the mean number per individual of other 

individuals in the same quadrat". If the quadrat size coincides with the individual’s ambit, 

mean crowding is the average number of individuals with which an individual interacts. In 

sampling studies LIP is calculated as the ratio of mean crowding to mean density per quadrat.

To transfer the use of LIP to diffusion of innovations in agriculture, ‘mean crowding’ is taken 

to be the number of other adopters an individual adopter interacts with within his/her ambit. 

An adopter’s ambit is assumed to be the area within which the adopter typically interacts with 

other farmers, and within which diffusion of an innovation might occur as a result of personal 

contacts. In the current case it is difficult to define precisely what geographical area an ambit 

constitutes. For the purposes of the present study, an individual’s ambit is taken to be a 

village and its immediately surrounding farms.

As interpersonal communication is the dominant factor accounting for the speed and shape of 

the diffusion of an innovation (Rogers, 1995), Bass’s equation for diffusion through 

interpersonal communication alone is used as the starting point for the development of the 

new model. The coefficient of external diffusion is omitted for two reasons.  First, interest in 

the present context is in studying the dynamics of uptake of innovations after they have been 



introduced.  Secondly, as already noted above, during diffusion of agricultural innovations, 

such as zero-tillage, few farmers adopt as a direct result of contact with change agents or 

other external influences. However, extension via mass media is helpful in facilitating 

interpersonal diffusion by raising awareness of innovations and this aspect of its impact and 

is included in the section dealing with cognitive mapping, in which we consider variables 

affecting the attractiveness of an innovation and the rate of adoption.

To adapt the diffusion model for aggregation effects, we need to redefine equation 1, 

describing the adoption curve for innovations. The following equation has the advantage that 

it is less sensitive to changes in population size compared with equation 1, in which the 

innovation rate increases exponentially with increasing population size.

)1(
N

A
Ar

dt

dA
 (4)

Where:

r is a rate parameter summarising the capacity of the innovation to spread, 

analogous to the coefficient of internal diffusion (),  and

)1(
N

A
 is the population fraction of non-adopters 

A high value for LIP means that the adopters are aggregated. This aggregation decreases the 

number of contacts an adopter has with non-adopters. This is equivalent to saying that 

increasing levels of aggregation reduce the effective population fraction of non-adopters. If 

LIP has a value, x say, an adopter would interact on average with x times as many adopters as 



expected under a random pattern of adopters (i.e. under homogeneous mixing of adopters and 

non-adopters). Stating this formally we can include LIP in equation 4 as follows:

)1(
N

ALIP
Ar

dt

dA 
 (5)

If LIP is stable over time, the maximum number of adopters corrected for LIP, N’, would 

behave as follows:

LIP

N
N ' (6)

According to equation 6, at high values of LIP the diffusion process would come to an end at 

relatively low levels of adoption. However, ecological analyses of diffusion processes (Yang 

et al., 1991; Yang & TeBeest, 1992; Madden et al., 1987) show that LIP changes over time. 

Transferring these ecological results to the present context we might expect that aggregation 

levels (i.e. LIP) to decrease as the fraction of adopters increases. Therefore, LIP should be 

calculated as a function of the number of adopters. This leads to a general form of the new 

diffusion model given in equation 7.







 

N

A
AfAr

dt

dA
)(1 (7)

Finally, it is necessary to define a form for the function f(A) in equation 7. Unfortunately, 

there are limited data available on the behaviour of LIP over time for ecological data and 



none that we know of for diffusion processes in the current context. However, as an initial 

attempt to derive f(A) we may proceed heuristically.  

It is known that the maximum value of LIP occurs in the hypothetical situation in which 

adopters and non-adopters are completely segregated. The maximum value of LIP is, then, 

determined by the ratio of the maximum number of adopters per village to the number of 

potential adopters per village. When the number of adopters (A) approaches the maximum 

number of adopters (N), adopters will no longer be aggregated (relative to the non-adopters), 

and therefore LIP will approach the value of 1. The theoretical maximum value of LIP at any 

value of A can thus be defined as:

A

qN

q

A
q

N

ALIP






1

)(max (8)

where:

q is the total number of villages.

If the number of individuals per village is relatively large, LIPmax approaches 
A

N
.  For 

example, if the number of individuals per village exceeds 100, the approximation of LIPmax, 

as 
A

N
, deviates less than 1% from the real value of LIPmax. Since in the rural community in 

Haryana a farmer’s ambit usually consists of several hundred farmers, it would be reasonable 

in the current case to estimate LIPmax as 
A

N
.



Having established that the actual value of LIP for any A varies between 1 and the maximum 

value of LIP for that value of A, we now assume that the function LIP(A) is a constant 

fraction of LIPmax(A) minus an asymptote LIPmax = 1. If the value for LIP is known at a 

certain adoption fraction (A/N), LIP as a function of A can be calculated as:







 






















1
1

1

1)(
max A

N

LIP

LIP

ALIP

N

A

N

A

(9)

Substitution of equation 9 into equation 7 leads to the expression for the new diffusion model.
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(10)

The performance of the model was examined using data from a socio-economic survey to 

farmers’ practices in the rice-wheat system of Haryana (Franke et al., 2003). Only data from 

those districts within Haryana where farmers practised zero-tillage were used. In these 

districts, the overall adoption rate of zero-tillage, sometimes practised along with other tillage 

techniques, was 19%. The estimated adoption rate of 19% was probably a slight overestimate 

of the actual adoption rate, due to bias related to the interviewers’ preference to conduct 

interviews with progressive farmers in villages with relatively high socio-economic 

standards. Data from 25 villages, where two or more farmers were interviewed, were 

included to test the effect of aggregation on adoption rate of zero-tillage.



Estimation of LIP from survey data

Of the 25 villages providing data used to parameterize the model, 11 hosted farmers using 

zero-tillage, while in the remaining 14 villages, none of the interviewed farmers had 

implemented zero-tillage, indicating that adopters were aggregated. The average adoption 

fraction in villages with at least one person practising zero-tillage was 0.50, while the average 

adoption fraction of all 25 villages was 0.23. Assuming that the average number of farmers 

per village in villages where zero-till was practised was equal to the average number of 

farmers per village in villages without zero-till, and bearing in mind that the number of 

farmers per village was relatively large (>100), LIP at the given adoption fraction 

approaches: 2.17
0.23

0.50
 .

At an adoption fraction of 0.23, the approximation of LIPmax is 4.35 ( from equation 8). 

The total number of adopters, N, was estimated as the product of the number of villages (25) 

and the average number of farmers per village.  This second value was estimated as 500, on 

the basis of information gathered from local farmers and HAU extension staff, giving a value 

for N of 12500. 

The effect of the initial level of aggregation on the progress of innovation uptake

The cumulative number of adopters in the 25 villages and the rates of adoption were 

examined for four situations:

(1) 17.2
23.0








 

N

ALIP (aggregation based on observation)



(2) 0.1
23.0








 

N

ALIP (no aggregation, equivalent to homogenous mixing)

(3) 085.1
23.0








 

N

ALIP (50% aggregation compared with situation 1)

(4) 255.3
23.0








 

N

ALIP (150% aggregation compared with situation 1)

Adoption progress curves for equation 10 were obtained by numerical integration using a 

Runga-Kutte method implemented either in the FST modelling environment (Windows ver. 

1.06, Kraalingen et al., 1999) or in Mathcad (ver. 2001i (Professional), Mathsoft Inc. 

Cambridge MA 02141, USA).  The FST code and/or the Mathcad worksheets are available 

on request from the authors. For comparison of the qualitative effects of different levels of 

aggregation on the rate and progress of adoption, the rate coefficient, r, in equation 10 was 

set to 0.38 (based on the results of Sultan et al. (1999) reported above).

Figure 1 shows the adoption curves for the four different initial levels of aggregation 

(Fig.1(a)) and the rate of adoption against time (Fig. 1(b)).  It can be seen that an increasing 

the level of aggregation among adopters leads to an increase in the time taken to reach the  

final fraction of adopters and also in the maximum rate of adoption during the adoption 

process. With the value of r = 0.38, the time required to reach 80% adoption in situation 1, 

the observed aggregation level, is delayed by 3.3 years as a result of aggregation compared 

with a situation in which there is random mixing of adopters and non-adopters. The relative 

increase in time compared with random mixing of adopters and non-adopters was 43%. 

Doubling the aggregation level, (situation 4), would extend the time required to reach 80% 

adoption by another 11 years (relative increase compared with random mixing: 207%).

<FIGURE 1 NEAR HERE>



Aggregation (LIP) as a function of the adoption fraction over time (equation 9) is shown in 

Figure 2.  It can be seen that a 50% increase in the initial level of aggregation, as compared 

with the observed value, results in the pattern of adopters remaining aggregated (LIP>1) until 

close to then end of the adoption process.  Analysis of equation 9 showed that a value of 

LIP(A) = 1.0 was obtained after 21 years starting from a position with 50% more aggregation 

than the observed value.  For the observed level of aggregation, the model predicted that the 

homogenous mixing of adopters and non-adopters would occur after 10 years.

<FIGURE 2 NEAR HERE>

In their discussion of the relative merits of phenomenological versus individual-based 

diffusion models Mahanjan, et al. (1990) noted that “…all potential adopters do not have the 

same probability of adopting the product in a given time period.”   Individual-based models 

such as those proposed by Chaterjee & Eliashberg (1990) attempt to address this issue by 

modelling the processes of decision/adoption at an individual level. Although such 

approaches can give accurate fitting of adoption curves to observed adoption data (Chaterjee 

& Eliashberg, 1990) they require information on the behaviour of individual adopters which 

may not be easy to collect.  The approach reported here is an attempt to find a compromise 

between the individual-based approach and the original Bass diffusion model.  Specifically, 

the model uses information which can be collected, by direct observation, on the aggregation 

of the innovation within the adopting population to estimate an additional shape parameter 

for the diffusion model.  The parameter, based on the ecological concept of patchiness, 

(Lloyd, 1967) specifically accounts for the way in which physical or social grouping within 

the adopting population might delay the adoption of an innovation by making the probability 

of adoption non-constant over those yet to adopt.



The proposed model has properties which make it useful for the context in which it was 

developed.  First, it is known that, in common with other groups of adopters, farmers are 

more likely to adopt an innovation when either they can try it out before committing to it, or 

they can observe someone else trying it (Rogers, 1995).  This effect has already been 

observed with the adoption of zero-tillage in India (Singh & Panday, 2002).  Clearly, the 

opportunities for non-adopters to observe adopters trying a new method are reduced in 

circumstances where adopter and non-adopters do not mix homogeneously in the population.  

Caste, religion and wealth all act as sources of aggregation within Indian villages and may 

lead to non-homogenous exchange of information about, or access to, technological 

innovations (Jodhka, 1998).  Second, detailed information on the adoption/decision process 

of adopters, a prerequisite for constructing a micro-level model and information which may 

be difficult to collect in a development context, is not required for the model presented here.  

Third the model is well-suited to situations in which the population of adopters consists of 

distinct social groups (e.g. villages) since the aggregation parameter is estimated simply from 

the mean and variance of the number of adopters per group (i.e. per village in the current 

context).  Since such social structuring is a common feature of peasant agricultural systems, 

the current model may provide a basis for improved forecasting of technology adoption in

development studies compared standard diffusion models.

Mahanjan et al. (1990) discussed the difficulties in obtaining parameter values for diffusion 

models in advance of the diffusion process reaching an advanced stage.  In principle, the 

model presented here may not be as severely affected in this respect by lack of data as other 

diffusion models.  First, the model's basic structure is that of the logistic equation in which 

the inflection point occurs at the mid-point in time of the diffusion process.  This may make it 



possible to estimate the rate parameter, r, from a relatively short time series of data.  

Deviations from a symmetrical adoption curve arise in the current model as a result of the 

time-varying function of aggregation in the adopting population.  Thus, although the rate 

parameter might be estimated as if the diffusion curve were symmetrical about its inflection 

point, the actual curve may be asymmetrical.  Furthemore, the time-varying parameter (LIP) 

which affects the shape of the curve may be estimated from a single observation period, as 

illustrated above, provided reasonable estimates can be made of the number of potential 

adopters in each group, and the total number of potential adopters in the population.

Irrespective of whether parameter estimation for the proposed model proves to be easier than 

for other diffusion models or not, the principle use of the model is likely to be strategic rather 

than tactical in any case.  That is, in common with other relatively simple models of complex 

processes (May, 1973) the main use is likely to be in understanding how the dynamics of the 

process might change in response to changes in a few key parameters.  In such analyses, the 

interest is often in qualitative changes in the predicted behaviour of the system in response to 

changes in parameter values rather than in precise numerical analysis of particular fits of the 

model to data.  The analysis of the model clearly indicated that extension effort to reduce the 

aggregation of adopters would result in increased adoption rates.

In the current context, we considered it justifiable to focus attention on a diffusion model 

which accounted for diffusion as a result of "internal" pressure only, rather than by both 

"internal" and "external" pressure.  This decision was justified partly by the results of Sultan 

et al. (1990) who found that the coefficient of internal adoption pressure was an order of 

magnituide higher than that for external influence in a meta-analysis of 15 adoption studies.  

It was also based on our own observation (Franke et al., 2003) that a majority of Haryana 



farmers have been exposed to the concept of zero-tillage through mass media coverage, but  

only those who have had direct experience of the method have actually adopted it.

Cognitive map construction for examining the dynamics of the rate coefficient, r

The rate coefficient, r, can be considered as a parameter expressing the attractiveness of the 

innovation, analogous to the infectiousness of a disease, and is likely to depend on Roger’s 

(1995) attributes of innovation rate: relative advantage, compatibility, complexity, trialability 

and observability. Also, mass media may affect the diffusion coefficient r, by facilitating 

interpersonal diffusion and so increasing the ‘infectiousness’ of the innovation.

It might be expected, by analogy to the epidemiological context, (van der Plank, 1963; 

Campbell & Madden, 1990) that r will not be constant over time.  Sufficient data are not 

available to undertake a quantitative analysis of the question of how r will vary over time.  

This situation is quite common in the development of models in systems analysis and we 

present here a method which allows initial progress to be made based on expert opinion.  The 

method has the advantage of focussing the attention of the researcher on the interactions 

which occur between different components of the system under investigation.

Cognitive map construction and interpretation: a simple example

A cognitive map represents logical and causal connections between actions, objects or 

concepts which together describe a larger entity, system or concept.  In a cognitive map, the 

concepts/objects/actions are typically represented by boxes of various shapes and causal 

relationships between them are represented by arrows.  The arrows are annotated with '+' and 

'-' signs to indicate causal increase or decrease respectively.  In cases where the relative 

strength of the causal relationship can be estimated the '+' and '-' signs can be replaced by 



values between -1 and 1 to produce what is known as a Fuzzy Cognitive Map (FCM, Taber, 

1991; Kosko, 1992, 1993).  The numerical values can be related to linguistic quantifiers such 

as; 'never', 'sometimes', 'often', 'always', 'little', 'some', 'a lot', which makes the technique easy 

to use in gathering expert opinion.  The data to be translated into an FCM can be gathered 

either from face-to-face interview or from written material in which the concepts under 

consideration are discussed.  A FCM represents a view of the way in which a particular 

feature of the world works and can be used to make inferences about the expected behaviour 

of this feature of the world through the application of straightforward matrix algebra.

The first step is to translate the causal connections in the map into a square matrix.  If the 

map contains n concepts, the matrix will have n rows and n columns, one row and one 

column representing each concept.  Each column of the matrix contains the values of the 

causal effects of a concept on each of the other concepts in the map (which are represented by 

the n rows of the column).  In order to generate inferences from the FCM, an n x 1 vector of 

initial values is multiplied to the matrix to generate a vector of output states. Repeated 

multiplication of the output vector to the matrix may result in a stable pattern of activation of 

the concepts emerging (known as a stable limit cycle) or a single stable steady state may be 

obtained (in which the pattern of activations of the concepts remains constant), or chaotic 

patterns of activation may arise (Taber, 1991; Kosko, 1992). The technique is directly 

analogous to the construction and interpretation of community projection matrices in 

population ecology (May, 1973; Caswell, 2001). A simple example based on expert opinion 

of the issues which determine a farmer's decision to plant potatoes in preference to wheat in 

the rice-wheat system is shown in Figure 3(a).  The causal statements underlying the FCM 

are given in Table 1.  The expert opinion predicts a cyclical oscillation in the production of 

potatoes within the system as the feedback between potato supply and price fluctuates.  



Examination of the output from the cognitive map (Figure 3(b)) shows that the qualitative 

aspects of the predicted system behaviour agree with the stated expert opinion.

<TABLE 1 NEAR HERE> <FIGURE 3 NEAR HERE>

A FCM for the adoption of zero-tillage in the Haryana rice-wheat system

In the current context, discussions regarding the factors influencing the uptake of zero-till 

technology in Haryana were conducted with various local experts and farmer groups in 

Haryana in 1999, 2000 and 2001. A set of causal statements was produced by the project 

team from field notes made during these discussions. The FCM shown in Figure 4 was 

produced from these statements.  The list of factors (states) in the FCM is given in Table 2 

together with the initial activation levels used in the projections.  The set of causal statements 

is given in Table 3, with their weights. The aim of the map FCM was to capture the main 

factors which affect the attractiveness of zero-tillage and might therefor affect the value of 

the parameter, r, in the diffusion model.

<TABLE 2 NEAR HERE> <TABLE 3 NEAR HERE>

The effects of aggregation on the rate of adoption were included in the FCM as shown in 

Figure 4.  To examine the dynamic nature of the r parameter without aggregation, the causal 

connections between aggregation and other states were set to zero.  This is analogous to the 

assumption of homogenous mixing in the farmer population.  The FCM was also used to 

examine the predicted dynamics of the system with different initial levels of aggregation 

corresponding to the situations described above, with and without the effect of government 

intervention.  Intervention was removed from the projections by setting its activation level to 

zero.  The FCM analyses were carried out using the Fuzzy Thought Analyser (FTA, ver. 1.03 

for WindowsTM, Fuzzy Systems Engineering., Poway, CA, USA).  Adaptations to the 



diffusion model resulting from the observed dynamic nature of the r parameter are described 

below.

<FIGURE 4 NEAR HERE>

Cognitive map dynamics

Examination of the dynamics of the system suggested that a fixed attractor would be reached 

in a relatively short time.  Overall, seriousness of the Phalaris minor was predicted to 

decrease, but herbicide resistant P.minor was predicted to increase.  Concurrent with the 

period of increase in resistant P.minor, farm income was predicted to fall, before showing a 

recovery to approximately its initial value.  These predictions of the behaviour of the system 

broadly agree with its observed behaviour over the last eight to ten years. The input of state 

intervention via fuel and fertilizer prices and by supporting mass media information on zero-

tillage, was found to make little difference to the eventual level of adoption of zero-tillage, 

but did lead to a slightly higher level of profitability in the system.  Thus, the final activation 

for the state “profit” was 0.48 in projections in which intervention was included and 0.43 in 

projections where it was omitted.

The rate coefficient, r, was found to reach a stable value within a few cycles of the FCM, 

irrespective of the presence of Government intervention, or the initial level of aggregation 

among adopters, although the final value of the parameter did depend on the presence of 

Government intervention in the system. The stable value of r was 10.5% higher in the case 

where intervention affected other states, than the case where no intervention was present. 

(Figure 5). <FIGURE 5 NEAR HERE>



The use of cognitive mapping allowed an examination of the overall context within which 

adoption of zero-tillage is taking place in northern India.  The cognitive maps generated 

projections of changes within the system which are in agreemnent with observed data.  For 

example: an increase a gradual replacement of normal Phalaris minor with isoproturon-

resistant P.minor; a period of decrease in farm income associated with the increase in IPU 

resistant P.minor followed by a period of recovery in farm income.  Given the qualitative 

agreement between the projections from the FCM and the observed behaviour of the system, 

it was of interest to examine the dynamics predicted for the rate parameter, r in the diffusion 

model.

The FCM projection suggested that the rate parameter would quickly increase to a stable 

value.  If required the diffusion model given in equation 10 can be extended to include 

variable rather than constant rate parameter.  A possible parameterisation for such a model is 

given in equation 11.
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The new rate parameter in equation 11 is expressed as a function of the fraction of adopters 

(A/N).   The new parameter, b, is the upper limit to which r tends, while a is a rate parameter 

which determines the time taken for r to reach its stable value.  Numerical integration of 

equation 11 with values for a and b selected to mimic the projections from the FCM analysis 

varied little from the analysis based on equation 10, with constant r.  Generally, if the rate 

parameter reaches a constant value early in the diffusion process, results from equation 11 are 

similar to those for equation 10 and it is not clear that worthwhile benefits in explanatory 

power will be gained from the additional burden of extra parameter estimation.



Conclusions

By appealing to the analogy between innovation diffusion models and population growth 

models it is possible to derive extended diffusion models that specifically take account of 

non-homogeneous mixing between adopters and non-adopters in a population.  The 

aggregation parameter which enters the standard diffusion model can be interpreted against 

the background of the population and innovation(s) under investigation and can be estimated 

from single-point observations of the adoption process.  The resulting model can be used to 

examine the effect of use of a fixed level of extension effort to promote adoption when 

between a small number of intensively supported locations (for example demonstration or 

Monitor Farms) and a larger number of more dispersed initial adopters. 
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Annex of Figures/Tables 

Table 1.  Expert opinions on the factors determining the long-term use of potato as an alternative crop 

in the Haryana rice-wheat system

Statement no. Statement

1. Sometimes as a result of the problems associated with rice-wheat farmers 

plant potatoes



2. A high potato price  will make farmers try potato as a crop because the price 

makes the rice-wheat problems more apparent

3. A high potato price makes potato an attractive crop in itself and makes 

farmers plant potato

4. When lots of farmers plant potatoes, a potato glut occurs

5. A potato glut reduces the price of potato, leading to fewer farmers planting 

them next year

6. The situation described in statements 1-5 leads to a cyclic pattern of boom 

and bust in the planting of potato in the rice-wheat system



Table 2.  Initial levels of activation in a Fuzzy Cognitive Map (FCM)of factors affecting the rate of 

adoption of zero-tillage in wheat in the rice-wheat system in northern India

State/Concept Abbreviation used in 

FCM

Initial Activation

Phalaris minor Pminor 0.80

IPU-tolerant Phalaris 

minor

rPminor 0.40

Rate coefficient of 

adoption

r 1.00

Number of adopters A 0.23

Cost of Fuel Fuelcost 0.6

New herbicides Newherb 0.2

Diversification Diversif` 0.1

Government 

intervention

Interven 1.00 (0.00)1

Value of rice/wheat 

crops

Cropval 0.5

Cost of fertilizer Ureacost 0.6

Profit Profit 0.5

Ability to invest in 

new methods

Invest 0.3

Low interest rates Lowint 0.3

Aggregation Aggreg 0.5 (0.00, 0.25, 1.00)1

Cost of adopting zero-

till

ZTcosts 0.7

Mass-media Massmed 0.95



promotion of zero-

tillage

Lack of familiarity 

with zero-tillage

Nofamili 0.77

Belief in need for 

tillage

Needtill 0.80`

Risk aversion to 

adoption

Toorisky 0.80

1 Alternative initial values used in different projections are shown in parentheses



Table 3.  Causal statements linking states associated with the rate of uptake of zero-tillage in the rice-

wheat system of northern India

Statement no. Statement Weight

1. Adoption of zero-tillage reduces Phalaris minor infestation -0.60

2. Use of new herbicides reduces P.minor infestation -0.75

3. Presence of P.minor results IPU-tolerant P.minor 1.0

4. Adoption of zero-tillage reduces IPU-tolerant P.minor -0.60

5. Use of new herbicides reduces IPU-tolerant P.minor -0.75

6. Presence of P.minor increases attractiveness of zero-tillage* 0.6

7. Presence of IPU-tolerant P.minor strongly increases attractiveness 

of zero-tillage

1.00

8. High fuel prices strongly increase increases the attractiveness of 

zero-tillage

1.00

9. Diversification reduces the attractiveness of zero-tillage -0.60

10. Ability to invest increases the rate of adoption 0.95

11. High costs of zero-tillage machinery reduce attractiveness of zero-

tillage

-0.75

12. Lack of familiarity with the technique reduces the attractiveness 

of zero-tillage

-0.60

13. Belief in the need for tillage redcues attractiveness of zero-tillage -0.75

14. Risk averse attitudes reduce the attractiveness of zero-tillage -0.75

15. A positive rate coefficient leads to an increase in adopters 1.00

16. Intervention generally increases fuel costs 0.60

17. Increase in crop value (rice/wheat) leads to increase in use of new 

herbicides

0.90



Table 3 (cont’d.)

18. Occurrence of IPU-tolerant P.minor leads to use of new herbicides 0.75

19. Occurrence of P.minor stimulates diversification in cropping 

system

0.45

20. Occurrence of IPU-tolerant P.minor stimulates diversification in 

cropping system

0.75

21. Increase in crop value (rice/wheat) decreases diversification -0.90

22. Intervention generally increases crop value (rice/wheat) 0.90

23. Intervention generally decreases fertilizer costs -0.75

24. High fuel costs reduce profitability -0.75

25. High crop values (rice/wheat) increase profitability 1.00

26. High fertilizer prices decrease profitability -0.80

27. Profitability stimulates investment 0.90

28. Low interest rates stimulate investment 0.95

29. Intervention reduces interest rates for farmers' loans 0.50

30. Increase in the number of adopters reduces aggegation among 

adopters

-1.00

31. Increase in the number of adopters reduces costs of adoption of 

zero-till

-0.90

32. Intervention supports the use of mass media promotion of 

innovations

0.70

33. Increase in the number of adopters leads to decrease in lack of 

familiarity of zero-till among farmers

-0.75

34. Aggregation among adopters maintains a lack of familiarity of 

zer-till among adopters

0.80



Table 3 (cont’d.)

35. Mass media promotion reduces lack of familiarity of zer-till 

among adopters

-0.60

36. Increase in the number of adopters reduces belief in the need for 

tillage

-0.75

37. Aggregation among adopters maintains a belief in the need for 

tillage

0.80

38. Lack of familiarity with zero-tillage maintains a belief in the need 

for tillage

0.95

39. Aggregation among adopters leads to maintenance of a risk averse 

attitude to adoption of zero-tillage

0.80

40. Lack of familiarity with zero-tillage leads to maintenance of a risk 

averse attitude to adoption of zero-tillage

0.90



Figure Legends.

Figure 1.  Predicted adoption curves (a) and corresponding rates of adoption (b) over time for the 

adoption of zero-tillage in wheat in the northern Indian rice-wheat system.  The dynamics of adoption 

are described by a modified logistic curve which accounts for non-homogenous mixing of adopters 

and non-adopters.

Figure 2.  The behaviour of the predicted level of aggregation in the adopting population over time, 

for different assumptions about the observed level of aggregation at a single time point early in the 

adoption process.

Figure 3.  A simple example of capturing expert opinion in a fuzzy cognitive map (FCM). (a) Causal 

statements linking concepts (boxes) are shown as arrows.  The direction of causation is indicated by 

the shape of arrowhead (►, increase), (, decrease) and by, respectively, + and – signs.  (b) The projected 

dynamics of the FCM shown in (a) as a Markov process after translation of the FCM into a projection 

matrix.  Shaded squares indicate presence of the corresponding state in the time step of the projection, 

open squares indicate absence of the concept in a time step.  The sequence is initiated by high potato 

prices, but no other active concepts. 

Figure 4.  A fuzzy cognitive map of the rice-wheat system in northern India with particular attention 

to concepts which might affect the rate of adoption of zero-tillage.  The identities of the concepts are 

given in Table 2, together with their initial values.  Causal statements are indicated by the arrows 

joining concepts as either  (►) increase, or ()decrease and are listed in Table 3.

Figure 5.  The projected behaviour of the rate parameter, r, in the fuzzy cognitive map shown in 

Figure 2 under different assumptions about the initial level of aggregation among adopters and the 

presence of government intervention in the economics of the cropping system.



Fig 1

(a)

0

2000

4000

6000

8000

10000

12000

0 10 20 30

time (years)

N
um

be
r 

of
 a

do
pt

er
s

observed

random

0.5*observed

1.5*observed

(b)

0

200

400

600

800

1000

1200

1400

0 10 20 30

time (years)

N
um

be
r 

of
 a

do
pt

er
s

observed

random

0.5*observed

1.5*observed



Fig 2

0.5

1

1.5

2

2.5

3

0 5 10 15 20

time (years)

L
IP

observed

random

0.5*observed

1.5*observed



Fig 3

Perception of
wheat problems

Plant potatoes Potato glut

High potato
price

+

+ +

+

-

(a)

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Perception of wheat problems 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1
Plant potato 0 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0
High potato price 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1
Potato glut 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0

Simulation time step



Fig 4



Fig 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10

time step

st
at

e 
ac

ti
va

ti
on

 le
ve

l

situation (2), intervention
situation (4), intervention
situation (2), no intervention
situation (4), no intervention


