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Abstract 
This paper describes a cost function approach to modelling production and resource use at 
the level of the individual farm firm. The procedure for deriving the supply function using 
mathematical programming under fairly general condition of a convex input set is shown, and 
the model is demonstrated. It is suggested that the model is used as the basic building block in 
agricultural sector models, the advantage being that the technology is modelled as a produc-
tion frontier providing better opportunities for modelling input and output substitution. 
 
Keywords: Cost function, linear programming, economies of scale, agricultural sector models, production fron-
tier. 
 
 

1. Introduction and background 
There is a long tradition for using agricultural sector models as a tool for estimating conse-
quences of changes in economic and technological variables and for policy analysis in rela-
tion to the agricultural sector. Such models may cover one or more regions, countries or even 
larger areas like the EU, and are typically based on one of three major modelling approaches; 
econometric, general/partial equilibrium, or mathematical programming. CAPRI (Heckelei & 
Britz, 2001), DRAM (Helming, 2005), DREMFIA (Lehtonen, 2001), ESMERALDA (Jensen, 
1996), and others (Balmann (1997), (Lansink, 1997), (Ekman, 2002)) are examples of such 
models. The models are often micro (farm) based, and data describing production and re-
sources are typically historical data from agricultural accounts (such as FADN-data). The 
models are normally calibrated so that they are able to replicate historical observations.  
 
The production technology is often described in the form of average productivity and fixed 
coefficients of production, i.e. no or limited possibility for changing input mix or output mix. 
Even in cases where the sector models are based on differentiated micro units (representative 
farm types) the empirical basis (the production parameters/coefficients) is often average 
productivity being the only parameters describing the production technology. 
 
This is a problem because adjustment to changing economic and technological conditions is 
based on marginal productivity and substitution possibilities.  Models that do not describe the 
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production frontier but only some point on the production frontier are basically unable to 
project the consequences of changes in economic and other conditions.  It is difficult in these 
models to take into account economies of scale, and the potential use of new technologies. 
Further, model calibration is often done “mechanically” without really considering the cause 
of the model not providing the “correct” result. 
 
In this paper we present and demonstrate a farm model which can be used as the basic build-
ing block of agricultural sector models without facing the problems mentioned above. The 
building blocks are farm models in the form of a Mathematical Programming models con-
structed in a way so that they can be used to generate (numerically) the ex ante supply func-
tion for the main product of the individual farm types taking into account input and output 
substitution, varying production elasticity, and the possibility to include new technologies. 
We also describe how these basic building blocks in the form of individual farm type models 
may be combined into a partial equilibrium agricultural sector model. 
 
 

2. The general procedure 
The approach is based on the ex ante cost function1) of the individual farm firm. If one knows 
the ex ante cost function it is possible to derive the supply function of the firm under the as-
sumption of profit maximization. Aggregating the supply functions of all the individual firms 
in the region generates the market output supply function, and determines aggregate input 
demand for the region in question. If the corresponding equilibrium prices on the input market 
deviate from the original input prices used in the first estimation step, input prices are ad-
justed, and ex ante cost functions are estimated once again. This iterative procedure continues 
until equilibrium is established on the input markets where equilibrium is required (partial 
equilibrium model). In the case of agent-based modelling, this last procedure may be carried 
out in one step using cellular automata (Balmann (1997); Berger (2001)). 
 
 
 

3. The farm model 
3.1. The economic model 
The (short run) supply function of the individual firm can be derived from the (ex ante) cost 
function C which is: 
 
(1) ( , , )C C= w y b  
 

                                                 
1 An ex ante cost function is the relationship between the (planned) amount of output and the minimum cost of 
producing this output given the specified technology and input prices.  
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where w is an N’-vector of variable input prices, y is an M’-vector of outputs, and b is a K-
vector of quasi-fixed inputs. Assuming profit maximization under perfect competition, the 
supply function is the marginal cost function determined from profit maximization: 
 
(2) ( , , )m mMC p=w y b   (m=1,… , M’) 

 
where pm is the price of output m and  
 

(3) m
m

CMC
y
∂

=
∂

   (m=1, …, M’) 

 
For operational reasons it is easier to consider the production and supply of just one (main) 
output, y. Therefore, instead of considering explicitly a vector of (variable) inputs with prices 
w, and the vector of output y, we consider a netput vector x of input and output, consisting of 
the N’ elements of the original variable input vector, and the negatively signed M’-1 elements 
of the original output vector y. At the same time, the interpretation of the price vector w is 
changed, so that w is now (and in the following) an N’+M’-1-vector of netput prices. 
 
Equations (1), (2), and (3) change to: 
 
(4) ( , , )C C y= w b  
 
where w is an N-vector (N=N’+M’-1) of netput prices, y is (main) output, and b is a K-vector 
of quasi-fixed inputs. 
 
The condition for profit maximization changes to: 
 
(5) ( , , )MC y p=w b  
 
where p is the price of the main output and the marginal cost is: 
 

(6) CMC
y

∂
=
∂

  

 
The supply function is derived from (5) by solving for y. Thus: 
 
(7) ( , , )j jy s p= w b  

 
where sj(•) is the supply function for firm j. 
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If we consider the region in question represented by J firms and their aggregate demand for 
netput X, then the netput prices may depend on the production and therefore the output price 
p. Thus, the effective supply function of firm j is 
 
(8) ( , ) ( ( ( ( ))), , )j j jy p s y p pψ= ≡b w X b  

 
where w(X(y(p))) = (w1(X1(y(p))), w2(X2(y(p))),…, wN(XN(y(p)))).2) Therefore, the aggregate 
(region) supply S(p) is: 
 
(9)      ( ) ( )j j

j j

y y p S pψ= = =∑ ∑  

 
To estimate ( , )j pψ b  (numerically) it is necessary to consider the relation between the output 

price p, production y, and the netput price elasticities. The simple case is when farmers trade 
only on the world market and not with each other. In this case the netput price elasticity is 
zero (exogenous prices) and no quantity restriction is needed. The other extreme is when 
farmers trade only with each other (for instance piglets). In this case we need the market 

clearing restriction (
1

0
J

ij
j

x
=

=∑ ). If the netput is sold on the world market or to other farmers, 

we need the restriction 
1

0
J

ij
j

x
=

≤∑ . Finally, if the netput is bought on the world market or from 

other farmers, we need the restriction 
1

0
J

ij
j

x
=

≥∑ .  

Using these restrictions it is possible through an iterative procedure to estimate the aggregate 
output supply function for the region in question. At the same time, shadow prices on the 
market clearing restrictions determine implicitly netput prices (opportunity cost). 
 
 
3.2. Estimation of the cost function of individual farm firms 
The ex ante cost function (4) for an individual firm j can be numerically estimated by solving 
the following Mathematical Programming problem 
 
 min wx 
   x 
  

subject to 
 

(10) yj = fj(x1,…,xN, z1, …, zK) ≥ Yj 

                                                 
2 This is the simple case, with no cross product terms (the price of netput i only depends on the amount of netput 
i (and not the amount of other netput)). If necessary cross product terms may be included. However, this will 
make the following expressions more complicated. 
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 z ≤ bj 

 
where x is a vector of input (positive values) and output3) (negative values), w is a vector of 
corresponding netput prices, z (z1, …, zK) is a vector of inputs available in the fixed amounts 
bj (b1j,…,  bKj), fj(•) is the production function for the main product y, and Yj is a parameter 
measuring the “target production” of output y. 

 
The problem in (10) may be solved for different values of the parameter Yj, thus generating 
the cost function (4) and the marginal cost function (6) in numeric terms.4) The number of 
discrete values of parameter Yj that should be applied depends on how closely one wants to 
approximate the numeric representation of the cost function to a smooth cost curve. 
  
Assuming profit maximising behaviour, farmers produce an amount so that marginal cost 
equates to marginal revenue5), which in a competitive market is the (expected) output price p.  
 
 
3.3. The production model 
The production technology in the model (10) is specified in the form of the production func-
tion y = f(x1,…,xN, z1, …, zK) and the restriction z ≤ b.6) 
 
Mathematical forms of production functions are rarely available. Therefore, in empirical work 
it is often necessary to use other approaches to describe the production technology. 
 
The production technology in (10) may be described in more general terms in the form of the 
technology set (production set): 
 
(11) {( , , , ) : ( , ) }T y y f and= ≤ ≤x z b x z z b  

 
The typical assumption concerning T is that it is non-empty, closed, has free disposability of 
inputs and outputs, and that isoquants are convex, i.e. diminishing marginal returns applies. 
 
In the context of cost minimization it is more convenient to consider the input requirement set 
(or just the input set) V(y, b): 

 
(12) ( , ) {( , ) : ( , , , ) }V y y T= ∈b x z x z b  
 

                                                 
3 Output other than the main product y. 
4 Marginal cost is the shadow price of the restriction yj = fj(x1,…,xN, z1, …, zK) ≥ Yj  in (10), which is provided as 
output from most mathematical programming software.   
5 Or rather, expected marginal revenue 
6 For convenience the index for farms j is dropped.   
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where T is defined in (11) and where V is the set of all feasible input-output (netput) combina-
tions for which z ≤ b. 

 
Based on the assumption that V(y, b) is convex, it is possible to approximate the input set V 
by choosing a set Φ of discrete production plans such that the frontier of V(y, b) is the convex 
hull of Φ and V(y, b) is the convex hull of Φ combined with the assumption of free disposabil-
ity of input. For empirical application the set Φ must consist of a finite number of points, for 
example the set of S production plans (x1, z1, y, b), (x2, z2, y, b), …, (xS, zS, y, b), where (x1, 
z1),…, (xS, zS) are discrete points on the production frontier corresponding to a given amount 
y of output, i.e. y=g1(x1, z1) =g2(x2, z2)= …=gS(xS, zS). If the term r(y) is used to denote the set 
of production plans that are chosen to approximate (the relevant part of) V(y, b),7) then the 
complete description of the technology set for all the different levels of output Y chosen when 
solving (10), is {r(Y1)∪ r(Y2)∪…∪ r(YP)}=R. Thus R ( R T⊆ ) is a set of discrete production 
plans that can be used to approximate T (for farm j) 
 
This way of modelling the technology set is based on the process analysis approach to the 
neoclassical theory of production first discussed by (Georgescu-Roegen, 1972). 
 
To identify the convex hull that approximates the frontier of V, an appropriate method to use 
is Linear Programming, in which case the technology will be piecewise linear (a polytope). 
To illustrate, consider the functional form of gs(•) (see (12) below)) (s= 1,…, S) as Leontief 
production functions, i.e.: 
 
(13) 1 1 2 2 1 1 2 2( , ) min{ , ,..., , , ,..., }sj sj sj sj sj sj

sj N N N N N K Kg x x x z z zα α α α α α+ + +=x z  ( ( )s r y∈ ) 

 
where gsj(•) is the production of output y using production plan s on farm j, and sj

iα is the 

amount of output y pr. unit of input i (i=1,…, N+K) using production process s on farm j. (In 
the next section where the mathematical programming model is described in more detail, the 
vector ( 1 11/ ,...,1/ ,1/ ,...,1/s s s s

N N N Kα α α α+ + ) = ( 1 1,..., , ,...,s s s s
N N N Ka a a a+ + ) is called a production 

vector As or a production process). 
 
Assuming constant returns to scale, the production on farm j may be described as the convex 
combination of Leontief production functions: 
 
(14) ( , ) ( , )j j s sj

s R
y f gλ

∈

= =∑x z x z  

 
where sλ  are variables such that: 

 

                                                 
7 In the present example, r(y)={(x1, z1), …, (xS, zS)} 
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(15) 1s
s R

λ
∈

=∑ ,     0 1sλ≤ ≤ ,      ( s R∈ ) 

 
A potential problem with the Leontief production function g in (13) is that it has constant re-
turns to scale, and therefore it is apparently not possible to model economies of scale. For 
instance in milk production, the amount of labour necessary to produce one unit of output 
typically declines with the scale of production, so it cannot be modelled using (13), (14) and 
(15). 
 
One way to avoid this problem is to include scale specific production plans (production vec-
tors). Consider for instance the following example: The production of milk per unit of labour 
depends on the scale of production. With a scale of y = 400,000 kg of milk, the production of 
milk is 250 kg pr. hour of labour input. With a scale of y = 600,000 kg milk, the production of 
milk is 300 kg pr. hour. And with a scale of y = 800,000 kg milk, the production of milk is 
350 kg pr. hour. 
 
In this example one could include three scale specific production processes 1sA , 2sA , and 

3sA that differ in the sense that 1sA  has a parameter 1s
iα =250, 2sA has a parameter 2s

iα =300, 

and 3sA  has a parameter 1s
iα =350. 

 
If such scale specific production vectors are included in the set R that describes the production 
plans, then it is also possible to model economies of scale. However, to make sure that only 
allowable production processes are in use, further restrictions are needed. For instance, in the 
example above, to make sure that the production process 2sA is not in use unless the scale of 
production is 600,000 kg or more, it is necessary to restrict the parameters 

2sλ and 
3sλ in (14) 

and (15) to be zero when production y is less than 600,000 kg. Similarly it is necessary to re-
strict

3sλ to be zero when production y is less than 800,000 kg. 

 
The complete production model that allows for modelling economies of scale in the sense that 
all scale specific production processes can produce more than the specific scale but not less, is 
accomplished by including the scale specific production processes in the set R, and by adding 
the following restrictions to the model  (14) and (15): 
 
(16) 0sλ =  if As is a scale specific production process and yi < sY  

 
where sY is the specific “scale” limit for production process As. 
 
The problem (14), (15), and (16) is a so-called mixed integer programming problem, and may 
be solved using GAMS. 
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3.4. The Linear Programming model 
The linear programming model to be used for estimating the cost function (10) for an individ-
ual farm firm has a general form. 
 
The starting point is a set {A1… AS} of production vectors capable of producing output y (for 
instance milk). A production vector As has 1+N+K elements and is of the form: 
 

(17) 

1

2

1

2

1
s

s

s s
N

s
N
s
N

s
N K

a
a

A a
a
a

a

+

+

+

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

M

M

 

where s
ia (s=1,…, S) is the use of netput i (i=1,…, N+K) pr. unit of output y applying produc-

tion process s. If s
ia is positive then it is an input. If s

ia is negative then it is an output. 

 
Further, define a set {D1… DN} of production vectors potentially capable of producing netput 
n (n=1,…, N). A production vector Dn has 1+N+K elements, and is of the form: 
 

(18) 

1

1

1

1

0

1

n

n
n

n n
n

n
N

n
N

n
N K

d

d

D d

d
d

d

−

+

+

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

M

M

M
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where n
id (n=1… N) is the amount of netput i (i=1…N+K) used to produce one unit of netput 

n. If n
id is positive then it is an input. If n

id is negative then it is an output.8) 

 
Define the [(N+K+1)×S] matrix A as: 
 
(19) 1 SA A⎡ ⎤≡ ⎣ ⎦A L , 

 
Define the [(N+K+1)×N] matrix I as: 
 

(20) 
0N

N

KN

⎡ ⎤
⎢ ⎥≡ ⎢ ⎥
⎢ ⎥⎣ ⎦

I I
0

 

 
where 0N  is a row vector of N zeros, IN is a (N×N) matrix with ones in the diagonal and zeros 
elsewhere (an Nth order identity matrix), and 0KN is an(K×N) matrix of zeros, 
 
Define the (N+K+1) vector: 
 

(21) '0N

Y⎡ ⎤−
⎢ ⎥≡ ⎢ ⎥
⎢ ⎥⎣ ⎦

B
b

 

  
where Y is the required production level of product y (milk), '0N  is a N element column vec-

tor of zeros, and b is a K-element column vector of quasi fixed input. 
 
Define the [(1+N+K)×N] matrix D as: 
 
(22) 1 ND D⎡ ⎤≡ ⎣ ⎦D L , 

 
Then the problem (10) can be formulated as a linear programming problem as: 
 

(23) 

, ,
min{ }

0; 0;

st
+ − ≤

≥ ≥

u v x
wx

Av Du Ix B
v u

 

                                                 
8 As defined here, there is only one production process for each netput xn. As with the output y, one could in-
clude the possibility of having additional scale specific production plans for production of each netput. To keep 
things simple this has not been done here. If needed, the extension is straight forward. 
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where w is a N-vector of netput prices, x is an N-vector of the amount of netput that the firm 
purchases (negative) or sells (positive), u is an N-vector of the amount of netput that the firm 
produces, and v is an S-vector of output y that the firm produces applying production process 
s (s=1,…, S). 
 
Problem (23) can be solved using the software GAMS. To ensure that scale specific produc-
tion plans are not applied below the required scale (as specified in (16)), it is necessary to use 
binary variables. GAMS include the facility to restrict variables to be binary. 
 
The model includes the facility that any of the N netput (x1, …, xN) may either be bought at 
prices (w1, …, wN) or produced within the firm applying the production processes (D1,…, DN). 
In a number of cases, production of input at the firm level is not an option. For instance fertil-
izers and pesticides are typically not produced on farms. In those cases the relevant produc-
tion processes are excluded from the matrix D and the corresponding elements from the pro-
duction vector u. 
 
 
 

4. Demonstration of the farm LP model 
4.1. Farm type and technology 
This section demonstrates the LP model presented in general terms in Section 3.4. The model 
solves the problem (10) shown in Section 3.1, to estimate the cost function for an individual 
farm. 
 
The demonstration farm used here is a model dairy farm (main product milk) with 50 hectares 
of ordinary farm land, 2 hectares of meadow in permanent pasture, a cattle stable with space 
for 70 dairy cows and required young stock, and a fixed labour force of 2,500 hours per year. 
 
In addition to milk, the farm produces young stock for replacement (heifers) or sale (new born 
calves and heifers), roughage, grain and other cash crops. All machine operations are carried 
out using contractors. 
 
The production technology is spanned by a set of four milk production processes represented 
by four different levels of feed (measured in Feed Units (FE)) and corresponding milk pro-
duction per cow (decreasing marginal productivity). The quality of feed is controlled by re-
strictions on level of protein, fat acid, sugar, starch, digestibility, fill, and chewing time. Feed 
is provided in the form of 14 different roughage products, and 4 different concentrates. The 
roughage production technology is for each of the 14 types of roughage spanned by 4 differ-
ent levels of nitrogen (and other) fertilizers. Economies of scale is modelled by 3 scale de-
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pendent levels of labour per cow, and 3 scale dependent levels of contractor costs per hectare 
of green feed. Production and price data are based on contemporary norms or standard data.9 

 
4.2. Results 
The results of optimising production for seven different levels of milk production on this 
model farm are shown in detail in FOI Working Paper No. 10/2007 (not shown here due to 
space limitations). 
 
The results show that total cost increases from € 6,722 to € 58,156 when production increases 
from 340,000 kg to 560,000 kg milk. This corresponds to an increase in average cost from € 
0.02 to € 0.10 per kg milk. Marginal cost increases from € 0.10 to € 0.30 when production 
increases from 340,000 kg to 560,000 kg. 
 
At the low (340,000 kg) production level the production is based on 45 dairy cows all being 
fed according to the low intensity feed plan 2 (5,011 FE per cow). When production increases, 
the feed intensity increases gradually, and with a production of 500,000 kg or more, all cows 
are being fed according to the high intensity feed plan 4 (5,976 FE per cow). 
 
The main results in the form of the numerically estimated marginal cost and the average cost 
curves are illustrated in Figure 1. 
 
 

                                                 
9 Details can be found in FOI Working Paper No. 7/2007 
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Figure 1. Estimated marginal and average cost functions. € per kg milk 
 
 
The maximum potential maximum production is 570,010 kg milk (70 cows each yielding the 
maximum of 8,143 kg milk per year. At around this production level the marginal cost rises to 
infinity (indicated by the dotted vertical line at the end of the marginal cost curve in Figure 1). 
 
The results show that with the current milk price of € 0.30 per kg milk, it just pays to produce 
the maximum amount of milk (marginal cost at this production level is € 0.30 per kg). How-
ever, should the milk price decrease to, for example € 0.27, then the farm should reduce pro-
duction to a level between 470,000 and 500,000 kg where marginal cost ranges from € 0.24 to 
€ 0.30 per kg milk. 
 
The results from running the LP-model also include shadow prices for each restriction. The 
shadow price of land is € 517 per hectare of land when milk production is 340,000 kg and € 
578 per hectare when it is 560,000 kg milk. 
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5. Discussion and perspectives 
The farm LP-model presented in the previous section may be seen as a generic model that can 
be used to generate supply functions for any individual farm type. Thus the model may be 
used at the micro level to estimate consequences for individual farm types.  
 
The model may also be used as the basic building block when constructing agricultural sector 
models. The production and netput use of each of these representative farms can be aggre-
gated according to the indication in Section 3.1, and the total model complex can therefore be 
used as a tool for policy analysis and technology assessment related to the whole agricultural 
sector. 
 
The power of the model approach presented in this paper is the explicit modelling of the pro-
duction technology as a convex production frontier spanned by a set of production processes. 
By including scale specific production processes and the use of integer programming to con-
trol economies of scale, this provides an unprecedented degree of flexibility. 
 
The theoretical justification of a farm based sector model is an important background for any 
sector model construction. Mathematical programming techniques such as linear program-
ming are widely used tools in agricultural economics. An often used option is to represent a 
whole region or sector as a single hypothetical farm that is optimised as a single entity 
(Schuler and Kachele 2003; Zander 2003; Kerselaers et al. 2007). Other models describe the 
behaviour of individual farms as e.g. in agent-based models (Balmann 1997; Berger 2001; 
2006; Happe 2004). 
 
Despite the approach, further work is needed both concerning the technical aspects (choice of 
farm types, modelling technologies, programming of aggregation, and iterative procedure for 
generating partial equilibrium) and modelling the dynamics of adjustment over time. In this 
context, formation of price expectations and modelling of investment and changes in farm 
structure over time are important topics. Also the question of model calibration needs to be 
reconsidered.  
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