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Fuzzy Differences in Differences ∗

Clément de Chaisemartin†

February 15, 2012

Abstract

Difference in differences require that 0% of observations are treated in the control group
and during period 0 (no "always takers") and 100% in the treatment group in period 1
(no "never takers"). Sometimes, the treatment rate increases more in the treatment
than in the control group but there are never or always takers. This paper develops
results to identify treatment effects in such settings. They only require one common trend
assumption on the outcome of interest Y whereas the standard instrumental variable result
also requires common trend on treatment D. I derive bounds for treatment effects which
are tight when there are no or few always takers. This can be the case in applications
considering the effect of an innovation, where by definition no observations are treated in
period 0. I derive other bounds that are tight when the treatment rate does not change
much between the two periods in the control group, which can be the case in applications
considering the extension of a program to a group previously not eligible. I use my results
to measure the efficacy of a new drug for smoking cessation.
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1 Introduction

Differences in differences (DID) are commonly used to estimate average treatment effects on

the treated (ATT) when treatment D is not randomly allocated. DID compare the evolution

of the mean of some outcome Y between two periods (0 and 1) and across two groups of

individuals (control and treatment). In Rubin’s causal model (Rubin (1974)) where potential

outcomes with and without treatment (Y (1) and Y (0)) are introduced, and where treatment

effects are allowed to be heterogeneous across observations, a DID identifies an ATT under two

assumptions. The first one is a common trend assumption which states that if all observations

had remained untreated the mean of Y would have followed parallel trends from period 0 to

1 in the two groups (see e.g. Abadie, 2005). The second one, which is implicit, is a perfect

compliance assumption: the treatment rate should be equal to 0% in the control group and

during period 0 (no "always takers") and to 100% in the treatment group in period 1 (no

"never takers").1 In many instances, this last assumption is violated: the treatment rate

increases more in the treatment than in the control group but there are "never" or "always"

takers.2 This differential change in treatment rate across the control and the treatment group

might still be used to identify an ATT.

The starting point of the paper is that when compliance is imperfect, common trend alone

is not sufficient for identification in a model allowing for heterogeneous treatment effects.

In a standard DID, if the common trend assumption on Y (0) holds, the only reason why

trends might diverge across groups is that observations in the treatment group × period 1

cell get treated, so that the DID measures the effect of the treatment on them. A DID

computation will therefore yield one equation with only one unknown. In a fuzzy DID, since

there might be treated observations in each of the four time × group cells, diverging trends

can potentially arise from the effect of the treatment within each of those four subgroups and

a DID computation will yield one equation with up to four unknowns. The identification

problem arises because Y (1)− Y (0) is allowed to vary across observations, implying that the
1In this paper, never takers are merely untreated observations in the period 1 × treatment group cell.

Always takers are treated observations in the three other cells. Therefore, my definition of always and never

takers does not exactly correspond to the definition of Imbens & Angrist (1994), but I still use their terminology

to clarify the exposition.
2When panel data is available, one option to avoid this issue could be to use treatment status in period 0 and

1 to define the treatment and the control groups, instead of using presumably stable observable characteristics.

One could for instance define all observations untreated in period 0 and 1 to be the control group, and all

observations untreated in period 0 and treated in period 1 to be the treatment group (see for instance Field

(2005)). However, when groups are constructed this way, common trend might not hold, for instance because

untreated individuals in period 0 may decide to get treated in period 1 if they expect a negative shock on their

Y (0).
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effect of the treatment might vary across cells.

However, when there are no always takers, I show in Theorem 2.1 that the common trend

assumption is sufficient to identify an ATT because there are treated observations in one group

only, so that the DID computation yields one equation with one unknown. Applications with

no always takers arise frequently in practice. They correspond to situations where it is possible

to isolate one group excluded from treatment both in period 0 and 1 based on observable

characteristics, while it is not possible to isolate a group fully treated in period 1. This can

happen for various reasons: eligibility criteria might be too complex to determine exactly the

eligible population, or some eligible individuals might deny the treatment. A good example is

Eissa & Liebman (1996).3

When there are always takers, common trend on Y (0) does not allow for point identifi-

cation, but partial identification of an ATT in the spirit of Manski (1990) is still possible,

provided Y is bounded. In Theorem 2.2, I derive sharp bounds in this case. Those bounds

will be tight when there are "few" always takers. I illustrate what "few" means in the next

section through a simple numerical example. For now, one can keep in mind as a rough rule

of thumb that those bounds can be relatively tight when the sum of the shares of observa-

tions treated in the three supposedly untreated cells is below 10%. This is likely to happen

in applications considering the effect of an innovation released in period 1. Indeed, in such

applications nobody is treated in period 0. Therefore, bounds will be tight if it is possible to

find a control group in which less than 10% of observations benefited from the innovation in

period 1. A good example is the application used in this paper. Varenicline is a drug which

was made available to French smoking cessation clinics in February 2007. In 15 clinics, less

than 3% of all patients consulted have been prescribed varenicline during the year following

its release. In 13 clinics, more than 20% of patients received it. Overall, 38% of patients

received this new drug in the treatment clinics in period 1, against 2% in the control clinics.

I use Theorem 2.2 to derive bounds for the average effect of varenicline on smoking cessation.

Since in this application there are very few always takers, those bounds are narrow.

Then, I derive a second couple of sharp bounds for the same ATT under the supplementary

assumption that the response to treatment is monotone (i.e. Y (1) ≥ Y (0)) as in Manski (1997).
3To measure the effect of EITC extension on female labor market participation, Eissa & Liebman (1996)

use single women without children as a control group, and lone mothers as the treatment group. By definition,

their control group is excluded from treatment both in period 0 and 1. Moreover, treatment is not available

to the treatment group in period 0. Therefore, they do not have always takers in their analysis. However,

not all lone mothers are eligible to EITC extension in period 1 because this program is means tested. Exact

eligibility criteria are too complex for them to isolate eligible lone mothers. Moreover, it is likely that not all

lone mothers eligible applied for EITC. Therefore, they have never takers.
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Those bounds partly dispose of the bounded support assumption since they only require that

Y (0) is bounded by below. Therefore, they apply for instance to wages, while the previous

ones do not. The size of the resulting identification region also depends on the shares of always

takers. I show in a numerical example that it is roughly twice smaller than the first one.

Finally, I derive a third couple of sharp bounds under the assumption that treatment

effects do not change between the two periods in the control group. The size of the resulting

identification region now depends on the share of treated observations in the treatment group

in period 0, and on the change in the treatment rate from period 0 to 1 in the control group.

I show through a numerical example that when there are no treated observations in the

treatment group in period 0, those bounds will be relatively tight as long as the treatment

rate does not change by more than roughly 10 percentage points in the control group. This

is likely to be the case in applications considering the extension of a public policy to a group

previously not eligible to it, and where the previously eligible group is used as a control group

(see for instance Bach, 2010).

Common trend is a strong identifying assumption which might appear implausible if pre-

treatment characteristics that are thought to be associated to the dynamics of the outcome

variable are unbalanced between the treatment and the control groups (see Abadie, 2005). In

such instances, a conditional common trend assumption might appear more credible. There-

fore, I also derive fuzzy semi-parametric DID results inspired from Abadie (2005), which allow

to control semi-parametrically for covariates. All the results obtained under common trend

can be extended under conditional common trend.

Many empirical papers have already used a greater increase of the treatment rate in one

group as a source of variation to identify treatment effects. Up to now, researchers who

implemented this strategy estimated the impact of the treatment through an instrumental

variable (IV) regression using the interaction of time and group as an instrument for treatment.

The resulting coefficient is the DID on Y divided by the DID on D. I hereafter refer to this

strategy as an IV-DID. Duflo (2001) uses an IV-DID to estimate the impact of educational

attainment on wages. There are also a very large number of papers which use differential

evolution of exposure to treatment across US states to estimate treatment effects. A good

example is Evans & Ringel (1999) who use changes in cigarette taxes across US states as an

instrument for smoking prevalence among pregnant women, in order to estimate the impact

of smoking during pregnancy on newborns’ weight.

Imbens & Angrist (1994) have shown that IV coefficients can be interpreted as local average

treatment effects (LATE) in a model allowing for heterogeneous treatment effects. I put

forward in a companion note (de Chaisemartin (2011)) that when applied to IV-DID, their
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result holds under a common trend assumption on Y (0) but also on D(0) (the potential

treatment without the instrument), and a monotonicity assumption which states that there

should be no "defiers". Common trend on Y (0) ensures that the DID on Y recovers the

intention to treat effect of the policy, whereas common trend on D(0) and monotonicity

ensure that the DID on D is equal to the share of compliers, so that the ratio of the two is

indeed equal to a LATE.

My results contribute to the literature firstly because they remove the monotonicity condi-

tion which may be restrictive in some applications.4 More importantly, my results hold under

a common trend assumption on Y (0) only, and not on D(0). There are two reasons why

disposing of the common trend assumption on D(0) while maintaining it on Y (0) might be

appealing. Firstly, in many IV-DID applications, common trend on D(0) is less credible than

common trend on Y (0). For instance, the identifying assumption in Evans & Ringel (1999) is

that both mothers’ smoking rates and newborns’ weight would have followed parallel trends

in states where taxes on tobacco increased and in other states if taxes had not increased. But

it may be the case that states which choose to rise taxes on cigarettes do so because they

face an increasing trend in smoking, whereas there is no reason to suspect that this decision

is related to trends on other determinants of newborns weight.

Secondly, there are applications in which taking a common trend assumption on D(0) is

merely problematic. For instance, in applications considering the extension of a public policy,

common trend on D(0) means that if the policy had not been extended to the treatment

group in period 1, the treatment rate would have followed the same trends in the control and

in the treatment groups. But if the policy had not been extended, the treatment rate would

merely have been equal to 0% at both periods in the treatment group. Therefore, common

trend on D(0) will be violated as soon as the treatment rate slightly changes in the control

group. In applications considering the introduction of an innovation, common trend on D(0)

is problematic as well. Take for instance the application developed in this paper. Treatment

rate was equal to 0% in the two groups of clinics in period 0. Therefore, common trend on

D(0) means that if treatment group patients had gone to a control clinic in period 1, 2%

of them would have received varenicline as well, exactly as what indeed happened to control

group patients. Since allocation of patients to clinics was not random, this assumption is

unlikely to hold.
4A good example is Angrist & Evans (1998), where the authors use the fact that parents show preferences for

a mixed sibling-sex composition as an instrument to estimate the effect of childbearing on females labor supply.

Even though parents might on average display such preferences, it is not impossible that some parents have

the opposite preferences, so that the monotonicity assumption might hold on average but not with probability

one.
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Importantly, the bounds identified in this paper are very simple to estimate. They can

be estimated through OLS regressions on slightly modified versions of Y , which essentially

amount to replace always takers’ Y by the lower or upper endpoint of the support of Y (0).

Inference is more involved, because of all the complications arising when conducting inference

on partially identified parameters (see e.g. Imbens & Manski (2004)). However, a recent

method developed by Andrews & Soares (2010) readily applies to my setting.

The remainder of the paper is organized as follows. Section 2 is devoted to identification.

Section 3 deals with inference. Section 4 is devoted to the application. Section 5 concludes.

2 Identification

Let T ∈ {t0; t1} denote time and G ∈ {gc; gt} denote treatment (gt) and control (gc) groups.

Results apply irrespective of whether panel or pooled cross-sections data are available. Treat-

ment status is binary and is denoted by an indicator D.5 Let Y (1) and Y (0) be the poten-

tial outcomes of an individual with and without the treatment. Only the actual outcome

Y = Y (1)×D + Y (0)× (1−D) is observed. The individual treatment effect is Y (1)− Y (0).

For any random variables Z andW , Z ∼W means that Z andW have the same probability

distribution. Z is the support of Z. To alleviate the notational burden, I introduce the

following shorthand taken from Athey & Imbens (2006):

∀(i, j) ∈ {t0; t1} × {gc; gt} , Zi,j ∼ Z| t = i, g = j.

Under those notations, ∀(i, j) ∈ {t0; t1} × {gc; gt} , ATTi,j = E(Yi,j(1) − Yi,j(0)|D = 1) is

the average treatment effect on treated individuals of group j in period i. My parameter of

interest is ATTt1,gt , which is the average treatment effect among treated observations in the

(t1; gt) cell. This population is directly identified from the data (provided D is observed) and

can be easily characterized.

The DID of a random variable Z is denoted

DIDZ = E(Zt1,gt)− E(Zt0,gt)− [E(Zt1,gc)− E(Zt0,gc)] .

I assume that DIDD, the DID on treatment rate, is different from 0: treatment rate should

not follow the same evolution in the two groups. Without loss of generality, I assume that

DIDD > 0. I denote

PAT = P(Dt0,gt = 1) + P(Dt1,gc = 1) + P(Dt0,gc = 1)

5The analysis can easily be extended when treatment is multivariate in the spirit of Angrist & Imbens

(1995). Results are not presented here due to a concern for brevity but are available upon request.
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the sum of the three shares of always takers. The "no always takers" special case is when

PAT = 0, i.e. when there are no treated observations in any of the supposedly untreated cells.

As detailed in the introduction, this special case is important in practice.

I take a common trend assumption which is at the basis of the DID approach (see for

instance Abadie (2005)):

A.1 Common trend

E(Yt1,gt(0))− E(Yt0,gt(0)) = E(Yt1,gc(0))− E(Yt0,gc(0)).

This common trend assumption can be rationalized by a DGP for potential outcomes addi-

tively separable in time and group:

Y (d) = fd(T,U) + gd(G,U),

where U represents unobserved heterogeneity and U ⊥⊥ (T,G) (see e.g. Athey & Imbens

(2006)). I can now state the lemma which is at the core of all results in the paper:

Lemma 2.1 Non-identification

Under A.1, none of the ATTi,j is identified and

DIDY = ATTt1,gt × P(Dt1,gt = 1)−ATTt0,gt × P(Dt0,gt = 1)

−ATTt1,gc × P(Dt1,gc = 1) +ATTt0,gc × P(Dt0,gc = 1).
(1)

According to Lemma 2.1, under A.1 DIDY can be written as a weighted DID of four

average treatment effects. Because two ATT enter the equation with positive sign and two

with negative sign, DIDY cannot be given any causal interpretation. It might for instance be

positive whereas the four ATT are negative.

The intuition for this result is as follows. According to A.1, if no observations had been

treated in any of the four time × group cells, trends would have been parallel in the two

groups, and DIDY would have merely been equal to 0. In a standard DID, if A.1 holds then

the only reason why trends might diverge across groups is that observations in the treatment

group get treated in period 1, so that DIDY measures the effect of the treatment on them. In

a fuzzy DID, since there might be treated observations in several time × group cells, diverging

trends can potentially arise from the effect of the treatment in each of those cells. Then, if

no restrictions are placed on how heterogeneous the treatment effect can be across these four

cells, it is not possible to identify any of the ATTi,j from a standard DID computation, since

it yields one equation with four unknowns. From this Lemma, I derive Theorems 2.1 to 2.4.

7
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Theorem 2.1 Point identification

1. Under A.1, in the no always takers special case,

ATTt1,gt =
DIDY

P(Dt1,gt = 1)
.

2. Under A.1, if ∀(i, j) ∈ {t0; t1} × {gc; gt} , ATTi,j = ATTt1,gt , ATTt1,gt is identified:

ATTt1,gt =
DIDY

DIDD
.

In the no always takers special case, there are treated observations in one group only, and

only one unknown left in (1). Therefore, A.1 is sufficient to identify an average treatment

effect, as in a standard DID.6 This average treatment effect is ATTt1,gt , the average effect of

the treatment among treated observations in the (t1; gt) cell. Estimating it still requires being

able to estimate P(Dt1,gt = 1). But sometimes treatment status is not observed. In such

instances, since ATTt1,gt and DIDY have the same sign and |DIDY | ≤ |ATTt1,gt |, it is at

least possible to estimate a lower bound of ATTt1,gt by computing DIDY . For instance, Eissa

& Liebman (1996) do not observe treatment status, so that they cannot estimate DIDY
P(Dt1,gt=1) .

They estimate instead DIDY , and find that participation to the labor market increased by

1.4 percentage points more among lone mothers than among single women without children

following the extension of the EITC. The first point in Theorem 2.1 allows to interpret this

1.4 percentage points DID as a lower bound to the true effect of the EITC extension on labor

market participation among lone mothers who benefited from it.

The second point of Theorem 2.1 shows that even when there are always takers, ATTt1,gt
is also identified if one is ready to assume that treatment effects do not vary across time and

group. This is because under this assumption the four unknowns in (1) are equal to each

other. But this is fairly restrictive an assumption. The underlying assumption to a fuzzy DID

is indeed that treatment rate increased more from period 0 to 1 in the treatment group than

in the control group. This might for instance be because treatment group individuals were

more incentivized to receive the treatment in period 1 than in period 0. Inside the treatment

group, treated individuals during period 1 are therefore likely to differ from those treated

during period 0 so that the average treatment effect could arguably be different in these two
6This is similar to the result on regression discontinuity (RDD) obtained by Battistin & Rettore (2008).

They indeed show that in a fuzzy RDD, when treatment rate is equal to 0 below the eligibility threshold, so

that fuzziness arises only because of never takers (i.e. untreated individuals above the threshold), identification

is obtained under the same assumptions than in a sharp RDD.
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groups. Therefore, I give now three partial identification results which do not require this

"constant treatment effect" assumption.

After some algebra, (1) rewrites as

ATTt1,gt =
E(Yt1,gt)− E(Yt0,gt(0))− E(Yt1,gc(0)) + E(Yt0,gc(0))

P(Dt1,gt = 1)
. (2)

This implies that ATTt1,gt would be identified if the mean of Y (0) was observed in the (t0; gt),

(t1; gc) and (t0; gc) cells. Therefore ATTt1,gt is not identified when there are treated obser-

vations in those cells, because their Y (0) is not observed. But when Y (0) is bounded, it is

possible to bound those unobserved Y (0) to derive some bounds for ATTt1,gt . This is what I

do in Theorem 2.2.

Before stating Theorem 2.2, I define three indicator variables. ATt0,gt = 1{D=1,T=t0,G=gt}

corresponds to treated observations in the (t0; gt) cell, ATt1,gc = 1{D=1,T=t1,G=gc} to treated

observations in the (t1; gc) cell, and ATt0,gc = 1{D=1,T=t0,G=gc} to treated observations in the

(t0; gc) cell. I define the following random variables which are functions of Y , D, T , G, M

and m, where m and M are real numbers defined below:

Y 0
− = Y + (M − Y ) (ATt0,gt +ATt1,gc) + (m− Y )ATt0,gc

and

Y 0
+ = Y + (m− Y ) (ATt0,gt +ATt1,gc) + (M − Y )ATt0,gc .

Y 0
− merely replaces Y by M for treated observations in the (t0; gt) and (t1; gc) cells, and

by m for treated observations in the (t0; gc) cell, while it leaves Y unchanged for all remaining

observations. Y 0
+ performs the same replacements except that M and m are switched.

Theorem 2.2 Partial identification 1

Under A.1, if P(m ≤ Y (0) ≤M) = 1, with (m,M) ∈ R2,

B− ≤ ATTt1,gt ≤ B+,

with

B− = max

(
E(Yt1,gt |D = 1)−M ;

DIDY 0
−

P(Dt1,gt = 1)

)
and

B+ = min

(
E(Yt1,gt |D = 1)−m;

DIDY 0
+

P(Dt1,gt = 1)

)
.

B− and B+ are sharp.

9
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B− is obtained as follows. Firstly, boundedness of Y (0) trivially implies that

E(Yt1,gt |D = 1)−M ≤ ATTt1,gt .

Secondly, the only unobserved quantities in (2) are E(Yt0,gt(0)|D = 1), E(Yt1,gc(0)|D =

1) and E(Yt0,gc(0)|D = 1). Therefore, using the fact that m ≤ E(Yt0,gt(0)|D = 1), m ≤
E(Yt1,gc(0)|D = 1) and E(Yt0,gc(0)|D = 1) ≤ M, and plugging those three inequalities into

(2) yields another lower bound for ATTt1,gt . Finally, B− is defined as the max of those two

lower bounds.

Interestingly, one can show that the second lower bound writes as

DIDY 0
−

P(Dt1,gt = 1)
.

This expression is similar to the formula obtained in point 1 of Theorem 2.1, except that the

DID is no longer computed on Y but on Y 0
−. Y

0
− replaces Y by M for treated observations in

the (t0; gt) and (t1; gc) cells, and by m for treated observations in the (t0; gc) cell. Therefore,

DIDY 0
−
is the lowest possible value of the numerator of equation (2). DIDY 0

−
can be estimated

through the following OLS regression:

Y 0
− = α+ βT + γG+ θTG+ u.

Therefore, estimation of B− is fairly straightforward.

The first lower and upper bounds, i.e. E(Yt1,gt |D = 1)−M and E(Yt1,gt |D = 1)−m, arise

from boundedness of Y (0) alone, while

DIDY 0
−

P(Dt1,gt = 1)

and
DIDY 0

+

P(Dt1,gt = 1)

arise from the combination of boundedness and common trend. When B− = E(Yt1,gt |D =

1) −M and B+ = E(Yt1,gt |D = 1) −m, the bounds are uninformative: common trend does

not add any supplementary information on ATTt1,gt to the information we can derive from

the mere fact that Y (0) is bounded. It is easy to show that if PAT ≤ P(Dt1,gt = 1), that is

to say if the share of treated observations in the (t1; gt) cell is greater than the sum of the

shares of always takers, then at least one of the bounds is informative. Conversely, when

PAT > P(Dt1,gt = 1), at least one of the bounds is uninformative.

When

B− =
DIDY 0

−

P(Dt1,gt = 1)

10
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and

B+ =
DIDY 0

+

P(Dt1,gt = 1)
,

the length of [B−;B+] is equal to

(M −m)× PAT
P(Dt1,gt = 1)

.

Therefore, the two bounds will be tight when PAT
P(Dt1,gt=1) is small, that is to say when there

are "few" always takers with respect to treated observations in the (t1; gt) cell.

I illustrate what "few" always takers means through a numerical example. I consider

a binary outcome Y , such that DIDY = 0.05: the mean of Y increased by 5 percentage

points more in the treatment than in the control group from period 0 to 1. To simplify the

discussion, I assume that P(Dt0,gt = 1) = P(Dt0,gc = 1) = 0, so that PAT = P(Dt1,gc = 1).

This corresponds for instance to applications considering an innovation released in period 1 so

that no observation is treated in period 0 in the treatment and in the control groups. Finally,

I assume that P(Dt1,gt = 1) = 0.5 and E(Yt1,gc |D = 1) = 0.6. Under those assumptions, I

can write B− and B+ as functions of P(Dt1,gc = 1), the share of treated observations in the

control group in period 1. Results are summarized in Table 1.

Table 1: Value of B− and B+ according to P(Dt1,gc = 1)

P(Dt1,gc = 1) 0% 2.5% 5% 7.5% 10% 12.5% 15% 17.5% 20%

B− 10% 8% 6% 4% 2% 0% -2% -4% -6%

B+ 10% 13% 16% 19% 22% 25% 28% 31% 34%

The length of [B−;B+] linearly increases with P(Dt1,gc = 1), from 0% at P(Dt1,gc = 1) = 0,

to 40% at P(Dt1,gc = 1) = 0.2. The sign of ATTt1,gt is identified as long as P(Dt1,gc = 1) is

below 12.5%.

Then, I show in Theorem 2.3 that it is possible to derive tighter bounds under the monotone

treatment response assumption considered by Manski (1997). Before stating Theorem 2.3, I

define the following random variables:

Y 1
− = Y + (m− Y )ATt0,gc

and

Y 1
+ = Y + (m− Y ) (ATt0,gt +ATt1,gc) .

Y 1
− replaces Y by m for treated observations in the (t0; gc) cell, while Y 1

+ replaces Y by m for

treated observations in the (t0; gt) and (t1; gc) cells.
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Theorem 2.3 Partial identification 2

Under A.1, if P(m ≤ Y (0) ≤ Y (1)) = 1 with m ∈ R,

B
′
− ≤ ATTt1,gt ≤ B

′
+,

with

B
′
− = max

(
0;

DIDY 1
−

P(Dt1,gt = 1)

)
and

B
′
+ = min

(
E(Yt1,gt |D = 1)−m;

DIDY 1
+

P(Dt1,gt = 1)

)
.

B
′
− and B′+ are sharp.

The monotone treatment response assumption under which I derive 2.3 states that the

effect of the treatment on the outcome is always positive.7 As emphasized in Manski (1997),

it might be credible in some economic contexts, such as the analysis of the supply of a good

which can be assumed to be an increasing function of its price. This assumption partly disposes

of the bounded support assumption which was requested in Theorem 2.2, since in Theorem

2.3 it is only requested that the support of Y (0) is bounded by below. Therefore, Theorem 2.3

applies for instance when Y are wages while Theorem 2.2 does not. B′− is obtained through

the exact same steps as B−, except that the monotonicity assumption allows me to use Y (1)

instead of M as an upper bound for always takers’ Y (0). Consequently,
[
B
′
−;B

′
+

]
is shorter

than [B−;B+]. I compute B′− and B′+ in the same numerical example as above to illustrate

to what extent the monotonicity assumption tightens the bounds. One can see in Table 2:[
B
′
−;B

′
+

]
is approximately twice smaller than [B−;B+].

Table 2: Value of B′− and B′+ according to P(Dt1,gc = 1)

P(Dt1,gc = 1) 0% 2.5% 5% 7.5% 10% 12.5% 15% 17.5% 20%

B
′
− 10% 10% 10% 10% 10% 10% 10% 10% 10%

B
′
+ 10% 13% 16% 19% 22% 25% 28% 31% 34%

Finally, it is possible to derive bounds tighter than those obtained in Theorem 2.2 under

the assumption that the effect of the treatment does not change between period 0 and 1 in

the control group.8 Before stating Theorem 2.4, I introduce new notations.
7One could also derive another partial identification result under the alternative assumption that the effect

of the treatment is always negative.
8I am very grateful to Roland Rathelot for suggesting this result.
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Let 1{t1} (resp. 1{t0}) be an indicator equal to 1 when P(Dt0,gc = 1) < P(Dt1,gc = 1) (resp.

P(Dt0,gc = 1) > P(Dt1,gc = 1)). Let ∆E = E(Yt1,gc |D = 1)− E(Yt0,gc |D = 1). Let

Y 2
− = Y +ATt0,gt(M − Y )

+ATt1,gc
(
1{t1} (min (M ;M + ∆E)− Y ) + 1{t0} (max (m;m+ ∆E)− Y )

)
+ATt0,gc

(
1{t1} (min (M ;M −∆E)− Y ) + 1{t0} (max (m;m−∆E)− Y )

)
and

Y 2
+ = Y +ATt0,gt(m− Y )

+ATt1,gc
(
1{t1} (max (m;m+ ∆E)− Y ) + 1{t0} (min (M ;M + ∆E)− Y )

)
+ATt0,gc

(
1{t1} (max (m;m−∆E)− Y ) + 1{t0} (min (M ;M −∆E)− Y )

)
.

Theorem 2.4 Partial identification 3

Under A.1, if P(m ≤ Y (0) ≤M) = 1 with (m,M) ∈ R2, and ATTt1,gc = ATTt0,gc ,

B
′′
− ≤ ATTt1,gt ≤ B

′′
+,

with

B
′′
− = max

(
E(Yt1,gt |D = 1)−M ;

DIDY 2
−

P(Dt1,gt = 1)

)
and

B
′′
+ = min

(
E(Yt1,gt |D = 1)−m;

DIDY 2
+

P(Dt1,gt = 1)

)
B
′′
− and B′′+ are sharp.

As mentioned above, the common trend assumption can be rationalized by the following

DGP:

Y (d) = fd(T,U) + gd(G,U),

with U ⊥⊥ (T,G). In such a framework, ATTt1,gc = ATTt0,gc can be rationalized under two

supplementary assumptions: f0(t1, .)−f0(t0, .) = f1(t1, .)−f1(t0, .) and U ⊥⊥ T |G = gc, D = 1.

The first assumption means that the effect of time should be the same on Y (1) than on Y (0).

The second one means that treated observations in the control group should not be "too

different" in period 0 and 1. To assess the credibility of this last hypothesis, one can for

instance verify that those two groups of observations do not have very different observable

characteristics.

B
′′
− is obtained as follows. If ATTt1,gc = ATTt0,gc = ATTgc , (1) rewrites as

ATTt1,gt =
DIDY +ATTt0,gt × P(Dt0,gt = 1) +ATTgc (P(Dt1,gc = 1)− P(Dt0,gc = 1))

P(Dt1,gt = 1)
. (3)
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Moreover,

E (Yt1,gc −M |D = 1) ≤ ATTt1,gc ≤ E (Yt1,gc −m|D = 1)

and

E (Yt0,gc −M |D = 1) ≤ ATTt0,gc ≤ E (Yt0,gc −m|D = 1)

implies that

max (E (Yt1,gc |D = 1) ;E (Yt0,gc |D = 1))−M ≤ ATTgc ≤ min (E (Yt1,gc |D = 1) ;E (Yt0,gc |D = 1))−m.

Plugging this last inequality into (3) yields a first lower bound for ATTt1,gt . If P(Dt1,gc =

1) ≥ P(Dt0,gc = 1), one should use the left-hand side of the inequality, while if P(Dt1,gc = 1) <

P(Dt0,gc = 1), one should use the right-hand side. This first lower bound can be rewritten as

DIDY 2
−

P(Dt1,gt = 1)
.

Finally, since ATTt1,gt is also greater than E(Yt1,gt |D = 1)−M , B′′− is defined as the maximum

of those two lower bounds.

From (3), one can see that the length of
[
B
′′
−;B

′′
+

]
essentially depends on

P(Dt0,gt = 1) + |P(Dt1,gc = 1)− P(Dt0,gc = 1)| .

Therefore,
[
B
′′
−;B

′′
+

]
will be shorter than [B−;B+] whose length is proportional to

P(Dt0,gt = 1) + P(Dt1,gc = 1) + P(Dt0,gc = 1).9

A situation in which those bounds will be tight is when the natural experiment under consider-

ation is the extension of a policy to a group previously not eligible, and the previously eligible

group is used as the control group. Indeed, in such cases P(Dt0,gt = 1) = 0. Consequently, if

the change in the treatment rate from period 0 to 1 in the control group is "small",
[
B
′′
−;B

′′
+

]
will be tight. Point identification can even be obtained if P(Dt1,gc = 1) = P(Dt0,gc = 1).

In such instances
[
B
′′
−;B

′′
+

]
improves a lot on [B−;B+] which will be wide as soon as the

percentage of observations treated in the control group is "large".

I illustrate what "small" and "large" mean through another numerical example. As above,

I consider a binary outcome Y , such that DIDY = 0.05. I assume that P(Dt0,gt = 1) = 0

and P(Dt1,gt = 1) = 0.5: this corresponds to the situation where the treatment group was not

eligible for treatment in period 0. I also assume that P(Dt0,gc = 1) = 0.4: 40% of the control
9This change in the size of the identification region is similar to the change happening when using Lee

bounds (see Lee (2009) and Horowitz & Manski (1995)) instead of Manski bounds (see Manski (1990)) to deal

with missing data.
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group was treated in period 0. Finally, I assume that E(Yt1,gc |D = 1) = E(Yt0,gc |D = 1) = 0.6.

Under those assumptions, I can write B−, B+, B
′′
− and B′′+ as functions of P(Dt1,gc = 1), the

share of treated observations in the control group in period 1. Results are summarized in

Table 3.

Table 3: Value of B−, B+, B
′′
− and B′′+ according to P(Dt1,gc = 1)

P(Dt1,gc = 1) 30% 32.5% 35% 37.5% 40% 42.5% 45% 47.5% 50%

B− -40% -40% -40% -40% -40% -40% -40% -40% -40%

B+ 60% 60% 60% 60% 60% 60% 60% 60% 60%

B
′′
− -2% 1% 4% 7% 10% 8% 6% 4% 2%

B
′′
+ 18% 16% 14% 12% 10% 13% 16% 19% 22%

Because of the large shares of treated observations in the control group, B− and B+ are

not informative: B− is merely equal to E(Yt1,gt |D = 1) −M = 0.6 − 1 = −0.4 and B+ to

E(Yt1,gt |D = 1) − m = 0.6. On the contrary, B′′− and B
′′
+ are informative. The length of[

B
′′
−;B

′′
+

]
is proportional to |P(Dt1,gc = 1)− P(Dt0,gc = 1)|. In this particular example, the

sign of ATTt1,gt is identified as long as the treatment rate does not change by more than 10

percentage points in the control group, which is substantial.

Finally, estimation of B′′− and B
′′
+ requires estimating P(Dt0,gc = 1), P(Dt1,gc = 1),

E(Yt1,gc |D = 1) and E(Yt0,gc |D = 1) in a first stage, before conducting the simple OLS

regression presented above on Y 2
− and Y 2

+.

A.1 is a strong identifying assumption which might appear implausible if pre-treatment

characteristics that are thought to be associated to the dynamics of the outcome variable are

unbalanced between the treatment and the control groups as emphasized in Abadie (2005). In

such instances, a conditional common trend assumption might appear more credible. When

compliance is perfect, Abadie shows that a standard DID still identifies an ATT under a

conditional common trend assumption, except that control group observations should be pre-

multiplied by a function wX , with

wX =
P(G = gt|X)

P(G = gc|X)
× P(G = gt)

P(G = gc)
.

Therefore, the control scheme developed by Abadie works by weighting-down observations

in the control group for those values of the covariates which are over-represented among the

control group, and weighting-up those for those values of the covariates under-represented

among the control group, exactly as in a propensity score matching (see Rosenbaum & Rubin,

1983).
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All the results presented above can be extended under a conditional common trend as-

sumption. Indeed, I develop fuzzy semi-parametric DID results inspired from Abadie (2005)

which allow to control semi-parametrically for covariates. Most of those results merely require

to premultiply control group observations by the function wX and then to conduct the same

analysis as above, exactly as in Abadie (2005). Only the extension of Theorem 2.4 is more

involved. Therefore, I only present this result here, all the other results are to be found in the

appendix.

I introduce two new assumptions taken from Abadie (2005).

A.1’ Conditional common trend

With probability one,

E(Yt1,gt(0)|X)− E(Yt0,gt(0)|X) = E(Yt1,gc(0)|X)− E(Yt0,gc(0)|X)

A.2 Data

The data is either a panel, or consists of two random samples of the same population at dates

t0 and t1 such that at each date Y , D and G are observed, and covariates X at date t0 are

observed for both samples.

A.2 means that even when pooled cross sections are used in the analysis, covariates should

be observed in period 0 both for the period 0 and for the period 1 samples. As discussed

below, this might be an issue for time-varying covariates when pooled-crossed sections are

used.

I also introduce new notations. For any random variable Z, let

DIDX
Z = E(Zt1,gt |X)− E(Zt0,gt |X)− [E(Zt1,gc |X)− E(Zt0,gc |X)]

be the DID on Z conditional on X. Let

ATTXi,j = E(Yi,j(1)− Yi,j(0)|D = 1, X), ∀(i, j) ∈ {t0; t1} × {gc; gt}

be the effect of the treatment on Y conditional on X among treated observations in the (i; j)

cell. For a random variable Z, let

WDIDZ = E(Zt1,gt)− E(Zt0,gt)−
[
E(Zt1,gcw

X)− E(Zt0,gcw
X)
]

be a DID on Z in which control group observations are given a weight wX . Let

pX =
P(Dt0,gc = 1|X)

P(Dt1,gc = 1|X)
.
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pX is greater than one for control group observations which, conditional on their covariates,

have a greater probability of being treated in period 0 than in period 1, and conversely. Let

Y 3
− = Y + (M − Y )ATt0,gt + max

(
(M − Y )

(
1− pX

)
; (m− Y )

(
1− pX

))
ATt1,gc ,

Y 3
+ = Y + (m− Y )ATt0,gt + min

(
(M − Y )

(
1− pX

)
; (m− Y )

(
1− pX

))
ATt1,gc ,

Y 4
− = Y + (M − Y )ATt0,gt + min

(
(M − Y )

(
1− 1

pX

)
; (m− Y )

(
1− 1

pX

))
ATt0,gc

and

Y 4
+ = Y + (m− Y )ATt0,gt + max

(
(M − Y )

(
1− 1

pX

)
; (m− Y )

(
1− 1

pX

))
ATt0,gc .

Before stating the result, I must first state a lemma.

Lemma 2.2 Conditional non-identification

Under A.1’,

DIDX
Y = ATTXt1,gt × P(Dt1,gt = 1|X)−ATTXt0,gt × P(Dt0,gt = 1|X)

−ATTXt1,gc × P(Dt1,gc = 1|X) +ATTXt0,gc × P(Dt0,gc = 1|X)
(4)

with probability one.

Lemma 2.2 is merely a conditional version of Lemma 2.1. It states that under A.1’, DIDX
Y

can be rewritten as a weighted DID of four conditionals ATT. From Lemma 2.2, one can show

Theorem 2.5.

Theorem 2.5 Conditional partial identification

Under A.1’ and A.2, if P(m ≤ Y (0) ≤ M) = 1 with (m,M) ∈ R2, ATTXt1,gc = ATTXt0,gc with

probability one, and P(Dt1,gc = 1|X) > 0⇔ P(Dt0,gc = 1|X) > 0 with probability one, then

WB
′′
− ≤ ATTt1,gt ≤WB

′′
+,

with

WB
′′
− = max

(
E(Yt1,gt |D = 1)−M ;

WDIDY 3
−

P(Dt1,gt = 1)
;
WDIDY 4

−

P(Dt1,gt = 1)

)
and

WB
′′
+ = min

(
E(Yt1,gt |D = 1)−m;

WDIDY 3
+

P(Dt1,gt = 1)
;
WDIDY 4

+

P(Dt1,gt = 1)

)
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WB
′′
− is obtained as follows. A mere integration over the distribution of X yields

ATTt1,gt =

∫
ATTXt1,gtdP (X|Dt1,gt = 1). (5)

From Lemma 2.2 one gets that

ATTX
t1,gt

=
DIDX

Y +ATTX
t0,gt

× P(Dt0,gt = 1|X) +ATTX
t1,gc

× P(Dt1,gc = 1|X)−ATTX
t0,gc

× P(Dt0,gc = 1|X)

P(Dt1,gt = 1|X)
. (6)

If ATTXt1,gc = ATTXt0,gc , (6) rewrites both as

ATTX
t1,gt

=
DIDX

Y +ATTX
t0,gt

× P(Dt0,gt = 1|X) +ATTX
t1,gc

× (P(Dt1,gc = 1|X)− P(Dt0,gc = 1|X))

P(Dt1,gt = 1|X)
(7)

and

ATTX
t1,gt

=
DIDX

Y +ATTX
t0,gt

× P(Dt0,gt = 1|X) +ATTX
t0,gc

× (P(Dt1,gc = 1|X)− P(Dt0,gc = 1|X))

P(Dt1,gt = 1|X)
. (8)

Therefore, to derive a first lower bound for ATTt1,gt , I start bounding ATTXt1,gc by

E (Yt1,gc −M |D = 1, X) when P(Dt1,gc = 1|X) ≥ P(Dt0,gc = 1|X) and by E (Yt1,gc −m|D = 1, X)

when P(Dt1,gc = 1|X) < P(Dt0,gc = 1|X) in (7). This yields a bound for ATTXt1,gt which I

plug into (5). Then I use Bayes rule to write this bound as a quantity which can be easily

estimated from the sample since it is equal to

WDIDY 3
−

P(Dt1,gt = 1)
.

Following the same steps, I derive a second lower bound for ATTt1,gt using (8), which is equal

to
WDIDY 4

−

P(Dt1,gt = 1)
.

Finally, since ATTt1,gt is also greater than E(Yt1,gt |D = 1) − M , WB
′′
− is defined as the

maximum of those three lower bounds.

Those fuzzy semi-parametric DID results improve on the fuzzy DID results on two dimen-

sions. First, conditional common trend is more credible than common trend in many contexts

as emphasized above. Moreover, Theorem 2.5 no longer requires that ATTt1,gc = ATTt0,gc

but that ATTXt1,gc = ATTXt0,gc . This is probably a more credible assumption, all the more so if

observable characteristics of treated observations in the control group change between period

0 and 1.

The main limitation of those fuzzy semi-parametric DID results is that they require that

covariates are observed in period 0 both for the period 0 and for the period 1 samples, exactly

as for Abadie’s semi-parametric DID results. This might raise a data availability issue for

time-varying covariates when pooled-crossed sections are used. In such instances, since all
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the parameters identified above can be estimated through simple linear regressions, another

option to control for covariates could merely be to include them in those regressions. For

instance, one could run the following regression

Y 0
− = α+ βT + γG+ δX + µXT + θTG+ u, (9)

to estimateDIDY 0
−
taking into account the effect of covariates on the dynamics of the outcome.

The main limit of this second approach is that, as emphasized in Meyer (1995), introducing

covariates in this linear fashion may not be appropriate if the treatment has different effects

for different groups in the population.

3 Inference

The objective of this section is to build up confidence intervals (CI) for ATTt1,gt based upon

the results of section 2. Deriving such confidence intervals from the point identification results

is straightforward: one can use the delta method to derive the asymptotic distribution of
D̂IDY

D̂IDD

. Using partial identification results proves less straightforward. An extensive literature

on confidence intervals for partially identified parameters developed recently. Some solutions

have been proposed by Imbens & Manski (2004) and Stoye (2009) but they do not apply here.

Indeed, they require uniform asymptotic normality of the estimators. As shown in Hirano &

Porter (2009), there exists no regular estimators of parameters defined as non continuously

differentiable functional of the data distribution. B− and B+, just as all the other bounds

presented in section 2, are not continuously differentiable functionals of the data distribution.

Indeed,

B− = max

(
E(Yt1,gt |D = 1)−M ;

DIDY 0
−

P(Dt1,gt = 1)

)
for instance.

Therefore, I use a recent method from the moment inequality literature, developed by

Andrews & Soares (2010) which applies to my setting and does not require this regularity

condition.10

Let θ0 = ATTt1,gt be my parameter of interest and F0 be the true distribution of the data.
10Chernozhukov et al. (2011) does not apply here because my bounds are not intersection bounds.
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When m ≤ Y (0) ≤M , Theorem 2.2 implies that θ0 verifies four inequalities:

θ0 −B1 ≥ 0

θ0 −B2 ≥ 0

B3 − θ0 ≥ 0

B4 − θ0 ≥ 0,

(10)

with B1 =
DID

Y 0
−

P(Dt1,gt=1) , B
2 = E(Yt1,gt−M |D = 1), B3 =

DID
Y 0
+

P(Dt1,gt=1) and B
4 = E(Yt1,gt−m|D =

1). The set of all (θ, F ) compatible with those moment inequalities is denoted F .

Let

Tn (θ) =

2∑
j=1

[
√
n
θ − B̂j

σ̂j
]2− +

4∑
j=3

[
√
n
B̂j − θ
σ̂j

]2−,

where [x]− = x if x < 0 and 0 otherwise and where σj is the asymptotic variance of
√
n
(
Bj − B̂j

)
. Let Dj be an indicator variable equal to 1 when

√
n θ0−B̂

j

σ̂j
≤
√

2 ln(ln(n)) for

j = 1 or 2, and when
√
n B̂

j−θ0
σ̂j

≤
√

2 ln(ln(n)) for j = 3 or 4. Let CSn be the confidence

interval obtained inverting Tn (θ), using as critical values c1−α(θ) the (1−α)th quantile of the

distribution of ∑
1≤j≤4/Dj=1

[N j ]2−,

where
(
N1, N2, N3, N4

)′
is a vector of N (0, 1) random variables with a variance Ω equal to

the asymptotic variance of

√
n

(
B1 − B̂1

σ̂1
,
B2 − B̂2

σ̂2
,
B̂3 −B3

σ̂3
,
B̂4 −B4

σ̂4

)′
.

Formally,

CSn = {θ / Tn(θ) ≤ c1−α(θ)}.

Theorem 3.1 Inference

When m ≤ Y (0) ≤ M , if m′ ≤ Y (1) ≤ M ′ with (m′,M ′) ∈ R2 and if there exists ε > 0 such

that P (T = i, G = j) ≥ ε, for every (i, j) ∈ {t0; t1}×{gc; gt}, then CSn is uniformly valid and

not conservative:

lim inf
n→+∞

inf
(θ,F )∈F

PF (Tn(θ) ≤ c1−α(θ)) = 1− α.

The proof of Theorem 3.1 essentially amounts to show that assumptions of the inequality

model developed by Andrews & Soares (2010) hold here. In order to do so, I take a few more
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assumptions than in Theorem 2.2. The assumption that Y (1) also is bounded is not very

restrictive: it is hard to envision real life situations where Y (0) is bounded but not Y (1). The

assumption that there exists ε > 0 such that P (T = i, G = j) ≥ ε is just to rule out degenerate

probability distributions. Since all the inequalities are linear in θ0, inverting the test is fairly

simple.

The intuition of this result is as follows. For j = 1 or 2, if θ0 > Bj ,

lim
n→+∞

√
n
θ0 − B̂j

σ̂j
= +∞

with probability one. Similarly, for j = 3 or 4, if Bj > θ0,

lim
n→+∞

√
n
B̂j − θ0
σ̂j

= +∞.

Therefore, Tn (θ0) converges in distribution towards∑
1≤j≤4/θ0=Bj

[N j ]2−.

Consequently, the limiting distribution of the test statistic and the critical values to be used

when inverting it would be known if we knew which inequalities are actually equalities. To solve

this problem, Andrews & Soares (2010) introduce the following decision rule: they consider an

inequality as an equality when
√
n θ0−B̂

j

σ̂j
≤
√

2 ln(ln(n)) (or when
√
n θ0−B̂

j

σ̂j
≤
√

2 ln(ln(n))

for j = 3 or 4) , i.e. when
√
n θ0−B̂

j

σ̂j
is not "too large". The reason why the resulting CI

is uniformly valid is that when θ0 = Bj ,
√
n θ0−B̂

j

σ̂j
converges to a N (0, 1) random variable.

Since
√

2 ln(ln(n)) converges to +∞, the probability to wrongly consider an equality as an

inequality vanishes to 0.

Finally, Theorems 2.3 and 2.4 can also be written as moment inequality models. Therefore,

it is also possible to derive CI for θ0 from B̂
′
− and B̂′+, or from B̂

′′
− and B̂′′+, using the method

of Andrews & Soares (2010). Since Theorem 2.3 does not require that Y is bounded, when

B̂
′
− and B̂′+ are used to construct a CI for θ0, one will have to add the technical assumption

that EF
(
|Y (d)|2+δ

)
< K for d = 0 or 1, where K is a constant and δ > 0.

4 The impact of varenicline on smoking cessation.

4.1 Data and methods

The national data base of French smoking cessation clinics started in 2001. 59 clinics recorded

at least one patient per year in 2006 and 2007. During patients first visit, smoking status
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is evaluated according to daily cigarettes smoked and a measure of expired carbon monoxide

(CO) which is a biomarker for recent tobacco use. At the end of this baseline visit, treatments

may be prescribed to patients (nicotine replacement therapies. . . ). Follow-up visits are offered

during which CO measures are usually made to check whether the patient remained abstinent.

Varenicline is a pharmacotherapy for smoking cessation support which was made available

to these clinics in February 2007. The kernel density estimate of the rate of prescription of

varenicline per clinic is shown in Figure 1. It is bimodal, with a first peak at very low rates

of prescription, and a second smaller peak around 35-40%. In 15 clinics, less than 3% of all

patients consulted have been prescribed varenicline during the year following its release. In

13 clinics, more than 20% of patients have received this new drug. I exploit this to estimate

the impact of varenicline on smoking cessation. The control group is made up of patients

registered by the 15 "below 3% prescription rate" clinics, hereafter referred to as the control

clinics. The treatment group consists of patients recorded by "above 20% prescription rate"

clinics, hereafter referred to as treatment clinics. Period 0 goes from February 2006 to January

2007, and period 1 from February 2007 to January 2008.

0
2

4
6

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Density of the rate of prescription of varenicline

Figure 1: Density of the prescription rate of Varenicline across clinics.

8 581 patients consulted those 28 clinics over period 0 and 1. Because many patients never

came back for follow-up visits, there are only 5 299 patients (62% of the initial sample) for

whom follow-up CO measures are available. I exclude patients for whom no such measures

are available from the analysis. Among remaining patients, the outcome variable is a dummy

equal to 1 for patients whose last follow-up CO determination was inferior or equal to 5 parts

per million (ppm).
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4.2 Results

In Table 4, I provide descriptive statistics on patients per group of clinics and per period of

time. Patients consulted in those cessation clinics are middle-aged, rather educated and the

majority of them are employed. They are very heavy smokers since they smoke more than

21.6 cigarettes per day on average, which corresponds to the 90th percentile in the French

distribution of smokers (Beck et al. (2007)).

Table 4: Descriptive Statistics

Treatment Clinics Control Clinics
2006 2007 P-value 2006 2007 P-value

Patients’ characteristics
% Males 47.9% 47.9% 0.95 48.5% 50.4% 0.30
Age 44.6 43.7 0.08 44.0 44.3 0.52
% employed 65.3% 68.3% 0.11 65.3% 69.8% 0.01
% without degree 19.2% 21.0% 0.25 14.2% 14.1% 0.98
Daily cigarettes smoked 21.7 21.9 0.6 22.1 20.9 <0.01

Treatment prescribed
% prescribed nicotine patch 75.0% 45.5% <0.001 45.9% 49.7% 0.05
% prescribed varenicline 0.01% 38.2% <0.001 0% 1.6% <0.001

% of successful quits 53.7% 56.9% 0.11 46.6% 41.6% <0.01
N 1 195 1 303 1 300 1 501

In period 0, the prescription rate of varenicline was equal to 0% in control clinics and to

0.01% in treatment clinics.11 In period 1, it rose to 1.6% in control clinics and to 38.2% in

treatment clinics. This sharp rise in varenicline prescription in treatment clinics entailed a

strong decrease in the prescription of other treatments such as nicotine patch. Finally, from

period 0 to 1, abstinence rate increased (from 53.7% to 56.9%) in treatment clinics, whereas

it decreased (from 46.6% to 41.6%) in control clinics.

From Theorem 2.2, I compute that B̂− = 19.1% and B̂+ = 24.5%. Using Theorem 3.1,

I find that [0.074; 0.364] is a 95% confidence interval for ATTt1,gt . Some covariates are not

balanced across treatment and control patients. For instance, patients in treatment clinics

are less educated. If those covariates also have an impact on the dynamic of the outcome,

the common trend assumption might be violated, hence the need to control for them. Many

covariates available in the data are time varying, such as daily cigarettes smoked. Therefore,

I cannot use the semi-parametric fuzzy DID results of section 2. Instead, I merely estimate

DIDY 0
−
including controls (sex, age, employment status, daily cigarettes smoked and CO at

11Varenicline was prescribed to 6 patients recorded in the last week of January 2007, that is to say a few

days before its release.
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baseline) into the regression as in equation (9). This results in a slight change of B̂− which

increases to 22.9%. B̂+ also slightly increases.

4.3 Robustness checks

The main assumption needed to identify [B−; B+] is the common trend assumption. To

indirectly assess its validity, I use the fact that I have several years of data available and I

compute placebo DID from 2003 to 2008. They are displayed in Table 5 along with their

P-values. Only the 2006-2007 DID is significant. This means that 2006 and 2007 are the only

two years between which the cessation rate did not follow parallel trends in the two groups of

clinics. Between 2003 and 2004, 2004 and 2005, 2005 and 2006, and 2007 and 2008, trends in

cessation rates were not significantly different in the two groups of clinics. The common trend

assumption states that the cessation rate would have followed parallel trends between 2006

and 2007 if varenicline had not been released. The fact that before and after the release of

varenicline, cessation rate indeed followed roughly parallel trends in the two groups of clinics

gives some credit to that assumption.

Attrition seems orthogonal to the interaction of period 1 and treatment clinics, since the

DID computed on the percentage of patients included is low and insignificant (+2.2%, P-value

= 0.62). Therefore, estimates do not seem contaminated by attrition bias.

Table 5: Placebo DID

Placebo DID P-value N

On cessation rate
2003-2004 0.045 0.34 1 580
2004-2005 0.032 0.53 2 499
2005-2006 0.042 0.31 4 136
2006-2007 0.082 0.01 5 299
2007-2008 -0.043 0.46 4 400

On attrition rate
2006-2007 0.022 0.62 8 581

Note: Standard errors are clustered at the clinic level.

Finally, one might worry about the arbitrariness of the definition of my treatment and

control groups which is not based on some objective characteristic of cessation clinics. I

investigate the sensitivity of the results to the 3%-20% rule as a robustness check. Here, since

there are very few always takers, B− = B1. I run the same analysis with 9 different pairs of

thresholds, which makes the sample of clinics included vary from 18 to 38. As shown in Table

6, I always get B̂1 ≥ 0, with 5 P-values lower than 0.10. Results are less significant when the
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threshold used for control clinics is a prescription rate of 4%. Firstly, this is not necessarily

surprising since the bounds are less tight when there are more always takers. Moreover, those

results become significant again when controls are included.

Table 6: P-value of B̂1 according to inclusion thresholds

Treatment threshold: 15% Treatment threshold: 20% Treatment threshold: 25%

Control threshold: 2% 0.10 0.08 0.14
Control threshold: 3% 0.03 0.02 0.06
Control threshold: 4% 0.20 0.15 0.27

Note: Standard errors are clustered at the clinic level.

4.4 Why do treatment and control clinics have different prescription rates
?

Finally, I tentatively investigate where the difference in varenicline prescription rates across

clinics comes from. It might merely come from the fact patients coming to those two groups

of clinics are different and need different drugs. A simple probit regression of varenicline pre-

scription indicates that it is positively related to patients employment status, daily cigarettes

smoked and addiction levels. However, treatment and control patients consulted in period 1

significantly differ only on cigarettes smoked (1 more cigarette smoked per day in treatment

clinics).

A second hypothesis is that professionals working in those clinics differ, either in terms of

occupation, qualifications or beliefs about effective ways of accompanying smoking cessation.

Information on professionals working in smoking cessations clinics is available for only 7 clinics

(4 treatment and 3 control) out of the 28 included in the analysis. Still, the 4 treatment clinics

recorded 1 612 patients over period 0 and 1, that is to say 64.5% of the "treatment" sample,

and the 3 control clinics recorded 1 828 patients, that is to say 65.3% of the control sample. It

appears that within this subsample of the total population, treatment patients had a higher

probability of being consulted by a doctor (76% against 47%). On the contrary, they had a

lower probability of being consulted by a psychologist (3% against 18%) or by someone trained

to behavioral and cognitive therapies (4% against 48%). Finally, treatment clinics consulted

193 new patients per full time working professional in 2007, against only 75 in control clinics.

Contrarily to nicotine replacement therapies, varenicline must be prescribed by a doctor.

The sharp difference in prescription rates across the two groups of clinics might therefore come

from the lower proportion of doctors in control clinics. But patients consulted in those clinics

still had a 47% probability of being consulted by a doctor and only 1.6% were prescribed
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varenicline. A complementary explanation is that there might be two approaches to smoking

cessation among professionals. The first approach, which seems more prominent in treatment

clinics, puts the emphasis on providing patients pharmacotherapies to reduce the symptoms

of withdrawal. The second approach, which seems more prominent in control clinics, lays

more the emphasis on giving them intensive psychological support, hence the higher share

of professionals trained to behavioral and cognitive therapies, the lower number of patients

consulted per professional and the lower prescription rate of nicotine patches previous to the

release of varenicline.

5 Conclusion

This paper develops new results to identify treatment effects when the treatment rate increases

more in one group between two periods. The parameters identified will be informative in

applications with no or few always takers, as well as in applications where the treatment rate

does not change much between the two periods in the control group. My results essentially

hold under a common trend assumption on the outcome, whereas the IV-DID result commonly

invoked in such settings holds under two common trends assumptions on the outcome and on

the treatment, and under a monotonicity assumption. I give examples of applications in which

it might be appealing to dispose of the common trend assumption on D while maintaining it

on Y .

26

ha
ls

hs
-0

06
71

36
8,

 v
er

si
on

 1
 - 

17
 F

eb
 2

01
2



References

Abadie, A. (2005), ‘Semiparametric difference-in-differences estimators’, Review of Economic

Studies 72(1), 1–19.

Andrews, D. W. K. & Guggenberger, P. (2010), ‘Asymptotic size and a problem with subsam-

pling and with the m out of n bootstrap’, Econometric Theory 26(02), 426–468.

Andrews, D. W. K. & Soares, G. (2010), ‘Inference for parameters defined by moment in-

equalities using generalized moment selection’, Econometrica 78(1), 119–157.

Angrist, J. D. & Evans, W. N. (1998), ‘Children and their parents’ labor supply: Evidence

from exogenous variation in family size’, American Economic Review 88(3), 450–77.

Angrist, J. D. & Imbens, G. W. (1995), ‘Two-stage least squares estimation of average causal

effects in models with variable treatment intensity’, Journal of the American Statistical

Association 90(430), 431–442.

Athey, S. & Imbens, G. W. (2006), ‘Identification and inference in nonlinear difference-in-

differences models’, Econometrica 74(2), 431–497.

Bach, L. (2010), Are small-and-medium-sized firms really credit constrained ? evidence from

a french targeted credit programme, Working paper.

Battistin, E. & Rettore, E. (2008), ‘Ineligibles and eligible non-participants as a double com-

parison group in regression-discontinuity designs’, Journal of Econometrics 142(2), 715–730.

Chernozhukov, V., Lee, S. S. & Rosen, A. (2011), Intersection bounds: estimation and in-

ference, Technical report, Centre for Microdata Methods and Practice, Institute for Fiscal

Studies.

de Chaisemartin, C. (2011), Instrumented differences in differences, Working paper.

Duflo, E. (2001), ‘Schooling and labor market consequences of school construction in indonesia:

Evidence from an unusual policy experiment’, American Economic Review 91(4), 795–813.

Eissa, N. & Liebman, J. B. (1996), ‘Labor supply response to the earned income tax credit’,

The Quarterly Journal of Economics 111(2), 605–637.

Evans, W. N. & Ringel, J. S. (1999), ‘Can higher cigarette taxes improve birth outcomes?’,

Journal of Public Economics 72(1), 135–154.

Field, E. (2005), ‘Property rights and investment in urban slums’, Journal of the European

Economic Association 3(2-3), 279–290.

27

ha
ls

hs
-0

06
71

36
8,

 v
er

si
on

 1
 - 

17
 F

eb
 2

01
2



Hirano, K. & Porter, J. (2009), Impossibility results for nondifferentiable functionals, Mpra

paper, University Library of Munich, Germany.

Horowitz, J. L. & Manski, C. F. (1995), ‘Identification and robustness with contaminated and

corrupted data’, Econometrica 63(2), 281–302.

Imbens, G. W. & Angrist, J. D. (1994), ‘Identification and estimation of local average treat-

ment effects’, Econometrica 62(2), 467–475.

Imbens, G. W. & Manski, C. F. (2004), ‘Confidence intervals for partially identified parame-

ters’, Econometrica 72(6), 1845–1857.

Lee, D. S. (2009), ‘Training, wages, and sample selection: Estimating sharp bounds on treat-

ment effects’, Review of Economic Studies 76(3), 1071–1102.

Manski, C. F. (1990), ‘Nonparametric bounds on treatment effects’, American Economic Re-

view 80(2), 319–23.

Manski, C. F. (1997), ‘Monotone treatment response’, Econometrica 65(6), 1311–1334.

Meyer, B. D. (1995), ‘Natural and quasi-experiments in economics’, Journal of Business &

Economic Statistics 13(2), 151–61.

Rosenbaum, P. R. & Rubin, D. B. (1983), ‘The central role of the propensity score in obser-

vational studies for causal effects’, Biometrika 70(1), pp. 41–55.

Rubin, D. (1974), ‘Estimating causal effects of treatments in randomized and nonrandomized

studies’, Journal of Educational Psychology 66(5).

Stoye, J. (2009), ‘More on confidence intervals for partially identified parameters’, Economet-

rica 77(4), 1299–1315.

28

ha
ls

hs
-0

06
71

36
8,

 v
er

si
on

 1
 - 

17
 F

eb
 2

01
2



Appendix A: Identification under conditional common trend

Theorem 5.1 Conditional identification

1. Under A.1’ and A.2, in the no always takers special case,

ATTt1,gt =
WDIDY

P(Dt1,gt = 1)

2. Under A.1’ and A.2, if P(m ≤ Y (0) ≤M) = 1 with (m,M) ∈ R2,

WB− ≤ ATTt1,gt ≤WB+,

with

WB− = max

(
E(Yt1,gt |D = 1)−M ;

WDIDY 0
−

P(Dt1,gt = 1)

)
and

WB+ = min

(
E(Yt1,gt |D = 1)−m;

WDIDY 0
+

P(Dt1,gt = 1)

)
.

3. Under A.1’ and A.2, if P(m ≤ Y (0) ≤ Y (1)) = 1 with m ∈ R,

WB
′
− ≤ ATTt1,gt ≤WB

′
+,

with

WB
′
− = max

(
0;

WDIDY 1
−

P(Dt1,gt = 1)

)
and

WB
′
+ = min

(
E(Yt1,gt |D = 1)−m;

WDIDY 1
+

P(Dt1,gt = 1)

)
.

Points 1 to 3 of Theorem 5.1 are obtained as follows. Plugging (6) into (5) and using Bayes

rule yields

ATTt1,gt =
WDIDY +ATTt0,gt×P(Dt0,gt=1)+WATTt1,gc×P(Dt1,gc=1)−WATTt0,gc×P(Dt0,gc=1)

P(Dt1,gt=1) , (11)

where WATTi,gc = E
(
(Yi,j(1)− Yi,j(0))wX |D = 1

)
, for i ∈ {t0; t1}, are weighted ATTs in

the two control group cells, in which observations are given a weight wX . In the no always

takers case, P(Dt0,gt = 1) = P(Dt1,gc = 1) = P(Dt0,gc = 1) = 0, hence the first claim. Then, if

m ≤ Y (0) ≤ M , ATTt0,gt , WATTt1,gc and WATTt0,gc can all be bounded, hence the second

claim. Finally, if m ≤ Y (0) ≤ Y (1), I can use this inequality to derive new bounds for

ATTt0,gt , WATTt1,gc and WATTt0,gc , hence the third claim.
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Appendix B: Proofs

Proof of Lemma 2.1:

Y = Y (1)×D + Y (0)× (1−D) = (Y (1)− Y (0))×D + Y (0).

Therefore,

DIDY = E [(Yt1,gt(1)− Yt1,gt(0))D]− E [(Yt0,gt(1)− Yt0,gt(0))D]

−E [(Yt1,gc(1)− Yt1,gc(0))D] + E [(Yt0,gc(1)− Yt0,gc(0))D]

+E(Yt1,gt(0))− E(Yt0,gt(0))− E(Yt1,gc(0)) + E(Yt0,gc(0)).

Under A.1,

E(Yt1,gt(0))− E(Yt0,gt(0))− E(Yt1,gc(0)) + E(Yt0,gc(0)) = 0.

Thus,
DIDY = E(Yt1,gt(1)− Yt1,gt(0)|D = 1)× P(Dt1,gt = 1)

−E(Yt0,gt(1)− Yt0,gt(0)|D = 1)× P(Dt0,gt = 1)

−E(Yt1,gc(1)− Yt1,gc(0)|D = 1)× P(Dt1,gc = 1)

+E(Yt0,gc(1)− Yt0,gc(0)|D = 1)× P(Dt0,gc = 1),

hence the result.

QED.

Proof of Theorem 2.1:

Proof of 1)

In the “no always takers” special case, P(Dt0,gt = 1), P(Dt1,gc = 1) and P(Dt0,gc = 1) are all

equal to 0. Therefore, (1) can be rewritten as

DIDY = ATTt1,gt × P(Dt1,gt = 1)

hence the result.

Proof of 2)

If ∀(i, j) ∈ {t0; t1} × {gc; gt} , ATTi,j = ATTt1,gt , then, (1) can be rewritten as

DIDY = ATTt1,gt ×DIDD,

hence the result.

QED.

Proof of Theorem 2.2:

Let

A = E(Yt0,gt(0)|D = 1)×P(Dt0,gt = 1)+E(Yt1,gc(0)|D = 1)×P(Dt1,gc = 1)−E(Yt0,gc(0)|D = 1)×P(Dt0,gc = 1).
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This is the only quantity appearing in (2) which cannot be estimated from the sample and

therefore needs to be bounded.

Since m ≤ Y (0) ≤M ,

A−1 ≤ A ≤ A
+
1 ,

with

A−1 = m× P(Dt0,gt = 1) +m× P(Dt1,gc = 1)−M × P(Dt0,gc = 1)

and

A+
1 = M × P(Dt0,gt = 1) +M × P(Dt1,gc = 1)−m× P(Dt0,gc = 1).

For bounds to be sharp, a DGP attaining them should also verify the common trend assump-

tion, which implies:

0 = E(Yt1,gt(0)|D = 1)× P(Dt1,gt = 1) + E(Yt1,gt |D = 0)× (1− P(Dt1,gt = 1))

−E(Yt0,gt(0)|D = 1)× P(Dt0,gt = 1)− E(Yt0,gt |D = 0)× (1− P(Dt0,gt = 1))

−E(Yt1,gc(0)|D = 1)× P(Dt1,gc = 1)− E(Yt1,gc |D = 0)× (1− P(Dt1,gc = 1))

+E(Yt0,gc(0)|D = 1)× P(Dt0,gc = 1) + E(Yt0,gc |D = 0)× (1− P(Dt0,gc = 1)).

The only quantity in this equation which is both unobserved and does not enter into (2) is

E(Yt1,gt(0)|D = 1). For common trend to hold, it should be equal to

1
P(Dt1,gt=1) (A+ E(Yt0,gt |D = 0)× (1− P(Dt0,gt = 1)) + E(Yt1,gc |D = 0)× (1− P(Dt1,gc = 1)))

− 1
P(Dt1,gt=1) (E(Yt1,gt |D = 0)× (1− P(Dt1,gt = 1)) + E(Yt0,gc |D = 0)× (1− P(Dt0,gc = 1))) .

Since m ≤ E(Yt1,gt(0)|D = 1) ≤M , this implies that

A−2 ≤ A ≤ A
+
2 ,

with

A−2 = m× P(Dt1,gt = 1)− E(Yt0,gt |D = 0)× (1− P(Dt0,gt = 1))

−E(Yt1,gc |D = 0)× (1− P(Dt1,gc = 1)) + E(Yt1,gt |D = 0)× (1− P(Dt1,gt = 1))

+E(Yt0,gc |D = 0)× (1− P(Dt0,gc = 1)).

and

A+
2 = M × P(Dt1,gt = 1)− E(Yt0,gt |D = 0)× (1− P(Dt0,gt = 1))

−E(Yt1,gc |D = 0)× (1− P(Dt1,gc = 1)) + E(Yt1,gt |D = 0)× (1− P(Dt1,gt = 1))

+E(Yt0,gc |D = 0)× (1− P(Dt0,gc = 1)).

Consequently,

max(A−1 ;A−2 ) ≤ A ≤ min(A+
1 ;A+

2 ). (12)
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Combining (2) and (12) and rearranging yields B− and B+, which are sharp by construction.

QED.

Proof of Theorem 2.3:

Since m ≤ Y (0) ≤ Y (1),

A−3 ≤ A ≤ A
+
3 ,

with

A−3 = m× P(Dt0,gt = 1) +m× P(Dt1,gc = 1)− E(Yt0,gc |D = 1)× P(Dt0,gc = 1)

and

A+
3 = E(Yt0,gt |D = 1)× P(Dt0,gt = 1) + E(Yt1,gc |D = 1)× P(Dt1,gc = 1)−m× P(Dt0,gc = 1).

For bounds to be sharp, a DGP attaining them should also verify the common trend assump-

tion. Given that m ≤ E(Yt1,gt(0)|D = 1) ≤ E(Yt1,gt |D = 1), this implies that

A−4 ≤ A ≤ A
+
4 ,

with

A−4 = A−2

and

A+
4 = E(Yt1,gt |D = 1)× P(Dt1,gt = 1)− E(Yt0,gt |D = 0)× (1− P(Dt0,gt = 1))

−E(Yt1,gc |D = 0)× (1− P(Dt1,gc = 1)) + E(Yt1,gt |D = 0)× (1− P(Dt1,gt = 1))

+E(Yt0,gc |D = 0)× (1− P(Dt0,gc = 1)).

Consequently,

max(A−3 ;A−4 ) ≤ A ≤ min(A+
3 ;A+

4 ). (13)

Combining (2) and (13) and rearranging yields B′− and B′+, which are sharp by construction.

QED.

Proof of Theorem 2.4:

I prove the result for B′′+ only.

Let

C = ATTt0,gt × P(Dt0,gt = 1) +ATTt1,gc × P(Dt1,gc = 1)−ATTt0,gc × P(Dt0,gc = 1).

This is the only quantity appearing in (1) which cannot be estimated from the sample and

therefore needs to be bounded to bound ATTt1,gt .
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If ATTt1,gc = ATTt0,gc = ATTgc ,

C = ATTt0,gt × P(Dt0,gt = 1) +ATTgc (P(Dt1,gc = 1)− P(Dt0,gc = 1)) .

Therefore, when m ≤ Y (0) ≤M ,

C− ≤ C

with

C− = E(Yt0,gt −M |D = 1)× P(Dt0,gt = 1)

+1{t1} (max (E(Yt1,gc |D = 1);E(Yt0,gc |D = 1))−M) (P(Dt1,gc = 1)− P(Dt0,gc = 1))

+1{t0} (min (E(Yt1,gc |D = 1);E(Yt0,gc |D = 1))−m) (P(Dt1,gc = 1)− P(Dt0,gc = 1)) .

A DGP attaining C− will verify A = A+
5 , with

A+
5 = M × P(Dt0,gt = 1) +

(
1{t1}min (M ;M + ∆E) + 1{t0}max (m;m+ ∆E)

)
× P(Dt1,gc = 1)

+
(
1{t1}min (M ;M −∆E) + 1{t0}max (m;m−∆E)

)
× P(Dt0,gc = 1).

Since C is a decreasing function of A,

C− ≤ C ⇒ A ≤ A+
5

But for bounds to be sharp, the DGP attaining them should also verify the common trend

assumption, which implies that

A ≤ A+
2 .

Consequently,

A ≤ min(A+
2 ;A+

5 ). (14)

Combining (2) and (14) and rearranging yields B′′+, which is sharp by construction.

QED.

Proof of Lemma 2.2:

The proof is the same as the proof of Lemma 2.1, except that all expectations should be taken

conditional to X.

QED.

Proof of Theorem 5.1
I start proving equation (11). Let us rewrite ATTt1,gt . It is equal to∫

ATTX
t1,gtdP (X|Dt1,gt = 1)

=

∫
DIDX

Y +ATTX
t0,gt × P(Dt0,gt = 1|X) +ATTX

t1,gc × P(Dt1,gc = 1|X)−ATTX
t0,gc × P(Dt0,gc = 1|X)

P(Dt1,gt = 1|X)
dP (X|Dt1,gt = 1)
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=
1

P(Dt1,gt = 1)

∫
DIDX

Y +ATTX
t0,gt × P(Dt0,gt = 1|X) +ATTX

t1,gc × P(Dt1,gc = 1|X)dP (Xgt)

− 1

P(Dt1,gt = 1)

∫
ATTX

t0,gc × P(Dt0,gc = 1|X)dP (Xgt)

=
1

P(Dt1,gt = 1)

∫
E(Yt1,gt |X)− E(Yt0,gt |X)− [E(Yt1,gc |X)− E(Yt0,gc |X)] dP (Xgt)

+
1

P(Dt1,gt = 1)

∫
ATTX

t0,gt × P(Dt0,gt = 1|X) +ATTX
t1,gc × P(Dt1,gc = 1|X)−ATTX

t0,gc × P(Dt0,gc = 1|X)dP (Xgt)

=
1

P(Dt1,gt = 1)
[E(Yt1,gt)− E(Yt0,gt) + E ((Yt0,gt(1)− Yt0,gt(0))D)]− 1

P(Dt1,gt = 1)

∫
E(Yt1,gc |X)− E(Yt0,gc |X)dP (Xgt)

+
1

P(Dt1,gt = 1)

∫
ATTX

t1,gc × P(Dt1,gc = 1|X)−ATTX
t0,gc × P(Dt0,gc = 1|X)dP (Xgt)

=
1

P(Dt1,gt = 1)

[
E(Yt1,gt)− E(Yt0,gt)− E(Yt1,gcw

X) + E(Yt0,gcw
X)
]

+
1

P(Dt1,gt = 1)

[
ATTt0,gt × P(Dt0,gt = 1) + E

(
(Yt1,gc(1)− Yt1,gc(0))w

XD
)
− E

(
(Yt1,gc(1)− Yt1,gc(0))w

XD
)]

=
1

P(Dt1,gt = 1)
[WDIDY +ATTt0,gt × P(Dt0,gt = 1) +WATTt1,gc × P(Dt1,gc = 1)−WATTt0,gc × P(Dt0,gc = 1)] .

The first equality comes from Lemma 2.2 combined with the fact that the integral is taken over

the set of all ω such that P(Dt1,gt = 1|X)(ω) 6= 0. The second equality is obtained using the

definition of conditional probabilities, and using A.2 which implies that dP (Xt1,gt) = dP (Xgt).

Finally, the fifth equality is obtained using Bayes’ law.

Proof of 1)

In the “no always takers” special case, P(Dt0,gt = 1), P(Dt1,gc = 1) and P(Dt0,gc = 1) are all

equal to 0. Therefore, (11) rewrites

ATTt1,gt =
WDIDY

P(Dt1,gt = 1)
,

hence the result.

Proof of 2)

If m ≤ Y (0) ≤M , then

E(Yt0,gt −M |D = 1) ≤ ATTt0,gt ≤ E(Yt0,gt −m|D = 1),

E
(
(Yt1,gc −M)wX |D = 1

)
≤WATTt1,gc ≤ E

(
(Yt1,gc −M)wX |D = 1

)
and

E
(
(Yt0,gc −M)wX |D = 1

)
≤WATTt0,gc ≤ E

(
(Yt0,gc −m)wX |D = 1

)
.
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Plugging those three inequalities into (11) yields

WDIDY 0
−

P(Dt1,gt = 1)
≤ ATTt1,gt ≤

WDIDY 0
+

P(Dt1,gt = 1)
,

hence the result.

Proof of 3)

If m ≤ Y (0) ≤ Y (1), then

0 ≤ ATTt0,gt ≤ E(Yt0,gt −m|D = 1),

0 ≤WATTt1,gc ≤ E
(
(Yt1,gc −M)wX |D = 1

)
and

0 ≤WATTt0,gc ≤ E
(
(Yt0,gc −m)wX |D = 1

)
.

Plugging those three inequalities into (11) yields

WDIDY 1
−

P(Dt1,gt = 1)
≤ ATTt1,gt ≤

WDIDY 1
+

P(Dt1,gt = 1)
,

hence the result.

QED.

Proof of Theorem 5.1

I only show how to derive WB
′′
−. Let

min(X) = min (m1(X);m2(X))

where

m1(X) = E(Yt1,gc −M |D = 1, X) (P(Dt1,gc = 1|X)− P(Dt0,gc = 1|X))

and

m2(X) = E(Yt1,gc −m|D = 1, X) (P(Dt1,gc = 1|X)− P(Dt0,gc = 1|X)) .

Let

Emin = E
(
min

(
(Yt1,gc −M)

(
1− pX

)
; (Yt1,gc −m)

(
1− pX

))
wX |D = 1

)
.

Finally, let 1{t1}(X) and 1{t0}(X) be the indicators of the events P(Dt1,gc = 1|X) > P(Dt0,gc = 1|X)

and P(Dt1,gc = 1|X) < P(Dt0,gc = 1|X).

If ATTXt1,gc = ATTXt0,gc , (6) rewrites as

ATTXt1,gt =
DIDX

Y +ATTXt0,gt × P(Dt0,gt = 1|X) +ATTXt1,gc (P(Dt1,gc = 1|X)− P(Dt0,gc = 1|X))

P(Dt1,gt = 1|X)
.

Therefore,
DIDX

Y + E(Yt0,gt −M |D = 1, X)× P(Dt0,gt = 1|X) + min(X)

P(Dt1,gt = 1|X)

35

ha
ls

hs
-0

06
71

36
8,

 v
er

si
on

 1
 - 

17
 F

eb
 2

01
2



is a lower bound to ATTXt1,gc . Plugging this lower bound into (5) yields that∫
DIDX

Y + E(Yt0,gt −M |D = 1, X)× P(Dt0,gt = 1|X) + min(X)

P(Dt1,gt = 1|X)
dP (X|Dt1,gt = 1)

is a lower bound for ATTt1,gt . Using the same steps as those used to prove equation (11), one

can show that this lower bound rewrites

WDIDY +ATTt0,gt × P(Dt0,gt = 1) +

∫
min(X)dP (Xgt)

P(Dt1,gt = 1)
. (15)

Then, ∫
min(X)dP (Xgt)

=

∫
1{t1}(X)E(Yt1,gc −M |D = 1, X)× (P(Dt1,gc = 1|X)− P(Dt0,gc = 1|X)) dP (Xgt)

+

∫
1{t0}(X)E(Yt1,gc −m|D = 1, X)× (P(Dt1,gc = 1|X)− P(Dt0,gc = 1|X)) dP (Xgt)

=

∫
E
(
1{t1}(X) (Yt1,gc −M)

(
1− pX

)
|D = 1, X

)
P(Dt1,gc = 1|X)dP (Xgt)

+

∫
E
(
1{t0}(X) (Yt1,gc −m)

(
1− pX

)
|D = 1, X

)
P(Dt1,gc = 1|X)dP (Xgt)

=

∫
E
(
1{t1}(X) (Yt1,gc −M)

(
1− pX

)
D|X

)
dP (Xgt)

+

∫
E
(
1{t0}(X) (Yt1,gc −m)

(
1− pX

)
D|X

)
dP (Xgt)

=

∫
E
(
1{t1}(X) (Yt1,gc −M)

(
1− pX

)
DwX |X

)
dP (Xgc)

+

∫
E
(
1{t0}(X) (Yt1,gc −m)

(
1− pX

)
DwX |X

)
dP (Xgc)

= E
(
1{t1}(X) (Yt1,gc −M)

(
1− pX

)
DwX

)
+ E

(
1{t0}(X) (Yt1,gc −m)

(
1− pX

)
DwX

)
= E

(
min

(
(Yt1,gc −M)

(
1− pX

)
; (Yt1,gc −m)

(
1− pX

))
wX |D = 1

)
× P(Dt1,gc = 1).

= Emin × P(Dt1,gc = 1).
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The first equality comes from the fact that

min(X) = 1{t1}(X)E(Yt1,gc −M |D = 1, X) (P(Dt1,gc = 1|X)− P(Dt0,gc = 1|X))

+1{t0}(X)E(Yt1,gc −m|D = 1, X)× (P(Dt1,gc = 1|X)− P(Dt0,gc = 1|X))

because min(X) = 0 when P(Dt1,gc = 1|X) = P(Dt0,gc = 1|X). The second equality hold

because I have assumed that P(Dt1,gc = 1|X) > 0 ⇔ P(Dt0,gc = 1|X) > 0 with probability

one. Finally, the fourth equality holds because of Bayes’ law. Combining the last equality

with (15), I get that

WDIDY +ATTt0,gt × P(Dt0,gt = 1) + Emin × P(Dt1,gc = 1)

P(Dt1,gt = 1)

is a lower bound for ATTt1,gt . This lower bound can be rewritten:

WDIDY 3
−

P(Dt1,gt = 1)
.

If ATTXt1,gc = ATTXt0,gc , (6) also rewrites as

ATTXt1,gt =
DIDX

Y +ATTXt0,gt × P(Dt0,gt = 1|X) +ATTXt0,gc (P(Dt1,gc = 1|X)− P(Dt0,gc = 1|X))

P(Dt1,gt = 1|X)
.

Then, following the same steps as above, one can show that

WDIDY 4
−

P(Dt1,gt = 1)

is also a lower bound for ATTt1,gt , hence the result.

QED.

Proof of Theorem 3.1

The moment inequality model in Andrews & Soares (2010) is based on the following assump-

tions. The parameter of interest θ0 and the true distribution of the data F0 are assumed to

belong to a parameter space F = (θ, F ) such that:

i) θ ∈ R

ii) The data Wi are iid.

iii) EF (mj (W, θ, η)) ≥ 0 for j = 1, ..., p, where mj are known real-valued functions, and η is

a parameter. η should be identified, and there should exist a consistent and asymptotically

normal estimator of it.

iv) σ2F,j (θ) = VF (mj (W, θ, η)) ∈ (0,+∞)

Let m (W, θ, η) = (m1 (W, θ, η) , ...,mp (W, θ, η))′ ,

ΣF (θ) = VF (m (W, θ, η)) ,
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DF (θ) = Diag (ΣF ) ,

ΩF (θ) = D−
1
2 (θ) Σ (θ)D−

1
2 (θ) ,

mn,j (θ) = 1
n

n∑
i=1
mj (Wi, θ, η̂n (θ)) for j = 1, ..., p,

mn (θ) = (mn,1 (θ) , ...,mn,p (θ))′ ,

Σ̂n (θ) = 1
n

n∑
i=1

(m (Wi, θ, η̂n)−mn (θ)) (m (Wi, θ, η̂n)−mn (θ))′ ,

σ̂n,j (θ) =
[
Σ̂n (θ)

]
j,j
,

and

D̂n (θ) = Diag
(

Σ̂n (θ)
)
.

For all sequences (θn, Fn) in F such that

θn →
n→+∞

θ,

Fn →
n→+∞

F,

ΩFn →
n→+∞

ΩF ,

and
√
nσ−1Fn,j

(θn)EFn (mj (W, θn, η)) →
n→+∞

hj ∈ R+, we should have that

v) An = (An,1, ..., An,p)
′ →
d
Z ∼ N (0k,ΩF ) as n→ +∞, where

An,j =
√
nσ−1Fn,j

(
mn,j (θn)− 1

n

n∑
i=1

EFn (mj (W, θn, η))

)

vi) σ̂n,j(θn)
σFn,j(θn)

→
p

1 when n→ +∞ for j = 1 to p.

vii) D̂−
1
2

n (θn) Σ̂n (θn) D̂
− 1

2
n (θn)→ ΩF when n→ +∞.

As Andrews & Guggenberger (2010) show in their 2nd lemma, a sufficient condition for v),

vi) and vii) to hold is the following condition:

viii) EF
(
|mj (W, θ, η)|2+δ

)
< K for some δ > 0, where K is a constant.

Finally, for the confidence interval not to be conservative, the following assumption should be

verified:

ix) EF (mj (W, θ, η)) = 0 for some j and some (θ, F ) ∈ F .

Therefore, I show now that my model can be rewritten as a moment inequality model which

verifies assumptions i)-iv) and viii)-ix). W = (Y, T,G,D). Let η1 = P(T = 1, G = 1),

η2 = P(T = 0, G = 1), η3 = P(T = 1, G = 0), η4 = P(T = 0, G = 0) and η = (η1, η2, η3, η4) .

As shown in section 2, Y 0
− and Y 0

+ can be written as functions f0− and f0+ of the data. Let

g(x, η) = TGx
η1
− (1−T )Gx

η2
− T (1−G)x

η3
+ (1−T )(1−G)x

η4
.
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Assumption i) and ii) hold because ATTt1,gt ∈ R and the data is iid.

(10) is equivalent to

EF0 (mj (W, θ0, η)) ≥ 0

for j = 1 to 4, with
m1 (W, θ0, η) = TGD

η1
θ0 − g(f0−(W ), η)

m2 (W, θ0, η) = TGD (θ0 − (Y −M))

m3 (W, θ0, η) = g(f0+(W ), η)− TGDθ0
m4 (W, θ0, η) = TGD (Y −m− θ0) .

Moreover, η is identified and can be consistently estimated with an asymptotically normal

estimator. This implies that iii) holds.

Using the triangle inequality, the fact that Y (0) and Y (1) are bounded, that min(η1, η2, η3, η4) ≥
ε and that x 7→ x2+δ is increasing on R+, it is easy to show that EF

(
|mj (W, θ, η)|2+δ

)
≤ Kj

where theKj write as functions ofm,M ,m′,M ′, δ and ε. SettingK = max (K1,K2,K3,K4)+

1, viii) is verified.

viii) implies that EF
(
|mj (W, θ, η)|2

)
< +∞ so that σ2F,j (θ) < +∞, and 0 < σ2F,j (θ) for non

degenerate distributions. Therefore iv) holds.

Finally, sharpness of the bounds implies that ix) holds.

QED.
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