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Entropy in the Creation of Knowledge:
a Candidate Source of Endogenous Business Cycles

Orlando Gomes

Escola Superior de Comunicac¢éo Social [Institutlitémico de Lisboa] and
Unidade de Investigacao em Desenvolvimento Emped$biNIDE/ISCTE].

Abstract

Two sector growth models, with physical goods amdh&n capital produced under
distinct technologies, generally consider a proadssnowledge obsolescence / depreciation
that is similar to the depreciation process of pfalsggoods. As a consequence, the long term
rate ofper capita growth of the main economic aggregates is constegt time. This rate can
be endogenously determined (in endogenous growikelmowhere production is subject to
constant returns) or it can be the result of exogerforces, like technological progress or
population dynamics (in neoclassical growth theomhere decreasing marginal returns
prevail).

In this paper, we introduce a new assumption att@ugeneration of knowledge, which
involves entropy, i.e., introducing additional kredge to generate more knowledge becomes
counterproductive after a given point. The new ag#ion is explored in scenarios of
neoclassical and endogenous growth and it is abjlestify endogenous fluctuations. Entropy
in the creation of knowledge will imply that humeapital does not grow steadily over time.
Instead, cycles of various periodicities are obaele for different degrees of entropy.
Complete a-periodicity (chaos) is also found fortipalar values of an entropy parameter.
This behaviour of the human capital variable spseimdthe whole economy given that this
input is used in the production of final goods atidis, main economic aggregates time paths
(i.e., the time paths of physical capital, consuamptnd output) will also evolve following a
cyclical pattern. With this argument, we intenddiwe support to the view of endogenous
business cycles in the growth process, which Errditive to the two mainstream views on
business cycles: the RBC theory and the Keynenigngretation.
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1. Introduction

The original definition of entropy, proposed by Shan (1948), refers to a
measure of uncertainty within some sort of systémen various possible outcomes,
a higher level of entropy implies that the prob#ibs assigned to each outcome
become closer to each other, and in the limit marmentropy case a complete
impossibility of making rational choices arised (altcomes are equally probable, and
thus the choice is simply random). The original kvof Shannon (1948) and Shannon
and Weaver (1949) was developed in the contexheftheory of information, and
thus it became a fundamental tool in communicasioidies, where entropy is thought
as the loss of information that occurs with thasraission of some message [see, e.g.,
Heath and Bryant (2000)]. In a more current usetha term, entropy may be
understood as the opposite of synergy, that is,|dee of productivity that occurs
when people work together rather than working leyrtbelves.

Within an economic interpretation of this idea, @@ associate entropy with
the presence of negative marginal returns in tleeiraalation of a given input. In the
present analysis, we associate this comprisingnati entropy with the production of
knowledge; the argument is that for a specific tgpknowledge there are positive
returns until a given level of this input is accuated, but after a given point
additional knowledge is synonymous of a net loss,ttee dissemination of such
knowledge suffers from decreasing quality. In tleeme way as the excess of
information implies a loss of quality in the transsion of a message, the excess of
accumulated knowledge implies that the disseminatiothis factor loses quality and
part of the input is simply lost.

While our definition of entropy is somehow too usive and departs from the
Shannon’s initial notion of uncertainty, the matfaical concept to be used relies on
the original formulation. As we shall see in thtngection, the accumulation of the
knowledge input is the result of a production pescéa trivial production function is
assumed), but the following entropy term is asdediao the rule of knowledge

evolution through timeE, =—h, dnh,, with h, the knowledge variabfeThis term

will imply that an accumulation rule characterizgddecreasing or constant marginal
returns becomes a hump-shaped function which replee conventional concave or
linear shapé.Therefore, we introduce a new way of understandivegcreation of
knowledge; in our view, this is not only subjectdigpreciation and obsolescence; it is
subject to entropy, since ‘common knowledge’ castray partially the true meaning
of the originally generated ideas.

The main implication of a hump-shaped accumulatida is that with it arises
the possibility of ‘strange’ dynamic behaviouridtknown [see, e.g., May (1976)] that
this type of function is able to produce more thi@ simple long term results of fixed
point stability and instability; periodic and a-elic motion, that is, cycles of
different orders and chaos, will be observablesimme combinations of parameters
values. Under this reasoning, our work is closdhi path breaking idea of Day
(1982), who explained endogenous cycles within@memic growth framework, by
considering a pollution effect that implied thateafa given level of accumulated
physical capital, the stock of this input begaibéodestroyed. This is indeed similar to

! In the proposed expression, we consider the Hdagarithm instead of the base 2 logarithm
of the original Shannon’s analysis. As referredsato, Akiyama and Crutchfield (2004), this

does not change the interpretation of the notioerdfopy; it just changes the measure unit
[entropy is evaluated in nats (natural digits) éast of bits (binary digits)].

Z Later, in section 2, we present a phase diagrayuré 8) describing this dynamic rule, which

effectively reveals the hump-shaped form.



our argument, which states that too much knowledigeduces entropy in the
dissemination of knowledge provoking a destructbpart of the existing knowledge.

The knowledge input is introduced in neoclassigadl @ndogenous growth
models, and it intends to give a possible explanatd endogenous business cycles.
Optimal growth models are able to explain the langtrends of growth, but they fail
to address the issue of economic fluctuations,asnhe consider some departure from
the Walrasian competitive market structure. In,faonhsidering that the generation of
knowledge is subject to entropy, we are introdua@rignd of inefficiency that is able
to support the existence of cycles.

The endogenous cycles' literature was introducedVieglio (1979), Stutzer
(1980), Benhabib and Day (1981), Day (1982) anch@mreont (1985), in the context
not only of intertemporal optimal control modelstbalso under overlapping
generations frameworks. This work has gained sdmagth with the discovery that
under increasing returns or a strong externalifgotfin production, the standard one
sector growth model with the consideration of talkour-leisure trade-off is able to
generate endogenous fluctuations [see, e.g., @misand Harrison (1999), Schmitt-
Grohé (2000), Guo and Lansing (2002) and Coury Wheh (2005)]. Despite the
relevance and intuitive appealing of the endogermusness cycles literature, this
continues to be somehow marginal relatively totth@ main strands of thought about
business cycles: the Real Business Cycles theods the Keynesian view of
incomplete markets and nominal rigidities.

In this paper, we intend to contribute to the &tare on endogenous cycles, but
introducing a new source of fluctuations, whichas,stated, the presence of entropy
in the creation of knowledge. The new assumptiowadsked out under neoclassical
and endogenous growth scenarios; these maintainessential features in terms of
the characteristics of the growth process, busébected parameters values the trends
of growth are replaced by more realistic fluctuasi@round those trends of growth.

The remainder of the paper is organized as follo8ection 2 studies the
dynamics of the accumulation of knowledge underogyt Section 3 introduces the
knowledge rule in a neoclassical growth framewarlq section 4 considers the same
rule in a setup of endogenous growth. Finally, ieact is destined to a short
conclusion.

2. Entropy and Knowledge

Consider ﬁt a non-rival knowledge variable necessary to predacman
capital. This variable will be integrated into gitbveéetups along the next two sections.
In this section, we define and study a rule thatrabterizes its movement over time.
A production function for knowledge is assumefih,) = Bh”, where B >0 and

n>0; we leave open the possibility of decreasing,stamt or increasing marginal
returns in the generation of knowledge. If one @ers that this type of knowledge is
subject to a conventional process of depreciatmsblescence, thepx 1 implies that

h, converges to a constant value (zero growph)l means a positive constant growth

long run outcome, ang>1 is associated with an unstable outcome.

Instead of a simple depreciation / obsolescenceegg we assume that the
knowledge variable is subject to entropy, as definethe introduction. Therefore, we
take the following rule for the accumulation of kvledge over time,



h.. —h =Bh” -dh Inh,, h, given (1)

where 0 is the entropy parameter. Through entropy, we hiaveduced a nonlinear
component in the process of accumulation of knogdedavhich will have a dramatic
impact over the long term behaviour of the endogeneariable. The dynamics of
equation (1) can be studied locally or globally. WWegin with a note about local
dynamics.

Consider first the particular cage=1; the constant returns case is highlighted
separately because it is the only one that allawsfstraightforward computation of
the steady state and for an explicit stability ledn the presence of constant returns,

the absence of entrop)cf( 0) would mean thathI would not assume a constant
steady state value; instead, the variable wouldvgrb a constant positive ra1B;
when one introduces entropy in the process of kedgé creation, one will observe

that the entropy term implies an inefficiency thay transform, for some parameter
values, the constant growth process into a prooésgero growth (and, thus, a

constant equilibrium value foh,) or even into a process of periodic or a-periodic

motion. Nevertheless, this last possible outcommtscaptured by a local analysis. In
what concerns local stability, proposition 1 sysihes the dynamic nature of (1).

Proposition 1. The knowledge accumulation difference equation with entropy
and constant marginal returns has a unique steady state point. This point is stable for

0<2: instability prevails for d>2:and & =2 corresponds to a bifurcation point.

Proof: Let G(ﬁt) =1+ I§)Elﬁ —5ﬁ Inﬁ. The steady state value d?[[ is
found by soIvingG(ﬁ) = ﬁ in order to the endogenous variable. In a stréoghvard

way, one findsh” =e?'® to be the unique steady state point. To inquiratidnd of

stability underlies h*, one computes the derivativ@G(ﬁ)/aﬁ‘ﬁ_ﬁ* =1-0.

Consideringg >0, that is, that positive entropy exists, we justéhdo impose
1-0 >-1 to guarantee that the derivative lies inside thet wircle; as a
consequence, stability will requii@ < 2. Conversely,0 > 2 implies instability. The

value & = 2 indicates a point of transition between stable @mstable areas, and thus
respects to a point of bifurcati®n

AIIowmg for a parameten different from 1, we cannot find an explicit steady
state value forhI this is the solution oh" hf "In h B/J . The stability result is
given by proposition 2.

Proposition 2. The knowledge accumulation difference equation with entropy is
2—5~ 2—5~ 2—5~
stable for h™ <e®? unstable for h™ >e®”? and h™ =e®”? respectsto a
bifurcation point.

Proof: Consider a generiG function, including the possibilities of decreagin
constant and increasing return§&(h) =Bh” +h —3Jh Inh,. Computing the



derivative, 6G(ﬁ)/0l‘1‘ﬁ_ﬁ* =1-9 - @-n) BInh". Note that in the present case,

we have to consideh” >1, in order to guarantee thinh” >0, a condition that is
required for a reasonable steady state result fwticresponds to a positive value of
the knowledge variable). Note also that the casdiet in proposition 1 is just a
particular case of the equation here in appreciaiad, thus, assuming=1 the above
derivative reduces to the one in the precedenysaisal

2-3
Stability requires1-J —(L-7)@Inh" >-1, what impliesh’ <e®”??
2-3
Instability will be given by the symmetric conditioh” > e®”? | and the bifurcation

2-0
result corresponds to the border clise= e* 7 m
One can further explore the local properties ofrtiael, by studying in more

detail the nature of the bifurcation point. This dse defined as the point in which the
2-6

following combination of parameters hoIdéIe(l_”)jGi_—d- Assuming a
/)

constant value for one of the parameters, one caw th the space of the other
parameters a bifurcation line that divides the @reh stability and instability.
Consider, as an example, that0.5; figure 1displays the bifurcation line and the
regions of stability / instability in the spacB (0 ).

In figure 1, the region of stability§| is located below the bifurcation linbif),
while the region of instabilityl) is located above this line. To generalize thelltes
one presents the same graphic as in figure 1, nghlighting different bifurcation

lines for different possibilities regarding the walof 77 (figure 2.
Figure 2 is illustrative about the nature of thitmation. For constant returns in

the accumulation of knowledge, the bifurcation @& dependent oB (only on 5).
Decreasing and increasing returns mean differepiesl of the bifurcation line; in the

first case, this is a negatively sloped curve ia Hpace 65') and it becomes

positively sloped forp>1. In either case, the region of stability will &de below the
line.

The local stability analysis of equation (1) halswaéd to understand how the
consideration of entropy changes the dynamics sfngle accumulation process.
Without entropy, a stability result7€1) or an instability outcomen&l) would
characterize the dynamics of (1) independentlyhef walue of other parameters (in

particular, §). With entropy, independently of assuming decragsiconstant or
increasing returns, a bifurcation that separatgioms of stability and instability is

always identified. The bifurcation will not depeond the productivity paramete8
only in the special case of constant marginal nstumherefore, except faj=1, the

value of B is decisive for the stability result that is ob&dl, alongside with the value
of the entropy parameter. Wher 1, this is indeed a special case because staisility

determined only by the fact that is above or below 2.

Local analysis gives important guidance about tiadity properties of the
model. Nevertheless, this analysis cannot captoneesfundamental features of the
dynamics of (1). To be precise, one has to engage global analysis, which will
evidence that the unstable region does not impbesgarily a divergence towards



infinity; periodic and a-periodic motion is foun@lobal dynamics can only be
understood through numerical examples and are rbeteealed if analyzed

graphically. The following set of figures allowsrfa thorough understanding of the
dynamics of (1.

We begin by presenting the areas of stability argfability identified in the
local analysis, from a global analysis point ofwieThree figures are drawn, for
different values of; (figure 3for 7=0.5; figure 4for n=1; and_figure Sor 7=1.5). In
what concerns the stability area, the local anglyssults are confirmed, but the
unstable region does not translate immediatelywargence towards infinity; after the
bifurcation, the system undergoes a phase of perimgtles of doubling order and
chaos before arriving to the divergence result.

With the global analysis, we expand the possibiitylong term outcomes for
the time evolution of the knowledge variable. Tm®Wledge variable can be subject
to endogenous fluctuations as a result of intrauy@ntropy (recall once again that
without entropy we would have stability under desiag returns and instability
otherwise).

To better understand the properties of (1), maimithe regions where cycles of
various orders arise, a set of other graphicalesgprtations are shown. Figures 6 and
7 present bifurcation diagrams; in both figuresatia to different parameters, it is
clear the period doubling route to chaos, whichuocedn the areas identified in
previous figures. Figures 8 and 9 use the samef ggtrameters values to characterize
a situation of chaos. In figure Be draw a phase diagram, where chaotic motion is
clearly identified as a result of the hump-shapednf of the relation between the
knowledge variable in two consecutive time momeRigure 9displays the time
series of the knowledge variable in the long ruite(al,000 observations). Finally,
figure 10 resorts to the most usual measure of chaos to &sigehits presence.
Lyapunov characteristic exponents (LCEs) measuee ekponential divergence of
nearby orbits; a positive LCE is synonymous of diemce of nearby orbits or
sensitive dependence on initial conditions, a phesrmn that is generally identified
with chaotic motion. In the figure in appreciatiomge find a positive Lyapunov

exponent for the same values of param&efor which we have identified before the
presence of no fixed point or any kind of periodjcles (this figure can be compared
with figure 7).

3. Neoclassical Growth

Assume that knowledge variabﬁ; is an input into the production of human

capital. The human capital per capita varialble,evolves over time according to
accumulation rule (2),

h., —h =BO@-u)h]’ th¢ -, h,given )

In (2), B>0 is a productivity indexy is the share of human capital used in the
production of physical goods (and thusi Xepresents the share of human capital
associated with the production of this form of talpi and&>0 is a depreciation rate.

% The various figures relating global analysis arawth using IDMC software (interactive
Dynamical Model Calculator). This is a free softewarprogram available at
www.dss.uniud.it/nonlineaand copyright of Matriji Lines and Alfredo Medio.




Two particular cases of equation (2) are studiedhis section, we concentrate in the
absence of long term positive endogenous growthdtbwth process has neoclassical
features), while in section 4 an endogenous greethp is assumed. The difference in
analysis is determined by the elasticity paramefiensd{.

In this section, we take constant returns to soalthe production of human

capital (6 &1 and{=1-6); for the circumstances described in section @lich ﬁ

had a long run stability solution (fixed point cgrfndic or a-periodic motion around
the steady state point), the model displays nesiclalsfeatures, in the sense that there
is not a process of sustained positive growth isaendogenously determined.
Endogenous variables will tend to long run constahties or they will converge to a
long term position where endogenous fluctuationsiad a constant mean persist over
time.

The endogenous growth model of the next sectiorsiders the knowledge
variable as an externality over a constant retuegsiation of human capital
accumulation &1 andZ>0). In this case, the growth problem will exhibitoag run

constant growth rate (fon, converging to a fixed point), or a long run scémavith

growth cycles, i.e., economic aggregates will grtwan average constant rate, but
endogenous fluctuations will characterize the motibthe growth rate (and not only
the motion of the capital and consumption aggregitemselves).

Let us concentrate for now in the ca&é(0,1) and{=1-6. Consider a standard
utility maximization intertemporal problem under enfinite horizon and a discount
factor <1,

MaxY U () 5 A

The utility function is assumed under a simple ewecform,U(c,) =Inc,, wherec,

stands for per capita consumption, and problemig3jubject to three constraints;
these are the knowledge equation in (1), the hucaguital equation in (2), and the
third is a physical capital accumulation constraimith a Cobb-Douglas production
function that exhibits constant returns to scale,

K., —k = Ak? [uh )" —c, - Xk,, k,given (4)

The physical capital variablé;, is a per capita variable, parameterO is the
productivity index in the final goods sectar,](0,1) represents the output — physical
capital elasticity, and>0 is the depreciation rate (that, for simplicity,donsidered
the same as in the human capital constraint).

Solving the optimal control problem (3) subjec(19, (2) and (4), we find, after
the computation of optimality conditions, the felimg equation translating the time
evolution of the consumption variable,

l-a
¢ =pc,J1-0+ aA[El:(_hIJ 5)

t

In order to simplify the dynamic analysis, we make following assumption:
the initial level of consumption chosen by the emgntative agent is already the



steady state levelg, = C . Under this assumption, one can establish, thrqGyha
linear relation between the capital variables, Wwhisg

aA 1/(1-a)
ki, =u Eﬁm} [, (6)

In section 2, one has observed that an explicitliogum value of ﬁt is

attainable only fors=1. With this parameter value it is straightforwathde
computation of steady state values for our vari@argables. The following results are
obtained,

A1)
h :[EE(l—u)HEé[(l‘g)m"’q ()
o
1/(1-a) 1/(1-6)
t = O'—A E _N\O rala-0)B/E 8
uiiphs)  amutete] o

C* _ Al/(l_a) a al(l-a) ) 5 a 1/(1-a)
1/ B-(1-0) 1/ 8- (1- )

-6
EEE M- u)a @[(1—9)[3/5 }
o)

(9)

In expressions (7) to (9) some meaningful resutts easy to identify: for
instance, technologyA(andB) contribute to higher steady state accumulateatifies
of both forms of capital, while higher depreciationplies a fall in accumulated
capital and in consumption.

The long run outcomes of capital (physical and minae determined by the

behaviour of the knowledge variablda(. We have seen, in section 2, that such

behaviour is directly influenced by the valuesglfé ands; . Therefore, steady state

results (7) and (8) are not accomplished in evémyumstance. To illustrate a few
possible equilibrium results, we draw the evolutaroutput in the long term, under
different combinations of parameters values (figuté and 12). We just mention the
values of the parameters in the knowledge equagivan that the otherg\(B, 6, u, 9,
a and B are not relevant from a qualitative point of viewVe take

B =10 = 225andy = 05 (figure 1) and B = 05,0 = 2.7andy = 125 (figure
12). The output variable that is represented cornedpdo the income generated by

the final goods production function, that is,
al(l-a)
= A a u 1-a - Al/(l—a) m a )
y, = Ak [uh) UB-a-0 [h,

We conclude that in a neoclassical growth modéh wittropy in the creation of
knowledge endogenous business cycles characterizendgime evolution of output
emerge, under some circumstances that define tlecess of knowledge
accumulation.



4. Endogenous Growth

The model in section 3 presented neoclassical fesitin the sense that
economic aggregates displayed zero average grosvth lng run solution. Now,
considering@=1 and{>0, the knowledge variable is introduced in the glomodel
as a positive externality over the accumulatiohuhan capital, which is subject to a
constant marginal returns technology. Therefore, tftodel has endogenous growth
features, meaning that capital and output will gaiva positive (constant in average)
growth rate. With the new assumption, the inclugbthe knowledge variable implies
endogenous fluctuations in the growth rates.

Consider the same problem as in section 3, soetipadtion (5) is once again
found through the computation of first order coiwths. Here, we define variables that
do not grow in the long run; these are, followirmneentional endogenous growth
analysis [see, e.g., Barro and Sala-i-Martin (1p2bonsumption — physical capital
ratio, ¢, =c, /k,, and a physical capital — human capital ratg,=k, /h,. From
(2), (4) and (5) we obtain,

_ 1-a
%ﬁ'gdﬂ S+ anllul ) ] [, (10)

Adfu/ )™ -y, +(1-0)

_Afu/ )™ -y, +(1-9)
Wiy = BH].‘U) Eﬁ"]‘t( + (1_5) B’% (11)

Steady state value$~ and w , which can be determined from (10) and (11),
will be constant values for a constant equilibriuﬁknowledge,ﬁ*. Once again, to
obtain long run time trajectories that are, in ager, constant, we take a simplifying
assumption regarding consumption, which in thigeag/, =¢" . To understand the
dynamics of the capital ratio, we present__ figure , 13for
B= 0.5,5 = 2.7andn = 125. For these values, we know that chaotic motion is

present.

Figure 13 is drawn for a capital ratio; each onéhefcapital variables, and also
the per capita output, will grow at a positive réteat in average is constant); figure
14 illustrates precisely the endogenous growth cheraf the model by representing,
for the same set of parameters values, the grathof the income variable,

Yiir Wi :(C‘%ﬂja dqul 1=
Y, @, h

= [AEQu/a%)“’ -y + (1—5)]” EﬁB [(1-u) [IﬁtZ + (1—5)]1_” -1

Looking at figure 14, we understand the relevaricthe eventual presence of
entropy in the generation of knowledge. This miglaid to endogenous growth cycles
that nevertheless do not disturb the positive dgnowrend (thus, turning the
endogenous growth paradigm more realistic).



5. Final Remarks

We have assumed a knowledge variable with spee&tlufes. Knowledge is
generated through an accumulation process, bstaiso subject to entropy: larger
quantities of this input imply, after some poinbat the accumulated amount of
knowledge begins to decline. The impact of thiscpes of knowledge accumulation
over the growth of the main economic aggregatelsdepend on the way this variable
is linked with the generation of human capital.

If the knowledge variable is included in a humapitzd production function
with constant returns to scale, the growth model loa interpreted as a neoclassical
growth setup: capital and output will grow at agderm zero rate (on average), that
is, one can present long term time series for tom@mic variables that will have a
constant mean. These time series are not necgseariktant over time; for some
parameters values, periodic and chaotic cycles ar@ined. Under this setup,
endogenous cycles can coexist with neoclassicaltgro

If the knowledge variable emerges as an externalitgr the production of
human capital, the endogenous growth attributetheforiginal growth model are
maintained, in the sense that capital and outmw gt positive rates in the long term.
These rates are constant over time for some pagasnedlues but for others they will
fluctuate around a constant value. Thus, in the ch®ndogenous growth, entropy in
knowledge creation implies endogenous cycles chenamg the growth rates of
capital and output.

In synthesis, entropy in knowledge can be undedsésoa source of endogenous
business cycles, and it was introduced in growthdet® without changing the
fundamental properties of the growth process, whigmains, respectively,
neoclassical or endogenous.
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Figure 2 Bifurcation lines for different values of 7.
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Figure 4 Global Dynamics in the parameters space (/7=1).
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Figure5 Global Dynamics in the parameters space (/7=1.5).
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Figure 7 Bifurcation diagram (ﬁ, I§) (5’ =27,n=125).
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Figure 8 Phase diagram (B = 05;0 = 2.7;7 = 125).
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Figure 9 Long runtime path (B = 05,0 = 2.7;n = 125).
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Figure 10 Lyapunov characteristic exponents (ﬁ, I§) (5 =27,n=125.
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Figure 11 Long run time path of the output variable in the neoclassical model
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Figure 12 Long run time path of the output variable in the neoclassical model
(B=050 =27,n=125).
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Figure 13 Long run time path of the capital ratio in the endogenous growth

model (B =059 = 27:7 = 125).
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Figure 14 Long run time path of the output growth rate in the endogenous
growthmodel (B =05;0 = 27;n =125).
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