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Abstract: The housing market exhibits a puzzling yet repetitive seasonal boom and
bust cycle where prices and trade volume rise in summers and fall in winters. This paper
presents a search model that analytically generates the observed deterministic cycle.
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1. INTRODUCTION

Every year the residential real estate market goes through a boom and bust cycle. In
summers prices tend to rise, trade speeds up and the trade volume goes up. In winters the
opposite happens; prices fall, it takes longer to sell and the trade volume falls. What is puzzling,
the cycle is highly predictable and repetitive, which seemingly de�es the no-arbitrage condition;
hence di¢ cult to explain with the standard durable asset models.1

This paper presents a search model, based on two pillars, addressing this puzzle. First, the
market is decentralized and transactions occur via search and matching. It takes time to locate
and investigate a house and not every house is a good match for every customer. Second, the
search market is �thick�in summers and �thin�in winters, which means that better matches are
formed in summers.2

In this setup we analytically show that the market systematically �uctuates between �hot�
and �cold�periods as observed in reality. In a thick market higher quality matches are formed,
so buyers are willing to pay more. This is why prices rise in summers. In addition, agents
cannot transfer the additional value across seasons, so they have strong incentives to trade
while the market is still thick, which is why trade speeds up in summers. The short time to
sale in summers signals that prices could be even higher. Indeed we show that if winter never
came� that is if the market remained thick throughout� then the equilibrium price would
be higher. With winter in sight, sellers do not raise prices su¢ ciently as they want to take
advantage of the summer market while it lasts.
It is also easy to understand why agents prefer to trade immediately� assuming a suitable

match is found� rather than waiting for the �favorite�season because there is no guarantee to
�nd a better match in the next season. In equilibrium sellers are strictly better o¤ trading

1Ngai and Tenreyro [7] empirically document this systematic boom and bust cycle in the UK (for every year
between 1983-2007) and in the US (for every year between 1991-2007). They, too, present a setup generating
deterministic cycles, but the results are based on quantitative simulations; not analytic. A related paper is
Krainer [6]. However in his setup if the persistence parameter is set � = 0 so that seasons alternate determin-
istically then one obtains the wrong cycle; the market is cold in the summer and hot in the winter. See also
Ferraris and Watanabe [2].

2Goodman [4] �nds that the construction of new houses and sales of existing properties are about twice
as high in summers as in winters. Home buyers, too, tend to move in summers. He �nds that about 1/3 of
all moves occur in June, July and August, roughly twice the proportion occurring in December, January and
February. While the reasons for moving in the summer are clear for households with school-age children or
newlyweds, remaining households have nearly identical seasonal patterns. The seasonality in household moves
clearly coincides with the seasonality in construction and home sales, which indicates that the market is thick
in summers and thin in winters.
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immediately; buyers, on the other hand, are left indi¤erent between purchasing and walking
away.

2. MODEL

The economy consists of a continuum of risk neutral buyers and sellers. Each seller has a
house from which he derives no utility and each buyer seeks to purchase one. Buyers receive
periodic housing services starting the period after the purchase and continuing forever. Time is
discrete and in�nite and deterministically alternates between two seasons, summer and winter;
if the current season is summer then the next one is winter, and so on. Agents meet with
some time invariant probability � 2 (0; 1) and after inspecting the house, a buyer realizes
his valuation v 2 [0; 1], a random draw from a cdf F (�) :3 Two buyers may di¤er in their
valuations for the same house, which captures the notion that buyers have idiosyncratic tastes
and preferences. To generate seasonality we assume that the search market is thick in the
summer and thin in the winter. The following assumption captures this notion.

� Assumption 1. The cdf in the summer, Fs, likelihood ratio dominates the one in the
winter, Fw; that is fs (v) =fw (v) is increasing. In addition, the "iso-probability curve"
� (v) � F�1w � Fs (v) : [0; 1]! [0; 1] is increasing and strictly convex.4

vs

vw

Figure 1 �Obtaining the Iso-Probability Curve from the cdfs.

Likelihood ratio dominance implies �rst order stochastic dominance (FOSD), Fs (v) < Fw (v) ;
as well as hazard rate dominance, hs (v) < hw (v) ; where h = f=S: Given a threshold valuation
v; the expression 1� F (v) is the probability that the buyer encounters a house better than v:
FOSD implies that in summers it is easier to �nd a suitable match; alternatively, controlling
for the probability of sale, it says in summers higher quality matches are formed. This roughly
captures the thin-thick argument. However FOSD alone is not enough to obtain what we are
after; other assumptions are also needed.
The curve � is obtained by drawing horizontal lines across the cdfs and tracing combinations

of vs and vw satisfying Fs (vs) = Fw (vw) ; see Figure 1: Any point inside � (shaded area) has
Ss > Sw saying that buyers are more likely to purchase in the summer. For clarity, the points
on the border of � are denoted with capital letters. The slope of � equals to fs (Vs) =fw (Vw) :
Strict convexity ensures that there exists a unique point A =

�
V s; V w

�
2 (0; 1)2 on � such

that fs
�
V s
�
= fw

�
V w
�
. Furthermore (i) fs (Vs) > fw (Vw) for Vs > V s and Vw > V w; (ii)

3This assumption is adopted by Jovanovic [5], Wolinsky [8], Krainer [6] among others.
4The strict convexity of � is added as an extra assumption, but under certain circumstances the likelihood

ratio dominance is a su¢ cient condition for it; for instance if f 0s � 0 and f 0w � 0 with one inequality strict.
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fs (Vs) < fw (Vw) for Vs < V s and Vw < V w:5

The next assumption is needed mainly for technical purposes (second order condition and
the uniqueness of the equilibrium).

� Assumption 2. The survival function Sx = 1 � Fx is log-concave, that is f2x (v) +
f 0x (v)Sx (v) > 0; 8v and x = s; w:6

The trading mechanism is price posting and prices are indexed by the season.7 If agents
trade at px then the seller receives payo¤ px; the buyer starts receiving dividends v; both agents
leave the search market and are replaced by clones (this is needed to maintain stationarity).
Agents who do not trade receive zero and continue to the next round to play the same game.

2.1. Buyers

Let 
x denote a buyer�s value of search in season x = s; w:


x = �
R 1
0
max

n
v

1�� � px; �
ex
o
dFx (v) + (1� �)�
ex

With probability � he meets a seller. If he purchases he gets v=(1 � �) � px:8 If he
walks away he obtains �
ex which is the discounted value of search in the next season. With
probability 1�� he does not encounter a seller and moves on to the next season. Manipulation
yields 
x = ��x + ���ex; where � = �=f(1� �)2 (1 + �)g and

�x =
R 1
0
max fv � (1� �) (px + �
ex) ; 0g dFx (v) :

For any given price px there is a threshold reservation value vx satisfying

vx = (1� �) (px + �
ex) ; (1)

which is where buyers are indi¤erent between purchasing and searching. So the decision is
simple: purchase if v � vx and keep searching otherwise. Obviously not all meetings result in
trade; for trade to occur the house must turn out to be a good match, which happens with
probability Sx (vx). Inserting (1) into �x and using integration by parts one gets


x = �
R 1
vx
Sx (v) dv + ��

R 1
vex Sex (v) dv:

Substituting 
x into the indi¤erence condition (1) one gets the indi¤erence curves in the
summer and the winter; see Figure 2. The upward slope means that the higher the price px

5To see this note that dF�1w � Fs (Vs) =dVs = fs (Vs) =fw (Vw) :The function is convex and lies underneath
the 450 line cutting it at the origin and at (1; 1) : The claim follows from the Intermediate Value Theorem. Note
that the strict convexity of � ensures that V s and V w are strictly between zero and one.

6Log-concavity of the survival function is a standard and mild assumption; many well known distributions
including Uniform, Normal, Exponential, �2 distributions are log concave� see Bagnoli and Bergstrom [1] for
details.

7 In reality buyers typically attempt to negotiate discounts o¤ the posted price; see for instance Gill and
Thanassoulis [3], however due to space constraints we assume that the transaction takes place at the posted
price.

8The buyer receives v starting the period after the purchase and continuing forever; the present value of the
stream equals to v= (1� �) :

3



the higher the associated vx and therefore the smaller the chance of a trade.

Figure 2a Figure 2b

2.2. Sellers

A seller quotes px in season x taking as given the indi¤erence condition (1). His value of
search equals to

�x = �Sx (vx)max fpx; ��exg+ f1� �Sx (vx)g��ex:
With probability �Sx (vx) he meets a buyer who agrees to purchase; so the seller obtains
px.The condition max fpx; ��exg guarantees that the seller is willing to trade today rather than
waiting for the next season. With the complementary probability trade does not materialize,
so he moves to the next season. Conjecturing px > ��ex (to be veri�ed) the seller solves

max
px

�x subject to (1)

taking 
x and 
ex as given. The FOC is given by
px � ��ex = Sx(vx)

fx(vx)(1��) :

If Sx is log concave then the second order condition holds; hence the FOC yields a max-

imum.9Straightforward algebra yields the pro�t maximizing prices Ps and Pw that a seller
ought to post (o¤er curves):

Px =
Sx(vx)

fx(vx)(1��) +
�S2ex(vex)
fex(vex) +

��S2x(vx)
fx(vx)

: (2)

Note that the FOC implies that Px (vx; vex) > ��ex since the expression Sx=fx is positive for all
vx: This veri�es the earlier conjecture and ensures that the seller is willing to trade immediately
rather than waiting.

Lemma 1. Di¤erentiating (2) yields dPx=dvx < dPex=dvx < 0; for x = s; w.
The Lemma says that o¤er curves are downward sloping (Figure 2), which re�ects the fact

that sellers face a trade-o¤ between revenue and liquidity. For instance, in panel 2a for low
values of vs the probability of a sale is high, so sellers can a¤ord to post high; however as vs
rises, liquidity concerns start to kick in and prices fall. The relationship jdPx=dvxj > jdPex=dvxj
says that a change in the current season�s vx a¤ects the current season�s price a lot more than
the other season�s price. These inequalities will be useful later on.

9The proof is skipped due to the space constraint.
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2.3. Equilibrium

Simultaneous intersections of the o¤er and indi¤erence curves determine the equilibrium.
More formally, a steady-state symmetric equilibrium is characterized by the pairs v� = (v�s ; v

�
w)

and p� = (p�s; p
�
w) satisfying indi¤erence (1) and pro�t maximization (2).

The equilibrium exits and it is unique. The proof amounts to showing that there exists a
unique pair v� satisfying

�x (vs; vw) = Px (vs; vw) + �
ex (vs; vw)� vx
1�� = 0; for x = s; w:

In equilibrium the di¤erence function D � �s ��w must equal to zero as well. It is given by

D (vs; vw) = Ps � Pw| {z }
T1(vs;vw)

+� (
w � 
s)�
vs � vw
1� �| {z }

T2(vs;vw)

:
(3)

For expositional purposes we will focus on �w and D (instead of �w and �s): Closed form
expressions for T1 and T2 are provided in the appendix, see (4) and (5).

Lemma 2. The function �w decreases in both arguments vs and vw while its locus, l�; is
downward sloping wrt vs: Functions T1 and D decrease in vs and increase in vw: Their locuses,
� and lD respectively, slope upwards wrt vs:

The equilibrium v� lies at the intersection of l� and lD: The Lemma says that one curve
slopes downward while the other slopes upward (see Figure 3). The only task that remains
is to verify that lD < l� when vs = 0 and lD > l� when vs = 1: This would guarantee that
they intersect once in the (0; 1)2 space, proving the equilibrium exists and is unique. This is a
straightforward but a somewhat lengthy process; given the space constraint we skip this step
and move on to discuss hot and cold markets.

3. HOT AND COLD MARKETS

Propositions 1 and 2, main results of the paper, analytically show that the market is hot
in the summer (high price and high trade volume) and cold in the winter (the opposite). We
�rst carry out the technical analysis and then o¤er some intuition.

3.1. Analysis

Proposition 1. The equilibrium price in the summer is higher than the one in the winter,
i.e. p�s > p

�
w:

The term T1 is the price di¤erence function and its locus � is the iso-price curve. Lemma
2 says that � is upward sloping; see Figure 3. Note that any point lying to the left of � has
Ps > Pw; which is what we are after.10 Below we show that the entire locus of D = 0, which
of course contains the equilibrium point v�, lies to the left of �; hence the proposition. These
arguments are made precise below.

Proof. Fix some vw and let v0s and v
00
s satisfy T1 (v

0
s; vw) = 0 and D (v

00
s ; vw) = 0. Note that

v0s must exceed vw. To see why substitute vs = vw = v into the expression for T1; given in the
appendix by (4), to obtain

T1 (v; v) =
1+���Ss(v)

hs(v)
� 1+���Sw(v)

hw(v)
> 0;

10To see this �x some (bvw; bvs) on � and note that T1 (vs; bvw) > 0, Ps (vs; bvw) > Pw (vs; bvw) for any vs < bvs
since @T1=@vs < 0: Similarly T1 (bvs; vw) > 0 for any vw > bvw since @T1=@vw > 0:
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which is positive because hs (v) < hw (v) and Ss (v) > Sw (v) for all v. The former relationship
is the hazard rate dominance and the latter is the FOSD: In the proof of Lemma 2 we have
@T1=@vs < 0. So, if T1 (v0s; vw) = 0 then v0s > vw: This, in turn, means that T2 (v0s; vw) < 0.
The expression for T2, given in the appendix by (5), is indeed negative because v0s > vw and
FOSD.
Since T1 (v0s; vw) = 0 and T2 (v

0
s; vw) < 0, their sum D (v0s; vw) is negative. Lemma 2 says

that D decreases in vs. This means that if D (v00s ; vw) = 0 then v
00
s < v

0
s and therefore

T1 (v
00
s ; vw) > 0, Ps (v

00
s ; vw) > Pw (v

00
s ; vw) :

To see why p�s > p
�
w substitute v

�
w for vw: The arguments above imply that T1 (v

�
s ; v

�
w) > 0,

p�s > p
�
w because D (v

�
s ; v

�
w) = 0: This completes the proof.

Fig 3: Locuses, Iso-Probability and Iso-Price

The next proposition establishes that trade is more likely in the summer.

Proposition 2. The equilibrium probability of sale in the summer is higher than the one
in the winter, i.e. Ss (v�s ) > Sw (v

�
w) :

Proof. The arguments below are best understood with the aid of Figure 3. The objective
is to show that the equilibrium v� lies inside the iso-probability curve �:
Step 1. We show that point A =

�
V s; V s

�
on � lies below lD as well as l�: To start, note

that the iso-price curve � intersects with � at point A. To see why recall that at A we have
fs
�
V s
�
= fw

�
V w
�
and Ss

�
V s
�
= Sw

�
V w
�
; therefore hs

�
V s
�
= hw

�
V w
�
: Substituting this

equalities into (4) yields T1
�
V s; V w

�
= 0; which means that A lies on �: Since the entire �

curve lies below lD, so is point A.
Now we show that A lies below l�: Substitute

�
V s; V s

�
into �w and simplify to obtain

�w
�
V s; V w

�
=

1

1� �

(
1� � + �Sw

�
V w
�

hw
�
V w
�
(1� �)

� V w

)
| {z }

H(V w)

+ ��

�Z 1

V s

Ss (v) dv + �

Z 1

V w

Sw (v) dv

�
:
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We want to show that �w
�
V s; V w

�
> 0. The second term is positive but the term H

�
V w
�
,

which decreases in V w; is negative when V w = 1; so the sign of the sum may be ambiguous.
Recall that V w itself is a function of the cdfs satisfying Fs

�
V s
�
= Fw

�
V w
�
and fs

�
V s
�
=

fw
�
V w
�
; it is not a free variable. The strict convexity of � ensures that V w < 1: So �x some

V w < 1 and note that there exists a unique �
�
V w
�
< 1 such that H

�
V w
�
� 0 for all � � � i.e.

if agents are patient enough. This su¢ cient condition ensures that �w
�
V s; V w

�
> 0:11 Recall

that �w falls both in vw and vs whereas its locus is downward sloping in the vs � vd space.
This means that if V s is kept constant then �w

�
V s; vw

�
= 0 for some point vw greater than

V w: Alternatively if V w is held constant then �w
�
vs; V w

�
= 0 again at a point vs greater than

V s: Since l� is downward sloping the arguments imply that point A lies below the locus.
Step 2. The curve l� is downward sloping whereas lD is upward sloping and point A lies

beneath both. This means that their intersection point v� must lie above point A; that is
v�w > V w; so the region below V w can be dismissed as it cannot contain the equilibrium. Now
we will show that along the border of � that lies above A the function D is negative, that is
D (VsVw) for all (Vs; Vw) > A =

�
V s; V w

�
:

Recall that fs (Vs) > fw (Vw) for all (Vs; Vw) > A (from Assumption 1). Along such
points the expressions T1 is negative. To see why substitute (Vs; Vw) into (4) use the fact that
Ss (Vs) = Sw (Vw) to obtain

T1 (Vs; Vw) = f1 + � � �Ss (Vs)gSs (Vs)
n

1
fs(Vs)

� 1
fw(Vw)

o
< 0;

which is negative since fs (Vs) > fw (Vw). Similarly focusing on (5) it is easy to see that
T2 (Vs; Vw) < 0 because Vs > Vw and FOSD. It follows thatD (Vs; Vw) < 0 becauseD = T1+T2.
Since D < 0 along the border of � the equilibrium point must be inside �. To see why �x

Vw and note that D = 0 for some vs < Vs since D decreases in vs: Alternatively �x Vs and note
the D = 0 for some vw > Vw: Finally, since (v�s ; v

�
w) lies inside � we have Ss (v

�
s ) > Sw (v

�
w) :

This completes the proof.

3.2. Discussion

The fact that Ss (v�s ) > Sw (v
�
w) implies that in summers the expected time on the market

is short and the trade volume is high. In addition since p�s > p
�
w we have a "hot market" in the

summer (high prices, quick sales, high volume) and a "cold market" in the winter (low prices,
slow sales, low volume).
In the thick market better matches are formed, which is why prices go up in the summer.

In addition, agents have no means of transferring the extra value across seasons, so they have
strong incentives to trade while the market is still thick; hence trade speeds up in the summer.
The short sale duration in summers indicates that prices could be even higher. Indeed, with
the winter in sight and afraid of not being able to take advantage of the thick summer market,
sellers do not raise prices as much as they want. The simulation below con�rms this insight.12

Price Probability of Sale
Summer 6:22 0:39
Winter 6:10 0:22

If winter never came 6:31 0:36

11Alternatively one can put some structure behind the cdfs to pin down V w and then show that H is positive.
For instance �x Fs (vs) = vQs and Fw (vw) = vqw; where Q > q > 0 are positive real numbers: This family of
distributions captures a continuum of concave and convex combinations of cdfs and covers the entire [0; 1]2

spectrum, yet it is simple enough to characterize V w: Basic algebra reveals that V w = (q=Q)
Q

Q�q ; which
decreases in Q and increases in q. Furthermore limQ!q V w = e

�1 whereas limQ!1 V w = 0: Notice that

limQ!q H
�
V w

�
=

(1+���)(e�2)=e+�=e2
1�� > 0;

which means that H
�
V w

�
is positive for all Q > q; hence �w

�
V s; V w

�
> 0 for all Q > q:

12Based on Fs = v2; Fw = v; � = 0:5 and � = 0:9:
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If winter never came (Fw = Fs) i.e. if the market remained thick throughout the entire year,
then the equilibrium price would be even higher.

4. CONCLUSION

We have presented a search model that generates a deterministic boom and bust cycle.
Although the discussion so far revolved around the housing market, the model is applicable to
other search and matching settings, such as the used car market or, to some extent, the labor
market, that go through similar seasonal cycles.
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5. APPENDIX

Proof of Lemma 1. Observe that

dPx
dvx

= �Mx(vx)
1�� � ��Sx (vx) f1 +Mx (vx)g < 0 and dPx

dvex = ��Sex (vex) f1 +Mex (vex)g < 0;
where Mx (vx) = 1 + f

0
x (vx)Sx (vx) =f

2
x (vx) ; which is positive because of log concavity; thus

both derivatives are negative. Furthermore

dfPx�Pexg
dvx

= 1
1��2 � f�Mx f1 + � � �Sxg+ �Sxg < 0;

which is negative because Mx is positive. �

Proof of Lemma 2. Let l� (vs) = fvw : �w (vs; vw) = 0g be the locus of �w = 0: Its
slope wrt vs is given by (Implicit Function Theorem)

dl�
dvs

= �@�w

@vs
=@�w

@vw
< 0:

To see why the expression is negative note that

@�w

@vs
= @Pw

@vs
+ � @
s@vs

< 0;

which is negative because @Pw=@vs < 0 (Lemma 1) and @
s=@vs = ��Ss (vs) < 0: Similarly
one can show that @�w=@vw < 0; hence dl�=dvs < 0:
Now turn to the di¤erence function D. Recall that D = T1 + T2, where T1 and T2 are

de�ned in (3). Substitute for Ps; Pw; 
s and 
w and simplify to obtain

T1 (vs; vw) =
1

1�� �
n

1
hs(vs)

� 1
hw(vw) +

�
1��

h
Sw(vw)
hw(vw) � Ss(vs)

hs(vs)

io
and (4)

T2 (vs; vw) =
��
1��2 �

nR 1
vs
Fs (v) dv �

R 1
vw
Fw (v) dv

o
� 1+�(1��)

1��2 (vs � vw) : (5)

Let lD (vs) = fvw : D (vs; vw) = 0g be the locus of D = 0: Its slope wrt vs is given by

dlD
dvs

= �@fT1+T2g
@vs

=@fT1+T2g@vw
> 0:

The expression is positive because

@T1
@vs

= @Ps�Pw
@vs

< 0 and @T1
@vw

= @Ps�Pw
@vw

> 0 (Lemma 1),

@T2
@vs

= � 1
1�� �

n
1� ��Ss(vs)

1+�

o
< 0 and @T2

@vw
= 1

1�� �
n
1� ��Sw(vw)

1+�

o
> 0:

Note that in the second line the expressions inside the curly brackets are positive for all

parameter values. Using the same technique one can show that the locus of T1, given by
� (vs) = fvw : Ps (vs; vw) = Pw (vs; vw)g is also downward sloping since @T1=@vs < 0 and
@T1=@vw > 0: �
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