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Abstract

We consider the finite-time optimal portfolio liquidation problem for a von
Neumann-Morgenstern investor with constant absolute risk aversion (CARA). As
underlying market impact model, we use the continuous-time liquidity model of
Almgren and Chriss (2000). We show that the expected utility of sales revenues,
taken over a large class of adapted strategies, is maximized by a deterministic strat-
egy, which is explicitly given in terms of an analytic formula. The proof relies on
the observation that the corresponding value function solves a degenerate Hamilton-
Jacobi-Bellman equation with singular initial condition.

1 Introduction

A common problem for stock traders is to unwind large block orders of shares. These
can comprise a major part of the daily traded volume of shares and create substantial
impact on the asset price. The overall costs of such a liquidation can be significantly
reduced by splitting the order into smaller orders that are spread over a certain time
period. Thus, one possible question is to find optimal allocations for each individual
placement such that the expected overall liquidity costs are minimized. Problems
of this type were analyzed for various market models by Bertsimas and Lo [7],
Obizhaeva and Wang [12], and Alfonsi et al. [1, 2], to mention only a few.

Taking the expected liquidity costs as a target function, however, misses the
volatility risk that is associated with delaying an order. Almgren and Chriss [4, 5]
therefore suggested to replace the minization of expected costs by a mean-variance
optimization for sales revenues and they solved the corresponding optimization prob-
lem in the class of deterministic—or so-caled static—strategies; see also Almgren
[3]. Almgren and Lorenz [6] increased the class of admissible strategies by allowing
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for intertemporal updating and found that that intertemporal updating can strictly
improve mean-variance performance.

The proper economic motivation for mean-variance optimization stems from a
second-order approximation of an expected utility functional as explained, e.g., in
[11, p. 67]. We therefore propose to study directly the original problem of expected-
utility maximization, and we will do this in this note for exponential, or CARA,
utility functions. As an underlying market impact model we will use the same
model as Almgren and Chriss [4, 5]. This simple model has the advantage that
it often—and here in particular—allows for explicit computations, which makes it
popular among practitioners. It also reproduces many of the key features of real-
world portfolio liquidation and can display a number of highly interesting effects.
We refer in particular to its applications in the analysis of economic situations with
several competing traders as discussed in Brunnermeier and Pedersen [9], Carlin et
al. [10], and our previous paper [15].

Our main result states that for CARA investors there is surprisingly no added
utility from allowing for intertemporal updating of strategies, i.e., the expected
utility is maximized by a deterministic strategy, which is explicitly given in terms of
an analytic formula. In particular, the mean-variance maximizing strategy obtained
in [6] will actually decrease the expected value of the exact utility.

The proof of our main result, as given in Section 3, relies on the observation
that the value function of the problem solves a degenerate Hamilton-Jacobi-Bellman
equation with singular initial condition, which can be solved analytically. We can
thus apply verification arguments along with proper localization to deal with the
singularity of the value function.

2 Statement of main result

We consider a large investor who needs to sell1 a position of x > 0 shares of a risky
asset by time T > 0. The investor will thus choose a liquidation strategy that we
describe by the number Xt of shares held at time t and that satisfies the boundary
conditions X0 = x and XT = 0. We assume that t 7→ Xt is absolutely continuous
with derivative Ẋt, i.e.,

Xt = x +
∫ t

0
Ẋs ds.

In this note, we consider one of the standard models for dealing with the price impact
of such a liquidation strategy, namely the model introduced by Almgren and Chriss
[4, 5]. It is also the basis for optimal execution algorithms that are widely used in
practice. In this model, the incremental order Ẋt induces a permanent price impact
γẊt dt, which accummulates over time, and a temporary impact λẊt, which vanishes
instantaneously and only effects the incremental order Ẋt itself. This idealization of
instantaneous recovery from the temporary impact approximates reality reasonably
well as long as the time intervals between the physical placement of orders are
longer than a few minutes; see, e.g., Bouchaud et al. [8], Potters and Bouchaud
[13], and Weber and Rosenow [16] for empirical studies on resilience in order books

1The focus on sell orders is for convenience only; symmetric statements hold for the case of buy orders.
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and Obizhaeva and Wang [12] and Alfonsi et al. [1, 2] for corresponding market
impact models. When the large investor is not active, it is assumed that the price
process P follows a Bachelier model with volatility σ. The resulting stock price
dynamics are hence given by

Pt = P0 + σBt + γ(Xt −X0) + λẊt

for a standard Brownian motion B starting at B0 = 0 and positive constants σ,
γ, λ, and P0. At first sight, it might seem to be a shortcoming of this model
that it allows for negative asset prices. In reality, however, a typical time span
T for the liquidation of a block order will be measured in days or even hours so
that P0 À σ

√
T . Hence negative prices only occur with negligeable probability.

Moreover, on the scale we are considering, the price process is a random walk on an
equidistant lattice and thus perhaps better approximated by an arithmetic rather
than, e.g., a geometric Brownian motion.

We parameterize strategies as Xt = x− ∫ t
0 ξs ds with a progressively measurable

process ξ such that
∫ T
0 ξ2

s ds < ∞ and
∫ T
0 ξs ds = x. We assume in addition that our

strategies are admissible in the sense that the resulting position in shares, Xt(ω),
is bounded uniformly in t and ω with upper and lower bounds that may depend on
the choice ξ. Economically, there is clearly no loss of generality in doing so as the
total amount of shares available for any stock is always bounded, i.e., X is always
a bounded process in practice. By X (x, T ) we denote the class of all admissible
strategies ξ. The revenues from using such a sales strategy are given by

RT (ξ) =
∫ T

0
ξPt dt

= P0(X0 −XT )− γ

2
(XT −X0)2 + σ

∫ T

0
ξtBt dt− λ

∫ T

0
ξ2
t dt

= P0x− γ

2
x2 + σ

∫ T

0
Xt dBt − λ

∫ T

0
ξ2
t dt. (1)

Here P0x is the face value of the position. The term γx2/2 corresponds to the liq-
uidation costs resulting from the permant price impact of ξ. Due to the linearity
of the permanent impact function, it is independent of the choice of the liquidation
strategy. The stochastic integral corresponds to the volatility risk that is accummu-
lated by selling throughout the interval [0, T ] rather than liquidating the portfolio
instanteneously. The integral λ

∫ T
0 ξ2

t dt corresponds to the transaction costs arising
from temporary market impact.

The goal of the investor is to maximize the expected utility E[ u(RT (ξ)) ] of the
revenues when ξ ranges over X (x, T ). In this note, we consider the case in which u

is a CARA utility function with risk aversion α > 0, i.e.,

u(x) = −e−αx.

Let us first consider the case in which ξ ranges only over the subclass Xdet(x, T )
of deterministic strategies in X (x, T ), i.e., strategies that do not allow for intertem-
poral updating. In this case, RT (ξ) is normally distributed, and we obtain

E[ u(RT (ξ)) ] = −E[ e−αRT (ξ) ] = − exp
(
−αE[RT (ξ) ] +

α2

2
var (RT (ξ))

)
. (2)
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Finding the optimal liquidation strategy is now simple: it is the deterministic strat-
egy ξ∗ that maximizes the mean-variance functional

E[RT (ξ) ]− α

2
var (RT (ξ)) (3)

over Xdet(x, T ); an explicit solution is given by

ξ∗t = x

√
ασ2

2λ
·
cosh

(
(T − t)

√
ασ2

2λ

)

sinh
(
T

√
ασ2

2λ

) . (4)

This problem of mean-variance optimization has been introduced by Almgren and
Chriss [4, 5] and studied extensively since; see, e.g., Almgren [3], Almgren and
Lorenz [6], and the references therein. Note that that the variance is weighted here
by the factor α/2, i.e., with half of the risk aversion parameter, in contrast to the
convention in [3, 4, 5, 6] of using the full risk aversion. The formula (4) can be
obtained by standard calculus of variations techniques or by passing to the limit in
the corresponding discrete-time solution obtained in [4, 5]. It is also an immediate
consequence of our main theorem.

Almgren and Lorenz [6] find that allowing for dynamic updating, i.e., replacing
Xdet(x, T ) by the entire class X (x, T ) of admissible strategies, can improve the
mean-variance performance compared to deterministic strategies. That is, (4) no
longer maximizes the functional (3). For non-deterministic strategies, however, the
identity (2) fails, and mean-variance optimization is no longer equivalent to the
original problem of maximizing the expected utility of an investor with constant
absolute risk aversion; it can only be regarded as a second-order approximation.
In fact, Theorem 2.1, our main result, shows that in the original problem there is
surprisingly no added utility from allowing for intertemporal updating of strategies,
i.e., the deterministic strategy (4) maximizes the expected CARA utility also within
the full class X (x, T ).

Theorem 2.1 For u(x) = −e−αx we have

max
ξ∈X (x,T )

E[u(RT (ξ)) ] = − exp
[
−α(P0x− γ

2
x2)+x2

√
λα3σ2

2
coth

(
T

√
ασ2

2λ

)]
, (5)

and the unique maximizing strategy ξ∗ is given by the deterministic function (4).

In contrast to the case of CARA utility considered in the preceding theorem,
dynamic strategies can improve liquidation performance, but only in the case of a
utility function with non-constant absolute risk aversion. Such varying risk aversion
is clearly insufficiently captured by the mean-variance approximation, and optimal
strategies are different from the deterministic strategy (4). The quantitative and
qualitative properties of optimal strategies for general utility functions are subject
of ongoing research; see [14].



5

2 4 6 8 10

0.2

0.4

0.6

0.8

1

asset position Xt

time t

Figure 1: Asset position Xt over time for optimal trading strategies with x = 1, T = 10,

σ = 0.03, λ = 0.01. The solid line corresponds to α = 0.0001, the finely dashed line to

α = 1, and the coarsly dashed line to α = 5.
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Figure 2: Selling speed ξt over time for optimal trading strategies with x = 1, T = 10,

σ = 0.03, λ = 0.01. The solid line corresponds to α = 0.0001, the finely dashed line to

α = 1 and the coarsly dashed line to α = 5.
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Figure 3: Value function w(T, x, r) depending on the remaining time T and asset position

x for α = 1, λ = 10, r = 1.

3 Proof of Theorem 2.1

Clearly, there is no loss of generality in taking σ = 1. For ξ ∈ X (x, T ), we define
the stochastic processes

Xξ
t := x−

∫ t

0
ξs ds and Rξ

t := r +
∫ t

0
Xξ

s dBs − λ

∫ t

0
ξ2
s ds, 0 ≤ t ≤ T.

If we take r = P0x−γx2/2, then Rξ
T coincides with the revenue RT (ξ) of ξ. But the

variable r can also act as an initial value of the process Rξ by describing revenues
that carry over from the ‘past’ after an application of the Markov property.

In proving (5) we will simplify our formulas by dropping the first minus sign in
the utility function u(x) = −e−αx. Thus, our goal is to identify the value function

v(T, x, r) := inf
ξ∈X (x,T )

E[ e−αRξ
T ].

with the function

w(T, x, r) := exp
[
−αr + x2

√
λα3

2
coth

(
T

√
α

2λ

)]
. (6)

To this end, we use stochastic control methods. More precisely, our proof is based
on the observation that w satisfies the partial differential equation

wt =
1
2
x2wrr +

w2
x

4λwr
, (7)

which can be verified by a straightforward computation. Another computation
shows that (7) is equivalent to the Hamilton-Jacobi-Bellman (HJB) equation

wt =
1
2
x2wrr − sup

ξ∈R
(ξ2λwr + ξwx). (8)
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Note that these PDEs are degenerate in the x-coordinate, and that w satisfies a
singular initial condition at t = 0, i.e., w(t, x, r) blows up for t ↓ 0 for any x > 0.
This singular boundary behavior will create some technical difficulties in the proof.
We define

w(0, 0, r) := lim
T↓0

w(T, 0, r) = e−αr.

Remark 3.1 It follows from the arguments subsequent to Equation (2) that

w(T, x, r) = min
ξ∈Xdet(x,T )

E[ e−αRξ
T ], (9)

where Xdet(x, T ) denotes the set of all deterministic strategies in X (x, T ). See Re-
mark 3.4 for an independent proof of this fact.

We start the proof of our theorem with the following a priori estimate.

Lemma 3.2 We have

v(T, x, r) ≥ w(T, x, r) · e−α2x2T/6.

Proof: Suppose that ξ ∈ X (x, T ) is such that E[ e−αRξ
T ] is finite. We then have

∞ > E[ e−αRξ
T ] ≥ e−αE[ Rξ

T ]. (10)

Admissibility implies that E
[ ∫ T

0 X2
t dt

]
< ∞ and hence that

E[ Rξ
T ] = r − λE

[ ∫ T

0
ξ2
t dt

]
.

By (10), this expression is finite, and so xt := E[ ξt ] is well defined and belongs to
L1[0, T ], due to Fubini’s theorem. Jensen’s inequality implies

E[ Rξ
T ] ≤ r − λ

∫ T

0
x2

t dt.

We clearly have
∫ T
0 xt dt = x. Optimizing over all measurable functions in L1[0, T ]

that integrate up to x yields
∫ T

0
x2

t dt ≥
∫ T

0

( x

T

)2
dt =

x2

T
.

Therefore,
E[ e−αRξ

T ] ≥ e−αE[ Rξ
T ] ≥ e−αr+αλx2/T =: v(x, r, T ),

and in turn v(T, x, r) ≥ v(x, r, T ).
On the other hand, the constant strategy ξ0

t := x/T belongs to Xdet(x, T ), and
so Remark 3.1 yields that

w(T, x, r) ≤ E[ e−αRξ0

T ] = v(x, r, T ) · E
[
e−α

∫ T
0

x(T−t)
T

dBt

]

= v(x, r, T ) · eα2x2T/6 ≤ v(T, x, r) · eα2x2T/6.
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In the next step, we will use a verification argument to identify w with the
modified value function

v0(T, x, r) := inf
ξ∈X0(x,T )

E[ e−αRξ
T ] (11)

that is based on the subset of L2-bounded controls,

X0(x, T ) :=
{

ξ ∈ X (x, T )
∣∣

∫ T

0
ξ2
t dt is bounded

}
.

Lemma 3.3 We have v0(T, x, r) = w(T, x, r) and the unique minimizing strategy
ξ∗ in (11) is given by the deterministic function

ξ∗t = x

√
α

2λ
·
cosh

(
(T − t)

√
α
2λ

)

sinh
(
T

√
α
2λ

) . (12)

Proof: The inequality w ≥ v0 is obvious from Remark 3.1. To prove the converse
inequality, let ξ ∈ X0(x, T ) be an arbitrary control process. For 0 < t < T , Itô’s
formula yields that

w(T − t,Xξ
t , Rξ

t )− w(T, x, r) =
∫ t

0
wr(T − s, Xξ

s , Rξ
s)X

ξ
s dBs (13)

−
∫ t

0

[
ξ2
sλwr + ξswx + wt − 1

2
(Xξ

s )2wrr

]
(T − s,Xξ

s , Rξ
s) ds.

By (8), the latter integral is nonpositive, and by noting that wr = −αw we obtain

w(T, x, r) ≤ w(T − t,Xξ
t , Rξ

t ) + α

∫ t

0
w(T − s,Xξ

s , Rξ
s)X

ξ
s dBs. (14)

We will show next that the stochastic integral in (14) is a true martingale. To
this end, observe first that

|Xξ
t | =

∣∣∣
∫ T

t
ξs ds

∣∣∣ ≤
√

(T − t)K, (15)

where K is an upper bound for
∫ T
0 ξ2

s ds. Moreover, for some constant C1 depending
on K we have

Rξ
t = r + BtX

ξ
t −

∫ t

0
(ξsBs + λξ2

s ) ds ≥ −C1

(
1 + sup

s≤T
|Bs|

)
.

Hence, for certain constants C2 and C3,

w(T − s,Xξ
s , Rξ

s) ≤ exp
(

αC1

(
1 + sup

s≤T
|Bs|

)
+ C2(T − s) coth

(
(T − s)

√
α

2λ

))

≤ exp
(
αC1

(
1 + sup

s≤T
|Bs|

)
+ C3

)
. (16)

Since supt≤T |Bt| has exponential moments of all orders, the martingale property of
the stochastic integral in (14) follows.
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Taking expectations in (14) thus yields

w(T, x, r) ≤ E[ w(T − t,Xξ
t , Rξ

t ) ]. (17)

Using the fact that
v(T − t,Xξ

t , Rξ
t ) ≤ E[ e−αRξ

T | Ft],

Lemma 3.2 and (15) give

w(T, x, r) ≤ eα2K2(T−t)2/6E[ v(T − t,Xξ
t , Rξ

t ) ] ≤ eα2K2(T−t)2/6E[ e−αRξ
T ].

Sending t ↑ T and taking the infimum over ξ ∈ X0(x, T ) yields w ≤ v0.
To prove the formula for the optimal strategy, one first checks that the supremum

in (8) is attained in

ξ̂(t, y) = − wx(t, y, r)
2λwr(t, y, r)

= y

√
α

2λ
· coth

(
t

√
α

2λ

)
≥ 0. (18)

Let us define Xt as the solution of the ODE Ẋt = −ξ̂(T−t,Xt) with initial condition
X0 = x. Then Xt = x − ∫ t

0 ξ∗s ds = Xξ∗
t for ξ∗ from (12). Note that ξ∗ ∈ X0(x, T ).

Thus, taking ξ = ξ∗ in (13) yields an equality in (14). Taking expectations then
proves that ξ∗ is indeed an optimal strategy in X0(x, T ). Finally, since ξ̂ is the
unique minimizer in (8), it is clear that ξ∗ is the P-a.s. unique optimal control in
X0(x, T ).

Remark 3.4 The proof of the preceding lemma can easily be modified to give an
alternative proof of (9) in Remark 3.1. To this end, let X1(x, T ) denote the subset
of bounded ξ in X (x, T ). Then clearly Xdet(x, T ) ⊂ X1(x, T ) ⊂ X0(x, T ). For
ξ ∈ X1(x, T ) there exists some K such that |Xξ

t | ≤ (T − t)K. Therefore w(T −
t,Xξ

t , Rξ
t ) → w(0, 0, Rξ

t ) = e−αRξ
T as t ↑ T . Using (16) and dominated convergence

in (17) thus yields w(T, x, r) ≤ E[ e−αRξ
T ] and in turn

w(T, x, r) ≤ inf
ξ∈X1(x,T )

E[ e−αRξ
T ] ≤ inf

ξ∈Xdet(x,T )
E[ e−αRξ

T ] ≤ E[ e−αRξ∗T ] = w(T, x, r)

This in particular proves (9).

Proof of Theorem 2.1: Let now ξ ∈ X (x, T ) be given such that

E[ e−αRξ
T ] < ∞. (19)

We define for k = 1, 2, . . .

τk := inf
{

t ≥ 0
∣∣

∫ t

0
ξ2
s ds ≥ k

}
∧ T.

Conditioning on Fτk
and applying Lemma 3.2 yields that

E
[
e−αRξ

T ; τk < T
] ≥ E

[
v(T − τk, X

ξ
τk

, Rξ
τk

) ; τk < T
]

≥ E
[
w(T − τk, X

ξ
τk

, Rξ
τk

) · e−α2(Xξ
τk

)2(T−τk)/6 ; τk < T
]

≥ e−α2C2T/6 · E[
w(T − τk, X

ξ
τk

, Rξ
τk

) ; τk < T
]

≥ 0,



10

where C is a uniform upper bound for Xξ
t . Since E[ e−αRξ

T ; τk < T ] tends to zero
as k ↑ ∞ due to (19), we conclude that also

E
[
w(T − τk, X

ξ
τk

, Rξ
τk

) ; τk < T
] −→ 0. (20)

Moreover,

E
[
e−αRξ

T ; τk = T
]

= E
[
w(0, 0, Rξ

T ) ; τk = T
]

= E
[
w(T − τk, X

ξ
τk

, Rξ
τk

) ; τk = T
]
.

We may thus conclude that

E[ e−αRξ
T ]

= E
[
e−αRξ

T ; τk < T
]
+ E

[
e−αRξ

T ; τk = T
]

≥ E
[
w(T − τk, X

ξ
τk

, Rξ
τk

) ] + (1− e−α2C2T/6) · E[
w(T − τk, X

ξ
τk

, Rξ
τk

) ; τk < T
]
.

Now define ξ(k) as ξ up to time τk and for τk < t ≤ T as

ξ
(k)
t = Xξ

τk
·
√

α

2λ
·
cosh

(
(T − τk − t)

√
α
2λ

)

sinh
(
(T − τk)

√
α
2λ

)

Then ξ(k) belongs to X0(x, T ), and Lemma 3.3 yields

E
[
w(T − τk, X

ξ
τk

, Rξ
τk

) ] = E[ e−αRξ(k)

T ] ≥ w(T, x, r).

Therefore

E[ e−αRξ
T ] ≥ w(T, x, r) + (1− e−α2C2T/6) · E[

w(T − τk, X
ξ
τk

, Rξ
τk

) ; τk < T
]
.

Using (20) now yields the result.
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[11] Föllmer, H., Schied, A. Stochastic finance: an introduction in discrete time.

Second edition. Berlin: de Gruyter (2004).

[12] Obizhaeva, A., Wang, J. Optimal Trading Strategy and Supply/Demand Dy-

namics. Forthcoming in J. Financial Markets.

[13] Potters, M., Bouchaud, J.-P. More statistical properties of order books and

price impact. Physica A 324, No. 1-2, 133-140 (2003).

[14] Schied, A., Schöneborn, T. Optimal dynamic portfolio liquidation strategies.

In preparation.
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