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Abstract: This paper studies the income inequality and economic development 

relationship by using unbalanced panel data of OECD and non-OECD countries for the 

period 1962 - 2003. The nonparametric estimation results show that income inequality in 

OECD countries are almost on the backside of the inverted-U relationship, while 

non-OECD countries are approximately on the foreside, except that the relationship in 

both country groups shows an upturn at a high level of development. Development has an 

indirect effect on inequality through control variables, but the modes are different in the 

two country groups. The model specification tests show that the relationship is not 

necessarily captured by the conventional quadratic function. The cubic and fourth-degree 

polynomials, respectively, fit the OECD and non-OECD country groups best. Our finding 

is robust regardless whether the specification uses control variables. Development plays a 

dominant role in mitigating inequality. 
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I  Introduction 

The Kuznets (Kuznets, 1955) inverted-U curve relationship between income 

inequality and economic development argued that income inequality tends to increase at 

an initial stage of development, but income inequality will eventually fall as income 

continues to rise in developing countries. Other studies have been conducted along the 

line of the inverted-U relationship. For example, Sen (1991, 1992 and 1993) discussed 

inequality based on the concept of individual capability and functioning. Studies that 

have concentrated on the causes of income inequality included human capital, 

technological advancement, job diversity and political stability, while other studies have 

examined income inequality convergence (Galor and Zeire, 1993; Galor and Moav, 2000; 

Gould et al. 2001; Acemoglu, 2001; Desai et al. 2005; Bẻnabou, 1996; Ravallion, 2003).  

The Kuznets inverted-U relationship has attracted both theoretical and empirical 

debates, including whether the relationship should be considered as a law or could be 

improved through appropriate economic policies (Kanbur, 2000). It has been argued that 

the Kuznets inverted-U relationship has not been fully confirmed and validated in studies 

using parametric quadratic models (Li et al. 1998, Barro, 2000, Bulíř, 2001, Iradian, 

2005). For example, by using nonparametric estimation based on a sample of 

cross-section country data, Mushinski (2001) showed that the quadratic parametric form 

of the relationship between Gini coefficient and real income per capita is misspecified. 

Huang (2004) presented a flexible nonlinear framework for a cross-section data of 75 

countries and showed evidence of nonlinearity in the inverted-U relationship, Lin et al. 

(2006) confirmed the validity of the inverted-U relationship and presented a partial 

semiparametric linear investigation with some control variables. 

 In studying the relationship between inequality and development, the choice is 
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whether control variables are included in the regression model. Some studies have 

complied with the original work of Kuznets and examined the total effect, instead of the 

direct effect, of development on inequality by using unconditional models (Mushinski, 

2001; Wan, 2002). By using only one regressor of development in the regression model, 

the inequality-development relationship is considered as a law and the discussion on the 

impact of economic policy can be minimized. On the contrary, other studies considered 

the determinants of inequality and examined the impact of policy in affecting inequality, 

besides development. As such, the regressors in the regression model would include other 

policy variables and economic indicators, besides development (Li et al. 1998; Bulíř, 

2001; Wang, 2006; Huang et al. 2009). The empirical results from these conditional 

models do reflect both the direct and indirect (via control variables) effects of 

development on inequality.  

This paper presents a nonparametric (without control variables) and semiparametric 

(with control variables) investigation on the inequality-development relationship by using 

unbalanced panel data from a sample of developed OECD (Organization for Economic 

Co-operation and Development) and a sample of developing non-OECD countries. The 

unbalanced panel data set can provide observations over several periods of time. Such an 

analysis can incorporate heterogeneity across different sample of countries. In the panel 

data model, country-specific effects are specified to be fixed effects that are dependent on 

the regressors. This can help to obtain consistent estimators in the nonparametric 

regression function when inequality is regressed on the development variable and/or 

other control variables. The methodology in Henderson et al. (2008) is modified to cater 

for the nonparametric and semiparametric estimations with unbalanced panel data, and 

data-driven specification tests are conducted for the selected models. 
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The empirical results from unconditional and conditional models show that the 

channel effects of development via the control variables on inequality in both OECD and 

non-OECD sample countries are different, depending on the level of development in each 

sample country group. There is, however, much resemblance in the shapes of the 

nonparametric functions from both nonparametric and semiparametric estimations in 

each country group, implying that the control variables as a whole do not change the 

dynamic mode but the degree of inequality. Development still plays a dominant role in 

mitigating inequality. For the Kuznets’ inverted-U hypothesis, our findings supported the 

cubic and fourth-degree polynomials for the OECD and non-OECD sample countries, 

respectively, in capturing the nonlinearity suggested by the nonparametric and 

semiparametric regressions.  

Section II discusses the data and model specification and presents a parametric study 

on the inverted-U relationship. Section III briefly generalizes the methodology to suit the 

unbalanced panel data. Section IV conducts the nonparametric and semiparametric 

estimations and tests, while Section V concludes the paper. 

 

II   Data and Model Specification 

The Gini coefficient for each sample country is used as the inequality proxy, and the 

dataset that was compiled and adapted from three datasets is obtained from “All the Ginis 

Database” under the World Bank project “Inequality around the World”.
1
 The variable 

chosen from the database is “Giniall” that gives the values of Gini coefficients from 

                                                 
1 The web reference for the dataset is: http://web.worldbank.org/projects/inequality. The book reference is 

Milanovic (2005). Details for the dataset description of the December 2006 version are provided in the web. Some 

recent years’ data are also given. The Deininger-Squire dataset that covers the period 1960-1996, the WIDER 

dataset that covers the period 1950-1998 and the World Income Distribution dataset that covers the period 

1985-2000. 
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household-based surveys for 1,067 country/years.
2
 To suit the nonparametric estimation, 

we have selected the countries with at least two years data. The final dataset used in this 

study contains 401 observations on 30 OECD countries and 303 observations on 45 

non-OECD countries for the period from 1962 to 2003 (summarized in the Appendix).  

The real GDP per capita is used as the proxy for the level of economic development. 

The study on the total effect on the relationship between inequality and development is 

extended to the study on the direct effect by the use of control variables. Two kinds of 

controls are considered. The policy control is indicated by the variables of openness 

(indicated by the percentage trade share of GDP in 2005 constant prices), urbanization 

(indicated by the percentage of urban population in total population), and investment 

(indicated by the percentage of investment share in real GDP per capita), denoted as 

openk, urbanize and ki, respectively. The other control variables that reflect the economic 

characteristics of the sample country are GDP growth and inflation (indicated by the 

annual percentage of GDP deflator). These data are obtained from the Penn World Table 

and World Development Indicators.  

 

Table 1 Basic Statistics 

 Gini gdppc growth openk urbanize ki deflator 

OECD        

minimum 17.80 2,028.78 -19.29 5.29 2.90 10.41 -2.00 

maximum 58.00 63,419.40 12.49 264.14 67.60 48.83 208.00 

mean 34.34 18,658.44 2.53 45.59 28.84 26.85 9.35 

Standard deviation 7.70 8,009.19 3.80 33.88 11.70 6.07 14.53 

Non-OECD        

minimum 20.69 561.52 -21.60 10.32 0.00 2.11 -8.00 

maximum 63.66 33,401.80 16.47 399.22 94.94 56.14 4,107.00 

mean 44.45 7,167.09 1.73 74.08 46.53 22.78 83.19 

Standard deviation 10.45 5,723.07 5.55 61.44 23.53 9.59 376.19 

                                                 
2 This study chooses the Gini coefficients sample of country/years with “Di =1”, where the dummy 

variable “Di” refers to the welfare concept of the Gini coefficient indicated either by income (=1) or by 

consumption (=0). 
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Table 2 Correlations between Variables 

 Gini log(gdppc) growth(-1) openk urbanize ki inflation 

OECD        

Gini 1.0000  -0.3506  0.1994  -0.3245  -0.0789  -0.1309  0.0394  

log(gdppc) -0.3506  1.0000  -0.0465  0.3689  -0.4740  0.1870  -0.3698  

growth(-1) 0.1994  -0.0465  1.0000  -0.0565  0.1285  0.3530  -0.2705  

openk -0.3245  0.3689  -0.0565  1.0000  -0.1844  0.0376  -0.0196  

urbanize -0.0789  -0.4740  0.1285  -0.1844  1.0000  0.3676  0.1828  

ki -0.1309  0.1870  0.3530  0.0376  0.3676  1.0000  -0.2246  

inflation 0.0394  -0.3698  -0.2705  -0.0196  0.1828  -0.2246  1.0000  

Non-OECD        

Gini 1.0000  0.1266  0.0255  -0.0144  -0.0835  -0.2156  0.1248  

Log(gdppc) 0.1266  1.0000  -0.0807  0.4232  -0.7964  0.2183  0.0532  

growth(-1) 0.0255  -0.0807  1.0000  0.0810  0.1103  0.2938  -0.1586  

openk -0.0144  0.4232  0.0810  1.0000  -0.3339  0.4074  -0.0652  

urbanize -0.0835  -0.7964  0.1103  -0.3339  1.0000  -0.1201  -0.1577  

ki -0.2156  0.2183  0.2938  0.4074  -0.1201  1.0000  -0.1393  

inflation 0.1248  0.0532  -0.1586  -0.0652  -0.1577  -0.1393  1.0000  

 

Table 1 reports the basic statistics of these two types of variables for both OECD 

and non-OECD sample countries. One observation is that on average non-OECD 

countries have a larger inequality and variation than OECD countries, while OECD 

countries have higher level of development with more variations than non-OECD 

countries. Table 2 shows the correlation statistics between the variables. In OECD 

countries, the Gini has a negative correlation of -0.3506 with the logarithm of GDP per 

capita, which is the highest among its correlations with the other variables. In non-OECD 

countries, such correlation is smaller but positive (0.1266). However, this only provides 

the correlation between inequality and development for linear parametric regression 

models, but is invalid in the nonlinear and nonparametric relationships. Inequality and 

development are also moderately correlated with other variables. For example, the 

correlations of log GDP per capita with openness and urbanization are generally larger 

when compared to the other variables. Inequality is correlated moderately with openness 
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in OECD countries and with investment in non-OECD countries. These reciprocal 

relationships imply that, in addition to the direct effect on inequality, the level of 

development may have an indirect effect on inequality through other channels.
3
  

To study the relationship between inequality and economic development, we first 

specify the following nonparametric (unconditional) panel data model with fixed effects 

without control variables: 

( ) , 1,2, , ; 1,2, , ,it it i it igini g lgdp u v t m i n             (1) 

where the functional form of ( )g   is not specified and itlgdp  is the natural logarithm of 

real GDP per capita. For every country i , there are im  observations from year 1 to im . 

The individual effects, iu , of country i  are fixed-effects/random-effects that are 

correlated/uncorrelated with country i’s economic development. For consistent estimation 

of ( )g  , we use a nonparametric estimation with fixed-effects model. The error term itv  

is assumed to be i.i.d. with a zero mean and a finite variance, and is mean-independent of 

itlgdp , namely ( | ) 0it itE v lgdp  .  

There is no control variable in discussing the relationship between inequality and 

development in Model (1). This is consistent with the original Kuznets inverted-U 

relationship that provides a general framework to explain inequality unconditional on 

other variables other than the level of economic development. However, recent studies on 

the Kuznets inverted-U relationship have considered the determinants of inequality with 

control variables as that can provide ceteris paribus an analysis on the causality from 

economic development to inequality. The semiparametric (conditional) counterpart of 

Model (1) with control variables can be shown as: 

                                                 
3 The indirect effects via channels can also be found in growth studies (Barro, 2000; Frankel and Rose, 

2002). 
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'( ) , 1,2, , ; 1,2, , ,it it it i it igini g lgdp x u v t m i n              (2) 

where 
itx  is the vector of the control variables. We adopt the assumptions in Model (1) 

and that itv  is also mean-independent of itx . The control variable of “growth” is in the 

lagged form as growth may be endogenous in the inequality model (Huang et al. 2009). 

In Model (2) the indirect effect of development on inequality is controlled by the term 

'

itx  , and hence ( )g   shows the direct effect of the inequality from development.  

Figure 1 The Mechanism in the Nonparametric and Semiparametric Models 

 

The relationships in Models (1) and (2) are intuitively illustrated in Figure 1. The 

g(z) in nonparametric Model (1) gives the gross contribution of development to inequality, 

while the g(z) in semiparametric Model (2) gives the net contribution of development to 

inequality, given x . The difference between the two g(z) is the indirect contribution of 

development to inequality via control variables x . When ( )g   is specified as a 

Development 

g(z) in nonparametric model (1) (no control variables) 

Inequality 

Development Inequality 

'x  

g(z) in semiparametric model (2): givenx  

g(z) in nonparametric model = g(z) in semiparametric model + 'x  
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parametric quadratic, cubic or fourth-degree polynomial function of itlgdp , Model (1) 

and Model (2) become parametric unbalanced panel data models with fixed-effects, 

which can be estimated by the conventional method (Baltagi, 2008). However, in order to 

keep the approach comparable to the nonparametric counterpart, we use the difference of 

1it iy y  instead of the transformation of it iy y  or the difference of , 1it i ty y  in 

removing the fixed effects. 

Table 3 contains the parametric estimation results for the developed OECD and 

developing non-OECD sample countries. The conventional quadratic specification is 

used to test the Kuznets hypothesis, and the coefficients on the linear and quadratic terms 

are expected to be positive and negative, respectively. The estimates for the non-OECD 

countries have the expected signs and are highly significant, while those for the OECD 

countries do not have the expected signs, regardless whether control variables are added 

into the model. The estimated models with higher-degree polynomials of the logarithm of 

GDP per capita are as shown by the “cubic” and “4-th degree” columns in Table 3. For 

the OECD sample countries, the cubic specification presents significant estimates of the 

coefficients in both the conditional and unconditional models, while the 4-th degree 

polynomial specification does not provide significant estimates. For the non-OECD 

sample countries, the estimates for the models without controls are all ideal while the 

estimate in the 4-th degree specifications with controls is perfect, although the quadratic 

estimate is also ideal as an explanation of the inverted-U relationship. These parametric 

estimation results show that the quadratic specifications do not give a best fit in both 

country samples, thereby casting doubts on the conventional quadratic specification in the 

inequality-development relationship. 
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Table 3 Parametric Estimation Results 

 

Parametric model Semiparametric 

model quadratic cubic 4-th 

degree 

quadratic cubic 4-th 

degree 

OECD            

lgdp 

 

-1.372 

(5.071) 

388.180* 

(72.324) 

-87.381 

(875.06) 

-17.801* 

(7.053) 

262.500* 

(69.337) 

799.739 

(803.449)  

lgdp
2
 

 

-0.098 

(0.267) 

-42.309* 

(7.823) 

34.887 

(141.78) 

0.661** 

(0.351) 

-29.430* 

(7.414) 

-116.847 

(130.456)  

lgdp
3
 

 

 1.517* 

(0.281) 

-4.029 

(10.175)  

1.074* 

(0.264) 

7.366 

(9.380)  

lgdp
4
 

 

  0.1489 

(0.273)   

-0.169 

(0.252)  

growth(-1) 

 

   0.117* 

(0.023) 

0.113* 

(0.023) 

0.114* 

(0.023) 

0.121** 

(0.069) 

openk 

 

   0.037* 

(0.007) 

0.035* 

(0.007) 

0.035* 

(0.007) 

-0.001 

(0.017) 

urbanize 

 

   0.009 

(0.037) 

0.031 

(0.038) 

0.028 

(0.038) 

-0.171** 

(0.095) 

ki 

 

   0.220* 

(0.028) 

0.1973* 

(0.028) 

0.200* 

(0.028) 

0.231* 

(0.083) 

inflation 

 

   -0.025* 

(0.007) 

-0.029* 

(0.007) 

-0.029* 

(0.007) 

-0.030 

(0.020) 

Non-OECD  

lgdp 

 

24.775* 

(4.297) 

147.99* 

(42.84) 

-1797.5* 

(423.62) 

32.343* 

(4.287) 

68.221 

(43.601) 

-1358.56* 

(410.51)  

lgdp
2
 

 

-1.272* 

(0.256) 

-16.05* 

(5.118) 

336.356* 

(76.508) 

-1.710* 

(0.258) 

-6.037 

(5.240) 

253.14* 

(74.33)  

lgdp
3
 

 

 0.583* 

(0.202) 

-27.540* 

(6.095)  

0.171 

(0.207) 

-20.576* 

(5.939)  

lgdp
4
 

 

  0.834* 

(0.181)   

0.617* 

(0.177)  

growth(-1) 

 

   0.024 

(0.029) 

0.025 

(0.029) 

0.038 

(0.030) 

0.023 

(0.065) 

openk 

 

   0.034* 

(0.006) 

0.033* 

(0.006) 

0.032* 

(0.006) 

0.021** 

(0.013) 

urbanize 

 

   0.037 

(0.029) 

0.027 

(0.031) 

0.007 

(0.032) 

-0.004 

(0.060) 

ki 

 

   -0.180* 

(0.021) 

-0.177* 

(0.022) 

-0.166* 

(0.022) 

-0.148* 

(0.048) 

inflation 

 

   0.001* 

(0.000) 

0.001* 

(0.000) 

0.001* 

(0.000) 

0.001* 

(0.000) 
Notes: The dependent variable is Gini. The numbers in the parentheses are standard errors of the 
coefficient estimates. Estimates of the intercepts in parametric models are not reported. * = 5% 
significance and ** = 10% significance. 
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III Nonparametric Estimation and Testing Method with Unbalanced Panel Data 

Following the notations used in Henderson et al. (2008) and by denoting y gini  

and z lgdp , Models (1) and (2) can be estimated by the iterative procedures to cater for 

the unbalanced panel data. To remove the fixed effects in Model (1), we write 

1 1 1 1( ) ( ) ( ) ( )it it t it i it i it i ity y y g z g z v v g z g z v         . 

Denote 2( , , ) '
ii i imy y y , 2( , , ) '

ii i imv v v , and 2( , , ) '
ii i img g g , where ( )it itg g z . 

The variance-covariance matrix of iv  and its inverse are calculated, respectively, as 

2 '

1 1 1( )
i i ii v m m mI e e       and  1 2 '

1 1 1( / )
i i ii v m m m iI e e m 

     , where 
1imI 

 is an 

identity matrix of dimension 1im   and 
1ime 
 is a ( 1) 1im    vector of unity. The 

criterion function is given by 

1

1 1 1 1 1

1
( , ) ( ) ' ( ), 1,2, ,

2i i ii i i i i m i i i i mg g y g g e y g g e i n

          . 

Denote the first derivatives of 
1( , )

i i ig g  with respect to itg  as 
, 1( , )i tg i ig g , 

1,2, it m . Then 

' 1

,1 1 1 1 1

' 1

, 1 , 1 1 1

( , ) ( ),

( , ) ( ), 2,

i i

i

i g i i m i i i i m

i tg i i i t i i i i m

g g e y g g e

g g c y g g e t



 



 

     

     
 

where 
, 1i tc 

 is an ( 1) 1im    matrix with ( 1)t 
th

 element/other elements being 1/0. 

Denote  0 1( , ) ' ( ), ( ) / 'g z dg z dz   . It can be estimated by solving the first order 

conditions of the above criterion function through iteration:  

 
, [ 1] 1 0 1 [ 1]

1 1

1
ˆ ˆ( ) ( ), , ( , ) ', , ( ) 0

i

i tg i

mn

h it it l i it l im

i ti

K z z G g z G g z
m

  

 

    , 

where the argument 
,i tg

 is [ 1]
ˆ ( )l isg z  for s t  and 0 1( , ) 'itG    when s t , and 
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[ 1]
ˆ ( )l isg z

 is the ( 1)l 
th

 iterative estimates of 
0 1( , ) '  . Here 

itG   1,( ) / 'itz z h  and 

1( ) ( / )hk v h k v h , ( )k   is the kernel function. The next iterative estimator of 
0 1( , ) '   

is equal to  [ ] [ ]
ˆ ˆ( ), ( ) 'l lg z g z = 1

1 2 3( )D D D  , where  

' 1 ' ' 1 '

1 1 1 1 1 1 , 1 , 1

1 2

' 1 ' 1

2 1 1 1 1 [ 1] 1 , 1 , 1 [ 1]

1 2

3

1
( ) ( ) ,

1
ˆ ˆ( ) ( ) ( ) ( ) ,

1

i

i i

i

i i

mn

m i m h i i i i t i i t h it it it

i ti

mn

m i m h i i l i i t i i t h it it l it

i ti

i

D e e K z z G G c c K z z G G
m

D e e K z z G g z c c K z z G g z
m

D
m

 

   

 

 

     

 

 
      

 

 
      

 



 

 

' 1 ' 1

1 1 1 ,[ 1] , 1 ,[ 1]

1 2

( ) ( ) ,
i

i

mn

h i i m i i l h it it i t i i l

i t

K z z G e H K z z G c H 

   

 

 
      
 

 

 

and 
,[ 1]i lH 

 is an ( 1) 1im    vector with elements 

 [ 1] [ 1] 1
ˆ ˆ( ( ) ( )) , 2, ,it l it l i iy g z g z t m    . 

The series method is used to obtain the initial estimator for ( )g  . The convergence 

criterion for the iteration is set to be 

 
2

2

[ ] [ 1] [ 1]

1 2 1 2

1 1
ˆ ˆ ˆ( ) ( ) / ( ) 0.01.

i im mn n

l it l it l it

i t i ti i

g z g z g z
m m

 

   

      

Further, the variance 2

v  is estimated by  

2ˆ
v  2

1 1

1 2

1 1
ˆ ˆ( ( ( ) ( )))

2 1

imn

it i it i

i ti

y y g z g z
n m 

  


  . 

The variance of the iterative estimator ˆ( )g z is calculated as 1ˆ( ( ))nh z  , where 

2 ( )k v dv   , and 2

1 2

11ˆ ˆ( ) ( ) /
imn

i
h it v

i ti

m
z K z z

n m


 


    .  

We use the series method to obtain an initial estimator for ( )   and then conduct 

the iteration process. The convergence criterion for the iteration is set to be 

 
2

2

[ ] [ 1] [ 1]

1 2 1 2

1 1
ˆ ˆ ˆ( ) ( ) / ( ) 0.01.

i im mn n

l it l it l it

i t i ti i

g z g z g z
m m
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Further, the variance 2

v  is estimated by 

2ˆ
v  2

1 1

1 2

1 1
ˆ ˆ( ( ( ) ( )))

2 1

imn

it i it i

i ti

y y g z g z
n m 

  


  . 

The variance of the iterative estimator ˆ( )g z is calculated as 1ˆ( ( ))nh z  , where 

2 ( )k v dv   , and 2

1 2

11ˆ ˆ( ) ( ) /
imn

i
h it v

i ti

m
z K z z

n m


 


    . 

 For the estimation of semiparametric Model (2), we denote the nonparametric 

estimator of the regression functions of the dependent variable y  and the control 

variables x , respectively, as ˆ ()yg  and ˆ ()xg = ,1ˆ( (), ,xg ,ˆ ())'x dg , where d  is the 

number of controls. Then  is estimated by ˆ=

1

' 1 ' 1
* * * *

1 1

/ /
n n

i i i i i i i i
i i

x x m x y m , 

where *iy  and *ix  are, respectively, ( 1) 1im    and ( 1)im d   matrices with the 

t -th row element being *it ity y ˆ( ( )y itg z 1ˆ ( ))y ig z and * ˆ( ( )it it x itx x g z 1ˆ ( ))x ig z . 

The nonparametric function ( )g   is estimated by the same method shown above, except 

that ity  is replaced by ' ˆ
it ity x  whenever it occurs. 

 For the selected model to incorporate a data-driven procedure, we further modify the 

specification tests to suit an unbalanced panel data case. Regardless whether the models 

have control variables as regressors, we perform the following two specification tests. 

The first specification test is to choose in Model (1) between parametric and 

nonparametric models without control variables. The null hypothesis H0 is parametric 

model with 0( ) ( , )g z g z  . For example, 2

0 0 1 2( , )g z z z      . The alternative H1 

is that ( )g z  is nonparametric. The test statistic for testing this null is  

(1) 2

0

1 1

1 1
ˆ ˆ( ( , ) ( ))

imn

n it it

i ti

I g z g z
n m


 

   , where ̂  is a consistent estimator of the 
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parametric panel data model with fixed effects; ˆ( )g   is the iterative consistent estimator 

of Model (1). The second specification test is to choose in Model (2) between parametric 

and semiparametric models with control variables. The null hypothesis H0 is parametric 

model with 0( ) ( , )g z g z  . The alternative is that ( )g z  is nonparametric in Model (2). 

The test statistic for testing this null is (2) ' ' 2

0

1 1

1 1 ˆˆ( ( , ) ( ) )
imn

n it it it it

i ti

I g z x g z x
n m

  
 

     , 

where   and   are consistent estimators in the parametric panel data model with fixed 

effects; ˆ( )g   and ̂  are the iterative consistent estimator of Model (2).  

In the following empirical study, we apply bootstrap procedures in Henderson et al. 

(2008) to approximate the finite sample null distribution of test statistics and obtain the 

bootstrap probability values for the test statistics. 

 

IV Empirical Results 

 The kernel in both the estimation and the testing is the Gaussian function and the 

bandwidth is chosen according to the rule of thumb
4
: 

1/5

1
1.06

n

z ii
h m , where 

z  is the sample standard deviation of { itz }. All the bootstrap replications are set to be 

400. The last column in Table 3 reports the coefficient estimation for the control variables 

in the parametric part of semiparametric Model (2). For the OECD countries, with the 

exception of “openk” and “urbanize”, the coefficient estimates of all other control 

variables have the same signs and similar values in both parametric and semiparametric 

models. For countries in the non-OECD sample, with the exception of the “urbanize” 

variable, the coefficient estimates of all other control variables are highly similar in both 

                                                 
4 We also slightly change the constant instead of 1.06, and find that the estimation and test results are not 

significantly affected. 
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parametric and semiparametric models.  

 The inconsistency in the coefficient estimates of such variables as “urbanize” and 

“openk” casts doubts on model specification once again, but this will be tested in the final 

stage of our analysis. An interesting finding is the different signs in the coefficients of 

investment and inflation between the two samples. Investment share has a positive effect 

on inequality in OECD, but a negative effect in non-OECD, implying that investment 

aggravates inequality in OECD countries, while it alleviates inequality in non-OECD 

countries. The effect of inflation is exactly the opposite to that of investment between the 

OECD and non-OECD countries. 

 In Table 4, the nonparametric function ( )g   is estimated at some quantile points of 

the logarithm of GDP per capita by using nonparametric Model (1) and semiparametric 

Model (2). For the OECD sample countries, when their development level is at the 2.5 

percent quantile from the bottom, the estimate of ( )g   from semiparametric Model (2) is 

larger than that from nonparametric Model (1). The difference is the total contribution by 

control variables to inequality. But when the development level is one of the other 

quantiles, the estimate of ( )g   from nonparametric Model (1) becomes larger, which 

implies that the integrated contribution by control variables to inequality becomes 

positive. In short, policy variables and economic characteristics can indeed play a role in 

affecting inequality in the higher stage of development.  

 However, the estimation results in OECD countries are opposite to those in 

non-OECD countries. Table 4 shows that for the non-OECD sample countries all the 

estimates of ( )g   at each quantile from semiparametric Model (2) are larger than that at 

the same quantile from nonparametric Model (1). The integrated contribution of control 

variables to inequality is therefore negative, namely, they totally decrease inequality. We 
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need to discuss and compare the results from the OECD and non-OECD countries. 

 

Table 4 Nonparametric Estimation of ( )g   at Different Points of lgdp 

Quantile of lgdp Nonparametric model (1) Semiparametric model (2) 

 z m(z) std. err. m(z) std. err. 

OECD      

2.5% 8.5937 40.7812 5.4563 42.5567 5.2224 

25% 9.4911 35.4923 1.9810 34.5420 1.8960 

50% 9.8375 33.4746 1.5039 31.6731 1.4394 

75% 10.0647 32.3819 1.5291 30.3893 1.4635 

95% 10.3257 31.4750 2.1687 28.6795 2.0757 

97.5% 10.3968 30.3402 2.5887 27.2607 2.4777 

at sample mean of z 

mean 9.7299 34.2492 1.5917 32.5366 1.5234 

Non-OECD      

2.5% 7.0233 40.5527 3.2093 42.6521 3.0549 

25% 8.0689 44.9614 2.1619 47.1526 2.0579 

50% 8.6832 46.5913 1.5724 48.3060 1.4968 

75% 9.0522 45.2422 1.6618 47.0502 1.5819 

95% 9.8949 42.3625 3.2022 43.5062 3.0481 

97.5% 9.9989 42.9649 3.4717 43.8056 3.3047 

at sample mean of z 

mean 8.5836 46.6044 1.6252 48.3800 1.5470 

 

OECD Countries 

Figures 2 and 3 illustrate the nonparametric and semiparametric estimations of ( )g   

in Models (1) and (2), respectively, for the OECD sample countries, and show also the 

lower and upper bounds of 95 percent confidence intervals for the estimates. The 

nonparametric estimates are reasonable, though the estimation has some boundary effects. 

The two curves of ( )g   in Figures 2 and 3 look very similar in shape, which implies that 

the control variables, though having an effect on inequality, have played little role in 

changing the nonlinear shapes of ( )g  .
5
  

                                                 
5 Huang (2004) also shows this finding in his cross-section analysis. 
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Fig. 2 Nonparametric Estimation in Model 1: OECD 
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Fig. 3 Semiparametric Estimation in Model 2: OECD 
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Fig. 4 Comparing Non- and Semi-parametric Estimation: OECD 
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Our finding shows that the shapes of ( )g  , whether estimated from semiparametric 

Model (2) or nonparametric Model (1), are very similar to that in Mushinski (2001) who 

used a nonparametric estimation model with cross-section data. The results reflect an 

increasing, albeit short, portion at lower levels of development, a turning point (where the 

effect of development on inequality changes from positive to negative) at 8.2 (about 

$3,640 in 2005 dollars), followed by a longer decreasing portion of the curve. While the 

results in Mushinski (2001) reflected the predominance of middle-income countries in his 

dataset, the result from our dataset using nonparametric estimation for the OECD sample 

countries that represented mainly high-income or upper-middle-income countries 

reflected the predominance of the high-income and upper-middle-income group. Also, the 

curves hint an upturn at a higher income level (around 10.8, about $49,020), which 

accords with the high-level upturn point from a highly developed economy (Ram, 1991).  

The contribution of development to the reduction of inequality via control variables 

can be seen from the vertical difference between the two “nonparametric” and 

“semiparametic” curves in Figure 4. The integrated effect of development on inequality 

via the control variables is negative at lower income levels (lower than 9.2, about $9,900) 

since the curve from nonparametric estimation is below that from semiparametric 

estimation. Control variables can contribute to reduce inequality at or below this level of 

income. When the development level is above $9,900, this indirect integrated effect 

becomes positive, implying that control variables as a channel increase inequality at this 

higher stage of income level. The original Kuznets hypothesis ignored the channel effect 

of development on inequality via other determinants. The inclusion of control variables in 

the semiparametric model can show the indirect effect of development on inequality. The 
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evidence shows that whether the channel effects of development are positive or negative 

in OECD countries depend on the development level. 

The analysis so far shows that nonparametric and semiparametric estimations can 

provide additional information on the Kuznets hypothesis. However, which specification 

is most suited to the sample requires further hypothesis tests. The upper portion of Table 

5 presents various test results. In the case without control variables, the p-values for the 

quadratic and cubic parametric specifications against nonparametric specification are, 

respectively, 0.07 and 0.06. At the 10 percent significant level, the nulls of quadratic and 

cubic parametric specifications are rejected and the alternative of nonparametric 

specification is accepted. However, at the 5 percent level, the nulls are accepted. In the 

case with control variables, the p-values are less than 5 percent. So we reject the nulls of 

parametric specification at the 5 percent level and accept the semiparametric specification. 

The test results shown in Table 5 provide further support to our analysis. 

Since the cubic parametric model without control variables is accepted at the 

conventional 5 percent significant level (note that the quadratic curve is not considered 

here because its estimate is not significant, see Table 3: OECD), we include the curve of 

the estimated cubic function in Figure 4. This cubic function implies a turning point 

which is almost the same as those in the curves from the nonparametric and 

semiparametric estimations, and hence can capture some of the non-concavities 

suggested by the nonparametric and semiparametric regressions. The F test for the 

parametric specifications in Table 6 shows that the cubic function of the logarithm of 

GDP per capita provides a better fit than the quadratic function and cannot be rejected 

against the alternative fourth-degree specification. Table 3 (OECD) also shows that all 

terms in the cubic polynomial are significant, and they are better than the estimates in 
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quadratic and fourth-degree polynomials. Hence the tests support the estimation of a 

cubic function of development for the OECD sample rather than a quadratic or 

fourth-degree function in the case of no control variables. 

 

Table 5 Nonparametric and Semiparametric Model Specification Tests 

OECD 

Model Hypotheses In 

( p-value) 

Model selected 

without 

control 

variables 

Parametric or 

Nonparametric ? 

H0: Quadratic parametric 

H1: Nonparametric 
4.006 

(0.070) 

Nonparametric (10%) 

Parametric (5%) 

H0: Cubic parametric 

H1: Nonparametric 
3.964 

(0.060) 

Nonparametric (10%) 

Parametric (5%) 

with  

control 

variables 

Parametric or 

Semiparametric ? 

H0: Quadratic parametric 

H1: Semiparametric 
10.205 

(0.013) 

Semiparametric 

H0: Cubic parametric 

H1: Semiparametric 
11.823 

(0.008) 

Semiparametric 

Non-OECD 

without 

control 

variables 

Parametric or 

Nonparametric ? 

H0: Quadratic parametric 

H1: Nonparametric 
6.748 

(0.415) 

Quadratic parametric 

H0: Cubic parametric 

H1: Nonparametric 
5.212 

(0.375) 

Cubic parametric 

with  

control 

variables 

Parametric or 

Semiparametric ? 

H0: Quadratic parametric 

H1: Semiparametric 
6.796 

(0.438) 

Quadratic parametric 

H0: Cubic parametric 

H1: Semiparametric 
5.942 

(0.465) 

Cubic parametric 

 

 

Table 6 Parametric Model Tests for Inclusion of Polynomial Terms 

 Without control variables With control variables 

Degree of polynomial F statistic: OECD / Non-OECD F statistic: OECD / Non-OECD 

H0:Second vs H1:Third 11.2043* / 5.3481* 0.3217 / 1.0814 

H0:Third vs H1:Fourth 1.5146 / 9.2195* 2.8767 / 5.5398* 

H0:Fourth vs H1:Fifth 0.2849 / 1.0849 2.9167 / 0.0058 

Note: * = 5% significance. 
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In the case with control variables, the tests in Table 6 present no obvious evidences 

to show which parametric specification is best. One can conclude from Table 3 (OECD) 

that the cubic form is preferred since all the estimated coefficients of the cubic 

polynomial statistically prevail over those of the quadratic and fourth-degree counterparts. 

However, as the test with control variables in Table 5 shows, parametric cubic 

specification is rejected and semiparametric model is accepted at the 5 percent significant 

level. Hence, the insignificance of the F tests in the case of control variables for OECD 

countries is expected since the F tests based on the estimation of parametric model may 

not be valid for semiparametric models.  

 

Non-OECD Countries 

Figures 5 and 6 respectively present the nonparametric estimation of ( )g   in 

Models (1) and (2) for the non-OECD sample countries. The estimates provide a result 

stronger than those in Figures 2 and 3 since the boundary effect for nonparametric 

estimation is less significant. There is much resemblance between the shapes of 

nonlinearity of ( )g   in Figures 5 and 6. The results reflect a rapidly increasing, albeit 

short, portion at lower levels of development and a first turning point at 7 (about $1,100), 

then another increasing, albeit long and flat, portion at the middle income level of 

development, then followed by a slowly decreasing portion of the curve with the second 

turning point at 8.7 (about $6,000). Finally, the curves also hint at an upturn at a higher 

income level (around 10, about $22,026), similar to the processes shown in OECD 

countries and the findings in Ram (1991) and Mushinski (2001). The second turning 

point is higher than the first one and the final upturn occurs at even higher inequality 

level. This process presents a “roller coaster” mode, albeit flat and long in the middle of 
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the process.
6
 In the non-OECD sample countries, if the final upturn is not accounted for, 

the process approximately accords with the inverted-U hypothesis.  

Figure 7 contains both the nonparametric and semiparametic curves estimated for 

the non-OECD sample countries. The vertical difference reflects the contribution of 

control variables to inequality. The integrated effect of development on inequality via 

control variables is always negative, which is different from that in the OECD countries. 

In short, control variables generally mitigate inequality in non-OECD countries, except 

when the logarithm of income level is very large (greater than 10.2). This evidence shows 

that the channel effect of development on inequality via the control variables as a whole 

is negative in non-OECD countries.  

Figure 7 contains also the curve of the estimated fourth-degree polynomial. It shows 

that the fourth-degree function can capture some of the non-concavities suggested by 

nonparametric and semiparametric regressions. Although the shape resembles the 

inverted-U relationship, with the exception when the development reaches a very high 

level, the conventional quadratic form used to estimate the inequality-development 

relationship might be misspecified for the non-OECD dataset. 

 

 

                                                 
6 This “roller coaster” mode also appeared in the study by Keane and Prasad (2002) that empirically 

examined Poland’s inequality-development relationship and generalized the mode by using the sample of 

transitional economies. 
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Fig. 5 Nonparametric Estimation in Model 1: Non-OECD 
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Fig. 6 Semiparametric Estimation in Model 2: Non-OECD 
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Fig. 7 Comparing Non- and Semi-parametric Estimation: Non-OECD 
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The lower portion of Table 5 presents the test results for choosing between 

nonparametric or semiparametric and parametric specifications in the non-OECD sample 

countries. The quadratic and cubic parametric specifications cannot be rejected at any 

usual significant level whether or not the model includes control variables as regressors. 

Among the parametric models, the F tests for parametric specifications in Table 6 show 

that when compared to the third- and fifth-degree polynomial specifications, the 

fourth-degree polynomial of the logarithm of GDP per capita gives a sufficiently accurate 

description of the non-OECD countries, whether or not the control variables are added 

into the models. Recall in Table 3 (non-OECD) that all coefficient estimates in the 

fourth-degree polynomials are significant at the 5 percent level. Hence the fourth-degree 

function specification gives a better description of the data than the quadratic and cubic 

polynomials. The tests for the non-OECD countries support the estimation of a 

fourth-degree function of development rather than a quadratic or cubic form.
7
 

 

Comparing OECD and non-OECD Countries 

Additional differences between the estimates of the inequality-development 

relationship for the OECD and non-OECD sample countries can be seen from the 

nonparametric approach. The nonparametric and semiparametric estimates of the 

relationship between inequality and development in OECD countries have only one 

turning point at a low income level of about $3,640 (see Figure 4), while the estimates in 

non-OECD countries have two turning points, with the first being at a rather low income 

                                                 
7 Such a support on the use of a fourth-degree polynomial rather than a quadratic form can also be seen in 

Mushinski (2001). 



 25 

level (about $1,100) and the other being at a middle income level (about $6,000) (see 

Figure 7). Generally, when the level of economic development is not very high, 

inequality in OECD/non-OCED countries will decrease/increase with development. 

However, both curves make an upturn at an advanced level of development, though they 

act with a different manner: inequality in OECD countries shows an upturn at a lower 

inequality level than non-OECD countries. If this upturn were not accounted for, the 

evidence from OECD countries would roughly suggest that the inverted-U relationship 

between inequality and development is located beyond the turning point and on the 

backside of the inverted-U relationship, while the non-OECD evidence shows that the 

relationship roughly accords with a full inverted-U relationship. 

Figure 8 presents an intuitive comparison of the nonparametric (left) and 

semiparametric (right) estimates of the nonparametric function g(.) between OECD and 

non-OECD countries. On the same portion of development (lgdp [7.6,10.4]), the two 

curves for OECD and non-OECD countries intersected at one point at about 8.4, namely 

at GDP per capita = $4,447. It can be seen that OECD countries has higher inequality 

than non-OECD countries when GDP per capita is less than $4,447, but has lower 

inequality when development has exceeded this level. The dynamics in Figure 8 implies 

that non-OECD countries seem to face higher inequality at middle or high income levels. 

The difference of the intersection of OECD and non-OECD countries between 

nonparametric and semiparametric estimates reflects the role of control variables. The 

effects of policy variables on inequality change the mode of the intersection, but have 

little effect on the relative location of the two curves from nonparametric and 

semiparametric estimations.  
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Fig. 8  Nonparametrc (Left) and Semiparametric (Right) Estimation of g(.) 

 

The estimation and test results from nonparametric model without control variables 

imply that the conventional quadratic concave function may not necessarily capture the 

relationship between inequality and development in both OECD and non-OECD 

countries. The tests show that the cubic polynomial of development levels can capture the 

relationship more accurately than quadratic and fourth-degree polynomials in OECD 

countries, while the fourth-degree polynomial can give a better description of the data 

than other polynomials in non-OECD countries, whether or not the control variables are 

added as regressors. In both sample countries, analysis based on a quadratic specification 

for the relationship between inequality and development is misleading. 

The estimation and test results from the semiparametric model with control variables 

show that the data-driven model selection for OECD countries requires a semiparametric 

specification while the non-OECD countries require a fourth-degree polynomial 

parametric specification. Given the integrated contribution by control variables to 

inequality shown above, we next study the effects of the control variables on inequality 

by comparing the estimates in the parametric part of the semiparametrc model for the 

OECD countries (shown in the last column in Table 3) and the 4-th degree parametric 

model for the non-OECD countries (shown in the “4-th degree” column in Table 3). The 
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implications of the effects of the control variables are different in the two sample country 

groups, except the variable “growth (-1)” which has a positive effect on inequality. 

Specifically, the effect of openness on inequality in OECD countries is negative, 

albeit insignificant both economically and statistically, while openness has a positive and 

significant effect on inequality in non-OECD countries. Openness generally will 

aggravate income inequality in non-OECD countries, but has an emollient effect on 

inequality in OECD countries. Although integration to the world market is expected to 

help non-OECD countries to promote prosperity, increasing opportunities to trade are 

also likely to affect income distribution. Whether or not increasing openness to trade is 

accompanied by a reduction or an increase in inequality has strongly been debated (Julien, 

2007; Wood, 1997). 

The effect of urbanization on inequality is negative (-0.171) and significant for 

OECD countries, but positive (0.007) and insignificant for non-OECD countries. 

Urbanization helps to mitigate inequality in OECD countries, but increases inequality in 

non-OECD countries, albeit insignificantly. According to Anand (1993), the urban-rural 

difference generally results in larger inequality in total income distribution due to 

urbanization. Hence, in the process of urbanization, income inequality will first increase 

and then decrease with urbanization or the migration of rural population to cities. In our 

case, OECD countries have much higher urbanization than non-OECD countries. Hence 

the negative effect of urbanization on inequality in OECD and the positive effect in 

non-OECD accord with this general urbanization-inequality relationship.  

The finding that investment share aggravates inequality in OECD countries but 

reduces inequality in non-OECD countries contrasts with the result in Barro (1999) that 

showed little overall relationship between income inequality and investment. One 
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explanation is that investment may have potential endogeneity in inequality models.  

Inflation has a negative albeit insignificant effect on inequality in OECD countries 

but has a positive and significant effect on inequality in non-OECD countries. Generally, 

cross-country evidence on inflation and income inequality suggests that they are 

positively related. For example, Albanesi (2007) argued that the correlation between 

inflation and income inequality is the outcome of a distributional conflict underlying the 

determination of government policies, and inflation is positively related to the degree of 

inequality as low income households are more vulnerable to inflation. Since non-OECD 

countries have a high average inflation, their monetary authorities should reduce inflation 

to alleviate income inequality. However, the impact of inflation on income distribution 

may be nonlinear (Bulíř, 2001), and the positive and significant effect of inflation on 

inequality would need to be explained with caution. 

 

V Conclusion 

This paper provides evidences on the relationship between inequality and 

development from the estimations and tests of nonparametric and semiparametric panel 

data models with fixed effects. Based on an unbalanced panel dataset, this study presents 

new evidences about the inequality-development relationship in both the developed 

OECD and the developing non-OECD countries and provides additional information on 

the mechanics of the effect of development on inequality.  

For the OECD countries, inequality generally decreases with development, with the 

exception of an upturn at a higher income level. The control variables will help reduce 

income inequality at lower income levels (below about $9,900), but they tend to increase 

inequality when development exceeds that level. For the non-OECD countries, the 
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inequality-development relationship appears in a “roller coaster” mode with two turning 

points, and the second upturn appears at a very high income level. When compared to the 

performance in OECD countries, the effect of development on inequality via the control 

variables is always negative in non-OECD countries, except after an upturn at a high 

income level. Non-OECD countries seem to face serious inequality at the middle or high 

income level. 

Nonparametric estimations without control variables suggest that a polynomial of 

higher-degree might give a sufficiently accurate description of both OECD and 

non-OECD countries. Our tests support estimating a cubic function of development for 

the OECD sample and a fourth-degree function of development for the non-OECD 

sample. Both the parametric estimates capture some of the non-concavities suggested by 

nonparametric and semiparametric regressions. 

Semiparametric estimations and tests with control variables present some 

implications on policy. In OECD countries, growth and investment share in GDP 

aggravate inequality, but openness, urbanization and inflation would reduce inequality. In 

non-OECD countries, growth, openness, urbanization, and inflation generally increase 

inequality, but investment share helps mitigate inequality. It would be appropriate to 

argue that investment in non-OECD countries should be geared more to improve the 

conditions of the low income groups, as that shall reduce inequality overtime.  
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Appendix 

Sample of 30 OECD countries and years: 

Australia, 1967-69, 76, 78-79, 81-82, 85-86, 89-90, 94-96, 2002. Austria, 1987, 1991, 
1995, 2000. Belgium, 1979, 85, 88, 92, 96, 2000. Canada, 1965, 67, 69, 71, 73-75, 77, 79, 
81-88, 91, 94, 97, 2000. Chile, 1968, 71, 80-94, 98, 2000. Czech Republic, 1991-97, 
2002. Denmark, 1963, 76, 78-95, 97, 2000. Finland, 1962, 77-84, 87, 91, 95, 2000. 
France, 1962, 65, 70, 75, 79, 81, 84, 89, 95. Germany, 1973, 75, 78, 80, 81, 83-85, 89, 94, 
97, 98, 2000. Hungary, 1972, 77, 82, 87, 89, 91, 93-97, 99. Ireland, 1973, 80, 87, 94, 99, 
2000. Italy, 1967-69, 71-84, 86, 87, 89, 91, 93, 95, 98, 2000. Japan, 1962-65, 67-82, 85, 
88-90, 93, 98, 2002. South Korea, 1965, 66, 70, 71, 76, 80, 82, 85, 88, 93, 98, 2003. 
Luxembourg, 1985, 91, 94, 98, 2000. Mexico, 1963, 68, 69, 75, 77, 84, 89, 92, 94, 98, 
2002. Netherlands, 1962, 75, 77, 79, 81-83, 85-99. New Zealand, 1973, 75, 77, 78, 80, 82, 
83, 85-87, 89-91. Norway, 1962, 63, 67, 73, 76, 79, 82, 84-91, 95, 96, 2000. Poland, 
1991-97. Portugal, 1973, 80, 89-91, 94, 97. Slovak Republic, 1988-97, 2005. Slovenia, 
1991-93, 97, 2002. Spain, 1965, 73, 75, 94, 2000. Sweden, 1963, 67, 75, 76, 80-96, 2000. 
Switzerland, 1982, 92, 2002. Turkey, 1968, 73, 87, 94, 2003. United Kingdom, 1964-76, 
79, 85, 86, 91, 95, 2002. United States, 1960-91, 94, 97, 2000. 

 

Sample of 45 Non-OECD countries and years: 

Argentina, 1989, 92, 98, 2001. Armenia, 1994-1997. Bahamas, The, 1970, 73, 75, 77, 79, 
86, 88, 91-93. Bangladesh, 1963, 66, 67, 69, 73, 77, 78, 81, 83, 86. Barbados, 1979, 96. 
Belarus, 1995-97, 2002. Brazil, 1970, 72, 76, 78-91, 93, 96, 98, 2002. Bulgaria, 1981-97, 
2003. China, 1970, 75, 78, 80, 82-99, 2001. Colombia, 1964, 70, 71, 74, 78, 88, 91, 94, 
98, 2003. Costa Rica, 1961, 69, 71, 77, 79, 81, 83, 86, 89, 93, 98, 2001. Cyprus, 1990, 96. 
Dominican Republic, 1976, 84, 89, 92, 96, 97, 2003. Ecuador, 1968, 88, 93, 94, 95, 98, 
2003. El Salvador, 1965, 77, 89, 94, 95, 97, 2002. Estonia, 1990-94. Gabon, 1975, 77. 
Guatemala, 1986-87, 89, 98, 2002. Honduras, 1968, 89-94, 98, 2003. Hong Kong, 1971, 
73, 76, 80, 81, 86, 91, 96, 98. Israel, 1986, 92, 97. Jamaica, 1958, 2003. Kazakhstan, 
1993, 96, 2002. Latvia, 1995, 96, 98, 2002. Malaysia, 1967, 70, 73, 76, 79, 84, 89, 95, 97. 
Nepal, 1976, 77, 84. Nicaragua, 1998, 2001. Nigeria, 1959, 81, 82. Pakistan, 1963, 64, 66, 
67, 69, 70. Panama, 1969, 70, 79, 80, 89, 95, 97, 2002. Paraguay, 1990, 95, 98, 2001. 
Peru, 1961, 71, 81, 96, 2002. Philippines, 1961, 65, 71, 75, 85, 88, 91, 94, 97. Puerto 
Rico, 1963, 69, 79, 89. Romania, 1989-92, 94, 98. Russian Federation, 1990, 93-96, 98. 
Senegal, 1960, 95. Singapore, 1973, 78, 80, 89, 92, 97, 2003. South Africa, 1990, 93, 95. 
Sri Lanka, 1963, 69, 73, 79, 80, 81, 86, 87. Thailand, 1962, 68, 69, 71, 75, 81, 86, 88, 90, 
92. Trinidad & Tobago, 1971, 76, 81, 88, 94. Uruguay, 1989, 92, 98. Uzbekistan, 1990, 
2002. Venezuela, Rep., 1962, 71, 76-79, 81, 87, 89, 90, 93, 99, 2000. 


