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ABSTRACT 
In this paper we consider the classical newsvendor model with profit maximization. When 

demand is fully observed in each period and follows either the Rayleigh or the exponential 

distribution, appropriate estimators for the optimal order quantity and the maximum expected 

profit are established and their distributions are derived. Measuring validity and precision of 

the corresponding generated confidence intervals by respectively the actual confidence level 

and the expected half-length divided by the true quantity (optimal order quantity or maximum 

expected profit), we prove that the intervals are characterized by a very important and useful 

property. Either referring to confidence intervals for the optimal order quantity or the 

maximum expected profit, measurements for validity and precision take on exactly the same 

values. Furthermore, validity and precision do not depend upon the values assigned to the 

revenue and cost parameters of the model. To offer, therefore, a-priori knowledge for levels of 

precision and validity, values for the two statistical criteria, that is, the actual confidence level 

and the relative expected half-length are provided for different combinations of sample size 

and nominal confidence levels 90%, 95% and 99%. The values for the two criteria have been 

estimated by developing appropriate Monte-Carlo simulations. For the relative-expected half-

length, values are computed also analytically. 
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1. Introduction 
 

Inventory management is a crucial task in the operation of firms and enterprises. For 

products whose life-cycle of demand lasts a relatively short period (daily and weekly 

newspapers and magazines, seasonal goods etc), newsvendor (or alternatively newsboy) 

models offer quantitative tools to form effective inventory policies. The short period where 

demand refers to and inventory decisions should be made represents an inventory cycle. In 

general, applications of such models are found in fashion industry, airline seats pricing, and 

management of perishable food supplies in supermarkets. 

Among the alternative forms of newsvendor models, the classical version refers to the 

purchasing inventory problem where newsvendors decide on a one-time basis and their 

decisions are followed by a stochastic sales outcome (Silver et al., 1998). In such cases, 

newsvendors have to predict order quantities in the beginning of each inventory cycle (or 

period) and products cannot be sold in the next time period if the actual demand is greater 

than the order quantity, as any excess inventory is disposed of by buyback arrangements. At 

the same time, there is an opportunity cost of lost profit in the opposite situation (Chen and 

Chen, 2009), where at the end of the inventory cycle an excess demand is observed. 

During the last decades, a number of researchers have explored the issue of the 

optimal order quantity for cases of uncertainty in demand. Alternative extensions of 

newsvendor models have been published in the literature, and Khouja (1999) provides an 

extensive search of these works till 1999. Since then, various papers have explored the 

newsboy-type inventory problem like Schweitzer and Cachon (2000), Casimir (2002), Dutta 

et al. (2005), Salazar-Ibarra (2005), Matsuyama (2006), Benzion et al. (2008), Wang and 

Webster (2009), Chen and Chen (2010),  Huang et al. (2011), Lee and Hsu (2011), and Jiang 

et al. (2012). However, the crucial condition of applying these models in practice is that 

parameters of demand distributions should be known, something that does not hold. And, 
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unfortunately, the extent of applicability of newsvendor models in inventory management to 

determine the level of customer service depends upon the estimation of demand parameters. 

The problem of uncertainty becomes even more severe for certain types of product, like 

seasonal clothing, for which data on demand are available only for few inventory cycles 

(ensuring that market conditions do not change), and this makes estimation procedures to be 

under question. 

Research on studying the effects of demand estimation on optimal inventory policies 

is limited (Conrad 1976; Nahmias, 1994; Agrawal and Smith, 1996; Hill, 1997; Bell, 2000). 

Besides, none of these works has addressed the problem of how sampling variability of 

estimated values of demand parameters influences the quality of estimation concerning 

optimal ordering policies. Recently, it has been recognized that effective applications of 

newsvendor models to form reliable inventory policies depend upon the variability of 

estimates for the parameters of probabilistic laws which generate demand in successive 

inventory cycles. Assuming that demand follows the normal distribution, for the classical 

newsvendor model, Kevork (2010) developed appropriate estimators to explore the variability 

of estimates for the optimal order quantity and the maximum expected profit. His analysis 

showed that the weak point of applying this model to real life situations is the significant 

reductions in precision and stability of confidence intervals for the true maximum expected 

profit when high shortage costs occur.  

Su and Pearn (2011) developed a statistical hypothesis testing methodology to 

compare two newsboy-type products and to select the one that has a higher probability of 

achieving a target profit under the optimal ordering policy. The authors provided tables with 

critical values of the test and the sample sizes which are required to attain designated type I 

and II errors. Prior to these two works, Olivares et al. (2008) presented a structural estimation 
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framework to disentangle whether specific factors affect the observed order quantity either 

through the distribution of demand or through the overage/underage cost ratio. 

In the current paper, for the classical newsvendor model with the demand in each 

period to be fully observed and to follow either the exponential or the Rayleigh distribution, 

we study the variability of estimates for the optimal order quantity and the maximum 

expected profit which is caused by the sampling distribution of known estimators of the 

parameter(s) of each distribution. For the exponential distribution, to estimate its parameter 

we use the sample mean, while to estimate the variance of the distribution we adopt an 

estimator, which belongs to the form of estimators which are produced from the product of a 

constant times the squared of the sample mean (Pandey and Singh, 1977; Singh and Chander, 

2008). For the Rayleigh distribution its parameter is estimated using a maximum likelihood 

estimator (Johnson et al., 1994).  

Putting these estimators into the forms that determine the optimal order quantity and 

the maximum expected profit, for the latter two quantities we establish analogous estimators, 

whose distributions are derived (a) for sufficiently large samples in the case of an exponential 

demand, and (b) for both small and large samples when demand follows the Rayleigh 

distribution. Using the derived distributions of the proposed estimators, to study the validity 

and precision of estimates for the optimal order quantity and the maximum expected profit, 

we consider two statistical criteria: (a) the actual confidence level which the generated 

confidence intervals attain and (b) their expected half-length divided by the true quantity 

(optimal order quantity or maximum expected profit).  

A first reason for considering the Exponential and Rayleigh distributions was that their 

coefficients of variation, skewness, and excess kurtosis remain unaltered in changes of their 

parameter. But the most substantial reason of the choice of the two distributions under 

consideration is a momentous property that the generated confidence intervals possess. We 
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prove that for each distribution under consideration and at any sample size, the actual 

confidence level and the relative expected half-length take on the same values either when the 

confidence interval refers to the optimal order quantity or when the interval has to do with the 

maximum expected profit. Additionally to this important remark, the values of the two 

statistical criteria do not depend upon the revenue and cost parameters of the newsvendor 

model, that is, price, salvage value, purchasing (or production) cost and shortage cost. This 

property indicates that being at the start of the period and estimating the optimal order 

quantity and the maximum expected profit, validity and precision depends upon only the 

available sample on demand data.  

To provide, therefore, a framework where practitioners could find a-priori knowledge 

for the validity and precision attained under an exponential or Rayleigh demand, we have 

estimated the actual confidence level and the relative half- length by organizing appropriate 

Monte-Carlo simulations and we present their values for different combinations of alternative 

sample sizes and nominal confidence level. Especially, for the relative expected half-length, 

analytic forms have been obtained from which exact values have been also computed. The 

fact that discrepancies between estimated and true values for the relative expected half-length 

are negligible assures the reliability of simulation results. 

The Exponential and Weibull (a special case of which is the Rayleigh) distributions 

have been extensively used in various papers related to inventory management, but with 

different aims than those which are considered in the current work. For the Newsboy problem, 

Khouja (1996) used an exponential distributed demand to illustrate the effect of an emergency 

supply, and Lau (1997) offered closed-form formulas for computing the expected cost and the 

optimal expected cost when demand follows the exponential distribution. Hill (1997) used the 

exponential distribution to perform analytical and numerical comparisons between the 

Frequentist and Bayesian approach for demand estimation. Exponential demand was also 
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adopted in the works of Geng et al. (2010) who considered a single-period inventory system 

with a general S-shaped utility function and Grubbstrom (2010) who provided a compound 

variation of the newsboy problem where customers are arriving at different points in time and 

requiring amounts of product of varying size.   

Lau and Lau (2002) used both the exponential and Weibull distributions in a 

manufacturer-retailer channel to study the effects of retail-market demand uncertainty on 

revenues, order quantities and expected profits. For the multi-product Newsboy model with 

constraints, Areeratchakul and Abdel-Malek (2006) modeled demand as Exponential, Log-

Normal, and Weibull to provide a solution methodology, which was based on quadratic 

programming and a triangular presentation of the area under the cumulative distribution 

function of demand. Considering that demand follows the Weibull distribution and including 

risk preferences of the inventory manager to the classical newsvendor problem, Jammernegg 

and Kischka (2009) showed that robust ordering decisions can be derived from assumptions 

on stochastic dominance. For the multi-product competitive newsboy problem, Huang et al. 

(2011) used the exponential distribution to test the validity of a static service-rate 

approximation for the dynamic and stochastic availability of each product.  

The aforementioned arguments and remarks lead the rest of the paper to be structured 

as follows. In the next section we develop the estimators for the optimal order quantity and 

the maximum expected profit. The distributions of the estimators are derived in section 3, 

where the corresponding confidence intervals are also constructed. In section 4, we evaluate 

the performance of the generated confidence intervals and we report the values of their actual 

confidence levels and relative expected half-lengths for different combinations of sample 

sizes and nominal confidence levels. Finally, the last section concludes the paper 

summarizing the most important findings of the current work.   

 

 



 

7 
 

2. Estimators for the optimal order quantity and the maximum expected profit 
 

For the classical newsvendor model (Khouja, 1999), the aim is to determine at the start 

of the period (or inventory cycle) the order quantity, Q, which maximizes the expected value 

of 

    
   







QX   if            XQsQcp
QX   if   XQvpQcp

, 

 
where, ξ stands for profits per period,  X is a random variable representing size of demand at 

any inventory cycle or period, p is the selling price, c is the purchase (or production) cost, v is 

the salvage value, and s stands for the shortage cost per unit. A vital assumption of the model 

is that any excess inventory at the end of the previous inventory cycle has been disposed of by 

buyback arrangements with the salvage value to take care of such arrangements. Thus at the 

beginning of every period, the stock level is set up equal to the ordered quantity. On the other 

hand, if excess demand is observed, shortage cost per unit is used as an indirect cost element 

which incorporates current losses and present value of future payoffs expected to be lost from 

present unsatisfied customers. 

Let  xf  and  xF  be respectively the probability density function and the cumulative 

distribution function of demand. Taking first and second derivatives of  E  by using 

Leibniz’s rule, the optimal order quantity maximizing expected profit function satisfies the 

equation, 

 

    R
svp
scpQFQXPr ** 




 , (1) 

 
where R is a critical fractile whose value identifies the product as low profit (R<0,5) or high 

profit (R>0,5) according to the principle stated by Schweitzer and Cachon (2000). Using *Q , 

the next proposition expresses the maximum expected profit in terms of the unconditional 
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expected demand and the expected demand given that this is less than the optimal order 

quantity. 

  

Proposition 1: Given *Q satisfying (1), the maximum expected profit takes the form, 

 
          *** QXXEXEsQXXEcpξE   (2) 

 
Proof: See in the Appendix. 

 

When demand follows the exponential distribution with parameter λ, we know that 

  
*Q* e1QF . Thus the optimal order quantity will be given from 

 
 RlnQ*

EX  . (3) 

 
To derive the maximum expected profit, we obtain first the next result by using (1) and (3): 

 

   
   







 

















 









 1
R

R1lnR1eeQ
R
1dxex

QF
1QXXE

*** QQ
*

Q

0

x

*
*  . 

 
Replacing it into (2), given that   XE , we take  

 
        RlnvccpE *

EX  . (4) 

 
Regarding the Rayleigh distribution with parameter σ, this is a special case of Weibull 

and is defined in Johnson et al. (1994). Its distribution function evaluated at *Q  is 

 




















*Q
* eQF , from which we obtain 

 
 RlnQ*

RY  . (5) 
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To have a corresponding analytic form for the maximum expected profit, the expected value 

of the Rayleigh distribution singly truncated to the right at *Q  is prerequisite. To the extent of 

authors’ knowledge such a direct result is not available in the literature. The next proposition 

derives the required expected value. 

 
Proposition 2: Given *Q  satisfying (5), it holds that 

 

       









 2

2πΦ2πR12lnR1
R
σQXXE R12ln

* , (6) 

 
with  R12lnΦ


 the distribution function of the standard normal evaluated at  R12ln  . 

Proof: See in the Appendix. 

 
Replacing, (6) into (2), and given that   XE , 

 

          






























 svp

sRlnRsvpE Rln
*
RY . (7) 

 
Suppose now that nX,...,X,X  is a sequence of independent random variables 

following either the exponential or the Rayleigh distribution and representing demand for a 

sample of the most recent n consecutive periods. On the basis of expressions (3), (4), (5), and 

(7), the following estimators for the optimal order quantity and the maximum expected profit 

are defined for period n+1: 

 
Exponential (λ):  

 R1lnˆQ̂*
EX  , (8a) 

        R1lnvccpˆÊ *
EX  , (8b) 

where nXˆ
n

t
t



 . 
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Rayleigh (σ): 

 
 RlnˆQ̂*

RY  ,  (9a) 

 
  R

*
ry gσ̂ξÊ   (9b) 

where  

        











 2
π

svp
s

2
πΦ2πR12lnR1svpg R12lnR  

 

and n2Xˆ
n

1t

2
t



  is the maximum likelihood estimator of   (Johnson et al., 1994). 

 
Before we proceed to derive the distributions (small sample size or asymptotic) of the 

aforementioned four estimators, we shall assume that in every period in the sample the 

salvage value had been set up at a level which ensured that if any excess inventory remained 

at the end of period, this was disposed of through either consignment stocks or buyback 

arrangements. So, the stock level at the beginning of any period in the sample was being set 

up equal to the ordered quantity, without being necessary to know how the order quantity had 

been determined. Being however at the start of period n+1, and having decided to adopt the 

newsvendor model to determine the order quantity, we should have knowledge of how to 

access the precision of estimates for the optimal order quantity and the maximum expected 

profit. This issue is addressed in the next section. 

 

 

3. Confidence Intervals for *Q̂ and  *ˆ ξE  

When X follows the exponential distribution with parameter λ, it is known that 


n

1t
tX  

follows the Gamma distribution with parameters n and λ. The scaling property of the Gamma 
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distribution states that if we multiply 


n

1t
tX by a constant  0m  , the product follows again 

the Gamma distribution with parameters n and m . Setting, therefore,   nR1lnm   we 

obtain 

 

     







 





n
R1lnˆ , nGamma~Q̂R1lnˆR1ln

n

X
*
EX

n

1t
t

, 

 
while with         nR1lnvccpm  , we take 

 

        






 


n

R1lnvccpˆ , nGamma~Ê *
EX . 

 
However, constructing confidence intervals for *

EXQ  and  *EXξE using these two exact 

distributional results is not recommended for two reasons: (a) the required critical values of 

the gamma distribution depend upon an estimate of λ which is not a fixed quantity, and (b) we 

do not have always positive values for the expression       R1lnvccp  . 

Alternatively, approximate confidence intervals for *
EXQ  and  *EXξE can be obtained from the 

asymptotic distributions of estimators (8a) and (8b). The next proposition establishes the 

prerequisite asymptotic distributional results. 

 

Proposition 3: When demand follows the exponential distribution, then we have  

 
     22D*

EX
*
EX R1lnκ  ,0 NQQn ˆ , 

 
            22D*

EX
*
EX R1lnvccpκ  ,0 NξEξEn ˆ , 

where  XVarκ 2  . 

Proof: See in the Appendix. 
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From proposition 3, the   %  confidence intervals for *
EXQ  and  *EXξE  can be 

approximated in finite samples from  

 Rln
n
ˆ

zQ̂*
EX 


  , (10a) 

and 

       R1lnvccp
n
ˆ

zÊ 2
*
EX 


  , (10b) 

where   
2

2
2 ˆ

3n2n
nˆ 


  estimates the variance of the exponential distribution and 

belongs to the class of estimators of the form 2xM  , where M is a suitably chosen constant 

and x  is the sample mean (Pandey and Singh, 1977; Singh and Chander, 2008). 

On the contrary, for the Rayleigh distribution, small sample size confidence intervals 

for *
RYQ  and  *RYξE  can be constructed.   

 
Proposition 4: When demand follows the Rayleigh distribution, an   %  confidence 

interval for *
RYQ  is obtained from 

 

    

























 R1ln
1n,Γ

2nσQ

R1ln
1n,Γ

2nσ

2
α

*
RY

2
α1

ˆˆ  (11a) 

 
while, for  *RYξE  the corresponding interval is given by 

 

 


















 2

R
2α

*
RY

2
R

2α1 g
2n,Γ

2nσξE

g
2n,Γ

2nσ ˆˆ  (11b) 

where  212 v,v  and  2121 v,v  are respectively the lower and the upper 2  

percentage points of the Gamma distribution with parameters v1 and v2. 

Proof: See in the Appendix. 
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Additionally, as in the case of exponential distribution, confidence intervals for *
RYQ  

and  *RYξE can be constructed from the asymptotic distributions of the corresponding 

estimators. The next proposition states the required asymptotic distributional results related to 

estimators (9a) and (9b). 

 

Proposition 5: When demand follows the Rayleigh distribution, then we obtain 

 

   







 


2
R1ln

σ  ,0 NQQn 2D*
RY

*
RY

ˆ , 

 

     









4
gσ  ,0 NξEξEn

2
R2D*

EX
*
EX

ˆ  

 
Proof: See in the Appendix. 

 

Convergence to normality, as this is stated in proposition 5, enables us to approximate in 

finite samples the   %  confidence intervals for *
RYQ  and  *RYξE  by using 

respectively the following expressions 

 
 



 

Rln

n
ˆ

zQ̂*
RY , (12a) 

and 

 
2

g
n
ˆ

zÊ R
2

*
RY


  . (12b) 
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4. Precision and Validity of Confidence Intervals 

 
In the current section we evaluate the performance of each pair of confidence intervals 

given in (10), (11), and (12) by using two statistical criteria and estimating them through 

Monte-Carlo simulations. These criteria are the actual confidence level (ACL), which the 

interval attains at a given sample size, and the relative expected half-length (REHL) of the 

interval defined as the expected half-length divided by the true quantity, that is, *Q  and 

 *ξE respectively. The first criterion assesses the validity of confidence interval at finite 

sample sizes, while the second measures its precision. Besides, the REHL resolves the 

problem of comparability of precision between alternative combination of values for R, p, c, 

v, and s. This problem arises since for different R the optimal order quantity, *Q , changes, 

and given R, assigning different sets of values for p, c, v, and s, we result in different sizes for 

the maximum expected profit,  *ξE .   

Propositions 6 and 7 establish that for each one of the two distributions under 

consideration and for each pair of confidence intervals considered in (10), (11), and (12) 

respectively, the values of the aforementioned two criteria are exactly the same, and their 

values do not depend upon R, p, c, v, and s, as well as, the parameter of the distribution. 

 
Proposition 6: When demand follows the exponential distribution, for the pair of confidence 

intervals defined in (10a) and (10b), it holds that 

 
 














 2α2α z

κ
λλnzPrACL

ˆ

ˆ
, 

 

  3n2n
nzREHL 2α 

 . 

 
Proof: See in the Appendix. 
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Proposition 7: When demand follows the rayleigh distribution, (a) for the pair of confidence 

intervals defined in (11a) and (11b), we obtain 

 

    














 n,1Γ
n

σ
σ

n,1Γ
nPrACL

2α2α1 ˆ , 

 

     

















 


 n,1Γ

1
n,1Γ

1
nΓ

2
1nΓ

2
1REHL

2α12α
, 

 
and (b) for the corresponding pair defined in (12a) and (12b) we take 

 
 














2
z

σ
σσn

2
z

PrACL 2α2α

ˆ
ˆ

, 

 

 nΓ
2
1nΓ

2n
z

REHL 2α






 

 , 

 
where Γ(x) is the Gamma function evaluated at x. 

 
Proof: See the Appendix. 

 
The outcomes of propositions 6 and 7 are important regarding the extent of 

applicability of the classical newsvendor model from the estimation point of view when 

demand follows the exponential or the Rayleigh distribution. Being at the start of period n+1, 

and trying to predict *Q  and  *ξE  based on demand data available from a sample of the n 

most recent periods, management should have some knowledge about the sensitivity of the 

validity and the precision of estimates in changes of the revenue and cost parameters. And this 

happens because accordingly to the type of the newsvendor product the values of some 

parameters cannot be specified at the start of the period. For example, for seasonal clothing 

the salvage value cannot be fixed at the start of the period, but must be adjusted appropriately 
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at the end of period in order to get rid of any remained stock. Also the shortage cost, being the 

present value of future profits expected to be lost from present unsatisfied customers (Lapin, 

1994), cannot be accurately determined, especially with sales where personal communication 

with customers is missing.  

Fortunately, such problems are resolved when demand follows the exponential or the 

Rayleigh distribution. By using confidence intervals (10), (11) and (12), a-priori knowledge 

for the revenue and cost parameters is not necessary. Whichever the values of R, p, c, v and s 

are, ACL and REHL depend upon only the sample size. This, however, is not true when 

demand follows for instance the normal distribution. Kevork (2010) concluded that, given the 

profit margin, the precision of confidence intervals that he generated is different for different 

combinations of permissible values for the shortage cost and the salvage value. Particularly, 

increasing the shortage cost, precision reduces considerably. In such a case, therefore, a-priori 

knowledge for the salvage value and the shortage cost are required in order management to 

know how close or how far away from the corresponding true quantities the estimates for the 

maximum expected profit lie. 

To estimate ACL and REHL as they are stated in propositions 6 and 7, 10000 

replications of maximum size 2000 observations each were generated from the exponential 

distribution with λ=300 and from the Rayleigh with  2300 . The specific choice of λ 

and σ ensures that both distributions have a common expected demand E(X) =300. In each 

replication, the series of 2000 observations was generated by applying traditional inverse-

transform algorithms to a sequence of 2000 random numbers uniformly distributed on (0,1). 

The algorithms can be found in Law (2007), on pages 448 and 452 for the exponential and the 

Rayleigh respectively. Details for the random number generator can be found in Kevork 

(2010). 



 

17 
 

For each distribution and for each replication, estimates for λ and σ were taken at 

different sample sizes. Then for each sample size, setting R=0,8, estimates for *Q  were 

computed using (8a) for the exponential distribution and (9a) for Rayleigh. Finally, for each 

combination of n and R, and using nominal confidence levels of 90%, 95%, and 99%, 10000 

different confidence intervals were computed using (10a) for the exponential and (11a), (12a) 

for Rayleigh. Having available now 10000 different confidence intervals for each sample size, 

the ACL was estimated by the percentage of intervals containing the true quantity *Q , and the 

REHL by dividing the average half-length over the 10000 confidence intervals by *Q . Table 

1 displays the estimated values for the ACL’s while tables 2, 3 and 4 show both the estimated 

and the true values for REHL.  The required critical values for the gamma distribution were 

obtained through the statistical package MINITAB. Also to compute precisely the ratio of the 

two gamma functions defined in proposition 7, we used the transformation 

     nln5,0nlnexp  . 

 

Table 1: Estimated values for the ACL 
 
Sample 

size 
Exponential – asymptotic 

confidence intervals 
Rayleigh – small sample size 

confidence intervals 
Rayleigh – asymptotic 
confidence intervals 

 Nominal Confidence Level Nominal Confidence Level Nominal Confidence Level 
 90% 95% 99% 90% 95% 99% 90% 95% 99% 

5 0,728 0,788 0,848 0,897 0,948 0,990 0,862 0,903 0,947 
10 0,801 0,854 0,914 0,897 0,949 0,988 0,881 0,923 0,964 
15 0,831 0,885 0,938 0,902 0,949 0,989 0,889 0,933 0,973 
20 0,848 0,903 0,950 0,899 0,951 0,989 0,892 0,935 0,980 
25 0,861 0,913 0,959 0,901 0,951 0,990 0,896 0,942 0,982 
30 0,867 0,920 0,965 0,900 0,950 0,992 0,898 0,942 0,981 
40 0,873 0,925 0,970 0,897 0,950 0,990 0,895 0,945 0,984 
50 0,874 0,927 0,974 0,896 0,949 0,990 0,891 0,943 0,984 
100 0,891 0,942 0,983 0,900 0,953 0,991 0,899 0,951 0,988 
200 0,899 0,945 0,984 0,902 0,952 0,990 0,903 0,950 0,987 
300 0,896 0,949 0,986 0,902 0,952 0,990 0,900 0,952 0,988 
400 0,895 0,945 0,987 0,900 0,949 0,989 0,899 0,947 0,989 
500 0,894 0,946 0,988 0,897 0,948 0,989 0,896 0,948 0,989 
1000 0,898 0,949 0,989 0,900 0,952 0,989 0,901 0,950 0,990 
2000 0,899 0,949 0,990 0,902 0,950 0,990 0,901 0,951 0,990 
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From table 1, small sample size confidence intervals held for the Rayleigh distribution 

attain at any sample estimated ACL’s almost identical with the corresponding nominal 

confidence levels verifying the validity of the recommended intervals (11a) and (11b). 

Besides, ACL’s for the asymptotic confidence intervals converge to the nominal confidence 

levels with different rates of convergence, which are faster for the Rayleigh distribution. 

Regarding tables 2, 3 and 4, discrepancies between estimated and true values for the REHL 

are negligible, verifying the validity of simulation results. Apart from very small samples, in 

any other case these discrepancies are starting to appear at least after the fourth decimal place. 

Finally, as it was expected, REHL’s are greater for the exponential distribution which has 

larger coefficient of variation, skewness, and kurtosis, and for the Rayleigh, asymptotic 

confidence intervals provide smaller REHL’s compared to those of small sample size 

intervals. 

 We close this section by giving some recommendations for the common used in 

practice 95% nominal confidence level. Regarding the Rayleigh distribution and using the 

asymptotic confidence intervals, actual confidence levels more than 90% can be attained even 

with a sample of five observations. But to achieve a sampling error of at most 10% of the true 

value (optimal order quantity or maximum expected profit) a sample of over 100 observations 

must be available. On the contrary, to attain the same precision with the exponential 

distribution, the sample size should be considerably larger exceeding 400 observations. 
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Table 2: Estimated and true values for the REHL under an exponential demand 
 

 ESTIMATED VALUES TRUE VALUES 
 Nominal Confidence Level  
 90% 95% 99% 90% 95% 99% 

5 0,4954 0,5903 0,7758 0,4915 0,5857 0,7697 
10 0,4170 0,4969 0,6530 0,4165 0,4962 0,6522 
15 0,3646 0,4344 0,5709 0,3642 0,4339 0,5703 
20 0,3275 0,3902 0,5129 0,3270 0,3897 0,5121 
25 0,2997 0,3571 0,4693 0,2991 0,3564 0,4684 
30 0,2778 0,3310 0,4350 0,2772 0,3304 0,4342 
40 0,2449 0,2919 0,3836 0,2448 0,2917 0,3833 
50 0,2216 0,2640 0,3470 0,2216 0,2640 0,3470 
100 0,1604 0,1912 0,2512 0,1605 0,1912 0,2513 
200 0,1148 0,1368 0,1798 0,1149 0,1369 0,1799 
300 0,0941 0,1121 0,1474 0,0942 0,1122 0,1475 
400 0,0816 0,0973 0,1278 0,0817 0,0974 0,1280 
500 0,0731 0,0872 0,1145 0,0732 0,0872 0,1146 
1000 0,0519 0,0618 0,0812 0,0519 0,0618 0,0813 
2000 0,0367 0,0438 0,0575 0,0367 0,0438 0,0575 
 
 
 
Table 3: Estimated and true values for the REHL under a Rayleigh demand, small sample 
size confidence intervals 
 

 ESTIMATED VALUES TRUE VALUES 
 Nominal Confidence Level Nominal Confidence Level 
 90% 95% 99% 90% 95% 99% 

5 0,4181 0,5171 0,7460 0,4165 0,5151 0,7430 
10 0,2765 0,3355 0,4610 0,2764 0,3353 0,4608 
15 0,2212 0,2667 0,3609 0,2211 0,2666 0,3607 
20 0,1897 0,2280 0,3062 0,1895 0,2278 0,3060 
25 0,1686 0,2024 0,2706 0,1685 0,2022 0,2704 
30 0,1533 0,1838 0,2451 0,1532 0,1836 0,2448 
40 0,1320 0,1580 0,2099 0,1320 0,1580 0,2099 
50 0,1177 0,1408 0,1866 0,1177 0,1407 0,1866 
100 0,0827 0,0987 0,1303 0,0827 0,0988 0,1303 
200 0,0583 0,0695 0,0916 0,0583 0,0696 0,0916 
300 0,0476 0,0567 0,0746 0,0476 0,0567 0,0747 
400 0,0412 0,0491 0,0646 0,0412 0,0491 0,0646 
500 0,0368 0,0439 0,0577 0,0368 0,0439 0,0577 
1000 0,0260 0,0310 0,0408 0,0260 0,0310 0,0408 
2000 0,0184 0,0219 0,0288 0,0184 0,0219 0,0288 
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Table 4: Estimated and true values for the REHL under a Rayleigh demand, asymptotic 
confidence intervals 
 

 ESTIMATED VALUES TRUE VALUES 
 Nominal Confidence Level  
 90% 95% 99% 90% 95% 99% 

5 0,3601 0,4291 0,5640 0,3587 0,4275 0,5618 
10 0,2570 0,3062 0,4024 0,2568 0,3060 0,4022 
15 0,2107 0,2511 0,3300 0,2106 0,2509 0,3298 
20 0,1829 0,2179 0,2864 0,1828 0,2178 0,2862 
25 0,1638 0,1952 0,2565 0,1637 0,1950 0,2563 
30 0,1497 0,1784 0,2344 0,1495 0,1782 0,2342 
40 0,1297 0,1545 0,2031 0,1296 0,1545 0,2030 
50 0,1160 0,1383 0,1817 0,1160 0,1382 0,1817 
100 0,0821 0,0979 0,1286 0,0821 0,0979 0,1286 
200 0,0581 0,0692 0,0910 0,0581 0,0693 0,0910 
300 0,0474 0,0565 0,0743 0,0475 0,0566 0,0743 
400 0,0411 0,0490 0,0643 0,0411 0,0490 0,0644 
500 0,0368 0,0438 0,0576 0,0368 0,0438 0,0576 
1000 0,0260 0,0310 0,0407 0,0260 0,0310 0,0407 
2000 0,0184 0,0219 0,0288 0,0184 0,0219 0,0288 
 

 

5. Conclusions 

In the current paper we enrich existent approaches of estimating optimal inventory 

policies. By considering the classical newsvendor model with profit maximization and 

assuming that demand per period follows either the exponential or the Rayleigh distribution, 

we explore the validity and precision of appropriate confidence intervals for the optimal order 

quantity and the maximum expected profit. The extraction of confidence intervals was based 

on small and/or large sample size distributions of estimators which we derived for the two 

quantities under consideration. Validity and precision were measured respectively from the 

actual confidence level attained by the intervals and from their expected half-length divided 

either by the optimal order quantity or the maximum expected profit. For the relative expected 

half-length, analytic forms have been also derived to compute it precisely. 

When demand in each period is modeled either by the exponential or the Rayleigh 

distribution, validity and precision of estimates for the optimal order quantity and the 

maximum expected profit are characterized by an important and useful property which we 
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prove in the current work. The actual confidence level and the relative expected half-length 

take exactly the same values either when the confidence intervals refers to the optimal order 

quantity or when the interval is constructed for the maximum expected profit. And the 

specific values do not depend upon the critical fractile and the revenue and cost parameters of 

the newsvendor model. Implications of this property are very important. Being at the start of 

the period and predicting the optimal order quantity and the maximum expected profit for the 

coming period, management should not worry about the sensitivity of predictions to different 

values of parameters of the newsvendor model, especially with those which cannot be fixed in 

the beginning of the period. The only factor that eventually determines validity and precision 

is the sample size. 

Organizing and performing appropriate Monte-Carlo simulations, for each proposed 

type of confidence interval, we have estimated the actual confidence level and the relative 

expected half-length for different combinations of sample sizes and nominal confidence level. 

Additionally, we have computed analytically the relative expected half-length from the 

available mathematical expressions which as we mentioned we have also derived. The results 

are displayed to appropriately structured tables so that in case where demand follows one of 

the two distributions under consideration to have knowledge about validity and precision 

which can be attained from the available sample of demand data. The general conclusion is 

that although acceptable actual confidence levels can be attained with relatively small 

samples, to achieve satisfactory levels of precision large samples are required. And 

unfortunately, for certain types of newsvendor products, due to their nature and to market 

conditions, past data for demand are limited. Seasonal clothing belongs to this category of 

products. In such cases, it is recommended the application of the classical newsvendor model 

to be made with great caution otherwise it is very likely the estimated values to lie far away 

from the optimal ones.   
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APPENDIX 

 

Proof of proposition 1 

 
Taking expected values to both sides of (1), 

 
              QFQXXEvpQFQsvpQscpE  

    QF1QXXEs  . (A1) 

 
Using properties of truncated distributions, 
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Solving (A2) with respect to  QXXE  , and replacing to (A1), 

 
               )XEsQFQXXEsvpQFQsvpQscpE  . (A3) 

 
Setting *QQ  ,   RQF *  , and   Rscpsvp  , the first two terms of the right hand 

side of (A3) vanish. Rearranging the remaining two terms of (A3) completes the proof of 

proposition 1. 

 

 

 

 



 

23 
 

Proof of proposition 2 

 
Consider the integral, 
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The m2 truncated moment expression for the incomplete Normal Distribution is given in table 

1 of Jawitz (2004) as 
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which completes the proof of proposition 2. 
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Proof of proposition 3 

 
From the Central Limit Theorem      ,  Nˆn D . Also, from the Weak Law 

of Large Numbers, ̂limp , and 
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the application of the univariate delta method (knight, 1999) gives 
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Proof of proposition 4 

 
For a random variable Y which follows the chi-squared distribution with v degrees of 

freedom, it is also true that  2,2vGamma~Y . Cohen and Whitten (1988) and Balakrishnan 

and Cohen (1991) stated that 2
n2

22 ~ˆn2Y   or  2,nGamma~ˆn2Y 22  . Using 

also the scaling property of the Gamma distribution we take,  2
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2
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 Taking the square root of each term inside each probability statement completes the proof.  



 

26 
 

Proof of proposition 5 

From the exact distributional result 


  n~ˆn  we take    ̂E , and 

    nˆVar , as n . Thus  ̂limp , and  

 
    *

RY
,*

RY QˆlimpRlnQ̂limp 
 , 

 
     *ry

,
R

*
ry EˆlimpgÊlimp 
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22

hhh , 

 

which completes the proof as 
 

2
R1ln

ˆd
d 2

ˆ
2

22









1h
 and 

2
R

ˆ
2 2

g
ˆd

d
22












 

2h . 

 

 

 

 

 

 



 

27 
 

Proof of proposition 6 

  
The actual confidence level of (10a) is 
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Proof of proposition 7 

 
Using (4), and the scaling property of the Gamma distribution, the ACL for intervals (11a) 

and (11b) are given below: 
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The expressions for the REHL of (11a) and (11b) are respectively 
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Regarding the asymptotic confidence intervals (12a) and (12b), the corresponding ACL’s are 
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*
RY

*
RY  , 

 
 












  2

z
σ̂

σσ̂n
2

z
PrACLACL 2α2α

Q . 

 
Finally, the REHL of (12a) and (12b) are  

 
 

   






  ˆE
n2

z
ˆE

n2Q

R1lnz
REHL 2

*
RY

2
Q ,   

 

 
   







 


ˆE
n2

z
ˆE

nE2

gz
REHL 2

*
RY

R2 , 

 
and using (A11) 

 

 n
2
1n

2
z

REHLREHL 2
Q 







 

 
 . 

 

 

 

 



 

31 
 

References 
Agrawal N., Smith, SA. (1996). Estimating Negative Binomial Demand for Retail Inventory 

Management with Unobservable Lost Sales. Naval Research Logistics 43: 839–861. 

 

Areeratchakul N, Abdel-Malek L. (2006). An approach for solving the Multi-product 

Newsboy Problem. International Journal of Operations Research, 3: 219-227.  

 

Balakrishnan N, Cohen AC. (1991). Order Statistics and Inference Estimation Methods, San 

Diego: Academic Press. 

 

Benzion U, Cohen Y, Peled R, Sharit T. (2008). Decision Making and the newsvendor 

problem: an experimental study. Journal of the Operational Research Society 59: 1281-1287. 

 

Bell PC. (2000). Forecasting Demand Variation when there are Stockouts. Journal of the 

Operational Research Society 51: 358–363. 

 

Casimir RJ. (2002). The value of information in the multi-item newsboy problem. Omega 30: 

45–50.  

 

Chen LH, Chen  YC. (2009). A newsboy problem with a simple reservation arrangement. 

Computers and Industrial Engineering 56: 157-160. 

 

Chen LH, Chen YC. (2010). A multiple-item budget-constraint newsboy problem with a 

reservation policy. Omega 38: 431–439.  

 

Cohen, AC, Whitten, BJ. (1988). Parameter estimation in reliability and life span models, 

New York, Marcel Dekker. 

 

Conrad SA. (1976). Sales Data and the Estimation of Demand. Operational Research 

Quarterly, 27: 123–127. 

 

Dutta P, Chakraborty D, Roy AR. (2005). A single period inventory model with fuzzy random 

variable demand. Mathematical and Computer Modeling, 41: 915-922. 



 

32 
 

 

Geng W, Zhao X, Gao D. (2010). A Single-Period Inventory System with a General S-Shaped 

Utility and Exponential Demand. Journal of Systems Science and Systems Engineering, 19: 

227-236. 

 

Grubbstrom, RW. (2010). The Newsboy Problem when Customer Demand is a Compound 

Renewal Process. European Journal of Operational Research, 203: 134-142. 

 

Hill RM. (1997). Applying Bayesian Methodology with a Uniform Prior to the Single Period 

Inventory Model. European Journal of Operational Research 98: 555–562. 

 

Huang D, Zhou H, Zhao QH. (2011). A competitive multiple-product newsboy problem with 

partial product substitution. Omega 39: 302-312. 

 

Jammernegg W, Kischka P. (2009). Risk Preferences and Robust Inventory Decisions. 

International Journal of Production Economics, 118: 269-274.  

 

Jawitz, J.W. (2004). Moments of truncated continuous univariate distributions. Advances in 

Water Resources, 27: 269-281. 

 

Jiang H, Netessine S, Savin S. (2012). Robust newsvendor competition under asymmetric 

information. Forthcoming in Operations Research, DOI 10.128. 

 

Johnson, NL, Kotz, S, and Bakakrishnan, N. (1994). Continuous Univariate Distributions. 2nd 

Edition. Wiley New York.  

 

Kevork IS. (2010). Estimating the optimal order quantity and the maximum expected profit 

for single-period inventory decisions. Omega 38: 218–27.  

 

Khouja M. (1996). A note on the Newsboy Problem with an Emergency Supply Option. 

Journal of the Operational Research Society 47: 1530-1534. 

 

Khouja M. (1999). The single-period (news-vendor) problem: literature review and 

suggestions for future research. Omega 27:537–53.  



 

33 
 

 

Knight, K., 1999. Mathematical Statistics. Taylor & Francis Ltd. 

 

Lapin, LL. (1994). Quantitative methods for business decision with cases. 6th edition, 

Duxbury Press, An International Thomson Publishing Company. 

 

Law AM. (2007). Simulation Modeling and Analysis, 4th Edition, McGraw Hill. 

 

Lau H. (1997). Simple Formulas for the Expected Costs in the Newsboy Problem: an 

educational note. European Journal of Operational Research 100: 557–61. 

 

Lau AH, Lau H. (2002). The effects of reducing demand uncertainty in a manufacturer-

retailer channel for single-periods products. Computers & Operations Research, 29: 1583-

1602. 

 

Lee CM, Hsu SL, (2011). The effect of advertising on the distribution-free newsboy problem. 

International Journal of Production Economics 129: 217-224. 

 

Matsuyama K. (2006). The multi-period newsboy problem. European Journal of Operational 

Research 171: 170-188.  

 

Nahmias S. (1994). Demand Estimation in Lost Sales Inventory Systems. Naval Research 

Logistics 41: 739–757.  

 

Olivares M, Terwiesch C, Cassorla L. (2008). Structural Estimation of the Newsvendor 

Model: An Application to Reserving Operating Room Time. Management Science, 54: 41–

55. 

 

Pandey, BN, and Singh, J. (1977). A note on estimation of variance in exponential density. 

Sankya, B, 39: 294-298. 

 

Salazar-Ibarra J. (2005). The newsboy Model: Change in risk and price. The Geneva Risk and 

Insurance Review 30: 99-109. 

 



 

34 
 

Schweitzer ME, Cachon GP. (2000). Decision Bias in the Newsvendor Problem with a 

Known Demand Distribution: Experimental Evidence. Management Science, 46:. 404–420. 

 

Silver, EA, Pyke, DF, Peterson, R. (1998). Inventory management and Production Planning 

and Scheduling (3rd ed). John Wiley & Sons, New York, NY. 

 

Singh, HP, and Chander, V. (2008). Estimating the variance of an exponential distribution in 

the presence of large true observations. Austrian Journal of Statistics, 37: 207-216. 

 

Su RH, Pearn WL (2011). Product selection for newsboy-type products with normal demands 

and unequal costs. International Journal of Production Economics 132: 214-222. 

 

Wang CX and Webster S. (2009). The loss-averse newsvendor problem. Omega 37: 93–105.  

 

 


