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GMM Estimation of the Number of Latent Factors  
 

 

Abstract 

 

We propose a generalized method of moment (GMM) estimator of the number of latent factors 

in linear factor models.  The method is appropriate for panels a large (small) number of cross-

section observations and a small (large) number of time-series observations.  It is robust to 

heteroskedasticity and time series autocorrelation of the idiosyncratic components. All necessary 

procedures are similar to three stage least squares, so they are computationally easy to use. In 

addition, the method can be used to determine what observable variables are correlated with the 

latent factors without estimating them.  Our Monte Carlo experiments show that the proposed 

estimator has good finite-sample properties.  As an application of the method, we estimate the 

number of factors in the US stock market.  Our results indicate that the US stock returns are 

explained by three factors. One of the three latent factors is not captured by the factors proposed 

by Chen Roll and Ross 1986 and Fama and French 1996. 

 

Keywords: Factor models, GMM, number of factors, asset pricing. 
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1.    INTRODUCTION 

Many economic and financial theories are based on linear factor models.  A well known example 

is the Arbitrage Price Theory (APT, Ross, 1976), where asset returns are generated by a factor 

structure.  In the finance literature, the APT model has been extensively used to analyze the 

prices of the systematic risks in the stock, money, or fixed income securities markets.  There are 

many other examples.  Analyzing the data from G7 countries, Gregory and Head (1999) found 

that cross-country variations in productivity and investment have common components.  Gorman 

(1981) and Lewbel (1991) found that if consumers are utility maximizers, their budget shares for 

individual goods or services purchased should be driven by at most three factors.  Stock and 

Watson (2005) proved that many macroeconomic variables in US are driven by a smaller number 

of common factors.  Ahn, Lee and Schmidt (2007a) showed that the time pattern of the 

fluctuations in individual firms’ technical productivities can be estimated based on a factor 

model. An excellent summary of the use of factor models can be found in Campbell, Lo and 

Mackinlay (1997) and also in Bai (2003). 

 For any empirical study that involves factor models, estimation of the true number of 

factors is crucial in order to identify and estimate the factors.  It is also important to determine 

what observable macroeconomic and/or financial variables are related to the unobservable 

factors, in order to give an economic interpretation to the model.  We propose a methodology to 

address these questions using an estimation procedure based on GMM. 

Earlier empirical studies of factor models were based on the maximum likelihood (ML) 

method of Jöreskog (1967).  Using this method, a researcher estimates factor loadings and 

variances of idiosyncratic errors of asset returns concurrently, and test for the number of latent 

factors using a likelihood-ratio test. The ML method requires quite restrictive distributional 

assumptions:  the idiosyncratic error terms are required to be normal, and independently and 

identically distributed over time.  More general approaches have been developed allowing for 

less restrictive assumptions.  A common method is to construct candidate factors, repeat the 

estimation and testing of the model for different number of factors (L), and observe if the tests 

are sensitive to increasing L.  Lehman & Modest (1988) and Connor & Korajczyk (1988) used 

this technique to analyze the US stock returns.  Success of this method would depend on the 

quality of the chosen candidate factors.  Another approach is to use estimators of the ranks of 
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matrices
1
 (e.g., Gill and Lewbel, 1992; Cragg and Donald, 1996, 1997).  A limitation of this 

approach is that it is computationally burdensome, especially if the number of response variables 

analyzed is large.
2
  More recently, Bai and Ng (2002) have developed a general estimation 

method for the number of factors.  Their least squares estimation method is designed for data 

with a large number of response variables (N) and a large number of time series observations (T).  

This method could produce inconsistent estimators if either N or T is small.  Simulation results 

reported in Bai and Ng (2002) indicate that the number of factors is not accurately estimated if N 

or T is less than 40.  Thus, the least squares method would be inappropriate for the studies using 

small sets of response variables. 

 

 In this paper we present an alternative generalized method of moment (GMM) estimator 

of the number of factors. The advantages of this new method compared with those discussed 

above are the following.  First, the method requires that just one of the data dimensions (N or T) 

to be large; that is, either the number of cross-section or time series observations has to be large.  

Several economic and financial applications involve small cross sectional observations.  

Examples are the analyses of portfolio returns, yields on bond indexes, or country common 

factors. Second, the method provides a way to check possible correlations between observable 

variables (i.e., macroeconomics or financial variables) and unobservable factors without 

estimating factor themselves. Using our method, researchers are able to give an economic 

interpretation to the latent factors model (see, Ahn, Dieckmann and Perez, 2007).  Third, the 

method is computationally easy to implement.  All necessary procedures are based on closed-

form solutions, and thus, do not require non-linear optimization.  Any software that can estimate 

multiple equations models can be used.  Fourth, the method allows for cross-section and time 

series heteroskedasticity and time series autocorrelation of the idiosyncratic components and it 

                                                 
1
 If the idiosyncratic error components of the response variables analyzed are cross-sectionally independent (exact 

factor model), the variance matrix of the response variables (e.g., returns) is decomposed into a diagonal matrix and 

a matrix with a rank equal to L.  Thus, the number of the common factors (L) can be found by estimating the rank of 

the difference between the estimates of the variance and the diagonal matrices. 
2
 Rank of a matrix can be estimated by the Lower-Diagonal-Upper triangular decomposition test (LDU) developed 

by Gill and Lewbel (1992) and Cragg and Donald (1996).  This method requires a Gaussian elimination procedure 

and division of the response variables into two non-overlapping groups.  The Gaussian elimination procedure is 

complicated if too big matrices are analyzed. Alternatively, Cragg and Donald (1997) propose a Minimum Chi-

Squared statistic (MINCHI2). This method is general in the sense that it requires only weak distributional 

assumption about the response variables and allows for heteroskedasticity and autocorrelation.  The principal 

problem of MINCHI2 is that some nonlinear optimization procedures are required and the procedures often fail to 

locate solutions as shown by   Donald, Fortuna and Pipiras (2005).  
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does not require distributional assumptions about the data generating process. Our method is 

primarily designed for exact factor models in which idiosyncratic error components of response 

variables are cross-sectionally uncorrelated.  However, even if the errors are cross sectionally 

correlated, the method can be used to estimate the number of factors if N  is large and the 

response variables can be grouped appropriately (e.g., portfolios).  

 

  As an application we use our methodology to analyze the US stock market. Our empirical 

results imply that the US stock returns are determined by three factors. Also we find that the 

variables proposed by Chen Roll and Ross 1986 are able to capture just one of the three latent 

factors. Fama and French 1996 proposed factors are able to capture an extra latent factor. One of 

the three unobservable factors is not captured by the factors proposed by Chen Roll and Ross 

1986 and Fama and French 1996. 

 

 The rest of the paper is organized as follows. Section 2 introduces the factor model we 

investigate, and lists the basic assumptions we made for the estimation.  Section 3 explains our 

GMM method to estimate the number of factors.  In section 4, we consider how the method 

could be used for the analysis of the models when the idiosyncratic components are cross-

sectionally correlated.  We also consider the cases in which some observable variables that are 

potentially correlated with latent factors.  Section 5 exhibits our Monte Carlo simulation results 

and finite-sample properties of our method.  Section 6 discusses the results we obtain by 

applying the method to the U.S. stock market.  Concluding remarks are provided in Section 7.  

 

2.   Model and Assumptions 

We consider a linear model with a finite number of unobservable latent common factors: 

  it i i t itr fα β ε′= + + , (1) 

where itr  is the value of the response variable i  (= 1, 2, …, N) at the time t (= 1, 2, …, T), iα  is 

an intercept, tf  is an  1L×  vector of unobservable common factors, iβ  is an 1 L× vector of the 

factor loadings for the response variable i, and the itε  are the idiosyncratic components of 

response variables which are cross-sectionally uncorrelated.  Thus, the response variables itr  are 

cross-sectionally correlated only through the common factors tf .  Usual factor analysis typically 
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applies to demeaned data with ( ) 0itE r =  for all i and t.  But we do not impose such restrictions.  

To begin, we consider the cases in which N  is relatively small and T  is large.  Thus, the 

asymptotic theory we use below applies as N → ∞  for fixed T .  We will consider later the cases 

in which T  is large and N  is small. 

 For convenience, we adopt the following notation.  We use tr•  to denote the vector that 

includes all the cross-sectional observations of the response variable itr  at time t.  Similarly, ir•  

denotes the vector including all of the time series observations of itr  for the response variable i.  

The vectors iε •  and tε•  are similarly defined.   Using this notation, we can stack the equations in 

(1) for given t  by 

  t t tr fα ε• •= + Β + , (2) 

where 1 2( , ,..., )Nα α α α ′=  and 1 2( , ,..., )Nβ β β ′Β = .  Including the non-zero vector of response-

variable-specific intercepts into the model, we can assume that ( ) 0tE f =  without loss of 

generality. 

 Our method to estimate the number  of factors (L) is an application of GMM.  Thus, we 

require a set of sufficient conditions under which usual GMM theories apply and the number of 

factors can be identified.  For asymptotics, we use “ p→ ” and “ d→ ” to denote “converges in 

probability” and “converges in distribution,” respectively.  The basic assumptions are the 

following: 

 

Assumption A:  The factors in tf  are non-constant variables with finite moments up to the 

fourth order, 1( ) 0
ot LE f ×=  and ( )t t fE f f ′ = Ω  for all t, and 1

1

T

t t t p fT f f−
= ′Σ → Ω  as T → ∞ , where 

fΩ  is a o oL L×  finite and positive definite matrix. 

 

Assumption B:  ( ) orank LΒ = . 

 

Assumption C:  There exists a constant (0, )m∈ ∞ , such that for all T (with fixed N), (C1) the 

errors itε  have finite moments up to the eighth order with 1 2( | , ,..., ) 0it tE f f fε =  for all i and t; 

(C2) 1 2( | , ,..., ) 0it i s tE f f fε ε ′ =  for all i i′≠ , s t≥ ; (C3)  1

1 1 ( )T T

t s is itT E mε ε−
= =Σ Σ ≤  for all i and t;  
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(C4) ( )1/ 2

1 ( ) 10 ,
o

T

t t d N LT w N−
= + ×Σ → Λ , as T → ∞ , where ( ) ( )t t t t tw h E hε ε• •= ⊗ − ⊗ , th  = 

(1, , )t tf ε•
′′ ′ ,  and 1

1 1lim ( )T T

T s t t sp T E w w−
→∞ = = ′Λ = Σ Σ . 

 

Assumption D:  Let GΒ  be the factor loading matrix corresponding to L  (≥ oL ) arbitrarily 

chosen response variables from tr• .  Then, ( )G orank LΒ = . 

 

 In Assumption A, we assume that the factors are covariance stationary; that is, the 

variance matrix of tf , ( )t fVar f = Ω , is same for all t , we adopt this assumption for expository 

convenience.  The assumption can be relaxed without altering our results.  The required 

assumption is that  1

1

T

t t t p fT f f−
= ′Σ → Ω  as T → ∞ .  Most of the general mixing processes satisfy 

this condition (White, 1999). 

 Assumption B implies that the true number of factors is oL .  Under Assumption (C1), the 

factors are weakly exogenous to the idiosyncratic errors.  Assumption (C2) restricts the error 

terms to be cross-sectionally uncorrelated.  Thus, with (C2), the model (2) is an exact factor 

model.  For the cases in which observable variables correlated with factors are absent, this 

assumption is crucial for the estimation of the number of factors.  Alternatively, when the errors 

are cross-sectionally correlated, but not autocorrelated over time, an exact model can be obtained 

by rewriting the model (2) as 

  i i ir Fβ ε• •= + , 

where 1 2( , ,..., )TF f f f ′= .  If the errors are serially uncorrelated, the variance matrix of iε •  

becomes diagonal.  When T  is small, we can estimate oL  by applying the method we discuss 

below to this alternative model. 

 If some instrumental variables correlated with the factors are observable, we could use 

them to estimate the number of factors, even allowing the errors to be cross-sectionally 

correlated.  Such cases will be discussed in section 4.2. 

 Assumption (C3) indicates that the autocovariances of the error terms are absolutely 

summable, while (C4) is nothing but a central limit theorem.  When factors and errors follow 

general mixing processes, both Assumptions (C3) and (C4) hold. 
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 Assumption D implies that all factors ( oL ) influence all possible subsets of response 

variables. In order to motivate Assumption D, let us partition the response variables in tr•  into 

two arbitrary groups.   

  
( 1) ( 1) ( ) ( 1) ( 1)

( 1) ( )( 1) ( 1) ( 1)

( 1) ( 1) ( ) ( 1) ( 1)

o o

o o

o o

g g g

t t t
P P P L L P

t t t z z z
N N LN L Nt t t

Q Q Q L L Q

g f

r f
z f

α ε
α ε

α ε

• •
× × × × ×

• •
× ×× × ×• •

× × × × ×

 + Β + 
  = = + Β + =    + Β +      

, (3) 

such that P Q N+ = , oP L> , and oQ L> .  Then, Assumption D, with Assumptions A-C, implies 

that 

  [ ( ( ) )]g

t trank E z g α• • ′−  = [ ]z g

frank ′Β Ω Β  = oL . (4)   

Based on this observation, we propose to estimate oL  by estimating the rank of [ ( ) ]g

t tE z g α• • ′− .  

 Clearly, Assumption D is stronger than Assumption B.  Many of the methods popularly 

used for factor analysis do not require Assumption D.  Under Assumptions A-C,  

  [( )( ) ]t t fE r rα α• • ′ ′− − = ΒΩ Β + Ψ ,  

where Ψ  is the N N×  diagonal matrix of the variances of itε .  The ML estimation of Jöreskog 

(1967) and the Minimum Chi-Squared statistic (MINCHI2) of Cragg and Donald (1997) estimate 

oL  based on estimates of Β  and Ψ .  But use of these methods is somewhat limited.  The 

legitimacy of the ML method requires some strong distributional assumptions on data such as 

normality.  Use of MINCHI2 does not require such strong distributional assumptions, but it often 

suffers from a computational difficulty in estimating Ψ .  Adopting Assumption D, we no longer 

need to estimate Ψ .  It suffices to estimate the rank of the moment matrix ( ( ) )g

t tE z g α• • ′− . 

       Assumption D requires that most of the response variables should depend on all of the 

factors in tf .  Too see why, suppose that oL  or more response variables in tg•  depend on only a 

subset of tf ; that is, the factor loadings of  many ( oL  or more) response variables corresponding 

to a subset of factors are zeros.  For such cases, Assumption D is violated depending on the 

partitions of tg•  and tz• .  We will consider such cases later. 

 The rank condition (4) can be converted to a moment condition that can be used in 

GMM.  According to Assumption D, there must exist a ( )oP P L× −  matrix 1 2( , )′ ′ ′Ξ = Ξ −Ξ  of 
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full column, where 1Ξ  is a ( ) ( )o oP L P L− × −  square invertible matrix, such that 

( )0
o o

g

L P L× −
′Β Ξ = .  Thus, under Assumptions A-D, we have 

   ( 1) ( )

1 1 1
( ) ( ) 0

o

g g

t t t Q P L

t t t

E g E g E
z z z

α α ε• Ξ • • + × −
• • •

           ′′ ′ ′Ξ − = − Ξ = Ξ =          
          

, (5) 

where gα αΞ ′≡ Ξ  is a ( ) 1oP L− ×  vector.  Assumption C(2), which restricts the model (2) to be 

an exact one, is crucial for this moment condition.  For future use, define 2[( , ) ]vecθ αΞ ′ ′= Ξ .  

Clearly, Ξ  is not unique, since for any conformable square matrix A , ( ) 0gA ′Ξ Β = .  There are 

many possible restrictions we can impose to avoid this under-identification problem.  Among 

them, we use the restriction 1 oP LI −Ξ = , while leaving 2Ξ  unrestricted.  Among the ( )oP P L× −  

matrices satisfying this restriction, Ξ  is the unique ( )oP P L× −  matrix of full column that is 

orthogonal to gΒ .
3
 

 

3.   GMM ESTIMATION OF THE NUMBER OF LATENT FACTORS  

 

In this section we present the  GMM method for estimation the number of factors.  First, given 

the assumptions explained before, we construct the moment conditions that will be used in the 

estimation. Let us denote by L  the number of factors we use for estimation, which could be 

different from oL .  Given L , we partition tg•  into 

   

,
(( ) 1) (( ) ) ( 1)(( ) 1) (( ) 1)

( 1) ,
( 1) ( )( 1) ( 1) ( 1)

o o

o o

y y yP L
P L P L t P L tt

P L P L L LP L P L

t L x x x
P t L L t L t

L L LL L L

fy

g
x f

α ε

α ε

−
− − − ••

− × − × ×− × − ×
•
× • •

× ×× × ×

 + Β + 
  = =    + Β +      

, (6) 

where L  = 0, 1, 2, … , 1P − .  With this notation, define the following moment function: 

 
1

( | ) [ ( (1, )) ]P L

t L P L t P L t L

t

m b L I y I x b
z

−
− − •

•

  
′= ⊗ − ⊗  

  
i

, (7) 

where Lb  is a ( )( 1) 1P L L− + ×  vector of unknown parameters.  Observe that the moment 

function (7) is linear in Lb .  Also note that the moment function (7) is the one implied by a 

                                                 
3
 Specifically, 1

2 1 2
( )g g −′Ξ = Β Β  where 

1 2
[ , ]g g g′ ′ ′Β = Β Β , and 

2

gΒ  is a square invertible matrix. 
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multiple equation model with ( )P L−  different dependent variables ( P L

ty −
• ), with common 

regressors ( L

tx• ) and common instrumental variables ( tz• ).  Thus, the moment function (7) can be 

easily imposed in GMM using any software that can handle three-stage least squares. 

  The intuition behind moment function (7) comes from the fact that it is linked to  moment 

condition (5).  To see why, let ( , )L P L P LH I S− −′ ′= − . be a ( )P P L× −  matrix with a ( )L P L× −  

unrestricted parameter matrix P LS − ; and let P La −  be a ( ) 1P L− × unrestricted parameter vector.  

By construction, LH  is a full-column matrix.   Furthermore, it can be shown:  

   
1

( | ) ( )t L L t P L

t

m b L vec H g a
z

• −
•

  
′ ′= −  

  
. (8) 

Thus, the moment condition (5) implies that under Assumptions A-D, when oL L= , 

[ ( | )] 0t L oE m b L =  if and only if Lb θ= . That is, our moment conditions will hold just at the true 

value of the parameters, and if and only if the true number of factors ( oL ) was used in the 

estimation.  

  Now, we explain how to use the moment function to consistently estimate the factors. For 

given L , consider the following minimization problem: 

   1min ( | ( ), ) ( ) [ ( )] ( )
Lb T L T T L T Lc b W L L Td b W L b−′= , (9) 

where 1

1( | ) ( | )T

T L t t Ld b L T m b L−
== Σ  is the sample mean of the moment functions ( | )t Lm b L , and 

the weighting matrix ( )TW L  is ( ) ( )P L Q P L Q− × −  positive-definite matrix with a non-

stochastic and finite probability limit, say ( )W L . Let ˆ
Lb  denote the GMM estimator 

minimizing ( | ( ), )T L Tc b W L L ; and use ˆo
Lb  to denote the GMM estimator minimizing 

( | ( ), )T L T o oc b W L L  (i.e. at the true number of factors). Let ( )T oW Lɶ  be a consistent estimator of 

( )lim ( | )T T oVar Td Lθ→∞  . The estimator ( )T oW Lɶ  can be obtained by using the method of 

White (1980) if data are serially uncorrelated, and the methods of Newey and West (1987) or 

Andrews (1991) if data are serially correlated.  We now denote by o

Lb
ɶ  the optimal GMM 

estimator of θ  that minimizes ( | ( ), )T L T o oc b W L Lɶ . Using this notation, the following result 

establishes that the moment conditions on (7) can be used to estimate the number of factors. 
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  Proposition 1:  Under Assumptions A-D, for any ( )TW L , ˆ( | ( ), )T L T pc b W L L → ∞  for any 

oL L<  and ˆ( | ( ), )o

T L T o o dc b W L L → ϒ , where ϒ  is a weighted average of independent 2 (1)χ  

random variables.  In addition, 2( | ( ), ) [( )( )]o

T L T o o d o oc b W L L P L Q Lχ→ − −ɶ ɶ . 

 

  The proof of Proposition 1 is given in the appendix.  The distribution of ˆ( | ( ), )T L Tc b W L L  

is generally unknown, but the results from Proposition 1 are sufficient to derive the estimation 

methods for the number of factors.  We can formulate the model (2) assuming different number 

of factors (i.e. different values of L ) and then, use the Tc  statistics to select the model that has 

the best fit.  Two approaches have been proposed in the literature for model selection. The first 

one uses a sequential hypothesis testing approach, and the second is based on model selection 

criterion.  We can apply these two approaches to estimate the number of factors.  

  Our sequential testing approach is based in the asymptotic distribution of 

( | ( ), )o

T L T o oc b W L Lɶ ɶ  statistic, which is simply the overidentifying restriction test statistic (Hansen, 

1982).   Using this approach, we first formulate the factor model (2) assuming that the true 

number of factors is equal to one ( oL  = 1).  Then we estimate Lb  by GMM, compute the 

overidentifying restriction statistic, and test the hypothesis of oL  = 1 against the alternative 

hypothesis of oL  > 1.  By proposition 1, if oL  is greater than one, the statistic diverges to infinity 

in large sample.  Thus, we can expect that the test is likely to reject the hypothesis of 1oL = , if 

the sample size is reasonably large.  If the hypothesis is rejected, we will formulate the model (2) 

with L  = 2, and compute the overidentifying restriction statistic to test the null hypothesis of oL  

= 2 against the alternative of oL  > 2.  We continue this procedure until the null hypothesis is not 

rejected.  This sequential procedure can yield a consistent estimator of 0L  if an appropriate 

adjustment is made to the significance level used for the test.  The adjustment is necessary 

because type 1 errors are accumulated as the test continues.  Cragg and Donald (1997) show that 

the significance level Tα  should be adjusted such that 0Tα → , and log / 0T Tα− →  as T → ∞ . 

  The model section criterion method has been used extensively in determining the order of 

ARMA processes in time series analysis, specifically by Hannan and Quinn (1979), Hannan 

(1980,1981), Atkinson (1981), and Nishii (1988). Cragg and Donald (1997) use this method to 
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estimate the ranks of matrices.  Following these studies, we define the following criterion 

function: 

   1ˆ( ) ( | ( ), ) ( ) ( )T T L TMS L c b W L L f T g L−= − , (10) 

where ( )  and   ( )f T g L  are predefined functions of T (the number of observations) and L (the 

number of factors), respectively.  With appropriate choices of ( )f T  and ( )g L , a consistent 

estimate of L  can be obtained by minimizing the criterion function ( )TMS L .  There are many 

possible choices of ( )f T  and ( )g L .  One commonly used criterion is:  

 

 Schwarz Criterion (BIC):   ( ) ln( )f T T= , and ( ) ( )( )g T P L Q L= − − .  

 

In BIC, ( )g L  is simply the degrees of overidentifying restrictions in the moment condition 

[ ( | )]t LE m b L  = 0.  With (10) and BIC, we obtain the following result: 

  

 Proposition 2:  Let L̂  be the minimizer of ( )TMS L  with BIC.  Then, ˆ p oL L→ . 

 

 The proof of Proposition 2 is given in the appendix, even though it is a straightforward 

extension of a result from Ahn, Lee and Schmidt (2007b).  They have studied a panel data model 

with latent components of factor structure.  They developed a GMM method to estimate the 

model and the number of factors in the latent components with BIC.  Their results are easily 

extended to our factor model.  Interested readers may refer to the paper. 

 Observe that Proposition 2 holds even if the optimal GMM estimator is not used.  One 

important advantage of the criterion method over the sequential method is that it does not require 

use of the optimal GMM estimator.  In the GMM literature, many studies have shown that 

optimal GMM estimators often have poor finite-sample properties, especially when data are 

autocorrelated or/and too many moment functions are used (see, for example, Altongi and Segal, 

1996; Andersen and Sørensen, 1996; and Christiano and den Haan, 1996).  One of the main 

reasons for this problem is that for such cases, the optimal weighting matrix, 1[ ( )]T oW L −ɶ  is  

poorly estimated.  Given this problem, in practice, the selection criterion method appears to be an 

attractive alternative to the sequential method.   
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 The sequential testing and model selection criterion methods can consistently estimate oL  

if Assumption D holds.  However, as we have discussed above, the assumption would be 

violated if some factors influence only a subset of the response variables.  When the assumption 

does not hold, our methods tend to underestimate the number of factors.  To see why, consider 

the following alternative assumption: 

 

  Assumption D
*
:  *( )z g

f orank L L′Β Ω Β = ≤ , and *

*[ ( ) ]z x

f L
rank L′Β Ω Β = . 

 

In the appendix (Lemma A.1), it is shown that when *L L= , a unique vector *θ  exists such that 

* *[ ( | )]tE m Lθ  = 0.  Let *( )TW Lɶ  be a consistent estimator of ( )* *lim ( | )T TVar T d Lθ→∞ ; and let 

*ˆ
Lb  and *

Lb
ɶ  be the minimizers of * *( | ( ), )T L Tc b W L L  and * *( | ( ), )T L Tc b W L Lɶ , respectively.  Then, 

by replacing Assumption D by D
*
, we obtain the following results: 

 

  Proposition 3:  Under Assumptions A-C and D
*
, for any choice of *L L<  and ( )TW L , 

ˆ( | ( ), )T L T pc b W L L → ∞ .  In contrast, * * *ˆ( | ( ), )T L T dc b W L L → ϒ , where ϒ  is a weighted average of 

independent 2 (1)χ  random variables.  In addition, * * *( | ( ), )T L Tc b W L Lɶ ɶ  d→  2 * *[( )( )]P L Q Lχ − − . 

 

  Since the partition of tg•  and tz•  is arbitrary, the rank of  z g

f
′Β Ω Β  could change 

depending on the choice of tg•  and tz•  if Assumption D does not hold.  Thus, Proposition 3 

indicates that when Assumption D is violated, the estimated number of factors could be sensitive 

to the partition used in estimation.  As a treatment to this problem, we propose to try many 

different partitions to estimate the number of factors.  We can try a subset of all possible 

partitions, or some randomly generated partitions.  Our simulation exercises show that using the 

frequency table of the estimates from a sufficiently large number of different partitions, we can 

obtain an accurate estimate the correct number of factors.    
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4.   Extensions 

In this section, we consider the two cases to which the GMM methodology developed in the 

previous section can be generalized. 

  

4.1.   Approximate Factor Models  

Chamberlain and Rothschild (1983) propose an approximate factor model to test the Arbitrage 

Price Theory.  This model differs from the exact factor model since it allows idiosyncratic 

components to be cross-sectionally correlated.  Assumption C implies that ( )tVar ε• ≡ Ψ  is 

diagonal.  In contrast, the approximate factor model allows Ψ  to be non-diagonal, although the 

correlations among the errors in tε• are restricted to be mild.  Chamberlain and Rothschild (1983) 

have shown that for an approximate model with oL  factors, the first oL  eigenvalues of the 

variance matrix of the response variables diverge to infinity as N → ∞ , while other eigenvalues 

remain bounded.  Based on this finding, they suggest estimating oL  by counting the number of 

larger eigenvalues of the variance matrix of response variables.  Bai and Ng (2002) proposes a 

more elaborated statistical method.  These two methods are appropriate for the data with both 

large N  and T .  However, they may not be appropriate for the data with small N  (see Brown, 

1989; Bai and Ng, 2002). 

 While our method is designed for exact factor models with small N , it could be used to 

estimate some approximate factor models.  For example, consider a model in which the response 

variables in tr•  are categorized into a finite number (M ) of groups (e.g., portfolios).  Each of the 

groups, indexed by 1G , 2G , … , MG , contains jNG   variables, such that 1

M

j iNG N=Σ = , and for 

all 1,...,j M= , /j jNG N a→  for some positive number ja , as N → ∞ .  Suppose that the 

response variables are generated by the following processes: 

   , , , , , ,( ) ( )glo g loc l

j it j i j i t j i j t j itr f f uα β β′ ′= + + + , (11) 

where i  indexes individuals, 1,...,j M=  indexes individual groups, the variables in glo

tf  are the 

“global” factors that influence all of the response variables in different groups, the variables in 

,

loc

j tf  are the “local” factors that are correlated with the variables in group j , but not with those in 

other groups (e.g., , ,( ) 0loc loc

j t j tE f f ′ = , for j j′≠ ), the ,j iα  are intercept terms, and the vectors ,

glo

j iβ  
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and ,

loc

j iβ  are the loadings of the corresponding factors.  The ,j itu  are idiosyncratic errors. 

Approximate factor models restrict the cross-section correlations in the error terms to be mild.  

For example, Bai and Ng (2002) impose the following restriction, which we name “Approximate 

Assumption” (AA): 

 

 Assumption AA:  Let , ( )ii ts it i sE u uτ ′ ′= , where itu  and i tu ′  are the error terms from the 

same or different groups, and t  and s  are time indexes.  Then, 1

1( ) T

tNT −
=Σ Σ  ,ii tt iiτ τ′ ′≤  for 

some iiτ ′  and for all t , and 
1

1 1

N N

i i iiN Mτ−
′ ′= =Σ Σ ≤  for some positive number M , for all N . 

  

 Let 1

, ,( )
jj t j i G j itu NG u−

∈= Σ .  Then, Assumption AA warrants that N , T  →  ∞ , 

   , , , ,

1
( ) 0

j jj t j t i G i G j it j i t

j j

E u u u u
NG NG ′′ ′ ′ ′∈ ∈

′

= Σ Σ →
×

; (12-1) 

   1 , , 1 , ,

1 1
0

j j

T T

t j t j t t i G i G j it j i t p

j j

u u u u
T T NG NG ′′ ′ ′ ′= = ∈ ∈

′

Σ = Σ Σ Σ →
× ×

. (12-2) 

Now, consider the following group-mean equations of (11): 

   , , , ,( ) ( ) ( )glo g loc loc glo g

j t j j t j j t j t j j t j tr f f u fα β β α β ε′= + + + = + + , (13) 

where the symbols with overhead bar are defined similarly to ,j tu .  By (12-1)-(12-2) and the fact 

that the variables in ,

loc

j tf  are group-specific, we can show that ,j tε  are asymptotically 

uncorrelated over different groups.  That is, we can treat the equations in (13) as an exact factor 

model if N  and jNG  are sufficiently large.  Thus, using our method, we could estimate the 

number of the global factors by estimating the rank of gloΒ  = ( )1 2lim , ,...,glo glo glo

N nβ β β→∞
′
 .   

 

4.2.   GMM Estimation with Observable Instruments  

When some variables are potentially correlated with latent factors and observable, we could use 

them to estimate oL , or test how many of them are indeed correlated with the factors.  We first 

consider how to estimate oL .  Let st be the 1K ×  vector of instruments which satisfies following 

assumption: 
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 Assumption D
**
:   [ ( )]t t orank E s f L K′ = <  and ( ) 0t t N KE sε• ×′ = . 

 

Under Assumption D
**
, there must be a ( )oN N L× −  matrix of full column, **Ξ , such that 

          **

( 1) ( )

1
( ) 0

ot K N L

t

E r
s

α• + × −

  
′− Ξ =  

  
. (14) 

Thus, we can estimate oL  using the same method discussed in section 3.  Our methods apply as 

we use tr•  for tg•  and ts  for tz• .  When observable instruments are not available, we need to 

partition response variables into two groups to use a group of response variables as the 

instruments for latent factors. But for the response variables in a group to be legitimate 

instruments, the error terms in tε•  should be cross-sectionally uncorrelated.  When outside 

instruments are observable, we do not need to partition the response variables.  In additions, the 

error terms are allowed to be cross-sectionally correlated as long as the instruments are not 

correlated with them.   

  In cases in which the number of factors is already known, or estimated by the methods 

discussed in section 3, we can test by GMM how many of the factors are correlated with the 

observable instrumental variables in ts .  If some factors are not correlated with ts , it should be 

the case that **[ ( )]t t orank E s f L L′ = < .  For this case, by the same method we used in section 3, 

we can show that the GMM methods based on the moment condition (14) estimate **L , not oL . 

 

5.   MONTE CARLO SIMULATION  

5.1.   Data Generation 

The foundation of our Monte Carlo exercises is the following the three-factor model: 

   1 1 2 2 3 3 1, 2, 3,it i i t i t i t it i it it it itr f f f c c cα β β β ε α ε= + + + + = + + + + , (15) 

where the ktf  ( k = 1, 2, 3) are the common factors of the model.  Our benchmark model is the 

three-factor model of Fama and French (1993):  EMR (excess market return), SMB, and HML.
4
 

                                                 
4
 The Fama-French factors are constructed using the 6 value-weight portfolios formed on size and book-to-market.   

SMB (Small Minus Big) is the average return on the three small portfolios minus the average return on the three big 

portfolios.  HML (High Minus Low) is the average return on the two value portfolios minus the average return on 
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We generate randomly ikβ  and ktf   to match the moments of the Fama-French data. That is, we 

generate data such that the moments of ,k itc  match the counterparts from the data that Fama and 

French (1993) used.  At the sample means of the estimated betas ( 1β , 2β , and 3β ) for the 25 size 

and book-to-market portfolios, the estimated variances of the Fama-French common components 

are the following: 

   1 2 3( ) 21.72; ( ) 4.50; ( ) 1.29var EMR var SMB var HMLβ β β× = × = × = . 

Two types of idiosyncratic error components are used.  First, we generate the errors 

which are cross-sectionally heteroskedastic, but not autocorrelated.  Specifically, the errors are 

drawn from (0, )FF

iN σ , where the FF

iσ  are the variances of the residuals from the time-series 

regressions of (15) for each i .  The values of FF

iσ  are between 1.21 and 3.78, with the average 

of 2.016.  Thus, the variances of the first and second common components at the means of betas 

are more than twice as great as the average variance of the idiosyncratic components, while the 

variance of the third common component (1.29) is smaller.  We define the signal to noise ratio 

(SNR) of a common component ( ,k itc ) as the ratio of the variances of the common component 

and the idiosyncratic error component.  In our simulation, the SNRs are 10.8 ,  2.2,  and 0.65 for 

common components 1, 2, and 3, respectively.  

 Second, we generate the error terms from a simple AR (1) process: , 1it i i t itvε ρ ε −= + .  Using 

the residuals from the time-series regressions of (15), we estimate the parameters iρ  and estimate 

var( )itv  such that var( ) FF

it iε σ= .  The errors generated by this way are cross-sectional 

heteroskedastic and serially correlated over time. 

 

5.2.   Size of the Over-Identifying Restriction Tests 

We first investigate the size of the overidentifying restrictions test with the true number of 

factors. We use N portfolio returns generated by equation (15).  We randomly divide the N  

portfolios into two groups: tg•  and tz•  in the notation of section 2.  Then, we carry out the 

                                                                                                                                                             
the two growth portfolios.  EMR is the excess return on the market:  the value-weight returns on all NYSE, AMEX, 

and NASDAQ stocks (from CRSP) minus the one-month Treasury bill rate (from Ibbotson Associates). See Fama 

and French (1993) for a complete description of the factor returns. 

 



16 

GMM estimation discussed in section 2,
5
 compute the overidentifying restriction test statistic 

(which we simply call “J statistic” from now on), and finally, test if the true number of factors is 

equal to 3, at a significance level of 5%.  We proceed to repeat this procedure for 1,000 

iterations, and compute how many times the true null hypothesis ( 3oL = ) is rejected.  Since the 

portfolio returns are generated by 3 factors we expect to reject the null hypothesis 5% of the 

times.  

  We perform our simulations with six different combinations of T and N: T = 500 and 

1000; N = 12, 15, and 25.  For each combination, we consider two cases: the cases with    

autocorrelated (AR(1)) and serially uncorrelated idiosyncratic errors.  We also try different 

numbers of instruments.  That is, we conduct simulations using different number of portfolios in 

each of the two groups ( tg•  and tz• ) of the partition of total N portfolios.  For the cases with N = 

12, we try three different partitions: (P,Q) = (8,4), (7,5) and (6,6).  We also try (P,Q) = (9,6), 

(7,8) and (6,9) for N = 15; and (P,Q) = (17,8), (16,9), and (13,12) for N = 25.   We perform this 

experiment to check whether the test results are sensitive to the number of instruments (Q) used.  

There have been many studies finding that the GMM estimators computed with too many 

instruments and small data are often biased (see, for example, Andersen and Sørensen, 1996).6  

The values of N and T are chosen to be close to the sample sizes most often used in the finance 

literature.  The percentage of rejection of the true null hypothesis by the J test statistic is 

presented in Table 1. 

  For the case of no autocorrelation, the J test performs relatively well for all of the 

specifications we experimented. It appears that the test performs better when 5, 8, and 9 

instruments (Q) are used for the data with N = 12, 15, and 25, respectively (not counting the 

vector of ones as instrument). We suggest that in practice initially the partition should include 

around half of the response variables (N/2) as instruments, but the number of instruments (Q) 

should not be greater than 10.   

  As expected, the size of the test improves as the number (T ) of times series observations 

increases from 500 to 1000.  For the cases of autocorrelated errors, we use the Newey-West 

                                                 
5
 We develop a programs using GAUSS 6.0 for the estimation and data generation.   

6
 Using only a small subset of the available moment conditions is not a solution either.  Andersen and Sørensen 

(1996) showed that using too few moment conditions are as bad as estimators using too many conditions.  This 

result indicates that there is a trade-off between informational gain and finite-sample bias caused by using more 

moment conditions. 
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(1987) covariance matrix to compute the optimal weighting matrix.  We present the results 

obtained using two different bandwidths: 3 and 0.
7
  Notice that, if bandwidth = 0, the Newey-

West matrix reduces the heteroskedasticity-robust variance of White (1980).  

  When the idiosyncratic errors are autocorrelated, the White variance matrix is not the 

optimal choice. Our results indeed show that when autocorrelation is present in data, the test 

results are quite sensitive to the choices of bandwidth and number of instruments, especially for 

the data with large N.  For N = 12, the test performs better when the statistic is computed with 

bandwidth = 3.   When N = 15 or 25, and bandwidth = 3, the test statistic under-rejects the true 

null hypothesis of 3oL =  for almost any choice of the number of instruments.  When bandwidth 

= 0 (which is asymptotically not an optimal choice) is selected for the cases with N = 15 and 25, 

the test is rather better sized.  It appears that the Newey-West estimator becomes less reliable 

when N is large.  It may be so because the number of parameters in the weighting matrix rapidly 

increases with N.  For the cases of N = 15 and 25, the efficiency gain by using the estimated 

optimal weighting matrix do not seem to be large enough to compensate for the loss by using 

poorly estimated weighting matrix. 

 

5.3.   Estimation of the number of factors  

Using the data generated using three factors as defined in section 5.1, we now estimate the 

number of factors using the sequential hypothesis testing and the model selection criterion 

methods.  As discussed in section 3, to obtain consistent estimates by using the sequential test 

method, we need to adjust the significance level ( Tα ) depending on the sample size (T).  We use 

0.05 500 /T Tα = × .  This function is chosen such that 500 0.05α = .
8
  1,000 different sets of 

randomly generated portfolio returns are used for simulations.  The results are summarized in 

Tables 2 and 3. 

  Table 2 shows that for all of the different combinations of N and T, the sequential 

hypothesis testing method produces quite reliable estimates when the idiosyncratic errors are not 

                                                 
7
 In unreported experiments we use other different choices of bandwidth. Results and main conclusions do not 

change. The automatic bandwidth selection methods by Andrews (1991) or Newey and West (1994) chose the 

values of bandwidth greater than six for our simulated data, but with the values greater than six, our test results get 

worse.  The tests with bandwidth of three performed better.  
8
 In unreported experiments, we also have tried many other significance levels, but the results do not show 

remarkable changes. 
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autocorrelated and the heteroskedasticity-robust weighting matrix is used in GMM.  As expected, 

the estimates become more accurate as T increases.  We obtain less accurate results when N = 

500 and T = 25:  The estimated numbers of factors are three for 93.20% of the times.   For the 

cases of autocorrelated errors, we obtain the similar results even if the heteroskedasticity-robust 

weighting matrix (which is not optimal) is used.  We obtain the similar results using the Newey-

West matrix with bandwidth = 3, except for one case.  For the simulated data with N = 25 and T 

= 500, the sequential test with bandwidth = 3 predicts one factor for 100% of the times.  This 

result is consistent with the results of size in Table 1, which shows that the J test tends to under-

reject the true null hypothesis.  Our simulations results from the sequential hypothesis testing 

method suggest that larger samples are required to analyze a large number of portfolios ( 15N ≥ ) 

when idiosyncratic errors are autocorrelated. 

  The results reported in Table 3 show that the model selection criterion method is slightly 

better than the sequential test method in estimating the number of factors, for almost all of the 

different combinations of T and N.  Similarly to the results from the sequential tests for the data 

with N = 25, and T = 500, the numbers of factors estimated by the selection criterion method are 

severely downward biased when the bandwidth of three is used.  As we find out in section 3, the 

model selection criterion procedure does not require use of the optimal weighting matrix.  Thus, 

the results reported in Tables 2 and 3 suggest that the model selection criterion method using the 

heteroskedasticity-robust variance matrix performs well whether or not the idiosyncratic errors 

are autocorrelated.   

  To check the robustness of our results, we now investigate if the estimation results 

change substantially when we change our partitions of portfolio returns into two groups.  To 

accomplish this objective we generate one set of portfolio returns, and then, we randomly create 

100 different partitions. Then, for each partition, we estimate the number of factors.  The results 

from the experiments with T = 1,000 are presented in Table 4 Panel A.
 9
  The sequential testing 

method estimates the number of factors more accurately when N = 12 or 15, than when N = 25.  

We find the correct number of factors more than 89% of the times when N = 12 or 15, but around 

65% when N = 25.  The model selection criterion method produces more reliable estimates, 

                                                 
9
 We do not report results for  T=500 in order to save space and since the main conclusion of this section do not are 

not different. Results are available upon request.  
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especially for the cases with N = 15 and 25. We obtain the correct number of factors over 91% 

when N = 15 and over 82% when N = 25.  

  This experiment confirms that the GMM estimation results could change depending on 

the partition we use.  The test results are more sensitive to the partitions used in GMM when N is 

large.  The model selection criterion method is less sensitive to the partitions than the sequential 

testing method does.  Nonetheless, the selection method is also likely to produce incorrect 

inferences when the data with large N are analyzed.  For this reason, we propose to estimate the 

number of factors using many randomly partitioned data.  Our experiments suggest that the 

number of factors can be more accurately estimated if 100 different partitions are used for 

estimation.
10
   The number of factors most often estimated from different partitions could be a 

reliable estimator (i.e. the one with the highest frequency).  In order to confirm this conjecture, 

we perform the following experiment:  We generate 1,000 different sets of portfolio returns.  For 

each data set, we estimate the number of factors using 100 randomly created partitions and  

choose as our point estimator the number estimated most often.  The results are presented in 

Table 4.  Panel B of Table 4 confirms our conjecture.  The number of factors most often 

estimated from different partitions is always 3, for N = 12, 15, and 25, whether or not 

idiosyncratic errors are autocorrelated or not. 

     

 The last part of our simulations tries to evaluate the performance of our methods when a 

factor explains a very small proportion of the total variation of the response variable.   We will 

call such factor a weak factor.  In our simulation, the variance of the common component 

( ,k it ik ktc fβ= ) associated to a weak factor will be small compared with the variance of the 

idiosyncratic component.  In order words, a weak factor is a factor with a low signal to noise 

ratio (SNR).  As described in section 5.1, our data was generated using as a benchmark the three-

factor model of Fama and French (1992), where the SNRs of three factors are 10.8, 2.2, and 0.65, 

respectively.  To generate the data with one weak factor and two other non-weak factors, we 

reduce the SNR of the second common component (SMB) and increase the one of the first 

common component (EMR).  We do so because we wish to generate data such that the total 

variations in the response variables explained by the three factors and the variations in 

                                                 
10
 We also performed the same experiment using all possible partitions of portfolio returns into two groups.  Results 

do differ significantly with the ones presented just using 100 random specifications of the groups.  
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idiosyncratic errors remain constant.  In this experiment, we reduce the SNR of the second 

common component to four different values:  1.0, 0.50, 0.35, and 0.25. As we have done in the 

before, we generate one set of portfolio returns, and then, we randomly create 100 different 

partitions.  For each partition, we estimate the number of factors.  The results are presented in 

Table 5.  Since the model selection criterion method appears to be superior to the sequential 

method, we only report the results from the former method.  

 When the SNR of the second common component is greater than or equal to 0.50 (Panels 

A and B), the model selection criterion method estimates most repeatedly three factors for all of 

the different values of N.  For example, when SNR = 1, we estimate three factors 91% of the 

time for the data with N = 12, 90% for N = 15, and 75% for N = 25.  The second highest 

frequencies are smaller that 25% in all the cases.  These results are very similar in magnitude 

with the ones presented in Panel A of Table 4 in which the SNR of the second common 

component is set at 2.2.  

 When the SNR drops to 0.35, the method also estimates most repeatedly three factors, but 

with lower frequencies.  For example, for the cases with N = 12, 15 and 25, we estimate three 

factors, 60%, 67%, and 59% of the time, respectively.  For N = 12, two factors are estimated 

35% of the time, which is the second highest frequency.  All the other frequencies are smaller 

than 25%. Finally, when the explanatory power of the second factor becomes even weaker, that 

is, when its SNR drops further to 0.25, we estimate most repeatedly two factors.  For the cases 

with N = 12, 15 and 25, we estimate two factors 75%, 60% and 68% of the time, respectively.   

While it is somewhat arbitrary, given these results, we define the factor with SNR equal 

to 0.25 as a “weak” factor.  Our simulation results show that when a weak factor is present in 

data, our estimator (the one that receives the highest frequency from the estimation with 100 

random partitions) underestimates the true number of factors. That is our estimator is able to 

detect factors with a SNR bigger than 0.25.  However, the true number of factors (Lo = 3) is 

estimated with the second highest frequency at the range of 25-30%.  Our results suggest that if 

the second highest frequency in the estimation is larger that 25%, then one of the factors is weak 

and the true number of factors can be underestimated. 

The number of factors most often estimated from 100 different partitions (i.e. the one 

with the highest frequency) appears to be a reliable estimator unless weak factors are present. In 

order to confirm this fact, we carry out the same experiment we conduct before: we generate one 
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set of portfolio returns, and then, we randomly create 100 different partitions.  For each partition, 

we estimate the number of factors.  Then, our point estimator is the number most often 

estimated.  We repeat this experiment for 1,000 generated samples with four different SNRs of 

the second common component: 1.0, 0.5, 0.35 and 0.25.  The results are presented in Table 6.  

When SNR is greater than or equal to 0.50, the method estimates 3 factors 100% of the time for 

all values of N.  This implies that if all factors are strong, we will have a very reliable estimator 

of the true number of factors.  As SNR gets smaller our method estimates three factors with less 

often and two factors with more frequency.  For example if SNR = 0.35 and N = 12, three factors 

are estimated with the highest frequency 61.70%, but we also estimate two factors 38.30% of the 

time.  When N = 12 and SNR = 0.25, we will estimate two factors 89.10% of the time, and the 

three factors just 10.90% of the time. An important fact from these simulations is that the method 

never overestimates the number of factors, even in the presence of a weak factor.  

We confirm that if all factors are strong (SNR larger than 0.25) the number of factors 

most often estimated from different partitions is a very accurate estimator of the true number of 

factors (i.e. the one with the highest frequency).  If a factor is weak, this method can lead to 

underestimation of the number of factors.  A second highest frequency larger that 25% will be 

evidence for the presence of a weak factor.  

    

Based on this conclusions, we suggest researchers should estimate the number of factors 

with different specifications of two groups (100 randomly generated partitions appear to be 

enough).  The relative frequencies of estimated numbers of factors should be observed.  If there 

is just one frequency larger than 25%, the correct number of factors is the one with this higher 

frequency. One could judge that no weak factor is present.  A second highest frequency larger 

than 25% could be viewed as an evidence of a weak factor.  In this case just looking at the 

highest larger frequency may lead to underestimate of the number of factors.  If the second 

highest frequency (≥25%) corresponds to a number of factors that is greater than the one with 

the highest larger frequency, then the correct number of factors will be the one with the second 

largest frequency.  
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6.   EMPIRICAL RESULTS 

As an empirical application we estimate the number of factors that explain the stock returns in 

the United States following an APT model.  In order to check the sensibility of the estimation to 

the number of portfolios used, we employ return data of 10, 15, and 25 portfolios. For the case of 

the 10 portfolios we use the 10 momentum portfolios obtained from Kenneth R. French’s on-line 

data library.   These portfolios are formed as the average return on the two high prior return 

portfolios minus the average return on the two low prior return portfolios.
11
 Under this portfolio 

design the number of assets in each portfolio is roughly the same for every time period. As 

detailed in section 4.1, this is important for our estimation since the methodology will perform 

better if the number of assets in each portfolio is large.
12
  The 15 and 25 portfolios are 

constructed randomly, in the sense that the asset returns included in each portfolio are randomly 

selected. Again this portfolio design warranties that the number of assets included in each 

portfolio is roughly the same, so the number of assets in each portfolio is large every time period.   

Our time series sample includes 954 monthly observations for each portfolio from 1927 to 2006.   

 We use the model selection criterion since according to simulations it produces more 

reliable inferences in finite samples than the sequential testing method.  We repeat the estimation 

for 100 randomly selected partitions. Instrument groups include 5, 8 and 9 instruments for N = 

10, 15, 25 respectively.  The results are very robust to changes in the number of instruments.  We 

use the heteroskedasticity-robust variance matrix for the GMM weighting matrix.  Estimation 

results are presented in Table 7 panel A.   

 

  In the case of the 10 momentum portfolios, we estimate 71% of the time three factors. 

Since this is the only frequency larger than 25% we can conclude that the number of factors in 

this case is three, and there is not evidence of a weak factor.   For the data with 15 portfolios we 

estimate three factors 50% of the time and 35% two factors.  Again three factors are estimated 

with the highest frequency, but in this case two factors are obtained more than 25% of the time 

which evidences that one of the three factors is weak.  Finally for the 25 portfolios, two factors 

                                                 
11
 More details of portfolio formation can be obtained from Kenneth R. French’s on line data library. 

12
  The idiosyncratic components of individual stock returns may be cross-sectionally correlated.  However, as 

discussed in section 4.1, the errors of portfolio returns are less likely to be cross-sectionally correlated if each 

portfolio is constructed with many individual stocks.  We use portfolios that maximize the number of assets in each 

portfolio for every period of time.  
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are estimated 63% of the time and the second highest frequency corresponds to three factors 

which are estimated 25% of the time.  These results imply that three factors explain the stock 

market returns, and there is evidence that one of the factors is weak in the sense that its 

corresponding SNR is smaller than 0.25. 

 We want to investigate further the 25 portfolios case to verify the presence of a third 

weak factor.  Assumption D in our model implies that all portfolios should be affected by the 

same number of factors. If just and small number of the portfolios are affected by a third factor 

then this third factor will be weak. In order to investigate how different groups of portfolios from 

the total 25 are affected by a third weak factor, we estimate the number of factors for different 

groups or subsets from the 25 portfolios.  Specifically we randomly select 10  portfolios from the 

25 portfolios. Results of the estimation of the number of factors for 2 different random selections 

of 10 portfolios are presented in Table 7 panel A. We estimate two factors with the highest 

frequency in all the cases. We estimate three factors with frequencies that range from 19% to 

31%. This implies that the third factor affects a small group of 25 the portfolios, which confirms 

the fact that the third factor is weak.  

   We conclude that 3 factors explain the returns of the US stock market. One of the three 

factors is a weak factor in the sense that its contribution to the total variance of the stock returns 

is small relative to the idiosyncratic variance.   

  In a second part of our empirical exercise we want to investigate which variables 

proposed in the financial literature as factors are really correlated with the three latent factors. As 

explained in section 4.2, our estimation methodology can be applied for this purpose by just 

using the observable variables as instruments in the moment conditions.   We will focus in the 

variables proposed by Chen Roll and Ross 1986 (CRR) and Fama French 1996 (FF). CRR select 

as factors variables that affect the discount rate used to discount future expected cash flows and 

variables that influence the expected cash flows themselves.  The proposed factors are term 

structure (UTS), changes in expected inflation (DEI), unexpected inflation (UI) , industrial 

production growth (MP) and the risk premium (URP).  UTS is calculated by subtracting the 10 

year constant maturity US government bond and the 4 week Treasury bond yield
13
.  DEI is 

obtained by calculating the monthly changes in expected inflation obtained from the U. of 

                                                 
13
 Data obtained fro the Federal Reserve statistical release H15. 
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Michigan consumer expectations survey.
14
 UI is the difference between the realized inflation for 

month t and the expected inflation for month t.
15
  MP is the monthly growth in the industrial 

production index
16
. URP is calculated by the difference between the yield of the US government 

bond and the Moody's seasoned Baa corporate bond yield.  Fama and French three factors: 

excess market return, SMB, and HML are factor mimicking portfolios formed using firm 

characteristics and returns as explained in section 5.1.   We focus in 342 observations stating in 

1978, motivated in the availability of the all data for this sample period.    

  The first step of our estimation involves estimating the number of factors for this sub-

sample of 342 periods.  Our simulations showed that in small samples it is better to use small 

number portfolios, so we use 10 portfolios formed on Momentum.  Results are presented in table 

7 panel B.  Interestingly we estimate 3 factors 78% of the times, similarly that the full sample 

case. Given that the number of latent factors is three, we proceed to test how many of them are 

correlated with the observable variables of CRR and FF. Results are presented in Table 7 panel 

B.   First we test for the case CRR non inflation variables (MP, UTS and URP) and we find that 

using them as instruments we are just able to estimate one factor. This implies that these three 

variables are able to capture (or are correlated) with just one of the three latent factors. In a 

second estimation we include all CRR variables.  Results do not improve, since just one factor is 

captured again.   Finally we include all CRR variables and the three FF factors in our estimation. 

Results show that just two unobservable factors are correlated with the set of 8 observable 

variables since two factors are estimated 78% of the times. We conclude the set of variables 

included in CRR are correlated with one of the three latent factors and the FF factors are able to 

capture an extra latent factor. One of the three unobservable factors is not captured by the 

variables in CRR and FF. 

 

7.   CONCLUDING REMARKS  

In this paper we present a method to consistently estimate the number of factors in a linear factor 

model.  The test is independent of the factors, since it is assumed that they are unobservable. 

Since GMM is used it is feasible to allow for time series autocorrelation and heteroskedasticity 

                                                 
14
 Data obtained from the Federal Reserve Economic Data FRED. 

15
 The Consumer Price Index obtained from FRED was used to calculate monthly inflation. 

16
 The industrial production index used to calculate MP was obtained from FRED 
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and cross sectional heteroskedasticity of disturbances. Monte Carlo simulations show that the 

size of the test is better when N is small and T is large.  

  We have considered two procedures to estimate the number of factors: sequential testing 

and model selection criterion methods.  Our simulations show that the model selection criterion 

method is more precise, especially for 15 or more response variables.  We recommend use of the 

model selection method since it does not require bandwidth selection or adjustment of 

significance levels.  

  Since the method requires the partition of the response variable in two groups, we 

recommend to estimate the number of factors for different specifications of two groups (100 

randomly generated partitions appear to be enough).  Simulation show that the number of factors 

most often estimated from different partitions is a very reliable estimator (i.e. the one with the 

highest frequency).   A second highest frequency larger than 25%, will evidence the presence of 

a weak factor, i.e. a factors that explains small proportion of the variation of the response 

variable (SNR smaller than 0.25). In this case just looking at the highest larger frequency may 

lead to underestimate of the number of factors.   

  Our empirical results imply that the US stock returns are determined by three factors. 

There is also evidence that one of the factors is a weak factor. Also we find that the variables 

proposed by Chen Roll and Ross 1986 are able to capture just one of the three latent factors. 

Fama and French 1996 are able to capture an extra latent factor. One of the three unobservable 

factors is not captured by the factors proposed by Chen Roll and Ross 1986 and Fama and 

French 1996. 
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APPENDIX 

  The following lemma is useful to prove Propositions 1 and 3.  

 

  Lemma 1:  Suppose that the factor model (2) satisfies Assumptions A-C and D
*
.  Then, 

(i) for *L L< , there exist no values of Lb  such that [ ( | )] 0t LE m b L = .  (ii) For *L L= , a unique 

solution *

Lb θ=  exists for *[ ( | )] 0t LE m b L = .  Finally, (iii) for *L L> , there are infinitely many 

Lb ’s such that [ ( | )] 0t LE m b L = . 

  Proof:  By construction, ( )Lrank H P L= − .  But, under Assumption D
*
, the maximum 

number of the linearly independent columns of LH  that are orthogonal to all of the columns of 

z g

f
′Β Ω Β  is *( )P L− , which is smaller than ( )P L− .  This means that some columns of LH  

cannot be orthogonal to all of the columns of z g

f
′Β Ω Β  when *L L< .  That is, 0z g

f LH′Β Ω Β ≠ .  

Under Assumptions A-C and D
*
, using (8), we can show that 

   

1
[ ( | )] ( )

( )
0

( )

t L L t P L

t

g

L P L

z g z g

L P L f L

E m b L E vec H g a
z

H a
vec

H a H

α

α α

• −
•

−

−

   
′ ′= −       

′ ′ −
 = ≠
 ′′ ′− + Β Ω Β 

, (A.1) 

for any LH  and P La − .  Thus, (i) holds.  When *L L= , there exists a unique LH  = *

*

2[ , ]
P L
I

−
′ ′−Ξ  ≡  

*Ξ  such that * 0z g

f
′Β Ω Β Ξ = .  Let * * *

2[( , ) ]vecθ αΞ
′ ′= Ξ , where * * gα αΞ

′= Ξ .  Then, from (A.1), 

we can see that *θ  is the unique solution of *[ ( | )] 0t LE m b L = .  This proves (ii).  A simple 

example can provide an intuition for the result (iii).  Consider a simple case with 3P Q= = , 

* 1L = , 1 2 3( , , )α α α α ′= , 1 2 3( , , )t t t tg g g g ′=
i

, and 

   

1 2 3

0 0 0

0 0 0z g

f

γ γ γ

 
 ′Β Ω Β =  
 
 

; *

1 3 2 3

1 0

0 1

/ /γ γ γ γ

 
 Ξ =  
 − − 

, 

assuming 3 0γ ≠ .  Suppose now that for estimation, we choose 2L =  and 1 2(1, , )LH φ φ′ ′= − − , 

where 1φ  is a unrestricted parameter, and 2 1 1 2 3( ) /φ γ φ γ γ= − − .  Then, z g

f LH′Β Ω Β  = 0.   Thus, 
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[ {(1, ) ( ) }] 0t L t P LE vec z H g a• • −′ ′ ′ ′− = , where 1 1 2 2 3P La α φα φ α− = − − .  Since 1φ  is an unrestricted 

parameter, there are infinitely many matrices LH  (other than *Ξ ) that satisfy the moment 

conditions [ ( | )] 0t LE m b L =  when *L L> .  This result can be easily generalized. 

 

  We first prove Proposition 3, and later Proposition 1.  We do so because Proposition 1 is 

in fact a corollary of Proposition 3.  

  

  Proof of Proposition 3:  Consider the case with *L L< .  Then, by Lemma 1(i), there is no 

Lb  that satisfies [ ( | )] 0t LE m b L = .  This means that ˆL pb b→  for some *b θ≠ ,  and, for some 

0d ≠ , 

   ˆ( | )T Ld b L  = *( | )Td b L  + (1)po  p d→ . 

Thus, 1ˆ( | ( ), ) / [ ( )] 0T L T pc b W L L T d W L d−′→ > , and therefore, ˆ( | ( ), )T L T pc b W L L → ∞ . 

  Consider now the case with *L L= .  By Lemma 1(ii), there is a unique solution *θ  for  

[ ( | )] 0t L oE m b L = .  Therefore, *ˆ
L pb θ→  by Hansen (1982).  Let ( | ) ( | ) /T L T L LD b L d b L b′= ∂ ∂ .  

Then, using (7), we can show that, under Assumptions A-C, 

   

*

*

*

* *

*

1

1 ( )1ˆ( | )
( )

1 ( )
,

( ) ( )

L

tT

T L t P L
L

t t t

x

L
p P L z z x z x

fL L

x
D b L I

T z z x

I D
α

α α α

•
= −

• • •

−

  ′
 = Σ ⊗  

  ′  

 
→ ⊗ ≡  ′ ′+ Β Ω Β 

 

where D  is a full-column matrix under Assumption D
*
.  Define 

   1/ 2 1/ 2 1/ 2 1 1 1/ 2 1/ 2 1/ 2

( )(1 ) ( ) ( ) ( ) ( )
oP L QA W W I W D D W D D W W W− − − − − −

− + ′ ′ ′  ′ ′= − 
ɶ ɶ , 

where *( )W W L=ɶ ɶ , *( )W W L= , and  1/ 2Wɶ  and 1/ 2W  are the triangular matrices from the 

Cholesky decomposition of S and G.  Then, following Theorem 3 of Jagannathan and Wang 

(1996), we can show that, as N → ∞ , 

   * *

1
ˆ( | ( ), ) G

T L T d j j jc b W L L λ ξ=→ Σ , (A.2) 

where * *( )( )G P L Q L= − − , 1,..., Gλ λ  are the positive eigenvalues of A , and the jξ  are 

independent 2 (1)χ  random variables.  Observe that G  is the degrees of overidentifying 
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restrictions: the number of moment restrictions in ( | )t Lm b L  minus the number of parameters in 

Lb .  That is,  

   * * * * *( )(1 ) ( )(1 ) ( )( )G P L Q P L L P L Q L= − + − − + = − − . 

The minimizer of * *( | ( ), )T L Tc b W L Lɶ , *

Lb
ɶ , is the optimal GMM estimator among the estimators 

based on the moment condition *[ ( | )] 0t LE m b L = .  When *( )TW Lɶ  is used for GMM, the matrix 

A  reduces to: 

    1/ 2 1 1 1/ 2

( )(1 ) ( ) ( )
oP L QA I W D D W D D W− − − −

− + ′ ′ ′= − , 

because W W=ɶ .  Observe that A  is symmetric and idempotent.  Thus, the eigenvalues of A  are 

all ones or zeros.  Since the rank of a matrix equals the number of its non-zero eigenvalues, and 

since ( )rank A  = ( )trace A  = G ,  we must have 1jλ = , for all 1,...,j G= .  Thus, by (A.2), 

   * * * 2

1( | ( ), ) ( )G

T L T d j jc b W L L Gξ χ=→ Σ =ɶ ɶ . 

 

  Proof of Proposition 1:  Under Assumption D, *[ ]z g

f orank L L′Β Ω Β = = .  Thus, the 

results follow from Proposition 3. 

 

  Proof of Proposition 2:  We can complete the proof by showing that ˆPr( ) 0oL L> →  and 

ˆPr( ) 0oL L< → , as T → ∞ .  We first show ˆlim Pr( ) 0N oL L→∞ > = .  Observe that for L̂  to be 

greater than oL , ( ) ( )T o T aMS L M S L−  > 0 for some a oL L> .  This implies that  ˆPr( )oL L>  ≤  

Pr[ ( ) ( ) 0]T o T aMS L M S L− > .  Note also that  

  
ˆ ˆPr[ ( ) ( ) 0] Pr[ ( | ) ( | ) ( )( ( ) ( )) 0]

ˆPr[ ( | ) ( )( ( ) ( )) 0] 0,

o

T o T a T L o T L a a o

o

T L o a o

MS L M S L c b L c b L f N g L g L

c b L f T g L g L

− > = − + − >

≤ + − > →
    

because ( ( ) ( ))a og L g L−  is a fixed negative number, ( ) ln( )f T T= → ∞  as T → ∞ , and  

ˆ( | )o

T L oc b L  is a weighted χ
2
 random variable that is bounded almost surely.  Thus, ˆPr( )oL L>  →  

0. 

  We now show that ˆlim Pr( ) 0T oL L→∞ < = .  For L̂  to be smaller than oL , there should 

exist some a oL L<  such that ( ) ( )T o T aMS L M S L−  < 0.  But we can show 
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1 1 ( )ˆ ˆPr[ ( ) ( ) 0] Pr ( | ) ( | ) ( ( ) ( )) 0

0,

o

T o T a T L o T L a a o

f T
MS L M S L c b L c b L g L g L

T T T

 − > = − + − >  
→

 

as T → ∞ .  This is true for three reasons.  First, ( ) / ln( ) / 0f T T T T= →  as T → ∞ .  Thus, the 

third term converges to zero.  Second, ˆ( | ) / 0o

T L o pc b L T → ,  because ˆ( | )o

T L oc b L  converges to a 

bounded random variable.  Third, for a oL L< , there is no Lb  such that [ ( | )] 0t L aE m b L = .  Let ab  

be the minimizer of lim ( | ( ), ) /T T L T a ap c b W L L T→∞ .  Since ( ( | )) 0t a aE m b L ≠ ,  

   ˆlim ( | ) lim ( | ) 0T T L a T T a ap d b L p d b L→∞ →∞= ≠ . 

Thus, ˆ( | ) /T L ac b L T  converges in probability to a positive number.  Accordingly, ˆPr( )oL L<  → 0.    
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TABLE  1 

Size of the J Test 
 

1,000 random samples are generated by a three-factor model. For each sample, the J statistic is computed and the 

null hypothesis of L0 = 3 is tested.  The reported are the percentages of rejection at 5% of significance level.  The 

Newey-West estimator is used to compute the weighting matrix for the cases of autocorrelation. The abbreviation 

BW is the value of bandwidth used. 

NO AUTOCORRELATION 

Number of Instruments (Q) 
T N BW 

4 5 6 

500 12 0 4.30% 5.10% 7.10% 

1000 12 0 4.70% 4.90% 5.60% 

Number of Instruments (Q) 
T N BW 

6 8 9 

500 15 0 7.20% 5.30% 5.20% 

1000 15 0 6.40% 4.90% 4.85% 

Number of Instruments (Q) 
T N BW 

8 9 12 

500 25 0 6.80% 4.90% 33.2% 

1000 25 0 5.90% 5.00% 32.50% 

AUTOCORRELATION 

Number of Instruments (Q) 
T N BW 

4 5 6 

500 12 3 4.00% 4.30% 5.70% 

1000 12 3 4.50% 5.00% 4.60% 

500 12 0 4.50% 6.10% 7.60% 

1000 12 0 4.70% 6.00% 5.80% 

Number of Instruments (Q) 
T N BW 

6 8 9 

500 15 3 3.20% 2.50% 2.90% 

1000 15 3 5.00% 2.60% 2.90% 

500 15 0 7.20% 5.80% 5.10% 

1000 15 0 6.20% 5.00% 4.60% 

Number of Instruments (Q) 
T N BW 

8 9 12 

500 25 3 0.00% 0.00% 0.00% 

1000 25 3 0.20% 0.00% 0.74% 

500 25 0 7.40% 5.20% 57.00% 

1000 25 0 5.90% 5.30% 47.20% 
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TABLE 2 

Estimation by the Sequential Hypothesis Testing Method 

 

The sequential hypothesis testing method is used to estimate the number of factors in the data generated with three 

factors (Lo = 3).  Five, eight and nine instrumental variables are used for the data with N = 12, 15, and 25, 

respectively. For the cases of autocorrelation, we use the Newey-West estimator. The total number of simulations is 

1,000.  

NO AUTO CORRELATION 

NUMBER OF FACTORS 
T N BANDWIDTH 

≤ 2 3 4 5 6 
 AVERAGE  

         

500 12 0 0% 94.10% 5.90% 0.00% 0.00% 3.059 

500 15 0 0% 94.70% 3.70% 1.10% 0.50% 3.074 

500 25 0 0% 93.20% 4.40% 1.50% 0.08% 3.052 

         

1000 12 0 0% 94.20% 5.80% 0.00% 0.00% 3.058 

1000 15 0 0% 95.10% 3.40% 1.30% 0.02% 3.055 

1000 25 0 0% 94.40% 3.40% 1.40% 0.20% 3.050 

 AUTOCORRELATION 

NUMBER OF FACTORS 
T N BANDWIDTH 

≤ 2 3 4 5 6 
 AVERAGE  

500 12 0 0% 94.60% 5.40% 0.00% 0.00% 3.054 

500 15 0 0% 94.20% 4.30% 0.90% 0.60% 3.079 

500 25 0 0% 94.10% 3.00% 1.30% 0.60% 3.044 

         

1000 12 0 0% 94.70% 5.30% 0% 0% 3.053 

1000 15 0 0% 95.40% 3.70% 0.90% 0.00% 3.055 

1000 25 0 0% 94.60% 3.40% 1.20% 0.40% 3.058 

         

         

500 12 3 0% 95.70% 4.30% 0.00% 0.00% 3.043 

500 15 3 0% 97.50% 1.60% 0.80% 0.10% 3.035 

500 25 3 100% 0.00% 0.00% 0.00% 0.00% 1.000 

         

1000 12 3 0% 95.00% 5.00% 0% 0% 3.050 

1000 15 3 0% 97.40% 1.40% 0.80% 0.40% 3.042 

1000 25 3 0% 92.30% 5.70% 3.00% 0.00% 3.147 
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TABLE 3 

Estimating the number of Factors by the Model Selection Criterion Method 

 

The model selection criterion method is used to estimate the number of factors for the data generated with three 

factors (L0 = 3).  Five, eight and nine instrumental variables are used for the data with N = 12, 15, and 25, 

respectively. For the cases of autocorrelation, we use the Newey-West estimator. The total number of 

simulations is 1,000.  The Schwartz Information Criterion (BIC) is used. 

NO AUTO CORRELATION 

NUMBER OF FACTORS AVERAGE 
T N BANDWIDTH 

≤ 2  3 4 5 6   

         

500 12 0 0.00% 97.00% 3.00% 0.00% 0.00% 3.03 

500 15 0 0.00% 99.10% 0.90% 0.00% 0.00% 3.01 

500 25 0 0.00% 99.90% 0.10% 0.00% 0.00% 3.00 

         

1000 12 0 0.00% 97.80% 2.20% 0.00% 0.00% 3.02 

1000 15 0 0.00% 99.70% 0.03% 0.00% 0.00% 2.99 

1000 25 0 0.00% 99.80% 0.20% 0.00% 0.00% 3.00 

 AUTOCORRELATION 

NUMBER OF FACTORS AVERAGE 
T N BANDWIDTH 

≤ 2 3 4 5 6   

500 12 0 0.00% 96.90% 3.10% 0.00% 0.00% 3.03 

500 15 0 0.00% 98.90% 1.10% 0.00% 0.00% 3.01 

500 25 0 0.00% 99.70% 0.10% 0.00% 0.00% 3.00 

         

1000 12 0 0.00% 97.70% 2.30% 0.00% 0.00% 3.02 

1000 15 0 0.00% 99.60% 0.40% 0.00% 0.00% 3.00 

1000 25 0 0.00% 99.90% 0.10% 0.00% 0.00% 3.00 

         

         

500 12 3 0.00% 98.00% 2.00% 0.00% 0.00% 3.02 

500 15 3 0.00% 99.80% 0.20% 0.00% 0.00% 3.00 

500 25 3 100.00% 0.00% 0.00% 0.00% 0.00% 1.00 

         

1000 12 3 0.00% 98.10% 1.90% 0.00% 0.00% 3.02 

1000 15 3 0.00% 99.90% 0.10% 0.00% 0.00% 3.00 

1000 25 3 9.20% 90.80% 0.00% 0.00% 0.00% 2.82 
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TABLE 4 

Effects of Changing Partitions 
 

PANEL A 

A single data set with T = 1,000 is generated from a three-factor model. The number of factors is 

estimated by sequential testing and model selection criterion methods. This estimation is conducted for 

100 randomly chosen partitions of the response variables. For the cases of autocorrelation, the Newey-

West estimator with bandwidth = 3 is used for the sequential hypothesis testing method.  Zero 

bandwidth is used for the model selection criterion method. The term “yes” in the “auto” column 

indicates a case of autocorrelation, and “no” indicates the case of no autocorrelation.  

SEQUENTIAL HYPOTHESIS TESTING  

  NUMBER OF FACTORS AVERAGE 
N auto 

≤ 2 3 4 5   

       

12 no 0.00% 97.00% 3.00% 0.00% 3.03 

15 no 0.00% 89.00% 10.00% 0.00% 3.07 

25 no 0.00% 66.60% 33.30% 0.00% 3.33 

       

12 yes 0.00% 97.00% 3.00% 0.00% 3.03 

15 yes 0.00% 91.00% 8.00% 1.00% 3.10 

25 yes 0.00% 65.00% 32.00% 3.00% 3.38 

       

MODEL SELECTION CRITERION 

  NUMBER OF FACTORS AVERAGE 
N auto 

≤ 2 3 4 5   

       

12 no 0.00% 97.00% 3.00% 0.00% 3.03 

15 no 0.00% 91.00% 8.00% 1.00% 3.10 

25 no 0.00% 83.00% 15.00% 2.00% 3.19 

       

12 yes 0.00% 97.00% 3.00% 0.00% 3.03 

15 yes 0.00% 91.00% 8.00% 1.00% 3.10 

25 yes 0.00% 82.00% 16.00% 2.00% 3.20 

       

PANEL B 
1,000 random samples are generated from a three-factor model. For each generated sample, the number of factors 

is estimated by applying the model selection criterion method to 100 randomly chosen partitions of response 

variables.  The estimated number of factors for each sample is the number estimated the most frequently. 

MODEL SELECTION CRITERION 

  NUMBER OF FACTORS AVERAGE 
N auto 

≤ 2 3 4 5   

       

12 no 0.00% 100.00% 0.00% 0.00% 3.00 

15 no 0.00% 100.00% 0.00% 0.00% 3.00 

25 no 0.00% 100.00% 0.00% 0.00% 3.00 

       

12 yes 0.00% 100.00% 0.00% 0.00% 3.00 

15 yes 0.00% 100.00% 0.00% 0.00% 3.00 

25 yes 0.00% 100.00% 0.00% 0.00% 3.00 
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TABLE 5 

Effects of Weak Factor in One Random Sample 
 

A single data set with T = 1,000 is generated from a three-factor model using different 

signal to noise ratios for the second common component. The variances of the response 

variables explained by three factors are held constant.  The number of factors is estimated 

by the model selection criterion method. The method is applied to 100 randomly chosen 

partitions of response variables. 

PANEL A: SIGNAL TO NOISE FOR COMMON COMPONENT 2 = 1.00 

NUMBER OF FACTORS  AVERAGE  
N 

≤ 1 2 3 4 5   

12 0.00% 4.00% 91.00% 5.00% 0.00% 3.01  

15 0.00% 0.00% 90.00% 9.00% 1.00% 3.11  

25 0.00% 0.00% 75.00% 24.00% 1.00% 3.26  

       

PANEL B: SIGNAL TO NOISE FOR COMMON COMPONENT 2 = 0.50 

NUMBER OF FACTORS  AVERAGE  
N 

≤ 1 2 3 4 5   

12 0.00% 24.00% 71.00% 5.00% 0.00% 2.81  

15 0.00% 6.00% 82.00% 12.00% 1.00% 3.11  

25 0.00% 14.00% 66.00% 19.00% 1.00% 3.07  

       

PANEL C:  SIGNAL TO NOISE FOR COMMON COMPONENT 2 = 0.35 

NUMBER OF FACTORS  AVERAGE  
N 

 ≤ 1 2 3 4 5   

12 0.00% 35.00% 60.00% 4.00% 0.00% 2.66  

15 0.00% 23.00% 67.00% 10.00% 0.00% 2.87  

25 0.00% 13.00% 59.00% 24.00% 4.00% 3.19  

       

PANEL C:  SIGNAL TO NOISE FOR COMMON COMPONENT 2 = 0.25 

NUMBER OF FACTORS  AVERAGE  
N 

≤ 1 2 3 4 5   

12 0.00% 75.00% 25.00% 0.00% 0.00% 2.22  

15 0.00% 60.00% 39.00% 10.00% 0.00% 2.77  

25 0.00% 68.00% 30.00% 2.00% 0.00% 2.34  
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TABLE 6 

Effects of Weak Factors in 1,000 Random Samples  
 

1,000 random samples are generated from a three-factor model with different signal to noise 

ratios of the second common component. Each sample contains 1,000 time series 

observations.  For each data set, the variances of the response variables explained by three 

factors are held constant. The number of factors is estimated by applying the model selection 

criterion to 100 randomly chosen partitions of response variables. The estimated number of 

factors for each sample is the number estimated the most frequently. 

PANEL A: SIGNAL TO NOISE FOR COMMON COMPONENT 2 = 1.00 

NUMBER OF FACTORS   AVERAGE  
N METHOD 

≤ 1 2 3 4   

12 MSC 0.00% 0.00% 100.00% 0.00% 3.00  

15 MSC 0.00% 0.00% 100.00% 0.00% 3.00  

25 MSC 0.00% 0.00% 100.00% 0.00% 3.00  

       

PANEL B: SIGNAL TO NOISE FOR COMMON COMPONENT 2 = 0.50 

NUMBER OF FACTORS  AVERAGE  
N METHOD 

≤ 1 2 3 4   

12 MSC 0.00% 0.90% 99.10% 0.00% 2.99  

15 MSC 0.00% 0.00% 100.00% 0.00% 3.00  

25 MSC 0.00% 0.00% 100.00% 0.00% 3.00  

       

PANEL C: SIGNAL TO NOISE FOR COMMON COMPONENT 2 = 0.35 

NUMBER OF FACTORS  AVERAGE  
N METHOD 

< 1 2 3 4   

12 MSC 0.00% 38.30% 61.70% 0.00% 2.62 

15 MSC 0.00% 6.50% 93.50% 0.00% 2.94  

25 MSC 0.00% 0.00% 99.80% 0.20% 3.00  

      

PANEL D:  SIGNAL TO NOISE FOR COMMON COMPONENT 2 = 0.25 

NUMBER OF FACTORS  AVERAGE  
N METHOD 

< 1 2 3 4   

12 MSC 0.00% 89.10% 10.90% 0.00% 2.11 

15 MSC 0.00% 67.80% 32.30% 0.00% 2.33 

25 MSC 0.00% 46.50% 53.50% 0.00% 2.54  
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TABLE 7 

Empirical Application 
 

We apply the model selection criterion method to three different groups of portfolios constructed from US stock 

market from 1929 to 2006. The 15 and 25 portfolios in each group are constructed randomly while each 

portfolio has the same number of assets. The 10 momentum portfolio was obtained from K. French data library 

and it has roughly the same number of assets per portfolio. PANEL A, shows results of the estimation of the 

number of factors for 100 randomly chosen partitions.  The heteroskedasticity-robust variance matrix is used as 

weighting matrix.  PANEL B includes results for testing how many factors are captured by Chen-Roll-Ross 

1986 (CRR) factors and Fama and French (FF) 1996 factors, in a sub sample from 1978 of 342 observations.. 

 

PANEL A: Full sample 

NUMBER OF FACTORS   
Portfolio Used 

1 2 3 4 5  
Average 

10 Momentum Portfolios 0.00% 8.00% 71.00% 21.00% -     3.13  

15 Random Portfolios 0.00% 35.00% 50.00% 6.00% 1.00%     2.44  

25 Random Portfolios 8.00% 63.00% 25.00% 4.00% 1.00%     2.26  

       

       

10 from the 25 Portfolios 16.00% 49.00% 31.00% 4.00% -     2.23  

10 from the 25 Portfolios 37.00% 40.00% 19.00% 4.00% -     1.90  

       

 

PANEL B: Number of Factors with Instruments (sub-sample from 1978) 

 

NUMBER OF FACTORS   
Portfolio Used 

1 2 3 4 5  
Average 

10 Momentum Portfolios    0.00%   8.00% 

     

78.00%    14.00% - 3.06 

CRR no Inflation Factors 100% 0% - - - 1.00 

CRR All Factors 100% 0% 0% 0% - 1.00 

FF Factors 5% 95% - - - 1.95 

CRR and FF Factors 29% 71% 0% 0% 0% 1.71 

  


