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Abstract 

 

Stylized facts on financial time series data are the volatility of returns that follow non-normal conditions such 

as leverage effects and heavier tails leading returns to have heavier magnitudes of extreme losses. Value-at-

risk is a standard method of forecasting possible future losses in investments. A procedure of estimating 

value-at-risk using time-varying conditional Johnson SU distribution is introduced and assessed with 

econometric models. The Johnson distribution offers the ability to model higher parameters with time-

varying structure using maximum likelihood estimation techniques. Two procedures of modeling with the 

Johnson distribution are introduced: joint estimation of the volatility and two-step procedure where 

estimation of the volatility is separate from the estimation of higher parameters. The procedures were 

demonstrated on Philippine-foreign exchange rates and the Philippine stock exchange index. They were 

assessed with forecast evaluation measures with comparison to different value-at-risk methodologies. The 

research opens up modeling procedures where manipulation of higher parameters can be integrated in the 

value-at-risk methodology. 
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Introduction 

 

Financial institutions engage in investment activities to expand their assets so that they can provide quality 

financial products and services to their clients. In these activities, financial institutions incur risks of loss from 

their investment which may cause bankruptcy to their firms. In the intricate web of the financial sector, the 

downfall of large institutions or many firms may lead to financial crisis. 

 

Central banks as financial regulators require financial institutions to comply within levels of allowable 

incurred risk in financial activities. Risks in financial activities are categorized in three kinds: (1) credit risk, 

incurred by lending to other institutions, (2) market risk, incurred by keeping a portfolio of assets where 

prices are determined by market forces, e.g., stocks, commodities, and currencies, and (3) operational risks, 

incurred from internal operations of the institutions, such as electricity and office equipment failures. (BSP 

Memo. Cir.  538) 

 

Financial regulators observed international guidelines on risk capital adequacy over financial institutions as 

stipulated by the Basel Committee on Banking Supervision (Basel, 2004). There are different multiple 

suggested methods in dealing with different risks, yet the paper focuses on market risks where time series 

analysis and econometric modeling are preferred. In managing market risks, one of the tools to comply with 

these specifications is the Value-at-Risk (VaR) methodology, the measure of minimum possible loss as returns 

of investment given a probability of extreme loss (Jorion, 2006).  

 

Stylized facts in the distribution of returns are the time-varying nature in mean and variance, which brought 

time series models autoregressive-moving average (ARMA) models and generalized autoregressive conditional 

heteroscedasticity (GARCH) models in the fray of financial econometrics (Tsay, 2002). In higher moments, 

unequal leverage effects due to negative shifts and fat tails have been evident in many researches, which 

correspond left-side skewness and leptokurtosis which are changes in the shapes of distributions of returns 

(Tsay, 2002). In the existence of means and variances that change in time, the concept of time-varying 

densities in financial returns is gaining ground and questions arise as whether there is strong evidence for 

these behaviors in profits and losses (Jondeau, et. al. 2007).  

 

The aim of the paper is to derive a VaR methodology that incorporates time-varying shape characteristics in 

the framework. The Johnson SU distribution with time-varying parameters is assumed in the value-at-risk 

model as the underlying distribution of the returns (Yan, 2005). Two procedures are devised that incorporate 

density changes, (1) a joint estimation in which mean and variance models are incorporated in the likelihood 

function and (2) a two-step approach where the appropriate mean and variance models would generate 



residuals to be fitted with the Johnson SU density. These procedures would be compared to econometric 

methodologies for risk management on Philippine financial time series data with the aid of different 

evaluation measures and statistical tests. 

 

Returns from Asset Prices 

 

Returns are relative capital gains from possessing financial assets and equities (Jorion, 2007; Tsay 2002). For 

an asset of price tP  at time t, an arithmetic return at time t is defined as (Jorion, 2007): 
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The arithmetic return describes the relative change of assets based on most recent previous asset price.  

 

The geometric return, also known as log-return, of an asset at time t is defined as (Tsay, 2002): 
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The logarithm is of base e , the Euler number. It is favorable to use the log-returns due to its additive 

property (Jorion, 2007). The logarithmic transformation of the data is more favored since it restricts prices as 

positive values compared to the arithmetic returns and reduces the magnitude of volatility in price changes 

(Chatterjee, et al., 2000).  With the statistically favorable advantages, returns computed in the paper are log-

returns.  

 

The Definition of Value-at-Risk 

 

Value-at-risk in simple description is a minimum threshold value for possible losses in a given probability of 

risk to extreme loss (Jorion, 2007). A more formal definition is given by Tsay (2002), which deals with 

probability. Suppose that at current time t, a VaR value is to be estimated for k periods ahead. Let tr  be the 

financial asset return series of interest to be evaluated with a distribution function ( )
tr

F x , where a negative 

return means loss in the long position. Define ( ) ( ){ }1
inf |

t tr rF q x F x q
− = ≥  to be the quantile function for 

a left-tail probability q.  Let the risk probability for extreme loss be p , commonly used values are 0.01 ,

0.05 , or 0.10 . Then the 100(1 )%p− value-at-risk of possessing 1 unit of an asset k periods ahead is equal 

to (Tsay, 2002): 

 ( ) ( ) ( )1:
t k t kt k r r

VaR p P r VaR F VaR or VaR F p
+ +

−
+= ≤ = =  (3) 



In estimating VaR for an asset, the following elements should be known: (1) the probability p , (2) the 

forecast horizon k, (3) the data frequency, e.g., daily or weekly, (4) the distribution of asset returns, and (5) the 

amount of position for the asset (Tsay, 2002). In VaR estimation, statistical modeling and time series analysis 

are used in describing the distribution of asset returns and research on deriving VaR from different methods 

and techniques and comparison of these different techniques are fruitful and numerous. 

 

The Family of Value-at-Risk Methods 

 

Historical Method 

 

In evaluating the quantile of a distribution for VaR, a simple approach is to solve for sample quantiles based 

on historical data on asset returns. If { }1 2, ,...,
t

r r r is a subset of data on consecutive periods of the return 

series of an asset with window length t and ( )ir is the ith smallest return in the window, then the one-period 

ahead 100(1 )%p− VaR is equal to: 

 
[ ]( ) [ ]( ) [ ]( ) [ ]( )( )1Hist tp tp tp

VaR r tp tp r r
+

= + − −  (4) 

where [ ]q  means the integer part of the real number q  (Tsay, 2002; Fallon and Sarmiento-Sabogal, 2003). 

For example, in a window of an asset return series with 1500 data points, the long-position 99% VaR would 

be the first percentile of the data, which is 15th smallest return value. 

 

In this method of estimation, the assumed distribution of the data is the empirical distribution of returns. It 

avoids the possible misspecification by not assuming mathematical probability distributions. It is a very easy 

method that deals no statistical complexity. Caveat of the method is that it assumes that the distribution is 

similar between past observed values and future unobserved values of the returns (Tsay, 2002). The static 

approach ignores the time-varying nature of asset returns especially in volatility.  In addition, the use of 

sample quantiles in estimating true quantiles at the tails of a distribution is very unreliable with very high 

variation (Danielsson and de Vries, 1997). 

 

Econometric Methods 

 

Econometric methods use time series modeling and analysis methodologies in modeling the distribution of 

asset returns (Tsay, 2002). The methodology involves the specification of the following: (1) conditional mean 

structure 
t

µ  as a function of time t, e.g. using autoregressive-moving average (ARMA) models (Box ,et al. , 



1994) or regression models with exogenous explanatory variables, (2) conditional variance equation 
t

h for 

volatility as a function of time, e.g., using autoregressive conditional heteroscedasticity (ARCH) models 

(Engle, 1982; Bollerslev, 1986; Nelson, 1991), and (3) specification of the standardized error distribution 

~
t

Fεε , e.g., using the standard normal distribution (Engle, 1982; Longerstaey and Spencer, 1996), the 

standardized t distribution (Tsay, 2002), or the generalized error distribution (Nelson, 1991). 

 

Given that the proper three elements of the econometric methods has been fully specified and all model 

parameters are estimated, the one-period ahead100(1 )%p− VaR based on the econometric method is equal 

to: 

 ( )1

1 1
ˆˆ

Econ t tVaR h F pεµ −
+ += +  (5) 

The hats over the mean and variance specification imply one-step ahead forecasts for the mean and variance 

of the return series. The function 
1

Fε
−
 is the quantile function of the standardized error distribution. 

 

An example of popular models in the econometric method is the RiskMetrics model of J. P. Morgan 

(Longerstaey and Spencer, 1996). The model assumes that the conditional mean of the returns is zero always 

and the conditional variance follows a special IGARCH(1,1) model. The assumed error distribution of the 

data is the standard normal distribution. In equation form for the log-return series 
t

r : 
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The parameter λ  describes the variance process as an exponentially weighted moving average and is 

determined to be any number between 0.9 and 1 (Longerstaey and Spencer, 1996; Tsay, 2002). A problem of 

the RiskMetrics system is the assumption of normality. The distribution of financial returns tend to deviate 

from the normal distribution and are more likely to be heavy-tailed, meaning that the data has greater chances 

of tail values occurring in the changes of asset prices than compared to the normal distribution (Tsay, 2002). 

 

Since the normal distribution is inadequate in modeling financial returns, another compromise is the t-

distribution, which has a bell-shaped density curve but with fatter tails compared to the normal distribution. 

When an appropriate mean and variance model has been fitted for the standardized t distribution, the one-

step ahead ( )100 1 %p− VaR for the t distribution with v degrees of freedom is given by (Tsay, 2002):  
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The ,p v
t  is the pth lower quantile of the t distribution with v degrees of freedom. The parameter v and other 

model parameters are jointly estimated. 

 

Extreme Value Theory Methods 

 

In targeting tail values directly, techniques in extreme value theory are another set of tools for VaR 

estimation. Extreme value theory methods are large-sample procedures designed to describe and make 

inferences on the tail values of distributions of data (Coles, 2001). These techniques are described as semi-

parametric because of the involvement of parameter estimation in the methodology but the parameters are 

not directly related to the distribution that generated the data (Jondeau, et al., 2007) 

 

There are two basic techniques in extreme value theory: (1) the block maxima method (Berman, 1964; 

Longin, 2000) and (2) the peaks-over-thresholds model (Pickands, 1975; Davison and Smith, 1990; Smith, 

1999). 

 

The block maxima technique has the following steps for a return series { }1 2, ,..., Ty y y (Longin, 2000):  (1) 

divide the data into exclusive g subsamples, each of equal subsample size of m periods (e.g., m = 20 for 

months as subsamples, 60 for quarterly, 250 for yearly) such that T mg= , thus the data is of the form 

[ ] [ ]{ }1 2 1 2 2 ( 1) 1 ( 1) 2, ,..., , , ,..., ,..., , ,...,
m m m m m g m g mg

y y y y y y y y y+ + − + − +
   ; if a remainder r exists, then remove 

the first r periods in the return series; (2) from each of the g subsamples, the subsample minimum value 

min , 1,2,...,jy j g=  is gathered for long-position VaR, creating a new data series { }min min min

1 2, ,..., gy y y ; (3) the 

minimum series is fitted to the generalized extreme value (GEV) distribution for the minimum (Berman, 

1964; Coles, 2001; Longin, 2000) and its parameters are estimated; the cumulative distribution function of the 

GEV is shown below: 
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The domain of MinF  depends on the value of τ ; if 0τ > , then u β
τα> −  (Weibull distribution), 

u β
τα> −  when 0τ < (Frechet distribution), and  u ∈�  when 0τ = (Gumbel distribution). From the 

estimation of the parameters and fit of the distribution, the one-step ahead ( )100 1 %p− VaR is (Tsay, 

2002): 
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The peaks-over-thresholds approach is conducted in this manner (Smith, 1999): (1) transform the data by 

changing the sign of the returns, i.e., let the transformed data 
t t

r r− = − ; (2) choose a threshold value η  so 

that when 
i

r η− ≥ , the data point 
i

r− will be included in a new data set for model fitting; otherwise, the data 

point is excluded, creating a new data set{ }* * *

1 2 *, ,...,
n

r r r− − − , where *n  is the number of included data points; 

(3) the new dataset will be fitted to the Generalized Pareto distribution (GPD) (Pickands, 1975) with its 

cumulative distribution shown below: 
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When the parameters of the GPD are estimated, the one-step ahead ( )100 1 %p− long position VaR is 

equal to (Tsay, 2002; Coles 2001), with n  as the total number of data points in the original data set: 
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The problem with these procedures is their static properties, such that the time dynamics are not included in 

the model (Tsay, 2002). These methods have been adjusted to included time dependence such as a mixture 

with econometric methods (McNeil and Frey, 2000; Suaiso, 2009) and the use of explanatory variables (Tsay, 

2002; Cayton et al., 2010) 

 

 



Conditional Density Methods 

 

These methods deal with fitting distributions with parameters that are time-dependent (Jondeau, et al., 2007). 

The econometric methods and time-varying extreme value theory models are special cases of this family of 

procedures. Distributions used in these sets of procedure commonly involve more than two parameters, 

which would include shape parameters such as those that affect skewness and kurtosis. In this family, higher 

parameters are modeled with a time-varying structure to adapt to the concept dynamics in higher moments. 

Distributions that have been used in literature are such as the skewed Student’s t distribution (Hansen, 1994; 

Harvey and Siddique, 1999), Pearson Type IV distribution (Yan, 2005), Johnson SU distribution (Yan, 2005), 

Edgeworth series densities (Rockinger and Jondeau, 2001), and the Gram-Charlier densities (Jondeau and 

Rockinger, 2001). 

 

These researches generally underpin that time-varying higher moments and parameters may exist on some 

financial assets, thus to fit returns with time-varying structures would be required in such cases. Each 

distribution has their caveats and advantages, such as those that directly influence the moments of skewness 

and kurtosis but are computationally intensive for computation of quantiles, e.g., the Gram-Charlier densities 

and Edgeworth series densities (Jondeau and Rockinger, 2001; Rockinger and Jondeau, 2001), and those 

which are computationally and analytically derivable quantiles yet do not directly influence the coefficients of 

skewness and kurtosis, such as the Pearson IV and Johnson SU distributions (Yan, 2005). Due to the 

computational ease of estimation for parameters using maximum likelihood estimation and analytically 

derivable quantiles after estimation (Yan, 2005), the Johnson SU distribution is used by the paper for time-

varying conditional density. 

 

The Johnson SU Distribution 

 

The Johnson SU distribution was one of the distribution derived by Johnson (1949) based on translating the 

normal distribution to certain functions. Letting ( )~ 0,1Z N , the standard normal distribution, the random 

variable Y has the Johnson system of frequency curves from this method of transformation: 

 
Y

Z g
ξ

γ δ
λ

− 
= +  

 
 (12) 

The parameters γ  and ξ  may be any real number, while δ  and λ  should be positive numbers. The form of 

the distribution depends on the function g : (1) if ( )g u u= , it results to the normal distribution; (2) 

( ) ( )log 1g u u u = −  , then the distribution is bounded , called the Johnson SB distribution; (3) when 



( ) ( )lng u u= , it is the log-normal distribution, and (4) when ( ) ( )1sinhg u u−= , the distribution is 

unbounded, called the Johnson SU (JSU) distribution. 

 

From the transformation of the normal distribution, the cumulative distribution function of the JSU 

distribution is shown below. If ( )~ , , ,
U

Y JS ξ λ γ δ : 

 ( ) 1
sinhY

y
F y

ξ
γ δ

λ
− − 

= Φ +   
  

 (13) 

The function ( )uΦ  is the cumulative distribution function of the standard normal distribution. From the 

equation above, the quantile function 1

YF −  can be directly derived as: 

 ( )
( )1

1
sinhY

p
F p

γ
ξ λ

δ

−

−
 Φ −

= +  
 

 (14) 

The quantile function simply depends on the quantiles of the standard normal distribution ( )1 p−Φ , which 

are tractable due to the many functions available in computers and tables of standard normal quantiles in 

literature.  

 

The density of the JSU distribution, which will be used for the estimation procedure, is equal to (Yan, 2005): 

 ( ) 1

2
sinh

1

Y

x
f y

x

δ ξ
φ γ δ

λξ
λ

λ

− − 
= +   

  − 
+  
 

 (15) 

The function ( )uφ is the probability density function of the standard normal disitribution. The parameters of 

the JSU are ( ), , ,ξ λ γ δ ′  with each affecting the location, scale, skewness, and kurtosis of the distribution. 

The parameters are not the direct raw moments of the distribution. The first four moments, the mean, 

variance, third central moment, and fourth central moment, respectively, of the distribution are the following 

(Yan, 2005): 

 1 2 sinhµ ξ λω= + Ω  (16) 

 ( ) ( )
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2
1 cosh 2 1

λ
σ ω ω= − Ω +

2
 (17) 
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2
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2

2 4 8 6 4 4 2 2

4

1
1 2 3 3 cosh 4 4 2 cosh 2 3 2 1

8
µ ω ω ω ω ω ω ω ω = − + + − Ω + + Ω + +   (19) 

The quantities in the moment formulas are γ δΩ =  and ( )2expω δ −= . The standard distribution for the 

JSU exists when 0ξ =  and 1λ = , but the mean and the variance are not 0 and 1 respectively. To use the 

Johnson distribution as a standardized error distribution in econometric modeling (e.g., in ARMA-GARCH 

modeling), set the parameters in the following manner (Yan, 2005): 

 ( )( )
1

1 2 1
sinh 1 cosh 2 1Sξ ω ω ω

−
 

= − Ω − Ω + 
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 (20) 

 ( )( )
1

1
1 cosh 2 1Sλ ω ω

−
 

= − Ω + 
2 

 (21) 

 

Joint Estimation Procedure for JSU Distribution 

 

From the standardization of the distribution, mean-variance specifications can be introduced for econometric 

modeling with the JSU distribution. For maximum likelihood estimation, the higher parameters can be 

modeled to have time-varying structure, ultimately introducing dynamic properties to the skewness and 

kurtosis. In modeling with the JSU with joint estimation of parameters having time-varying structures, the 

following are sets of equations are defined: 

 Mean-Variance-Error Interaction: 
t t t t

y h zµ= +  (22) 

 Mean Specification: ( )t
g tµµ =  (23) 

 Variance Specification:  ( )t h
h g t=  (24) 

 Error Specification: 
( ) ( )

( ), ,

0; var 1;

~ , , ,

t t

t U S t S t t t

E z z

z JS ξ λ γ δ

= =
 (25) 

 Third Parameter Specification:  ( )t
g tγγ =  (26) 

 Fourth Parameter Specification:  ( )t
g tδδ =  (27) 

The functions , , ,
h

g g gµ γ  and gδ  are time-dependent functions related to t, e.g., ( ),g ARMA p qµ ≡  

process for the mean, ( )1 1,
h

g GARCH p q≡ for the variance, ( ) 0 1 1t
g t xγ β β −= +  for the structure of the 

third parameter, and ( ) 0g tδ δ=  a constant value for the fourth parameter. The location and scale parameters 

since they are function of time-varying third and fourth parameters due to standardization of the JSU 



distribution, i.e., ( ) ( ), 1 , 2, , ,
S t t t S t t t

f fξ γ δ λ γ δ= = . In this structure, it is implied that the skewness and 

kurtosis would have time-varying properties due to the structure of the third and fourth parameters.  

 

The log-likelihood sum to be maximized for estimation is written below:  
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  (28) 

The use of the functions , , ,
h

g g gµ γ  and gδ  as arguments in the log-likelihood function implies the 

estimation of the parameters inside these functions. The location and scale parameters should be substituted 

to the appropriate functional form based on  gγ  and gδ . If lagged values of the time series data are being 

used, the addends of the summation are reduced to adapt to the use of lags. 

 

Two-Step Procedure for JSU Distribution 

 

Another procedure that would introduce time-varying mean and variance specifications in the JSU distribution 

is a two-step procedure, where first the return series 
t

r  are fitted with the appropriate model for mean 
t

µ  

and variance 
t

h  and estimation is carried out using quasi-maximum likelihood estimation [QMLE] (Bollerslev 

and Wooldridge, 1992). From the estimated model equations ˆ
t

µ and ˆ
t

h , the standardized residuals 
t

e  of the 

model are computed: 

 
ˆ

ˆ

t t
t

t

r
e

h

µ−
=  (29) 

From these residuals, they are fitted with the JSU distribution with structures in the third and fourth 

parameters. The log-likelihood to be minimized would be of the form below: 
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 (30) 

 

After the proper estimation of the parameters of the model, either through the joint estimation or the two-

step procedure, the one-step ahead ( )100 1 %p− long position VaR is equal to: 

 
( )1

1

! 1 , 1 , 1

1

ˆ
ˆ ˆ ˆˆ sinh

ˆU
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JS t t S t S t

t

p
VaR h

γ
µ ξ λ

δ

−
+
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+

  Φ −
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 (31) 

The paper would compare the performance of the VaR of the time-varying JSU with the econometric VaR in 

Philippine financial time series datasets in terms of the number of exceptions and the magnitude of values 

given by the VaR of the different methods. 

 

The Evaluation of Value-at-Risk Methods 

 

Number of Exceptions: Basel Requirements 

 

A perspective of the evaluation of VaR methods is through the number of exceptions (Basel, 1996). A VaR 

exception occurs when the actual loss exceeded the value of the anticipated VaR. Depending on the VaR 

probability level, a specific amount of VaR exceptions are allowed per year. For example, for the 99% VaR, it 

is expected and permitted that the number of exceptions be equal to 1% of the total number of periods in a 

year. If a year had 250 time periods, about two or three exceptions are allowed per year. . Based on the 

number of exceptions of the VaR model of a financial institution, it is classified into three zones: (1) the green 

zone, where when institutions are inside this zone, it implies that their VaR model are able to fulfill the 99% 

specification, (2) the yellow zone, where institutions in this zone imply that their VaR model may be able to 

meet the 99% requirement but with low confidence, (3) and the red zone, where it indicates that the VaR 

model are not able to meet the 99% specification. Depending on the number of exceptions received in a year, 

a penalty multiplier in introduced in the calculation of appropriate risk capital based on the VaR. The table 

below displays the multipliers for each zone and number of exceptions. 

 

 

 

 

 



Table 1. Classification Zones Based on Number of Exceptions and  
Appropriate Scaling Factors for Risk Capital 

Zone Number of Exceptions 
Scaling Factors for the 
Market Risk Capital 

Green Zone 

0 
1 
2 
3 
4 

3.00 
3.00 
3.00 
3.00 
3.00 

Yellow Zone 

5 
6 
7 
8 
9 

3.40 
3.50 
3.65 
3.75 
3.85 

Red Zone 10 or more 4.00 
 Source: Basel (1996) 

 

Number of Exceptions: Likelihood Ratio Tests 

 

Another method for assessing VaR models for their performance is based on their adherence to the desired 

risk probability. Christoffersen (1998) introduced a system of successive chi-square testing procedure for 

assessment of VaR methods based on their number of exceptions within the forecast evaluation period. 

Three tests are conducted on the frequency of exceptions, done successively: (1) unconditional coverage test, 

which tests whether the risk probability is fulfilled by the VaR model, (2) independence test, which test 

whether the probability of two successive exceptions is equal to the proportion of exceptions succeeded by 

non-exceptions, and (3) conditional convergence test, which tests whether the probabilities of successive and 

non-successive exceptions are equal to the coverage probability. When an initial tests leads to the acceptance 

of the null hypothesis, it is a favorable result for the VaR model and a succeeding test is conducted. If an 

initial test leads to rejection, then the succeeding test is not done and therefore the VaR procedure does not 

have a favorable property based on the test. The sequence of tests is listed in the table below. 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Likelihood Testing Procedures for VaR Assessment 

Name of Test Hypotheses Test Statistic Implication of 
Acceptance Rejection 

Unconditional 
Coverage 

0 :H pπ =  

(exception 
proportion 
equals risk 
probability) 
 

:AH pπ >  

(VaR model does 
not attain proper 
risk probability) 

( )

1 1

2

1

ˆ ˆ1
2log ~

1

T T T

uc
LR

p p

π π
χ

−    −
=     

−     

 

T =number of data points in the forecast period 

1T  =number of VaR exceptions in the forecast 

period 

1ˆ T
T

π = = estimated proportion of VaR exceptions 

 

VaR method 
is appropriate 
in coverage of 
risk 
probability. 
Do next test. 

VaR model 
is not 
appropriate 
in the given 
level of risk 
probability. 
Adjust VaR 
model. 

Independence 
0 0 1:H π π=  

(Proportion of 
un-clustered VaR 
exceptions is 
equal to the 
proportion of 
clustered 
exceptions) 
 

0 1:
A

H π π<  

(proportion of 
clustered VaR 
exceptions is 
higher than un-
clustered 
exceptions) 

( ) ( )

( )
( )

00 1001 11

00 10
01 11
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00T =number of two consecutive days with no 

exception 

01T =number of periods with no exceptions followed 

by an exception 

10T =number of periods with exceptions followed by 

no exceptions 

11T = number of two consecutive days with exceptions 

01 11
0 1

01 00 11 10

01 11

01 00 11 10

ˆ ˆ; ;

ˆ
pool

T T

T T T T

T T

T T T T

π π

π

= =
+ +

+
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+ + +

 

Occurrences 
of exceptions 
are 
independent 
of each other. 
Exceptions 
clustering is 
rare or none. 
Do next test.  

VaR model 
produces 
exception 
clustering. 
VaR model 
is not 
appropriate 
in 
mitigating 
risks in 
times of 
volatility 
clustering. 
Adjust VaR 
model. 

Conditional 
Coverage 

0 0 1:H pπ π= =

(the proportions 
exceptions are 
equal to the risk 
probability) 
 

0 1:AH pπ π= >

(The proportions 
of exceptions are 
larger than the 
risk probability) 

 

( )
2

2
~cc uc indLR LR LR χ= +  

Exception 
proportions 
are within 
prescribed 
risk 
probability 
levels. VaR 
model is 
appropriate. 

Proportions 
are higher 
than 
desired risk 
probability. 
Adjust VaR 
model. 

Source: Christoffersen (1998) 

 

Magnitudes of Values 

 

As risk capital is based on the value of VaR, the magnitude of the VaR methods are analyzed and compared. 

Three features should be possessed by an appropriate method: (1) conservatism, which indicates that it 

generally give a relatively higher VaR compared to other methods, (2) accuracy, in which the method is able 

to identify the level of loss with minimum error in the magnitude, and (3) efficiency, in which the method is 

able to compute the adequate level of risk capital such that risk is fully accounted yet not too high that 



opportunity loss for other financial activity are constrained (Engel and Gizycki, 1999). A statistical measure is 

selected for each quality as a measure of their compliance to each desired feature. The table below shows the 

statistics and their intended analysis. Long position VaR values, where negative means loss, are assumed as 

used in the following formulas. 

 

Table 3. Statistical Measures for VaR Comparisons 

Desired 
Quality 

Statistical Measure Formula Analysis of Statistic 

Conservatism Mean Relative Bias 
[MRB] 
(Engel and Gizycki, 
1999) 

1 1

1
;

T N
tit

ti it
tt i

VaR VaR
MRB VaR VaR

T VaR= =

−
= =∑ ∑  

 

itVaR = the VaR on time t based on method i 

T = return series data length of evaluation 
period  

N = number of VaR methods being compared. 

The higher the MRB of a 
VaR method, the more 
conservative it is relative to 
other models. 

Accuracy Average Quadratic 
Loss Function 
[AQLF] 
(Engel and Gizycki, 
1999) 

( )
1

1
,

T

t t

t

AQLF L VaR r
T =

= ∑  

( ) ( )
2

1
,

0

t t t t

t t

VaR r if VaR r
L VaR r

otherwise

 + − >
= 


 

The lower or the closer to 
zero the AQLF is, the 
more accurate the VaR 
method in forecasting and 
accounting for possible 
loss. 

Efficiency Average Market Risk 
Capital [AMRC] 
(Basel, 1996) 1

1 T

t

t

AMRC MRC
T =

= ∑  

60

1

1

max ,
60

t

t t t

k t

k
MRC VaR VaR

−

−
= −

 
= − − 

 
∑  

k = the penalty multiplier based on the number 
VaR exceptions (see Table 1) 

If the lower the AMRC, 
the lower the risk capital to 
be allocated on the average. 
The AMRC is jointly 
analyzed with results of the 
other statistics  

 

From the established measures and procedures of assessment and evaluation, the paper wishes to evaluate the 

time-varying methods of estimating VaR with the JSU distribution and compare it with other VaR 

methodologies in literature. 

 

Research Methodology  

 

Data Used  

 

In the evaluation of VaR methodologies, the following financial time series data are used: (1) the Philippine 

Peso-US Dollar Exchange Rate (RUSD) from 4 January 1999 to 10 November 2011, (2) the Philippine Peso-

Euro Exchange Rate (REUR) from 4 January 1999 to 18 November 2011, (3) the Philippine Peso-

Singaporean Dollar (RSGD) from 3 January 2006 to 21 Novermber 2011, and (4) the Philippine Stock 

Exchange Index (PSEI) from 3 January 2000 to 18 November 2011.  



 

In division of the datasets, the most recent 250 data points per series would be the forecast evaluation period 

and the rest of the peiords would be under the model estimation period.  

 

Models Used 

 

The data series would be evaluated with long position 99% one-step-ahead VaR values. The VaR based on 

the time-varying JSU methods will be evaluated with the following econometric models: (1) GARCH(1,1)-

normal distribution-QMLE, (2) GARCH(1,1)-t distribution,(3) TARCH(1,1,1)-normal distribution-QMLE, 

and (4) TARCH (1,1,1)-t-distribution. The GARCH(1,1) is based on the model by Bollerslev (1986) with the 

form for the variance given below: 

 2

0 1 1 1 1t t t t
h h z hα α β− − −= + +  (32) 

 The argument 1t
z −  is the standardized error of one period before, and the parameters ( )0 1, ,α α β ′  are 

estimated. The model assumes a symmetric effect of changes in the immediate past to the variance of current 

changes, i.e., it assumes no leverage effect. To account for asymmetric effect of past changes to current 

volatility, the TARCH(1,1,1) (Zakoian, 1994) adds a term on the volatility and models the conditional 

standard deviation. Thus in modeling the variance, the equation is modified as shown below: 

 
( ) ( )( )

2

0 1 1 1 1 1 1 1 10,t t t t t t t th h z I h z h z hα α ψ β− − − − − − −∞
= + + +  (33) 

 
( ) ( )0,

0 0

1 0

if u
I u

if u
∞

≤
= 

>
 (34) 

For the joint estimation of parameters on the JSU distribution, the following specification of the variance, 

third, and fourth parameters are shown below: 

 { }0 1 1 1 2 1 1expt t t t th h z h zθ θ θ− − − −= + +  (35) 

 
0 1 1 1 2 1 1t t t t th z h zγ ϕ ϕ ϕ− − − −= + +  (36) 

 
0 1 1 1 2 1 1t t t t th z h zδ ζ ζ ζ− − − −= + +  (37) 

For the two-step procedure, the variance is estimated with the GARCH(1,1) model and the residuals were 

modeled with the JSU using equations (36) and (37) with 1 1
t

h − =  since the residuals have unit variance. The 

mean specification for all models was set to zero, i.e., 0
t

µ =  and 
t t t

r h z= .  

 

Descriptive Analysis of the Data 



 

Graphical Analysis on Levels and Returns 

 

Figure 1 displays the graphs of levels and returns of the RUSD. With the data, a period of increase or 

depreciation of the Philippine peso occurred from before 1999 to 2001due to the effects of the Asian 

financial crisis and national political crisis of the Philippines. Stability in the level of the exchange rate was 

achieved from 2002 to 2004 and the appreciation of the peso started in 2005. In the offset  of the 2008, 

agricultural price inflation, called ‘agflation,’ has occurred and depreciation began. The increase in the rate was 

augmented with the offset of the 2008 financial crisis but by 2009, the appreciation of the peso returned, 

continuing until the last point of the data. In the return series, the occurrence of very large changes were in 

end-of-2000 to start-of-2001, due to political uncertainty during the impeachment and ouster of the president 

of the country. After 2001 stability in the changes were observed, yet after 2008 the changes  were gaining 

wider ranges compared to period in the years 2002-2007.   

 

  Figure 1. Time Plots of US Dollar Exchange Rate   

 US Dollar Exchange Rate Levels  US Dollar Exchange Rate Returns  

 

 

The graphs of the REUR are shown in figure 2. With the Euro, a surge of depreciation of the peso occurred 

from 2001 to the highest point of valuation of the euro in terms of the peso at 2005. From then the changes 

were relatively stable except in 2008-2010 where the euro had a wave of upturns and downturns of value in 

terms of the peso. In terms of volatility large changes have occurred at end-of-2000 to start-of-2001 with 

political unrest. A period of stability in changes was observed in 2002-2007 yet beginning 2008 to 2009 wider 

volatility occurred due to the global financial crisis. 

 

  Figure 2. Time Plots of Euro Exchange Rate   



 Euro Exchange Rate Levels  Euro Exchange Rate Returns  

 

 

The RSGD levels and returns are graphed and displayed in Figure 3. The data is a short series yet it maintains 

a level with the ranges of Php 28 to Php 36 per dollar. Appreciation occurred pre-2008 followed by sharp 

depreciation in the first half of 2008. From then on a steady depreciation has occurred with the exchange rate. 

In terms of volatility, wider and more volatile changes occurred in 2008 and 2009. A stable 2010 was 

observed except for two abrupt changes in the early half of the year. 

 

 Figure 3. Time Plots of Singaporean Dollar Exchange Rate   

 Singaporean Dollar Exchange Rate Levels  Singaporean Dollar Exchange Rate Returns  

 

 

Figure 4 features the time plots of the PSEI. The index had experienced a surge in value from its bottom-of-

the-bowl state in 2002 and the increase lasted from 2003 to 2007. In late 2007 the agflation crisis in the 

Philippines has started with rising food prices, followed by the global economic crisis of 2008-2009 which 

devalued the index. At the second quarter of 2009 the index had a continuing period of growth, escaping 

from the crisis. In the spectrum of volatility, two sharp increases were observed in end-of-2000 and start-of-



2001, and from then a stable variance has been observed. Around 2008-2009 was the widening of the range 

occurred, with sharp downward changes in the end of 2008. From then two abrupt changes in 2010 were 

observed and stability was observed. 

 

 Figure 4. Time Plots of Philippine Stock Exchange Index   

 Philippine Stock Exchange Index Levels  Philippine Stock Exchange Index Returns  

 

 

Summary Statistics of Returns 

 

Table 4 below shows the different statistics of financial time series returns. The four series have high kurtosis 

values for returns, evident of the non-normality of the time series returns. The three currencies had negative 

skewness, except for the PSEI which is skewed to the right. Reason behind the positive skewness of the PSEI 

is its long-term bearish performance in the observation period. The PSEI is also the most volatile of the four 

series with a wider range between the minimum and the maximum and high standard deviation. The most 

stable would be the RSGD yet its stability is within its short observation period. 

 

Table 4. Summary Statistics of the Financial Returns 

 
RUSD REUR RSGD PSEI 

Obs 3192 3300 1477 2990 

Mean 2.9499×10-5 7.8269×10-5 3.2838×10-5 2.3321×10-4 

Std. Dev. 4.2902×10-3 7.6022×10-3 3.6339×10-3 1.4409×10-2 

Skewness -4.4820 -2.0704 -0.3035 0.4621 

Kurtosis (unadjusted) 115.2209 43.3032 5.5069 20.6623 

Minimum -.10150 -.14193 -.01832 -.13089 

Maximum .04019 .04414 .01637 .16178 

 

 

Results and Discussion 



 

On the Number of Exceptions 

 

Table 5 shows the results of statistics based on the number of exceptions and likelihood ratio tests for the 

different VaR methods in different return series. Generally, the econometric methods were better in terms of 

the number exceptions than the JSU procedures. The econometric methods were generally placed in the green 

zone with 4 or less exception, except in the case when GARCH QMLE methods were used on RSGD. The 

JSU methods were often on the yellow zone, with some exceptions when joint JSU was used on REUR and 

two-step JSU was used on the RUSD. This would mean that generally the JSU methods can be able to make 

the prescribed 1% risk probability, but with low confidence. 

 

Table 5. Table of Evaluation Measures Based on Exceptions 

 
Model Joint JSU Two-Step JSU 

 
Time Series RUSD REUR RSGD PSEI RUSD REUR RSGD PSEI 

 
Number of Exceptions 7 3 9 8 3 6 8 8 

Likelihood Ratio Tests p-values 
        

 
Uncondtional Coverage 0.0190 0.7580 0.0014 0.0054 0.7580 0.0594 0.0054 0.0054 

 
Independence - - - 0.2389 - - - 0.2389 

 
Conditional Coverage - - - 0.0105 - - - 0.0105 

 
Model GARCH QMLE GARCH t 

 
Time Series RUSD REUR RSGD PSEI RUSD REUR RSGD PSEI 

 
Number of Exceptions 0 4 5 2 0 2 4 2 

Likelihood Ratio Tests p-values 
        

 
Uncondtional Coverage - 0.3805 0.1619 0.7419 - 0.7419 0.3805 0.7419 

 
Independence - - - - - - - - 

 
Conditional Coverage - - - - - - - - 

 
Model TARCH QMLE TARCH t 

 
Time Series RUSD REUR RSGD PSEI RUSD REUR RSGD PSEI 

 
Number of Exceptions 0 4 4 2 0 2 4 2 

Likelihood Ratio Tests p-values 
        

 
Uncondtional Coverage - 0.3805 0.3805 0.7419 - 0.7419 0.3805 0.7419 

 
Independence - - - - - - - - 

 
Conditional Coverage - - - - - - - - 

 

With the likelihood ratio tests, the tests for independence and conditional coverage were not conducted in 

some cases since for the econometric methods in all series and in the JSU methods in RUSD, REUR, and 

RSGD, no VaR exception clustering was observed. For the JSU methods on the PSEI, though unconditional 

coverage would likely be rejected, independence and conditional coverage tests are continued and shown. 

 

The JSU methods on RSGD and PSEI were generally low performing with the formal test that these models 

on these series may not be able to cover the appropriate risk probability compared to econometric methods. 



But when confidence is relaxed in the case of the PSEI, the JSU methods were unlikely to have VaR exception 

clustering. The JSU were less performing than the econometric methods in being able to predict points in time 

when high-loss scenarios would occur. 

 

On the Magnitudes of Values 

 

Table 6 listed the results of magnitude-based statistics for comparison between econometric VaR methods 

and JSU VaR procedures.  

 

With MRB, the JSU methods were generally less conservative than the econometric methods in accounting for 

risk, having negative MRB values compared to econometric VaR methods. 

 

 The AQLF values were generally highest in JSU methods compared to econometric methods except in the 

case of using joint JSU in REUR. JSU methods were less accurate in predicting the magnitude of risk 

compared to econometric methods. 

 

Table 6. Table of Evaluation Measures Based on Magnitudes 

Model Joint JSU Two-Step JSU 
Time Series RUSD REUR RSGD PSEI RUSD REUR RSGD PSEI 
MRB -0.1796 -0.0743 -0.0883 -0.2187 -0.1375 -0.1220 -0.1298 -0.2307 
AMRC 0.0233 0.0509 0.0274 0.0845 0.0198 0.0477 0.0251 0.0831 
AQLF 0.0492 0.0120 0.0572 0.0320 0.0332 0.0240 0.0532 0.0320 

Model GARCH QMLE GARCH t 
Time Series RUSD REUR RSGD PSEI RUSD REUR RSGD PSEI 
MRB 0.0124 0.0118 0.0072 0.0529 0.0955 0.0830 0.0925 0.1395 
AMRC 0.0288 0.0440 0.0265 0.0907 0.0251 0.0472 0.0279 0.0986 
AQLF 0.0000 0.0160 0.0412 0.0080 0.0000 0.0080 0.0372 0.0080 

Model TARCH QMLE TARCH t 
Time Series RUSD REUR RSGD PSEI RUSD REUR RSGD PSEI 
MRB 0.0567 0.0157 0.0172 0.0862 0.1525 0.0858 0.1012 0.1707 
AMRC 0.0299 0.0440 0.0260 0.0933 0.0262 0.0472 0.0281 0.1006 
AQLF 0.0000 0.0160 0.0372 0.0080 0.0000 0.0080 0.0372 0.0080 

 

In assigning risk capital, JSU methods assigned lower capital in RUSD, where JSU fared well in predicting 

when high loss periods would occur. With REUR, where JSU methods were better in predicting periods of 

high risk, they placed higher risk capital, in due to their relatively poor performance in predicting the 

magnitude of risk. Lower risk capital were assigned on the average on the PSEI by JSU methods compared to 

econometric methods yet JSU methods were poor in predicting when high risk periods would occur. The risk 

capital assigned on RSGD by the JSU and econometric methods are in range of each other, since the RSGD is 

a relatively stable series compared to other returns. 



  

Conclusions and Recommendations 

 

The paper introduced and derived the VaR methodology in modeling returns using a time-varying conditional 

JSU density. The performance of the model has been assessed and was compared with the econometric 

methods of estimating the VaR. The performance of the JSU VaR in predicting periods of high risk was 

generally in the yellow zone of methods, since it had higher number of exceptions. It was a less conservative 

method of computing for VaR, with risks of underestimating the possible losses incurred.  

 

The research paper contributes to the field of investigation into other nonnormal distributions in estimating 

the VaR of financial assets.  It is possible to study the performance of the JSU VaR in other returns data, 

especially in the assets of interest rates and commodities, especially when nonnormality is observed. The trials 

of other possible specification of models such as in the parameters or a new distribution different to the 

conducted study have a potential to produce better results, and such can be pursued in the future. 
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Appendices 

 

Model Results for RUSD 

 

 Joint JSU distribution GARCH(1,1)-Normal-QMLE (also for Two-Step JSU) 

 

 

 Result of Model Parameters in Two-Step JSU  GARCH (1,1)-t 

 

 

 TARCH(1,1,1)-QMLE  TARCH(1,1,1)-t 

 

 

 

 

 

 

 

 



Model Results for REUR 

 

 Joint JSU distribution GARCH(1,1)-Normal-QMLE (also for Two-Step JSU) 

  

 

 Result of Model Parameters in Two-Step JSU  GARCH (1,1)-t 

  

 

 TARCH(1,1,1)-QMLE  TARCH(1,1,1)-t 

  

 

 

 

 

 

 

 

 

 



Model Results for RSGD 

 

 Joint JSU distribution GARCH(1,1)-Normal-QMLE (also for Two-Step JSU) 

  

 

 Result of Model Parameters in Two-Step JSU  GARCH (1,1)-t 

  

 

 TARCH(1,1,1)-QMLE  TARCH(1,1,1)-t 

  

 

 

 

 

 

 

 

 

 



Model Results for PSEI 

 

 Joint JSU distribution GARCH(1,1)-Normal-QMLE (also for Two-Step JSU) 

  

 

 Result of Model Parameters in Two-Step JSU  GARCH (1,1)-t 

 

 

 TARCH(1,1,1)-QMLE  TARCH(1,1,1)-t 

  

 


