
MPRA
Munich Personal RePEc Archive

Perturbation theory in a pure exchange
non-equilibrium economy

Vazquez, Samuel E. and Severini, Simone

Perimeter Institute for Theoretical Physics, University of

Waterloo

08. April 2009

Online at http://mpra.ub.uni-muenchen.de/14569/

MPRA Paper No. 14569, posted 09. April 2009 / 21:13

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6832462?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/14569/


ar
X

iv
:0

90
4.

14
02

v1
  [

q-
fi

n.
T

R
] 

 8
 A

pr
 2

00
9

Perturbation theory in a pure exchange non-equilibrium economy

Samuel E. Vázquez
Perimeter Institute for Theoretical Physics, Waterloo N2L 2Y5, ON Canada

Simone Severini
Institute for Quantum Computing and Department of Combinatorics &

Optimization University of Waterloo, Waterloo N2L 3G1, ON Canada

We develop a formalism to study linearized perturbations around the equilibria of a pure exchange
economy. With the use of mean field theory techniques, we derive equations for the flow of products
in an economy driven by heterogeneous preferences and probabilistic interaction between agents. We
are able to show that if the economic agents have static preferences, which are also homogeneous
in any of the steady states, the final wealth distribution is independent of the dynamics of the
non-equilibrium theory. In particular, it is completely determined in terms of the initial conditions,
and it is independent of the probability, and the network of interaction between agents. We show
that the main effect of the network is to determine the relaxation time via the usual eigenvalue gap
as in random walks on graphs.

I. INTRODUCTION

There is a growing consensus for the need of a non-
equilibrium theory of economics [1, 2, 3]. From a purely
theoretical perspective, one would like to understand how
the economy chooses one of the multitude of possible
equilibria. An important and perhaps more practical
question, is to determine which of the equilibrium states
are stable. In other words, given a small perturbation
away from such a state, does the system relaxes back to
the same equilibrium, or does it settles to a completely
different state? This is similar to the so-called landscape
problem found in some areas of physics such as string
theory, frustrated magnets and protein folding.

Constructing a full non-linear economic theory out of
equilibrium presents many problems. Is price a mean-
ingful concept out of equilibrium? How do we model the
interactions of many heterogeneous agents? Etc. Usu-
ally these questions are tackled by computer simulations
using agent-based models [4].

In this paper we consider the simpler case of a pure ex-
change economy with no production. We develop an ana-
lytic formalism to study linearized perturbations around
any equilibrium state. Our approach is probabilistic, and
we make heavy use of mean field theory techniques. Be-
fore setting up the perturbation theory, we study the
landscape of equilibria for the pure exchange economy.
Since the dynamics of the economy should not depend on
the units used to measure the different products, there
is a kind of “gauge” symmetry in the problem [5]. We
show that this symmetry induces an equivalence relation
in the landscape of equilibria. In fact, in the limit of
many agents, we show that the set of equivalence classes
of economic equilibria is in one-to-one correspondence
with the space of wealth distributions.

One of the main questions that we ask is: what is
the importance of the trading network topology in de-
termining the final state of the economy? For a related
study, see [6] and references therein. We find that, under

some more restrictive assumptions on the nature of the
possible equilibrium states, the final state is completely
determined in terms of the initial conditions of the lin-
earized perturbation. In particular, it is independent of
the details of the non-equilibrium dynamics and trading
network structure. We find that the main role of the net-
work topology is to determine the relaxation time. In our
approach, prices are emergent and describe the relative
flow of products between different agents.

The structure of the paper is as follows. In Section II,
we study the landscape of equilibria of the pure exchange
economy. In Section III, we describe the probabilistic
rules that drive the dynamics of the system, and derive
mean field theory evolution equations for the linearized
perturbations. In Section IV, we state and prove our
main result regarding the universality of the final wealth
distribution. Section V contains two examples with spe-
cific indices of satisfaction. In the first example, we deal
with homogeneous static preferences. We show the cor-
responding relaxation to equilibrium, and the relation
between the relaxation time and the network topology.
In the second example, we study heterogeneous dynamic
preferences. More precisely, we take agents that update
their preferences as they trade. Again, we show how the
network topology affects the relaxation time to equilib-
rium. Conclusions are drawn in Section VI.

II. THE LANDSCAPE OF PURE EXCHANGE

EQUILIBRIA

Our system includes a set of agents A = {α :
α = 1, 2, . . . , m} and a set of products P = {i : i =
1, 2, . . . , p}. The amount of product i owned by agent
α is denoted by ni

α. We work with continuous variables,
but the results can also be recasted in a discrete setting.
We shall define an index of satisfaction Ωα specifying
the preferences for each agent α. We assume the follow-
ing basic properties: (i) ∂iΩα > 0, (ii) ∂2

i Ωα < 0, and
(iii) limni

α
→∞ ∂iΩα = ∞. Here ∂i is a shorthand nota-
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tion for the derivative ∂/∂ni
α. Since we are considering

a pure exchange economy, it follows that d
dt

∑
α ni

α = 0,
where t denotes time. When agents have time chang-
ing preferences, we have ∂Ωα/∂t 6= 0. Since the amount
of each product can be measured in arbitrary units, the
dynamics of the economy should be invariant under a
transformation

ni
α 7→ φini

α, where φi ∈ R
+. (1)

This defines an equivalence class of all ni
α and ñi

α (even
at different times) such that ni

α = φiñi
α. Additionally,

we assume that ∂iΩα → (φi)−1∂iΩα. Let us denote by
M i

j the exchange rate of the products i and j. Thus,

M i
j 7→ φi(φj)−1M i

j . Equilibrium (or steady state) in a

pure exchange economy is a set of inventories {n̄i
α : α ∈

A, i ∈ P} and exchange rates {M̄ i
j : i, j ∈ P} that satisfy

the maximization conditions

∂

∂∆ni
Ωα(n̄i

α + ∆ni, n̄j
α − M̄ j

i ∆ni, . . .)

∣∣∣∣
∆ni=0

= 0,

leading to

(∂iΩα − M̄ j
i ∂jΩα)

∣∣∣
n̄α

= 0 (2)

The solutions of Eq. (2) form equivalence classes under
the transformation φi. Eq. (2) implies a consistency
condition,

M̄ i
j = M̄ i

kM̄k
j . (3)

giving then rise to transitive matrices (see [9]). The most
general solution can be written as

n̄i
α

n̄j
α

= M̄ i
j [Sα(M̄)]ij , (4)

where [Sα(M̄)]ij are local and dimensionless functions of
the exchange rates, coming directly from the preferences
of the individual agents, and independent of the inven-
tories. The values [Sα(M̄)]ij must be then left invariant
under the transformation in Eq. (1). Therefore, the so-
lutions described by Eq. (4) are in the same equivalence
class of the solutions of n̄i

α = [Sα(M̄ = 1)]ij n̄
j
α. It follows

that the space of equilibria at any point in time can be
mapped to a set {n̄1

α : α ∈ A} for a specific product, say
1. However, there is still a residual symmetry n̄i

α 7→ φn̄i
α.

We can use this symmetry to set n1
1 = 1. Therefore the

landscapes of the equivalence classes of equilibria at any

point in time is the manifold (R+)
n−1

. When n goes to
infinity there is a one-to-one correspondance between el-
ements of this space and the distributions of wealth. On
the other hand the total non-equilibrium kinematic space
is (R+)(n−1)×p.

III. NON-EQUILIBRIUM DYNAMICS

Before proceeding, we need to make clear what we
mean by “non-equilibrium”. As we mentioned in the

previous section, one can have time-dependent equilib-
ria. For example, suppose that agents have time depen-
dent preferences. We can then find a one-parameter fam-
ily of smooth functions n̄i

α(t) and M̄ i
j(t), constrained by

d
dt

∑
α ni

α = 0, so that the maximization conditions in
Eq. (2) are obeyed for any t. If we regard t as a time co-
ordinate, such map would define a time-dependent pure-
exchange economy in equilibrium. Note that agents are
still making exchanges, but these are infinitesimal, i.e.,
dni

α ≈ dt.
If the economy is out of equilibrium, the maximization

conditions (2) are not obeyed. This means that there is
an excess demand or supply of products. Agents must
then barter between each other in order to find an equi-
librium. Moreover, the amount that they will trade will
be finite. In what follows we derive a set of equations to
describe the dynamics of the economy out of equilibrium.
This is done under a minimal set of assumptions which
we shall discuss next.

Let n̄i
α(t) be a one-parameter family of equilibrium

states as discussed above. We can always decompose
the agents’ inventories as ni

α = n̄i
α + δni

α, where δni
α

is a finite deviation from the particular equilibrium tra-
jectory n̄i

α(t). Let ∆nij
αβ , be the finite amount of prod-

uct i that agent α gets (or gives) in a trade with prod-
uct j and agent β out of equilibrium. We assume that
∆nij

αβ ≈ O(δni
α), i.e., the (finite) corrections to the in-

ventory are of the order of the deviation from equilib-
rium. After a trade with agent β, agent α updates its
inventory as δni

α 7→ δni
α+ ∆nij

αβ , δnj
α 7→ δnj

α + ∆nji
αβ ,

δnk
α 7→ δnk

α, for k 6= i, j. By product conservation, we

must have ∆nij
αβ = −∆nij

βα and trivially ∆nii
αβ = 0. Fi-

nally, under the transformation given by Eq. (1), we

must have ∆nij
αβ 7→ φi∆nij

αβ . By definition, ∆nij
αβ is

the amount of product i, j that agents α and β must
exchange in order to be in equilibrium with each other.
The precise form of ∆nij

αβ can be calculated near equi-
librium with an expansion in terms of the fluctuations
δn. Such an expansion is called perturbation theory. For
now, we will work with a general ∆nij

αβ which obeys the
basic properties given above.

In order to properly define a non-equilibrium economic
theory, one must deal with the question of how agents in-
teracts. We will do this in a probabilistic way. In this
setting, time is continuous and when we take an infinites-
imal time interval [t, t+dt], we assume that dt is so small
that any agent can make at most one barter process. Let
σij

αβ(t) be the probability per unit time that agent α will
encounter agent β and make a barter round involving
product i and j. The following facts are evident: (i)

σij
αβ ≥ 0 ; (ii) σij

αβ = σij
βα; (iii) σij

αβ = σji
αβ ; (iv) σii

αβ = 0;

(v) σij
αα = 0.

If σij
αβ > 0 for every α, β ∈ A then the agents can be

seen as located on the nodes of a complete network on
m nodes, i.e., a network in which every two nodes are
connected by a link. On the other hand, we may define
σij

αβ based directly on the structure of a chosen network.
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The network establishes a constraing in the interaction
between agents. Namely, given a network on m nodes,
we can associate the agents to the nodes and prescribe
that σij

αβ > 0 only if there is a link between α and β.

Given an inventory at time t, ni
α(t), the expected value

at time t + dt of the non-equilibrium fluctuations, pro-
vided the information at time t, is

Et[δn
i
α(t + dt)] =


1 − dt

∑

j,β

σij
αβ(t)


 δni

α(t) (5)

+ dt
∑

j,β

σij
αβ(t)[δni

α(t) + ∆nij
αβ(t)].

The first term comes from the probability of no interac-
tions; the second term is the contribution from the trad-
ing interactions. Taking an expectation value of Eq. (5)
at time t on both sides, we obtain an expression for the
unconditional expectations, which we denote by 〈·〉:

d

dt

〈
δni

α(t)
〉

=
∑

j,β

σij
αβ〈∆nij

αβ(t)〉. (6)

We can always write the fluctuations in terms of a scale
invariant variable xi

α, i.e., δni
α ≡ n̄i

αxi
α. The evolution

equations for the scale invariant perturbations take the
form

(
d

dt
+

1

n̄i
α

dn̄i
α

dt

)〈
xi

α(t)
〉

=
1

n̄i
α

∑

j,β

σij
αβ〈∆nij

αβ(t)〉. (7)

In order to study perturbations in more detail, we need
an explicit expression for the solution of the bartering
problem ∆nij

αβ , and for the probabilities σij
αβ . It turns out

that one can find an explicit expression for ∆nij
αβ , when

agents are assumed to be in a near-equilibrium state.
This was given in [10]. We quote the result here:

∆nij
αβ ≈ L (∂iδΩ∂jΩ − ∂iΩ∂jδΩ) (8)

and

∆nji
αβ = − (∂iΩ/∂jΩ) ∆nij

αβ; (9)

L = − (∂jΩ) [∂2
i Ω(∂2

j Ω)2+∂2
j Ω(∂2

i Ω)2−2∂iΩ∂jΩ∂i∂jΩ]−1,

Ω := Ωα + Ωβ , and δΩ := Ωα − Ωβ. At equilibrium, we
know that M̄ i

j = ∂iΩα/∂jΩα. Therefore,

∆nij
αβ = L (∂iδΩ∂jΩ − ∂iΩ∂jδΩ)

= L(∂iδΩ∂jΩ(M̄ j
i M̄ i

j − 1))

= 0,

as expected.

IV. A UNIVERSALITY THEOREM

In Section II, we showed that the only relevant scale
invariant quantity in equilibrium is the wealth distribu-
tion. Here we will show that under certain more restric-
tive assumptions about the index of satisfaction, the final
wealth distribution can be found in terms of the initial
conditions of the perturbations, and it is independent on
the details of the non-equilibrium dynamics. We show
that this only happens if the following conditions are met:
in any of the possible equilibria, the index of satisfaction
is (i) time-independent, i.e., ∂tΩα|n̄ = 0; (ii) the same
for all agents. These are necessary conditions for isolating
the effects of the network that determines interactions.
However, we leave open the possibility that, while out
of equilibrium, the index of satisfaction might be time
dependent and agents might have different preferences.
In fact, in Section V we will give a particular example of
this case.

The key to our result, can be traced to the fact that
under the conditions given above, there are extra con-
served quantities arising from Eq. (6). Under (i) and
(ii), the solution to the equilibrium equation must have
the form,

n̄i
α

n̄j
α

= M̄ i
j

νi(M̄)

νj(M̄)
(10)

for any equilibrium state. Here we have written (Sα)i
j :=

Si
j ≡ νi/νj , since (ii). The fact that we can decom-

pose Si
j as above, follows from the consistency relations

that Si
j must obey (see Eqs. (3) and 4). The func-

tions νi are assumed to be time-independent from (i),
therefore the possible equilibria will also be time inde-
pendent. We have already seen that product number is
conserved in the barter process. Thus, from Eq. (6) we
have d

dt

∑
α n̄i

αxi
α = 0. However, there are more subtle

conservation laws not evident from Eq. (6), but arising in
the linearized approximation. Under this approximation
we can write

∆nji
αβ ≈ −(M̄ j

i + O(δ))∆nij
αβ . (11)

That is, agents are trading at approximately the same
exchange rate as in equilibrium. Using Eqs. (10) in (11)
one can easily show that

νi(M̄)∆nij
αβ

n̄i
α

≈ −
νj(M̄)∆nji

αβ

n̄j
α

. (12)

By Eq. (12) in Eq. (6) it follows that

d

dt

∑

i

νixi
α = 0 . (13)

The next step is to find the asymptotic prices at t →
∞. Of course, we need to assume that the system reaches
some other equilibrium state. Hence,

M i
j(∞)

νi(M(∞))

νj(M(∞))
=

ni
α(∞)

nj
α(∞)

=
n̄i

α(1 + xi
α(∞))

n̄j
α(1 + xj

α(∞))
. (14)
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Note that in writing Eq. (14) we have assumed that the
form of νi as a function of prices is the same at t → ∞
that at t = 0. This follows from (i). Summing over A,
under the linearized approximation, we get

M i
j(∞)

νi(M(∞))

νj(M(∞))
≈ M̄ i

j

νi(M̄)

νj(M̄)

(
1 +

J i

n̄i
−

Jj

n̄j

)
, (15)

where n̄i = 1
m

∑
α n̄i

α and J i = 1
m

∑
α n̄i

αxi
α. Note that

J i are conserved quantities, and hence are given in terms
of the initial conditions of the perturbations. One can
then use Eq. (15) to solve for the final prices in terms of
the equilibrium state we are expanding around, and the
initial conditions for the perturbations. We are now in
the position to deal with the final wealth distribution. In
units of product i, we have

W i
α(∞) =

∑

k

M i
k(∞)nk

α(∞)

≈
∑

k

M i
k(∞)n̄k

α +
∑

k

M̄ i
kn̄k

αxk
α(∞)

=
∑

k

M i
k(∞)n̄k

α +
pn̄i

α

νi(M̄)
Xα,

where Xα := 1
p

∑p

i=1 νixi
α. We note that this is also a

conserved quantity, and so it is given by its initial value.
Since M i

k(∞) can be determined from Eq. (15) in terms
of the initial perturbations, we have the followin result:

Consider a pure exchange economy, with the space
for all equivalence classes of equilibria determined by
the scale transformation in Eq. (1). Let us assume
that the index of satisfaction at equilibrium is (i) time-
independent and (ii) the same for all agents. Moreover,
let us assume that given an initial non-equilibrium lin-
earized fluctuation, the system will go back to some equi-
librium state at time t → ∞. Thus, the wealth distribu-
tion is completely determined in terms of the initial con-
ditions of the perturbation and it is independent on the
non-equilibrium dynamics. In particular, it is indepen-
dent of the probabilities and the network of interaction
between agents.

As a special case, consider an homogeneous equilibrium
state n̄i

α ≡ n̄i. In this case, all agents have the same
wealth, W̄ i, say. For simplicity, assume that νi = 1.
Then, given an initial perturbation δni

α ≡ n̄ixi
α, the final

wealth of the economy is given by,

W i
α(∞) ≈ W̄ i

(
1 +

J i

n̄i
−

Jj

n̄j
+ Xα

)
(16)

= W̄ i

(
1 +

1

m

∑

α

[xi
α(0) − xj

α(0)] +
1

p

∑

i

xi
α(0)

)
.

In particular, we see that since Xα is conserved, the final
equilibrium state of the economy will generically be non-
homogeneous. However, note that if Xα = Xβ for every
α and β, the final wealth distribution will again be ho-
mogeneous, and thus related by a a scale transformation
to W̄ i.

V. EXAMPLES

A. Homogeneous static preferences

We discuss here a particular example to clarify the
role of the probabilities σij

αβ , the network of interaction,
and the stability of the non-equilibrium perturbations.
Agents are associated to the nodes of a fixed network.
Each agent can interact with exactly d other fixed agents,
i.e., the network is modeled by a d-regular graph. Let
A be the adjacency matrix of the network: Aαβ = 1 if

σij
αβ > 0 for at least two products i and j; Aαβ = 0, other-

wise. When the probability of trading two specific prod-
ucts is uniform, we have σij

αβ = Aαβ/d(p − 1). We study
in the following case of homogeneous time-independent
index of satisfaction:

Ωα =
∑

i

log ni
α. (17)

This index trivially satisfies all the previous assumptions.
Therefore, the final wealth distribution will be indepen-
dent on the dynamics. In this simple example, one can
obtain an analytical solution to the bartering problem:
∆ni

αβ = (nj
αni

β − ni
αnj

β)/(2(nj
α + nj

β)). Next, we note

that the equilibrium equations (2) for this system reduce
to M̄ i

j = n̄i
α/n̄j

α. It is then easy to see from Eqs. (8) and

(9) that ∆nij
αβ/n̄i

α ≈ 1
4 (xj

α−xi
α−xj

β +xi
β). Therefore the

equation for the scale invariant perturbations becomes

d

dt
〈xi

α〉 =
1

4d(p − 1)

∑

β,j

Aαβ(〈xj
α〉 − 〈xi

α〉 − 〈xj
β〉 + 〈xi

β〉).

(18)
These equations can be seen as the direct analog of the
wealth dynamic equations proposed in [7]. Therefore, our
perturbation theory can be seen as providing a microe-
conomic foundation to the results of [7]. However, we do
not include a stochastic source term, which would keep
the system out of equilibrium. The presence of such a
term can be directly linked to the fat-tailed wealth dis-
tribution obtained in [7].

We can readily see from Eq. (18) the conserved quan-
tities found in the last section: d

dt

∑
α xi

α = 0 and
d
dt

∑
i xi

α = 0. Hence, the final wealth distribution is
given by Eq. (16). We are interested in showing that
there are no instabilities, and so the economy indeed
equilibrates. The role of the network is to determine the
convergence rate towards equilibrium, in evident anal-
ogy with the notion of mixing time for random walks on
graphs (see [8]). Let us write Eq. (18) in vector notation

as, d
dt

~x = Γ · ~x, where ~x =
(
x1

1, . . . , x
1
N , x2

1, . . . x
2
N , . . .

)T
and

Γ =
1

4(p − 1)
(Jp − pIp) ⊗ (Im − T ),

being In the m × m identity matrix, Jp the p × p all-
one matrix, and T := Aαβ/d. The eigenvalues of Γ are



5

γi
α = 1

4(p−1) (µ
i − p)(1 − λα), where µi ∈ {0, p} and λα

are the eigenvalues of Jp and T respectively. It follows
that there are m steady states associated with γ1

α = 0.
These correspond to the conserved quantities

∑
i xi

α. The
remaining eigenvalues are γi

α = − p

4(p−1) (1−λα). Because

T is doubly stochastic, λα ∈ [−1, 1] and λ1 = 1. So, γi
α ≤

0 and there is no instability. The rate of convergence is
determined by the eigenvalue gap |λ1 − λ2| of the matrix
T . The network does not affect the wealth distribution
but it gives the rate of convergence towards equilibrium.
As expected, the larger the eigenvalue gap, the faster is
the convergence. Graphs with good expansion properties
are then associated with fast relaxation. Fig. 1 gives
an example for the complete graph and the cycle graph
on six vertices, using the same initial conditions. The
numerical simulation is consistent with the mean field
theory. The simulations are obtained taking Eq. (18) in
discrete time. Moreover, we replace the matrix Aαβ/d
by a random matrix which chooses one pair of agents to
interact in every time step. The pair is chosen from a
uniform random distribution.

0 10 20 30 40 50 60

-0.10

-0.05

0.00

0.05

0.10

t

x Α1

FIG. 1: The dashed and solid curves represent the predicted
fluctuations in terms of the scale invariant variable x

1

α
as a

funtion of time t for agents on the complete graph and the
cycle graph on 6 vertices, respectively. Since the eigenvalue
gap for the complete graph is larger than the one for the
cycle, the rate of converge is higher for the complete graph.
The spiked curves are obtained by a numerical simulation.
This is consistent with the mean field theory.

B. Heterogeneous dynamic preferences

It is worth considering an example with a slightly more
complicated index of satisfaction,

Ωα = log
∑

j

[(Mα)i
jn

j
α]ν , (19)

where 0 < ν < 1 is a fixed but arbitary constant.
The matrix Mα represents a particular preference of the
agent. It can be interpreted as an opinion about the

exchange rates. Different agents might have different
opinions. We assume that Mα obeys the usual consis-
tency conditions. Therefore, the choice of index i in Eq.
(19) is arbitrary. We will build a model where agents can
learn the “market” exchange rates when they barter with
other agents. This means, they will ultimately converge
to some equilibrium prices M̄ . Therefore, for any of such
equilibria, the preferences will be of the form:

Ω̄α = log
∑

j

[M̄ i
j n̄

j
α]ν .

One can easily show, from Eqs. (2), that thee space of
equilibria of this model is the same as in the previous one:
M̄ i

j = n̄i
α/n̄j

α. Here we will expand, as in the previous

case, around an homogeneous economy with n̄i
α = n̄i.

Note that even though in this model agents have time-
dependent preferences out of equilibrium, they all con-
verge to homogeneous preferences in equilibrium. This
means that this model obeys the simplifying assumptions
of Section II, and hence the final wealth distribution is
independent of the non-equilibrium dynamics.

Now we need to provide a model of how the agents
learn the new prices. We assume that, when two agents
α and β find each other and make a trade, they update
their respective matrices Mα and Mβ as

(Mα)i
j = (Mβ)i

j = −
∆nij

αβ

∆nji
αβ

≈
∂j(Ωα + Ωβ)

∂i(Ωα + Ωβ)
, (20)

for all i, j ∈ P . We have used Eqs. (8) and (9). This way
of updating prices makes sure that the exchange rates
Mα always obey the consistency condition (see Eq.( 3)).
Moreover, one could interpret such updating as an ex-
change of information between both agents: even though
agents traded only two products, they “found out” about

5 10 15 20 25 30
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0.00

0.05

0.10

0.15

t

x Α1

FIG. 2: Evolution of the scale invariant variable x
1

α
as a

funtion of time t for agents on the complete graph with 6 ver-
tices. The solid lines are for the example with homogeneous
unchanging preferences, Eq. (18). The dashed lines are for
the case of heterogeneous dynamic preferences, Eqs. (25) and
(27). We have taken ν = 0.9 for the heterogeneous case.
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each other’s prices. The expectation of α’s internal ma-
trix Mα at the next time step is

Et[(Mα)i
j(t + dt)] =


1 − dt

∑

β

Tαβ(t)


 (Mα)i

j(t)

(21)

+ dt
∑

β

Tαβ(t)
∂j(Ωα + Ωβ)

∂i(Ωα + Ωβ)
.

We have used the fact that the total probability per unit
time of an encounter between agents α and β is given by∑

j σij
αβ = Tαβ. Taking expectations on both sides of Eq.

(21) we get,

d

dt
〈(Mα)i

j(t)〉 = −〈(Mα)i
j(t)〉+

∑

β

Tαβ(t)〈
∂j(Ωα + Ωβ)

∂i(Ωα + Ωβ)
〉.

(22)
This can be seen as the evolution equation for the agent’s
preferences.

We are now ready to work out the evolution equations
for the scale invariant perturbations. Due to the consis-
tency condition, we can always consider only the (Mα)1i
components of the prices. We can then define the follow-
ing scale invariant variables for the price perturbations:

yi
α :=

(Mα)1i (t) − M̄1
i

M̄1
i

. (23)

One finds that for the utility in Eq. (19), and for the ho-
mogeneous background, the amount of products traded
is

∆nij
αβ

n̄i
=

1

4
[xj

α − xj
β − xi

α + xi
β

+
ν

1 − ν
(yi

α − yi
β − yj

α + yj
β)], (24)

where it is understood that y1
α ≡ 0. By plugging Eq.

(24) in Eq. (7), we get the equation for the perturbation
in inventory:

d

dt
〈xi

α〉 =
1

4(p − 1)

∑

α,β

Tαβ[〈xi
α〉 − 〈xj

β〉 − 〈xi
α〉 + 〈xi

β〉

+
ν

1 − ν
(〈yi

α〉 − 〈yj
β〉 − 〈yi

α〉 + 〈yi
β〉)]. (25)

Next we derive the equation for the perturbations in the
internal prices of the agents. In order to do this, we need
the following result:

∂iΩ

∂jΩ
≈ 1 +

1

2
(1 − ν)(xj

α + xj
β − xi

α − xi
β)

+
1

2
ν(yi

α + yi
β − yj

α − yj
β), (26)

where we have set M̄ i
j = 1 without any loss of generality.

We can now use Eq. (26) in Eq. (22) to get an expression

for the price perturbations:

d

dt
〈yi

α〉= − 〈yi
α〉 +

1

2

∑

β

Tαβ[(1 − ν)(〈x1
α〉 + 〈x1

β〉 (27)

− 〈xi
α〉 − 〈xi

β〉) + ν
(
〈yi

α〉 + 〈yi
β〉
)
] ,

where, again, y1
α ≡ 0. We can now analyze Eqs. (25) and

(27) in order to prove the stability of the system. It is
useful to diagonalize the matrix T , as in the previous ex-
ample. Recall that the price perturbation y1

α ≡ 0, since
this is the perturbation of (Mα)11 = 1. However, we can
just include y1

α as a spurious variable which will be con-

served, i.e.,
d〈y1

α
〉

dt
= 0. One can then show that Eqs. (25)

and (27) can be written in matrix form as d
dt

~X = Γ · ~X,

where ~X = (x1
1, . . . x

1
n, x2

1, . . . , x
p
n, y1

1 , . . . , y
1
n, y2

1 , . . . , y
p
n)T

and

Γ =

(
1

4(p−1)a1 − ν
4(p−1)(1−ν)a1

a2 a3

)
.

Here Rp is the p × p matrix with entries (Rp)ij = δj,1.
Moreover,

a1 = (Jp − pIp) ⊗ (In − T ) ,

a2 = (1 − ν)(Rp − Ip)/2 ⊗ (In + T ) ,

a3 = (Rp − Ip) ⊗ (In − (In + T )ν/2) .

When we take two products (p = 2), the two non-zero
eigenvalues of Γ are

γ± =
1

4
[−3 + νλ + λ + ν

±
√

(νλ + λ + ν − 3)2 + 8(λ − 1)
]

, (28)

with ν ∈ (0, 1) and λ ∈ [−1, 1]. It is straightforward to
see that the real part of both eigenvalues is negative or
zero. If we fix ν then the eigenvalue gap still determines
the convergence rate as in the case of homogeneous pref-
erences.

In Fig. 2, we compare the dynamics of this model with
the simpler one of the previous section. We take the
same initial conditions for the scale invariant perturba-
tions, and fix the network to be the complete graph. We
see that, as expected, the final state is the same for both
models. However, for the changing preferences model,
there are large oscillations due to the fact that the eigen-
values given in Eq. (28) are complex. Moreover, in the
limit ν → 0 (wealth maximizers), these oscillations dom-
inate and the system never equilibrates.

VI. CONCLUSIONS

In this paper we have introduced a theory of linearized
perturbations around a pure exchange economy. Our for-
malism is given in terms of a general index of satisfaction,
and the probabilities of agents interacting on a network.
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We have shown that, if agents have static preferences,
which are also homogeneous in any of the steady states,
the final wealth distribution is independent of the dy-
namics of the non-equilibrium theory. In particular, it is
completely determined in terms of the initial conditions,
and it is independent of the probability and the network
of interaction between agents. We have shown that the
main effect of the network is to determine the relaxation
time to equilibrium. We gave two examples where the re-
laxation times can be computed analytically. Moreover,
we showed the agreement between the mean field theory
technique and numerical simulations.

This work can be extended in a number of directions.
First, it would be interesting to consider agents that have
random changing preferences, or can speculate on ex-
change rates. Some simulations of this kind were con-
ducted in [10] in the context of a centralized market.
These speculations can lead to stochastic terms analog
to the ones proposed in [7]. Finally, we have only consid-

ered agents making barter exchanges at a fixed time. An
important component of the economy is that agents are
able to make exchanges at different times. That is, we
have contingency claims. It would be interesting to set
up a similar perturbation theory involving such claims,
and study the stability of the system.
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