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A Non-parametric Investigation of Risk Premia

Chiara Peroni∗

Abstract

This paper studies determinants of risk premia using a non-parametric term-
structure model of the corporate spread. The model, which measures the extra
return of defaultable corporate bonds on their government counterparts, involves the
rate of inflation, a key macroeconomic variable that is found to explain the spread
non-linearly. This study shows that non-linear methods are useful to investigate
features of credit risk and that they give better results than their linear counterparts,
enabling testing of affine term-structure specifications. The paper also shows how
the non-linear model can be used to forecast the future course of the spread.

JEL CODE: G12, C14.
KEY WORDS: risk premium, corporate spread, default, additive models,

non-parametric estimation.

Credit risk, usually defined in terms of default risk, measures the possibility of borrowers
not being able to pay neither contractual interest nor the principal on their debt obligations.
When buying securities, investors try to assess the quality of the borrower in order to reduce
the probability of incurring in financial losses, and the higher this risk of credit the higher
the required promised payment to compensate for its bearing. Usually, returns on risky
securities are higher than returns on securities regarded as “safe” (e.g., yields on corporate
bonds are higher than yields on government bonds).

This extra return is known as risk premium, a key financial variable which conveys
information on the market perception of credit risk and of economic conditions. Its deter-
minants, however, are not very well understood.

To study risk premia, empirical research has often focused on corporate spreads. Be-
cause these are differences between yields on corporate debt subject to default risk and
comparable government bonds free of such risk, they are easily interpreted as direct mea-
sures of the risk premium. Historical default probabilities, however, are too low to account
for the size of observed spreads. Studies report a large non-default component in corporate
spreads, which is often left unexplained. Capturing large observed spreads and explain-
ing the link between spreads and default risk are key empirical challenges in this area of
finance. These challenges motivate the work presented here.

∗Correspondence address: School of Economics, University of East Anglia, NR4 7TJ, Norwich, UK.
E-mail address: c.peroni@uea.ac.uk.
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This paper investigates the appropriateness of a popular class of model in the analy-
sis of risky assets, Reduced Form Models (RFMs), challenging their underlying linearity
assumption. RFMs constitute pricing frameworks, which model the term-structure of ac-
tivities subject to default risk as a direct extension of risk-free yield curves, and are state
of the art in this field. Reduced Form Models derive analytical and simple expressions
for risky yields, which are linear in a set of state variables (factors), but impose a strong
parametric assumption of linearity on the state variables’ time series processes and cross
section of yield-prices alike.

To challenge the linearity assumption, this article investigates the use of non-parametric
statistical techniques. To better explain the formation of large risk premia, it proposes a
non-parametric multi- factor term structure model of the spread. In this model, corpo-
rate yields are functions of two sets of factors related to the risk of credit, one based on
key macroeconomic variables, the other related to the risk-free term-structure. Functions
describing how factors determine spreads are non-linear. It is by using non-parametric
techniques, which allow flexible estimation of the model by relying only on the data avail-
able, that this study tries to overcome limitations of standard linear approaches. The
analysis focuses on the cross-section relation of yields to factors.

Non-parametric statistical techniques are explored in the analysis of financial data.
Rather than proposing new methods, it investigates the applicability of existing techniques.
It shows that it is possible to divide the non-parametric analysis into the traditional steps
involving model specification, estimation and checking. It also investigates post-sample
evaluation and forecasting whose inherent difficulty in this non-parametric setting may be
obviated with conditional forecasting.

This paper is structured as follows. Section 1 examines the theoretical determinants of
risk premia in a Reduced Form framework. Section 2 gives an overview of the empirical
methodology used in the paper. After discussing the data (Section 3), Section 4 test for
the linearity of the spread in factors. Section 5 specifies and estimates a non-parametric
model of the spread. The forecasting performance of this model is evaluated in Section 6.
Section 7 specifies and estimates a non-linear but parametric model of the spread, after
which Section 8 summarises results and gives concluding remarks.

1 Background

Reduced-Form Models (RFMs), introduced by Duffie and Singleton (1997), are frameworks
for the measurement and pricing of credit risk. They are widely popular with academics
and practitioners because they offer easily interpretable intuition, but they rely on strong
parametric assumptions. RFMs belong to the affine class of term-structure models, which
capture movements of interest rates (yields) and establish determinants of their evolution
over time (Dai and Singleton, 2000). In these models, the dynamics of interest rates
depends on the evolution of a set of observed, or unobserved, variables (or factors). These
variables can be identified with nodes of the term structure itself, or may be macroeconomic
variables. Their underlying dynamics is described by affine (linear) Itô diffusion processes.
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The main advantage of affine models is their tractability: the linearity assumption in the
factors’ dynamics yields an analytical representation of the term structure and bond price
formulas which are easy to interpret and well suited to empirical testing.

RFMs describe the term-structure of yields on defaultable activities as a direct extension
of government yield curves. This is done by replacing the risk-free instantaneous rate of
interest r, used in conventional term-structure modelling, with a default-adjusted (or risk-
adjusted) discount rate R. The price in t of a defaultable zero-coupon zero-recovery bond
of maturity T can be written as if the promised payoff were default-free:

Pt = EQ
t [exp{−

∫ T

t

Rsds}], (1)

where Q indicates assessment under risk-neutral probabilities (Duffie and Singleton, 1997).
The risk-adjusted rate R is given by the sum of the risk-free rate r plus a term, λ, which
captures default risk and depends on the probability of default (hereafter referred to as the
default rate):

Rs = rs + λs; (2)

Key assumption here is that default is a “surprise” event, which occurs unexpectedly, and
is exogenous to the model. The dynamics of the risk-adjusted rate is modelled as an affine
multi-factors diffusion process, examples of which can be found in Duffee (1999), Duffie
and Singleton (1999), and Driessen (2005). This gives representation of yields as linear
functions of factors. As a result, credit spreads, which are differences between yields on
risky assets and yields on risk-free assets, are also linear functions of factors. This is shown
as follows, under the simplifying assumption of risk-neutral independence.

Substituting equation 2 in 1 the price of the zero-coupon risky bond can be decomposed
into the product of a risk-free price component (∆) and a price component that depends
on the default rate (D):

P
(τ)
t = D(τ)(λ)∆(τ)(r), (3)

where τ is the time to maturity (τ ≡ T − t). These zero-coupon bond prices are as follows:

D(τ)(λ) = AD(τ) exp{−BD(τ)λ}, (4)

∆(τ)(r) = A∆(τ) exp{−B∆(τ)r}; (5)

(The coefficients A∆, B∆, AD, BD are deterministic functions of underlying diffusion pa-
rameters and time to maturity. The subscripts D and ∆ indicates that coefficients refer
to, respectively, the default and non-default price component.)1 The credit spread implied
by RFMs is computed as the difference between the yield on the risky bond and the yield
on the risk-free bond, using equations 4 and 5. The resulting (observable) spread is linear
in the default rate:

s(τ) = − log AD(τ)

τ
+

BD(τ)λ

τ
; (6)

1Bolder (2001) offers a clear and detailed derivation of pricing formulas for zero-coupon bonds, and gives
expressions for deterministic coefficients such as A∆, B∆, AD, BD; one can also see Duffie and Singleton
(2003, Chapter 5).
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Following Duffee (1999), I now allow the default rate λ to depend (linearly) on the risk-free
rate r. This yields a simple and tractable representation of the spread, which is now linear
in the interest rate AND default rate:

s(τ) = − log A(τ)

τ
+

BD(τ)

τ
λ +

(B̃D(τ)− B̃∆(τ))r

τ
. (7)

Here, as above, the coefficients A∆, BD, B̃D, B̃D are deterministic functions of underly-
ing diffusion parameters and time to maturity, and subscripts D and ∆ denotes default
and non-default components of the risky bond’s pricing equation. (The derivation of this
formula, and of formula 6, are detailed in appendix A.)

One of the best features of RFMs is this parallel between default-free and defaultable
bond price formulas, which gives simple linear expression for yields and spreads. This lin-
earity assumption, however, has been questioned for government yield curves. Substantial
evidence, based primarily on the estimation of underlying diffusion processes, suggests that
it is too restrictive (Aı̈t-Sahalia, 1996; Gil-Bazo and Rubio, 2004; Arapis and Gao, 2006).
The possible presence of non-linearities in data has important implications, suggesting that
affine models are misspecified and bond prices formulas are not correct.

There is another well-known shortcoming of these models. While affine models represent
yields as linear functions of factors, they fail to provide a clear economic interpretation
of those factors. To address this problem, models of risk-free yields have recently been
extended to include macroeconomic variables as factors (Ang and Piazzesi, 2003), but this
idea has not been applied to credit risk.

Empirical evidence suggests, however, that risk premia are affected by general economic
conditions. The observed negative correlations between Treasury rates and credit spreads,
documented in Duffee (1998), is often interpreted as evidence that risk premia are corre-
lated with the business cycle. (During economic downturns — associated to low interest
rate levels — the risk of bankruptcy increases, driving up yields on risky securities.)

An early empirical model of spreads which explicitly considers the effect of macroeco-
nomic indicators has been proposed by Wadhwani (1986). Wadhwani (1986) explains why
the inflation rate affects default risk and spreads. It argues that inflation has an adverse
effect on firms’ interest payments, creates cash-flow problems and, consequently, increases
the number of bankruptcies.

More recently, in the context of duration models, a stream of literature studied the
impact of macroeconomic factors on the risk of default. In Figlewski et al. (2008), data on
individual firms is used to study the impact of macroeconomic factors such as unemploy-
ment, inflation, production and indices of macro performance on default probabilities. The
effects of these macro variables are estimated by the coefficients of the parametric compo-
nent of a Cox regression model. Such effects are measured in isolation and in conjunction
with other variables, such as bond, equity markets and firm-specific variables; the latter
are related to the credit-rating history of individual firms. Figlewski et al. (2008) find that
macroeconomic indicators are capable of explaining the default of individual corporate
issuers, although size and sign of the variables’ coefficients vary over different model spec-
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ifications. They also note that the information contained in macro variables appears to be
“incremental” to that captured by firm-specific factors. For example, the effect of inflation,
insignificant when considered on its own, becomes positive and significant when consid-
ered along ratings-related variables. Furthermore, the effects of variables such as GDP
and industrial production growth, and general macro indicators, suggests anti-cyclicality
of default. The significance and size of macro effects, however, is substantially reduced
when they are studied together with other macroeconomic variables, possibly due to the
correlation existing among variables.

The analysis of Figlewski et al. (2008) was extended by Couderc et al. (2008). These
authors considered the dynamic effect of a similar set of macroeconomic and financial
factors on probabilities of default, confirming the explanatory power of business cycle vari-
ables, and highlighting the high degree of persistence of economic shocks on the likelihood
of default. GDP, industrial production, and personal income growth have negative and
persistent effect on default intensities. Unlike the study of Figlewski et al. (2008), inflation
has a negative and persistent effect on default probabilities.

The duration studies of default of Figlewski et al. (2008) and Couderc et al. (2008)
confirm the negative relation between risk-free interest rates and probabilities of default
found in previous literature. They also play down the role of equity market variables,
indirectly supporting RFMs on structural models.

Unlike the above authors, Duffie et al. (2007), failed to find a significant effect of
macroeconomic factors on default, and consequently focused their attention on a smaller
set of variables capturing equity and financial markets conditions, such as the US interest
rate and individual firm and market-wide returns. (Their model combines traditional
duration analysis with time varying parameters features.)

Using a different methodology, Huang and Kong (2003) also investigated the effects
of macro factors on credit risk. These authors regress credit spread changes on indices
of macroeconomic and equity market performance. They also consider the effect of risk
free interest rates, as measured by changes in treasury yield indices and the yield curve
slope. Despite some indication that macro factors have some explanatory power for credit
spread changes, macro indices seem to have a significant effect on speculative-grade rather
than investment-grade yields, and the highest t-ratios in the regressions are associated with
equity market factors. Overall, credit spread changes seem more closely related to equity
market factors and volatility. In later work (Huang and Kong, 2005), the same authors
considered the effects of (scheduled) macroeconomic news announcements on spreads and
their volatility patterns. Once again, they find that such announcements, and in partic-
ular those regarding leading economic indicators and employment reports, affect mainly
speculative-grade bonds.

In summary, studies on determinants of default risk suggests that macroeconomic fac-
tors play some role in determining default probabilities. The studies reviewed above,
however, interpret macroeconomic variables as business cycle indicators, or indicators of
global economic health. They do not suggest an economic mechanism for the determina-
tion of credit risk, and do not explain the reason why specific variables would increase — or
decrease — default risk. Existing evidence is inconclusive and, at times, contradictory (in

5



terms of size, sign, and significance of estimated effects); nonetheless, it is useful because
it provides clues that help to specify observable and estimable models of the spread.

The above studies suggest ways to overcome the major difficulty in the estimation of
model (7), which is the inclusion of the crucial but unobservable variable λ (the default
rate). In theoretical models, λ depends on the probabilities of default, but historical default
rates are too low to account for observed spreads, even for very short-term securities (this
fact is often referred to as the credit spread puzzle). It has been argued that this puzzle
emerges because credit spreads are determined by more factors than the risk of default.
Empirical studies have found evidence of non-default components in risk premia, often
linked to liquidity and taxation, and reported a range of estimates on its size (Elton et al.,
2001). Recently, however, Longstaff et al. (2004) concluded that default risk accounts for
a large part of the corporate spread (this uses credit-default swaps). This suggests that
the problem lies in the measurement of default risk, in particular in the measurement of
the market’s perception of risk, rather than in its relative explanatory ability.

This paper measures the link between default risk and spreads by choosing appropriate
factors which are observable. The idea is to use a macroeconomic variable as the observable.
Thus, the spread model estimated here includes a key macro variable related to default
risk: the inflation rate. This extends RFMs to include macroeconomic variables, enabling
the investigation relationship between macroeconomic conditions and the risk premium.

2 Methodology

As said above, this paper uses non-linear non-parametric methods to analyse corporate
spread indices. This is done to validate RFMs. To apply non-linear methods, we first need
to test for the linearity of the spread in factors. The methodology adopted here uses a
general non-parametric model to specify the alternative to the null linear model. A non-
parametric multiple regression model is also used to specify a non-linear regression model
of the spread, which is used to check the significance of the individual non-linear effects.

The following gives a brief overview of the main techniques used here. First, additive
modelling is presented. This simplifies the estimation of non-parametric regression models
with multiple regressors, while retaining some structure and facilitates the interpretation
of results. Then, a general framework for testing in a non-parametric setting is presented.

2.1 Additive modelling

To study the relation between a set of explanatory variables (or predictors) X1, . . . , XD and
a dependent variable (or response) Y using a sample of n observations, a non-parametric
regression model describes the dependence of Y on the Xs as a smooth function plus an
additive error term. In the case of a single predictor, this is as follows:

yi = f(xi) + εi, i = 1, .., n; (8)
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(Standard assumptions apply to the error term ε.) Estimation of the regression function
f is performed using local smoother. Smoothers are statistical tools based on the local
averaging of data: the regression estimator at a point xi, f̂(xi), is the weighted average
of those observations yjs with predictors in a neighborhood of xi (weights depends on
the predictors’ distance from xi). There are several smoothers available (see Härdle, 1989).
This article uses the local-linear method (Fan, 1992), which proceeds by dividing the sample
into intervals of equal length (along the X direction) and runs linear regressions on each
interval.2 The local-linear estimator is also used in the estimation of additive models (see
below).

With more than one predictor, the model of equation 8 generalises to the regression
surface

yi = m(x1i, . . . , xDi) + ε′i, i = 1, .., n; (9)

In this case, the model’s estimation is difficult due to a problem known as the curse of
dimensionality. This indicates the worsening performance, in the statistical sense, of local
smoothers as the number of variables increases.3 A related problem is data sparsity. As
noted above, surface estimation is based on the principle of local averaging; when data are
smoothed over multiple dimensions, however, to find non-empty neighborhoods one should
increase their size, and locality would be lost (Härdle, 1989, Chapter 10). Surface smoothers
are also difficult to interpret, as the regression output cannot be displayed when the number
of predictors is greater than 2, thus loosing an important advantage of non-parametric
regression, ie the visualisation of regression lines. These shortcomings motivate the use
of dimension-reduction models, such as Generalised Additive Models (GAMs) (Hastie and
Tibshirani, 1990), that only involve one dimensional functions.4

In GAMs, the dependent variable is modelled as the sum of smooth functions of the
explanatory variables:

yi = α + m1(x1,i) + ...... + mD(xD,i) + ε′′i , i = 1, .., n; (10)

Here, the mjs are univariate smooth functions of the explanatory variables X1, . . . , XD.
The model of equation 10 is clearly a non-parametric version of the multiple linear

regression model. In this model, the contribution of each explanatory variables to the

2The local-linear estimator m̂h(x) is given by the a∗ which minimises the weighted least squares problem:

min
a,b

∑

i

{yi − a− b(xi − x)}2K(xi − x, h);

where a − b(xi − x) is a polynomial of order 1, which approximates the regression function around x;
K(x − .) is a Gaussian kernel, which weights the observations falling in the interval around x; h (the
bandwidth) controls the width of the kernel, ie the size of the local neighborhood. The latter is a crucial
element of the estimation as it controls the degree of smoothing performed in the estimation. On the
various available methods for choosing the bandwidth one can see Härdle (1989), chapter 5.

3The convergence rate of a non-parametric estimator depends on the number of regressors. Conse-
quently, the “distance” between the non-parametric estimator and the true value collapses at a much
slower speed as the number of predictors increases (Härdle, 1989, Section 4.1).

4The dimension-reduction principle, which refers to convergence rate properties of statistical models,
is illustrated in Stone (1985).
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response is additive, which may be regarded as a strong assumption. However, equation
10 provides a very convenient way to represent non-parametric multiple regressions, for
the following reasons: (1) it is flexible enough to allow departures from linearity; (2) it is
possible to obtain a graphical output, so that the estimated effects are far easier to interpret
than a d-dimensional surface; (3) the additive feature provides a basis for inference in
the non-parametric context. Residual sum of squares (RSS) and approximate degrees-of-
freedom (df) can be calculated, and these quantities can be used to assess the significance of
each smooth term in modelling the response. Examples of additive modelling, its properties
and inferences are presented in Hastie and Tibshirani (1990), which remains the most
comprehensive source for GAMs to date. The use of GAM to model non-linear time series
is discussed in Fan and Yao (2003, Chapter 8.).

The effects of the explanatory variables on the response are estimated using an iterative
procedure, known as back-fitting algorithm. (The algorithm is described in Appendix B.)
A detailed analysis, and a rigorous justification, of the algorithm can be found in Buja
et al. (1989). Opsomer and Ruppert (1997) examined theoretical properties of the back-
fitting estimator for an additive model with two explanatory variables when the local-linear
smoother is used. They provide expressions for smoother matrices, asymptotic bias and
variance, and show that the model has the same convergence rate of a univariate local linear
regression. Opsomer and Ruppert (2000) extended this analysis to the general case of more
than two explanatory variables. The implementation of the algorithm in the programming
language S is presented in Chambers and Hastie (1992, Chapter 7).

Additive models have been widely used in nonparametric modelling, due to their intu-
itive appeal and the availability of software, but they have been rarely applied to study of
financial and economic data. This article aims to show their usefulness also in this context.
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2.2 Testing linearity

This article uses a Generalised Likelihood Ratio (GLR) approach (Fan and Jiang, 2007)
to test for the linearity of spread in factors. This is a framework for testing hypothesis in
a non-parametric setting, based on a general version of the likelihood-ratio (LR) statistic.

This GLR approach is favoured here on other linearity tests proposed in the statistical
literature for two reasons: 1) unlike other tests for linearity, the null distribution of the
GLR test statistic is known and it is independent of nuisance (unknown) parameters, which
renders the test applicable to practical problems;5 2) the GLR test is derived against a
general alternative hypothesis, specified using non-parametric modelling, instead of being
restricted to a specific non-linear alternative. (Examples of linearity tests with parametric
alternatives, and their derivation, can be found in Granger and Teräsvirta, 1993, Chapter
3.)

Fan et al. (2001) demonstrated that a GLR test statistic, based on appropriate non-
parametric estimators, follows asymptotically a χ2 distribution under the null hypothesis.
The authors applied this result to testing a simple linear regression model against a non-
parametric alternative, as follows problem is as follows:

H0 : y = α + βx vs. H1 : y = f(x); (11)

(Here, α and β denote the unknown parameters of the linear regression; f is a smooth
function.) The appropriate GLR statistic for this testing problem is given by:

λn(h) = log(H1)− log(H0) =
n

2
log

RSS0

RSS1

; (12)

where log(H1) and log(H0) are the log-likelihood functions for the alternative and the null
model, and RSS0 and RSS1 the residual sum of squares (RSS) for the null and alternative
model. The main difficulty here is that LR tests require the model be estimated under the
alternative. In practice, the test works by substituting the maximum likelihood estimator
of the alternative model by a reasonable non-parametric regression estimator, namely the
local linear method. The null hypothesis is rejected when λn(h) is too large.

For the testing problem 11, Fan et al. (2001) established the following result:

Under the null hypothesis and certain conditions, if nh3/2 → ∞ the following result
holds:

rKλn(h)
a∼ χ2

dn(h), (13)

where
dn(h) = rKcK |Ω|h−1;

5Several tests for linearity in the non-parametric setting have been proposed. An example is the test
analysed by Härdle and Mammen (1993), and based on measures of distance between parametric and
non-parametric fits. Azzalini et al. (1989) studied a test based on the F statistic, which is based on the
restrictive assumption that linear and non-parametric models are nested. All these tests have a major
problem: the null distribution of the test statistic is, in general, unknown and/or depends on nuisance
parameters/functions.
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Here, h denotes the bandwidth, dn(h) the degrees of freedom of the χ2 statistic, Ω the
length of support of the covariate x; rK and cK are constants. (Values of rK and cK for
different choices of the Kernel used in the local-linear estimation are tabulated in Fan et al.,
2001, table 2, p.170). Intuitively, degrees of freedom depend on the amount of smoothing
performed, through the term |Ω|h−1. Once the degrees of freedom are calculated, critical
values can easily be found based on the known null distribution. The validity of this result
is discussed in (Fan et al., 2001, section 4.1); the conditions under which the result holds
are stated in (Fan et al., 2001, section 3.1).

The GLR approach outlined above can be extended to a variety of models/testing
problems, as shown in Fan and Jiang (2007). Fan and Jiang (2005) extended the GLR
approach to testing in the multiple regression context. Consider the following problem, in
which the linearity of a multiple regression model with d explanatory variables is tested
against a general non-linear alternative:

H0 : y = α + β1x1 + ... + βDxD vs. H1 : y 6= α + β1x1 + ... + βDxD; (14)

The testing procedure proposed by Fan and Jiang (2005) comprise the following steps:

1. Write the alternative non-parametric model using a GAM model structure, so that
H1 is given by:

y = α + m1(x1) + m2(x2) + .... + mD(xD) = α +
∑

d

m(xd), (15)

(Recall that ms are univariate non-parametric functions of each explanatory variable);

2. Estimate the alternative model, using the back-fitting algorithm, and compute the
GLR statistics as:

λn(h) =
n

2
log

RSS0

RSS1

, (16)

where n is the number of observations, and RSS0 and RSS1 residuals sum of squares
from the null and alternative models;

3. Use bootstrap methods to simulate the null distribution of the GLR statistics, and
compute p-values.

Fan and Jiang (2005) showed that

rKλn(h)
a∼ χ2

dn(h), (17)

where

dn(h) = rKcK

∑

d

|Ωd|
hd

;

(For a discussion of this result, see Fan and Jiang (2005), Section 3.2. There expressions
for the constant rK and cK are also given.) One should note that, in this setting, the
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computation of degrees of freedom is more complicated than for result 13. This is why a
bootstrap method is required to simulate the null distribution of λn(h).

The method above is also applicable to test non-parametric null hypothesis versus non-
parametric alternatives, for example to test the significance of one — or more — smooth
term in the additive model of equation Fan and Jiang (2007, 2005). Jiang et al. (2007)
suggest to extend the GLR method to a semi-parametric setting, to test whether one or
more components of the additive model of equation should be specified as non-linear. The
authors look at testing problem of the type:

H0 : y = α+β1x1 + ...+βDxD vs. H1 : y = α+β1x1 + ...+mD−1(xD−1)+mD(xD). (18)

(Note that the alternative here is a semi-parametric model.) The authors give a null
distribution for the GLR test statistic and establish its properties.

The following starts by presenting the dataset. Then, the testing procedure presented
above is applied to a models that represents spreads as a linear function of several factor,
such as the model of equation 6.

3 Data

In this analysis I use a data set constructed from government yield curve data compiled
by the Federal Reserve and corporate yields indices from Moody’s database, which were
obtained from the FRED database.6 The data set is made up of monthly time series
ranging from April 1953 to June 2006. Spreads are computed as differences between yields
on investment-grade corporate bond (rated by Moody’s as Aaa and Baa) and constant-
maturity-Treasury yields of comparable maturity. Table 1 reports summary statistics for
the spread series.7

Figure 1 presents time series of Aaa and Baa spreads (right panel) and of the relative
spread (right panel), which measures the difference between Baa and Aaa yields. The
spread series look very correlated. They never intersect and the Baa spread is always higher,
and more variable, than the Aaa spread. Aaa spreads have been well above zero over most
of the sample period, and have been ever increasing since the early 80s. Baa spreads have
been high and volatile during the decades 1970-2000 and featured an increasing trends in
recent years. Most high observations for Aaa spreads were recorded in the years following
the Asian crisis, whereas high values of Baa spreads occur during the 70s and 80s. The
relative spread has peaked in the first half of the 80s, after the 1979 turning point in U.S.
monetary policy. Following a period of decrease, it has increased again in recent years,
following the outbreak of the Asian crisis and Russia’s default (1998). One can also see
the large movement which occurred in the aftermath of the 9/11/2001 terrorist attacks.

6http://research.stlouisfed.org/fred2/
7Both Aaa and Baa spreads exhibit moderate skewness and kurtosis. The Jarque-Bera test rejects

normality in both series. The unit-root hypothesis is also rejected at 5% confidence level by a Dickey-
Fuller (DF) test. (These results, however, should be interpreted carefully. In general, DF regressions are
based on linear AR models, so their results could be misleading if the true dynamics is non-linear.)
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Figure 1: Time series of Aaa (in black) and Baa (in red) spreads (a) and relative Baa-Aaa
spread (b).

Statistics SAaa SBaa

Mean 0.75 1.69
Standard dev. 0.50 0.72

Minimum 0.00 0.40
Maximum 2.46 3.82
Kurtosis 3.33 2.57
Skewness 0.82 0.44
JB stat 71.92 24.23

ADF stat −4.48 −3.86

Table 1: Summary Statistics for Spread Data
Legend: SAaa, SBaa denote spread on Aaa-rated bonds, and on Baa-rated bonds; JB is the
Jarque-Bera test for normality, and ADF is the Augmented Dickey-Fuller test for unit root.
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Kernel density estimates of the spreads, in figure 2, evidence non-normal features in
the data, such as heavy tails and skewness. These features are not unusual in financial
data and imply high probabilities of observing extreme values.

Although kernel density plots are useful summaries of the data, they ignore the time
series nature of the data. When data are time series, conditional densities give a better
description of the data generating process than marginal densities. Conditional densities
provide insights into the dependence structure in the data. They also informs on features
such as non-normality and non-constancy of mean and variance. Figure 3 shows that
densities of spreads conditional on their past values shares features with estimated marginal
densities, such as skewness and heavy-tails, but do vary over the conditioning variable.
(Here, for reasons of space, I only report conditional densities for a lag of 6-months.) There
is also a suggestion of bimodality in the upper boundary of the data. (One should be aware,
however, that densities in this region is noisy, due to the sparsity of observations).8

So, spread densities have non-normal features, and do not have constant features over
time.

8The conditional densities of the spread are estimated using a direct Kernel-based approach, which uses
the definition of conditional distribution as the ratio of joint and marginal densities. The density of the
spread s, conditional on its past values st−k, where k denotes the time lag, is given by:

f̂(s|st−k) =
f̂(s, st−k)

f̂(st−k)
=

∑n
i=1 Wh(st−k,i − st−k)Kb(si − s)∑n

j=1 Wh(st−k,j − st−k)
; (19)

Here, W and K are kernel functions, and b and h are bandwidths for smoothing, respectively, over the
variable s and its lagged value. In principle, one should estimate the above density on each value assumed by
the conditioning variable, which makes conditional Kernel density estimation computationally expensive.
To overcome this problem, I use “stacked conditional density plots” (Hyndman et al., 1996), which allow
plotting the density for selected values of the conditioning variable, stacked by each other in a perspective
plot. Conditional density plots have been produced using the package hdrcde, by R. Hyndman.
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Figure 2: Kernel density estimates of Aaa (a) and Baa spreads (b).
(The histogram at the basis of each plot represents the frequency of the observations; dotted lines
are variability bands.)
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4 Testing linearity in Reduced Form Models

This section tests a fundamental assumption of affine models of credit risk: the linearity
of yields-spreads. This is done folloing the procedure outlined in Section 2.2. That is,
the linear specification of the spread, obtained by solving RFMs for the price of bonds, is
tested against a model in which spreads are non-linear functions of factors using the GLR
principle. This section assumes that corporate spreads are explained by factors capturing
the risk-free term-structure and macroeconomic conditions.

As shown in Section 1, RFMs imply a spread which is linear in factors. The model of
equation 7 suggests a simple linear regression model, in which corporate spreads depend
on the risk-free rate and default risk:

st = α + β1rt + β2λt + εt, t = 1, . . . , T ; (20)

Here, s denotes the spread, r the risk-free rate, and λ the premium that captures the risk
of default; the βs are unknown parameters, and ε an iid error term.

To test the validity of the affine specification above, we first need to identify a suitable
alternative model. Following Fan and Jiang (2005), this is specified using a GAM frame-
work, which offers a general non-parametric alternative to model 20 that is computable in
an efficient way. The GAM model describes the spread as the sum of non-linear functions
of factors, as follows:

st = α + mr(rt) + mλ(λt) + ε′t; (21)

Here, the ms are univariate smooth functions of factors. Formally, the testing problem is
as follows:

H0 : st = α + β1rt + β2λt + εt, vs. H1 : st = α + mr(rt) + mλ(λt) + ε′t; (22)

To estimate the models of equations 20 and 21, it is essential to include observable
variables that capture default risk. The following assumes that spreads are explained by
factors capturing the risk-free term structure and macroeconomic conditions. This choice
is motivated by existing theoretical and empirical literature on default risk, which suggests
that risk-free rates and macroeconomic conditions are among determinants of yields on
risky bonds (see Section 1). Among macroeconomic variables, inflation is a good candidate
to explain the risk of default (see Wadhwani, 1986). The term spread, also known as the
slope of the yield curve, is included along the short rate to better capture the the risk-free
term-structure.9 This leads to the following empirical model of the spread:

st = α + β1πt + β2rt + β3yt + εt; (23)

9Single-factor models of the term-structure have been criticised for their inability to explain the observed
variability of the yield curve through time and across maturities. Authors have argued that the term-
structure dynamics is too complex to be summarised by a single-source of uncertainty. To address this,
multi-factor representations, where the yield are explained by several state variables, have been introduced.
Short and long-term rates are being used to explain intermediate maturities in the non-defaultable bond
market (e.g. Knight et al., 2006).
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Here, s denotes the corporate spread, r the risk-free short rate, y the term spread (i.e. )
and π the inflation rate. (Here, the short-rate is measured by the 3-months Treasury Bill
rate, and the term-spread by the difference between the 10-years Treasury note yield and
the 3-month Treasury Bill. Inflation is measured by the 12-months percent change in the
Consumer Price Index released by the Bureau of Labor Statistics.)

The next step in the testing procedure consists in computing the value of the GLR
statistics for the testing problem above. This compares Residuals Sum of Squares (RSS)
from the null and alternative model (the latter being estimated using the back-fitting
algorithm), as follows:

λn(h) = n/2 log(RSS0/RSS1); (24)

This computation produces high values of the test statistics. This can be seen in table
2, where the second column reports observed values of the GLR statistics. p-values are
computed using a version of the bootstrap method detailed in (Fan and Jiang, 2005, section
4.2). (The idea is that, since the asymptotic null distribution is independent on nuisance
parameters/functions, for finite samples the null distribution can be approximated by a
bootstrap method.) This bootstrap procedure comprises the following steps:

1. Fix the value of the bandwidth at its estimate ĥ. For the original data, compute the
observed value of the test statistics λn(ĥ) according to eq. 24;

2. Sample randomly and with replacement from the residuals obtained at step 1. Define
the bootstrap responses sb = α̂ + β̂1r + β̂2s + ε̂b. This forms a bootstrap sample
{Sb; R, Y };

3. use the bootstrap sample to obtain the GLR statistics λb
n(ĥ);

4. Repeat steps 2 and 3 n times to obtain a sample of GLR statistics. Here the number
of bootstrap replications is set at n = 1000.

The test rejects the null hypothesis of linearity. This can be seen, again, in table 2.
Bootstrap p-values are listed in the third column. (P -values are computed as the proportion
of times that the bootstrap statistics λb

n(ĥ) exceeds the observed value λn(ĥ).)
This procedure presents two difficulties: first, it is well known that p-values depend

heavily on the sample size; second, the available data are time-series. Although the model-
based bootstrap adopted here can be applied to the analysis of time series data (Davison
and Hinkley, 1997, Chapter 8), it is useful to analyse sub-samples of data to assess the
robustness of our results. Hence, we take random sub-samples of 200 observations for
analysis. We repeat the procedure 100 times, as it is computationally very expensive, and
obtain p-values for each sub-sample. The fourth and five columns 2 report average p-values
for the sub-samples. This provides evidence that the non-parametric model is appropriate
for the sub-samples at the nearly zero significance level.

The test above refutes the linearity assumption that underpins RFMs of yield-spreads.
To mitigate this problem, the following uses non- linear models of spread determination.
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Model GLR test p-value sub-sample p-value

Aaa spread 73.04 0 0.0
Baa spread 50.60 0 0.0

Table 2: Linearity test of yield-spread: GLR statistic.

5 An empirical analysis of spread determination

This section explores the role of risk-free yields and inflation rate in determining spreads
in the context of a multi-factor non-linear model of risky yields. It performs a graphical
analysis of the spread determination using two important variables: the risk-free short-term
interest rate and the inflation rate.

5.1 Spread and factors: a first look

This section estimates a simple regression model of spreads to the risk-free short-term
rate, which allows departures from linearity. The model is estimated using a locally-
linear regression technique (Fan, 1992), where the bandwidth is selected by cross-validation
(Hardle and Marron, 1985).

The scatter-plots in figure 4, which show spreads against the short-rate, evidence several
clusters. These correspond to two groups of observations which associate low spread values
with low interest rates, and mid-range spread values with mid-range interest rates. In the
top-left area of the graphic, there is a group of observations characterised by the association
of high spreads with low interest rates; this group consists of data for the period post 9/11.
(In figure 4, corresponding observations for this latter group are denoted by triangles.)

The following non-linear model summarises the relationship of spreads to the risk-free
rate:

si
t = m(rt) + et, t = 1, . . . , T ; (25)

here, s is the spread, r the risk-less rate, i = Aaa,Baa (in the following, the index i is
omitted); m is a smooth function whose shape is unrestricted, hence allowing departures
from linearity, and e is an iid error term with zero mean and standard deviation σ. The
continuous curves in figure 4 represent the non-parametric estimates of the regression
function m, with variability bands.10 These estimates show a non-linear relation between

10In non-parametric analysis, variability bands quantify the variance of the estimate without accounting
for the non-zero bias, offering a measure of the degree of variability present in the estimate; so, the term
variability band is used in order to distinguish such measures from proper confidence bands. In practice,
variability bands are computed using twice the standard error, derived by the asymptotic variance of the
non-parametric estimator for the model of equation 25:

var(m̂(x)) ≈ a(k)
σ2

Thf(x)
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Figure 4: Aaa (a) and Baa spread (b) vs. short-rate: scatter-plot and non-parametric
regression curve, with indication of its variability. (Observations denoted by triangles
refers to post 9/11 observations.)

short-term yields and spreads. The relation between Aaa spreads and the short-rate highly
non-linear (left panel). The relation between Baa spreads and the short-rate, negative for
low level of the short rate, becomes positive for higher values of the short-rate.11

Figure 5 present scatter-plots and regression estimates of spreads against inflation rates.
The relation between Aaa spreads and inflation is increasingly concave for low to mid-range
inflation rates, turning negative for higher inflation rates (> 5%). Smooth regressions
indicates a positive concave relationship between Baa spreads and inflation rates, implying
that yield spreads increases with inflation at decreasing rates. This seems in line with the
view that increasing inflation correspond to increasing spreads.

where a is a constant that depends on the kernel choice (k), h the bandwidth, T the sample size and f the
density of the observations. (This method follows what proposed in Bowman and Azzalini, 1997, chapter
4.) One can see that the variance depends inversely on the local density of the data, given by Thf(x).
This explains why bands depicted in figure 4 tend to be larger at the right boundary of the data, where
data are sparse.

11The estimation of the same model, leaving out the post 9/11 observations, provided a clearer non-linear
pattern. There is evidence of two regimes in the Aaa spread to short-rate relationship: this is increasing
for low interest rates, and decreasing for high interest rates (that is, greater than 5%). The relationship
between Baa spreads and short-rate is increasing and concave.
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Figure 5: Aaa spread and Baa spread vs. inflation rate: scatter-plot and non-parametric
regression curve (with variability bands).

Scatter-plots and regression lines give interesting insights into the relationships of in-
terest: correlations between interest rate and spread, and inflation and spread, vary among
rating classes, and are non-linear. This contrast with the existing literature, which indi-
cates a negative sign for the correlation between spreads and short-rate (see, for example,
Duffee, 1998). This analysis, however, remains purely descriptive. Yields are known as bet-
ter described by multi-factors models, as opposed to single-factor models. This is addressed
in the following section.

5.2 An additive model of the spread

This section discusses specification and estimation of the non-linear relationship of spread
to factors uncovered by the linearity test performed in section 4. The actual form of the
function that relates factors and spreads is unknown, and economic and financial theory is
of little help. As seen above, empirical and theoretical studies of default risk suggest the
choice of factors, but postulate simple linear relationships between those factors and risky
yields. Because non-parametric models do not place assumptions on the functional form
of the relationship of interest, they are the natural choice. Consider the following general
non-parametric model:

st = m(πt, rt, yt) + εt; (26)

Here, r denotes the short rate, y the term-spread, and π the inflation rate, m is a smooth
function of factors, and ε an iid error term. In principle, such model can be estimated
using standard surface-smoothers techniques. However, this method suffers the curse of
dimensionality and calls for the use of dimension-reduction techniques such as GAMs (see
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Section 2.1). An additive framework offers a convenient way of modelling spreads as a
function of several variables whose effect is non-linear:

st = mπ(πt) + mr(rt) + my(yt) + ε′t; (27)

Here, the response variable is the sum of one-dimensional non-linear functions of factors.
Little is assumed about the shapes of these function, apart from smoothness. The non-
linear functions are estimated non-parametrically, using the back-fitting algorithm (Buja
et al., 1989), whose basic building block is the local-linear smoother. The estimation
output is essentially graphical, as plots of individual smooth terms allow us to to examine
the possible non-linear effect of each explanatory variable.12

Table 3 presents results of the estimation for the non-parametric model of equation 28.
(Table 4 gives estimates for a linear model of the spread, such as the one of equation 23,
for comparison.) Models have been estimated separately for Aaa and Baa spreads. Table 3
reports values of approximate significance tests for each smooth term. All non-parametric
terms are statistically significant when compared to critical values of a F distribution.
(Note that this amounts to test the validity of a model in which the corresponding com-
ponent is linear.)13

Figure 6 presents estimates of the smooth terms of equation (28). (Those plots on the
left column are for the model estimated with Aaa spreads data; those on the right to Baa
spreads data.)

The inflation effect is clearly non-linear. Interestingly, the shape of the smooth functions
looks very similar for both models. Slopes are positive at very low inflation rates, turn
negative at medium-range rates (between 3% and 7%), and again positive at high levels
of inflation (above 7%). In the region characterised by high inflation rates, where only
few observations are available, confidence bands are large, but not dramatically large,
indicating that the estimation is reasonably stable.

High and increasing inflation is often associated with economic growth. One would
naturally expect to observe a negative correlation of inflation to spreads (see, for example,
Couderc et al., 2008). However, the mechanism through which inflation affects the risk of
default is possibly more complicated than wat a business-cycle perspective suggests. There
is another effect that should be taken into account: higher inflation leads to an increase in
the cost of borrowing. This has been effectively illustrated in Wadhwani (1986): an increase
in inflation causes cash-flow problems for firms, due to an unexpected rise in (nominal)
interest rate payments. Indeed, the positive relation between spread and inflation rate
uncovered here is consistent with the view that rising inflation increases the number of

12Estimation and graphics are performed using the package gam in R.
13The F test here is based on (approximate) degrees of freedom and residual sum of squares. Hastie

and Tibshirani (1990) discuss the computation of degrees of freedom for additive models and argue that,
despite the null distribution of the F statistics is unknown, F tables can be used as guidance (see Hastie
and Tibshirani, 1990, Sections 5.4.4 and 5.4.5). Clearly, the F statistics here is also an approximation of
the GLR statistics of Fan and Jiang (2005), as λn(h) = n/2 log(RSS0/RSS1) ≈ n/2(RSS0−RSS1)/RSS1

for testing significance of parametric components.
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bankruptcies. Thus, bond-holders request compensation for the higher default risk, which
leads to an increase in the corporate spread.

This interpretation is complicated by the fact that the response of spreads to infla-
tion varies with different levels of inflation. Indeed, it can be observed that the positive
relationship spread-inflation corresponds to high and low levels of inflation. This can be
interpreted as follows: (a) low levels of inflation, usually associated to a stagnating econ-
omy (deflation), increase the market’s perception of risk and boost corporate yields; (b)
investors’ perceive high rate of inflation as a sign of economic instability, and this, in ad-
dition to the cash-flow effect described above, determines an upward pressure on spreads.
(Indeed, historically, the US economy was characterised by high levels of inflation in the
70s, the period known as “stagflation”, a mixture of high inflation and stagnation.) In
contrast, if investors perceive mid-range inflation rates as a symptom of growing economy,
corporate spreads narrow. Noticeably, such levels of inflation have been observed during
good times for the U.S. economy, such as mid 80s and mid 90s.

The term-spread effect is positive and significant in both models, but looks weaker for
the Aaa spread model. The function is S-shaped. This result is consistent with findings in
Couderc et al. (2008), who found a large significant effect of the slope of the term structure
on default rates.14 The slope of the risk-free yield curve is often interpreted as reflecting
inflation and growth expectations. So, a positive slope indicates expectations of future
growth, whereas a negative slope (or curve inversion) indicates worsening economic condi-
tions. Indeed, one can see that negative values of the term-spread are associated with rising
spreads in the Baa model. A negative slope, however, do not seem to affect Aaa spreads,
perhaps indicating the greater sensitiveness of lower rated securities to expectations of neg-
ative growth. (Recall that Baa spreads are the lowest rated of investment-graded bonds.)
The association of a positive slope with increasing spreads is more difficult to interpret.
There are two possible explanations. An increase in slope due to a decrease in the short
rate of interest, usually associated to recessions, could lead to an increase in the risk of
default. Otherwise, an increase in slope due to an increase in the long rate, which suggests
that inflation is expected to rise, would lead investors to expect a deterioration in credit
quality and to require higher yields to hold corporate bonds.

The short rate effect is also highly non-linear. At low and medium-range levels, the
non-linear pattern is similar in both models, first decreasing and then increasing. For
higher rates (i.e. greater than 7.5%), the smooth function has a decreasing trend in the
Aaa spread model, and an increasing trend in the Baa data. (Here, confidence bands are
large for values of the interest rate greater than 10%.)

A negative short rate effect is consistent with the view that economic downturns lead
both to lowering interest rates and a deterioration in credit quality, thus to widening
spreads. The positive slope in the medium-range interest rates region may be linked to
a recovery in the economy and to the fear of inflationary pressures, leading to increasing

14Unlike Couderc et al. (2008), Duffee (1998) failed to find a significant effect of the slope on corporate
spreads. Figlewski et al. (2008) looked at the impact of the long-term rate, and found a significant positive
effect of this variable on transition to default. In contrast, Duffie et al. (2007) did not find long rates
capable of explaining default probabilities.
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spreads. The overall impression, however, is that of a decreasing trend in the Aaa spread-
short rate relation.

On the other hand, widening Baa spreads are associated to increasing short rates. In
this case, rising short-term interest rates seem to lead investors away from defaultable
bonds, lowering bonds prices, and increasing yields. These short-rate effects patterns con-
firm the explorative results in the previous section, and contrast with negative correlations
found in previous studies.

Model term Npar df Npar F Pr F RSS (df) AIC

Aaa spread m(π) 2.6 18.25 0 94.28 (558) 620.40
m(r) 3.4 24.38 0
m(y) 3.2 6.82 0

Baa spread m(π) 2.6 9.49 0 159.75 (558) 922.05
m(r) 3.4 20.77 0
m(y) 3.1 5.10 0.001

Table 3: GAM model of the spread: approximate significance of smooth terms.
Legend: Npar df denotes degrees of freedom, and Npar-F the approximate F value for each
smooth term; pr F s give corresponding p-values. RSS is the sum of squared residuals, with
degrees of freedom (df) in parentheses, and AIC is the Akaike Information Criterion for the
overall model.

Model term estimate (se) t value Pr (> |t|) Adj. R2 F -stat

Aaa spread int. 0.619 (0.049) 12.541 0.000 0.169 44.32
π 0.026 (0.009) 2.911 0.003
r -0.034 (0.009) -3.539 0.000
y 0.157 (0.015) 9.886 0.000

Baa spread int. 0.783 (0.06) 12.496 0.000 0.342 111.4
π 0.069 (0.01) 5.919 0.000
r 0.037 (0.01) 3.032 0.002
y 0.334 (0.02) 16.507 0.000

Table 4: Linear model of the spread.
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Figure 6: GAM model, estimates of smooth terms: Aaa (left column) and Baa spread
(right column). (The “histogram” at the basis of each plot represents the frequency of the
observations, dashed lines are variability bands.)
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The graphs of figure 7 compare historical Aaa and Baa spread values with spread values
predicted from the non-parametric model of this section. The left panel compares fitted
and observed Aaa spread. As it can be observed, the model is good at capturing movements
in the actual series. It is capable of predicting the increasing trend in the spread which
occurred since the mid 90s (although the actual spread is clearly underestimated), and it
also follows the actual series closely in the first two decades of the sample. The model’s
performance, however, weakens in the middle years of the estimation period; in particular,
it fails to predict the sudden increases and subsequent contractions that characterised the
spread series during the 80s. The right panel, which show observed and fitted values of
the Baa spread, presents similar results. The non-parametric model is good at capturing
features of the actual series, but its performance worsens in the middle years of the sample
(e.g. it cannot detect the drop in Baa spread that follows its historical maximum in 1982).
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Figure 7: GAM models with inflation: comparing observed (in black) and fitted values (in
red) of Aaa spread (a) and Baa spread (b).

Overall, the empirical results of this section show that non-parametric models are capa-
ble of capturing the behaviour of corporate spreads, and, in doing so, uncovering novel and
interesting relations among variables. Inflation is found to determine spread in a non-linear
fashion. The relation between spread and risk-free term structure is also non-linear.
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6 Forecasting the spread

This section conducts a simple out-of-sample forecasting experiment. This helps deter-
mining whether the non-linear pattern in historical corporate spread data identified in
previous sections is useful to forecast the future course of the spread. This uses the idea of
conditional forecasting, which enables making what-if questions. For example, if inflation
is equal to a certain value, what is the expected value of the spread.

Conditional forecasting is based on the interpretation of a regression model as a pre-
dictive model. When a non-parametric regression model is used, conditional forecasts give
expected values of the response conditional on functions of explanatory variables. Previ-
ously, the spread (s) was modelled as a non-parametric function of the term-spread (y),
the short rate of interest (r), and the inflation rate (π):

st = mπ(πt) + mr(rt) + my(yt) + ε′t; (28)

Based on the model above, forecasts for the out-of-sample period are formed conditionally
on the values of the explanatory variables, which are assumed known. Thus, following
estimation over t = 1, ..., T , 1-step-ahead forecasts are computed as follows:

ŝT+h = m̂π(πT+h) + m̂r(rT+h) + m̂y(yT+h), h = 1, .., H; (29)

where h indices out-of-sample observations. This additive framework provides a simple
and parsimonious way of generalising (in the non-parametric, non-linear sense) a predictive
linear model. The advantage of this GAM representation is amenability of computation.
There are procedures capable of evaluating the smooth fitted functions at new (out-of-
sample) values of the covariates, at least if these are in the domains of the original data
(Chambers and Hastie, 1992).

In order to perform this experiment, the sample is divided into estimation and forecast-
ing period; the 30 most recent observations are reserved for forecasting purposes (these go
from 2004:1 to 2006:6).

The model of equation 29 is estimated using in-sample data; then, the fit is used to
produce predicted values of the spread over the out-of-sample period. Graphical analysis
enables forecasts to be compared to observed spreads. The left panel in figure 8 presents
actual (st) and fitted values (ŝt) of the Aaa spread (the latter are reported in red, and refers
to the forecasting period only); the right panel does the same for the Baa spread. These
results are encouraging: the fitted models capture the declining trend in the spread over
recent years. However, an interesting feature of the graphs is the suggested upward trend
in the spread forecasts for the last few observations. A closer look at observed spreads
shows that the decreasing trend that followed the 2001 peak has recently slowed down.
In the last few months of the sample period, spreads have been increasing again, as well
as corporate yields. Others prominent features of the data for the forecasting period are
the increase in inflation, and the large increase in the short rate of interest, which led to
a flattening of the yield curve. Forecasts of the spread model seem capable of capturing
these tendencies in the data.
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Figure 8 shows that, at the end of the forecasting period, the model underestimates
realised spreads. In general, forecasts are almost never precisely accurate. Thus, to evaluate
the forecasting performance of a model one should compare its predictions to those of
other competing models, on the basis of some appropriate criteria. Root Mean Squared
Error (RMSE), and Mean Absolute Percentage Error (MAPE) are widely used measures
of forecast accuracy (Gooijer and Hyndman, 2006), given by:

RMSE =

√√√√ 1

H

H∑
t=1

[yt − ft]2; (30)

MAPE = 100/H
H∑

t=1

|yt − ft|
yt

; (31)

Here f is the forecast, y the observed value of the series, and H the length of the forecasting
period. These measures are based on the forecast error in t, defined as et = yt − ft, and
on a loss function L = l(e): the RMSE, for example, is based on a quadratic loss function.
The MAPE is based on the average distance between forecasts and actual values, without
regard to whether individual forecasts are overestimates or underestimates. The RMSE
also shows the size of the error without regard to sign, but it gives greater weight to larger
errors.
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Figure 8: Aaa spread (a) and Baa spread (b): realised and predicted values (in red).

The following compares the forecasting performance of the non-parametric spread
model of equation 28 (the base model) to several alternative specifications: 1) a linear
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version of the base model; 2) an additive model which includes past values of the spread;
3) a benchmark linear first-order auto-regression, denoted by AR(1). The linear model is
as follows:

st = α + βππt + βrrt + βyyt + εt; (32)

The additive models with lagged spread is specified as:

st = mπ(πt) + mr(rt) + my(yt) + ml(st−4) + ε′′t ; (33)

(Here, the selected past value of the spread is the spread observed at the beginning of the
previous quarter.) Models estimates are used to construct forecasts and forecast errors.15

Tables 5 and 6 report, along with measures of (in-sample) goodness of fit, the two
criteria of forecasting performance, RMSE and MAPE. For both Aaa and Baa spreads,
the RMSE and MAPE have their minima for the non-parametric model with past values
of the spread. The base model, however, does better than the linear model and the AR(1)
model when estimated using Aaa spread data. Its performance, however, worsens for Baa
spread data.

Figures 9 – 11 present comparisons of forecasts and observed values for the additive
model with lags, the linear model, and the AR(1) dynamics. Looking at the various
graphs, one can see that the non-parametric model with lag, and the AR(1) model, tend
to overestimate the observed spread. The linear model, instead, tends to underestimate it.
These tendencies are not detected by accuracy criteria such as RMSE and MAPE, which
do not distinguish between positive and negative forecast error. Furthermore, forecasts
based on AR(1) do not capture the increase in spreads at the end of the sample. Thus, we
believe that the non-parametric model of equation 28 still provides useful information for
forecasting, and is preferable to models based on linear specifications.

The analysis of this section showed that non-linear models lead to forecast improve-
ments on linear specifications. These results are encouraging, however, non-parametric
conditional forecasting has several limitations: a) it is not possible to form forecast when
new values of explanatory variables are outside the domain of the available observations;
b) the computation is restricted to 1-step-ahead forecasts, as it is not possible to find re-
cursive formulas such as those used in time series forecasting. These problems are due to
the model-free nature of the estimation. The second issue may be addressed using time
series processes of the explanatory variables to form multi-step ahead forecasts. However,
explanatory factors follow diffusion processes in term-structure analysis, which should be
approximated with discrete auto-regressions. Furthermore, these processes themselves are
likely to be non-linear, in which case multi-step forecasts quickly become extremely com-
plex. This would introduce both uncertainty and bias in the forecasts. The first issue
could be addressed specifying non-linear but parametric models. However, forecasts based

15The AR(1) model has been chosen accordingly to the AIC criterion. The model estimates and forecasts
are produced using the package stats and forecast (the latter by R. Hyndman). The additive model
with lags includes the spread observed at the beginning of the previous quarter (i.e. at time t − 4). We
chose to include only one lagged value because of the dimensionality problem that comes with additional
explanatory terms in non-parametric estimation.
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on parametric non-linear models often suffers of the same problems of non-parametric fore-
casts listed above, unless it is possible to identify a simple relation among variables: the
following illustrate an attempt to specify a parametric model of the corporate spread using
the information provided by the non-parametric model.

Model RSS AIC RMSE MAPE

Model 28 98.69 648.10 0.182 15.64%

Model 32 126.71 781.93 0.248 21.60%
Model 33 25.76 -196.30 0.112 8.65%
AR(1) 9.60 -788.17 0.184 17.13%

Table 5: Forecasting models of the Aaa spread : relative performance. Legend: RSS denotes
the residual sum of squares, AIC the Akaike information criterion; RMSE is the root mean square
forecast error, and MAPE the mean absolute percentage error.

Model RSS AIC RMSE MAPE

Model 28 171.41 984.85 0.367 16.44 %

Model 32 203.84 1070 0.323 15.39%
Model 33 48.18 220.12 0.177 8.35%
AR(1) 17.63 -421.83 0.204 9.80%

Table 6: Forecasting models of the Baa spread : relative performance.(Legend: as above.)
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Figure 9: Additive model with lags (eq. 33): observed and forecasted values (in red) for
Aaa spread (a) and Baa spread (b).
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Figure 10: Linear model (eq. 32): observed and forecasted values (in red) for Aaa spread
(a) and Baa spread (b).
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Figure 11: AR(1) model: observed and forecasted values (in red) for Aaa spread (a) and
Baa spread (b).

7 A parametric non-linear model of the spread

This paper has illustrated several uses of non-parametric regression techniques, such as
model specification, estimation, testing and forecasting. One of the purposes of non-
parametric analysis is to aid parametric modelling, by suggesting specific linear or non-
linear models. This section does this focusing on the relation of corporate spreads to
inflation. The analysis is conducted using the smooth transition regression approach.

The analysis of an additive spread model in section 5.2 suggested a possible threshold
behaviour in the response of spreads to inflation, with the response changing slowly over
values of inflation. To study threshold behaviour of economic variables, regime switching
models have been proposed. Such models interpret economic relations as characterised by
“regimes”, each regime being associated to a particular state of the world. (As a result,
regression models are piecewise linear specifications.) Among regime switching models,
Smooth Transition Regressions (STRs) (Teräsvirta, 1994) are preferred here as they model
changes in regime as continuous functions of explanatory variables. STRs describe the
dependence of the spread (s) on the vector of explanatory variables (X) as follows:

st = β
′
0Xt + F (wt)β

′
1Xt + ut, t = 1, . . . , T ; (34)

Here, the βis are vectors of parameters, w a transition variable, and u an iid error term.
F , the function that determines the transition between regimes, often takes the logistic
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form:

F (wt) =
1

1 + exp{−λΠ2
k=1(wt − ck)} ; (35)

Regimes are associated with the extreme values of the transition function, F = 0, F = 1,
which changes monotonically as the transition variable w increases. The parameters cjs
are interpreted as thresholds between regimes, and λ as the speed of transition. Different
values of k are associated to different types of regime-switching behaviour. While a value
of k = 1 is capable of characterising asymmetric behavior, k = 2 is appropriate in a sit-
uation in which the behaviour of the relation of interest is similar at low and high value
of s and different in the middle. Clearly such structure does not only allow interactions
between transition and explanatory variables, but also permits intermediate positions be-
tween regimes — hence, the name of smooth transition regression. When the transition
function is logistic, STRs are called Logistic Smooth Transition Regressions (LSTRs). van
Dijk et al. (For details on STR modelling see, for example 2002).

We start the analysis by testing the linear specification against the LSTR type of non-
linearity. (Inflation is selected as transition variable.) This is done using a small sample
version of the test proposed by Luukkonen et al. (1988), which compares the observed test
statistic with critical values from a F distribution with 3D and T − 4D − 1 degrees of
freedom, where D is the length of the vector X (see van Dijk et al., 2002, p.13). The LM-
type linearity of Luukkonen et al. (1988) is based on a third-order Taylor-series expansion
of the transition function of equation 35, which yields the following auxiliary regression:

st = β′0Xt +
3∑

j=1

β′jX̃tw
j
t + ε; (36)

The null hypothesis is H0 : β1 = β2 = β3 = 0. (Under the null, the test statistic follows a
χ2 asymptotic distribution.) Once linearity is rejected in favour of LSTR nonlinearity, we
need to select the appropriate form of the transition function. Here, the choice is between
a model with a single switching mechanism (k = 1 in equation 35) and a model with
two switching mechanisms (k = 2) (hereafter referred to as, respectively, LSTR(1) and
LSTR(2)). This is because, as seen above, the LSTR(2) model is especially useful in the
case of reswitching. To choose between LSTR(1) and LSTR(2), Teräsvirta (1994) suggests
the following test sequence:

H03 : β3 = 0

H02 : β2 = 0|β3 = 0

H01 : β1 = 0|β3 = β2 = 0

The LSTR(2) specification should be preferred when the test of H02 yields the strongest
rejection.

Table 7 gives the results of the linearity test, which support non-linearity of the LSTR
type. The data strongly reject the null hypotheses of linearity (H0) for both Aaa and
Baa spreads when inflation is selected as transition variable. The test sequence based

31



on hypotheses H03-H02-H01, however, does not provide a clear answer in favour of either
k = 1 or k = 2. So, I estimate both LSTR(1) and LSTR(2) models and postpone the
choice between the two specifications to the stage of model fitting and evaluation.

Hypothesis F -stat
Aaa Spread
H0 F (9, 625) = 23.02 (0.0000)
H03 F (3, 625) = 10.27 (0.0000)
H02 24.88 (0.0000)
H01 28.21 (0.0000)
Baa Spread
H0 F (9, 625) = 14.57 (0.0000)
H03 F (3, 625) = 20.28 (0.0000)
H02 14.13 (0.0000)
H01 6.88 (0.0001)

Table 7: F statistics for the linearity tests of the spread models. (p-Values in
parentheses; transition variable: inflation, π.)

Since linearity is rejected by the F test, we proceed by estimating the LSTR models,
which yields results reported in table 8 for the Aaa spread and table 9 for the Baa spread.

A first look at the estimation results shows that all coefficients are significant, with large
t-ratios. One interesting feature is that the estimates of γ, the parameter that controls the
speed of the transition among regimes, are very large, such that the transition between
regimes is rapid.16 (Transition functions for both models are depicted in figures 12 and ??,
panel (a), in appendix C.) The LSTR(1) model captures two regimes. The estimates of γ
and c are such that the change of the logistic function from zero to 1 takes place rapidly
for an inflation rate of about 2%.

A comparison of the LSTR(1) and LSTR(2) specifications shows there is little difference
between the two models in terms of overall fit and parameters’ significance. (For example,
in the Aaa spread model, there is only a 0.2% gain in terms of residuals standard deviation
when moving from a LSTR(1) to a LSTR(2) specification.) Estimation results casts serious
doubts on the ability of the LSTR(2) model to fit the data. A problem is that the LSTR(2)
model does not produce plausible estimates of the thresholds. (For example, for the Aaa
spread model, c1 and c2 are equal to, respectively, −0.722 and 2.268. These values are
nowhere near those suggested by the estimates of the non-parametric additive model, which
can be seen in figure 6.) This is also evidenced by the plots of the transition functions,

16The estimates of γ have t-ratios close to zero. Teräsvirta (1994) points out that, in such case, the
large standard deviation and small t-value are consequences of lack of information around the thresholds,
rather than of genuine lack of significance of the parameter.
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which show a remarkable lack of data to the left (right) of the first (second) threshold in
the model for Aaa (Baa) spreads.

To clarify this point, we proceed by imposing restrictions on the parameters of the
LSTR models so that risk-free rates are present only in the linear part of the model.
This exploits general trends in the relation of risk-free rates to spread indicated by the
estimation of the additive model and linear model of the spread. The estimation of the
restricted model gives thresholds values closer to those suggested by the non-parametric
model. The thresholds estimates, however, have very low t-ratio, which suggests they are
not reliable. (Estimates for the restricted models are reported in the last columns of table
8 and 9.)

This analysis showed that LSTR model of the spread seems capable of capturing one of
the switching mechanism identified by the non-parametric model in the relation between
inflation and spreads. Noticeably, the threshold of a LSTR(1) model of the spread captures
the first turning point of the inflation effect highlighted by the non-parametric estimation.
The non-parametric model, however, seems to suggest that more than one regime is present
in the relation of spread to inflation. The LSTR(2) model, however, does not seem capable
of reproducing this feature. One possible explanation for this is that the remaining non-
linearity is more complex than what is possible to render with a non-linear but parametric
model.
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model: LSTR(1) LSTR(2) Restricted
coefficient
linear part
int −0.777 (−7.031) -0.822 (-7.127) 1.066 (14.910)
π 0.132 (2.745) 0 .171 (3.059) -0.040 (-1.900)
r 0.176 (6.203) 0.175 (6.161) -0.044 (-4.943)
y 0.593 (13.467) 0.586 (13.261) 0.123 (8.312)
nonlinear part
int 1.887 (14.947) 1.932 (14.813) -0.758 (-9.778)
π -0.137 (-2.804) -0.176 (-3.110) 0.100 (4.965)
r -0.235 (-7.853) -0.233 (-7.815)
y -0.53528 (-11.479) -0.528 (-11.296)
transition parameters
γ 166.683 (0.451) 158.791 (0.481) 513.27 (0.001)
c1 2.266 (28.625) -0.722 (-14.851) 1.406 (0.197)
c2 2.268 (31.904) 5.695 (1.131)
goodness-of-fit measures
se 0.382 0.381 0.404
AIC -1.912 -1.911 -1.797

R
2

0.412 0.414 0.340

Table 8: Aaa Spread: summary estimates of LSTR models . (Values in parentheses
are estimated t-ratios; se is the standard deviation of residuals. Full estimation results for
these models are shown in Table 10, Appendix C.)
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model: LSTR(1) LSTR(2) Restricted
coefficient
linear part
int -0.822 (-5.589) 1.195 (14.525) 1.241 (15.654)
π 0.144 (2.235) 0.036 (-1.131) -0.018 (-1.042)
r 0.284 (7.500) 0.024 (2.005) 0.032 (2.694)
y 0.935 (16.026) 0.227 (10.853) 0.309 (15.261)
nonlinear part
int 1.989 (11.845) -1.976 (-11.871) -0.750 (-8.680)
π -0.101 (-1.529) 0.038 (1.030) 0.121 (6.998)
r -0.262 (-6.574) 0.731 (12.352)
y -0.707 (-11.430) 0.265 (6.757)
transition parameters
γ 113.297 (1.032) 34.288 (0.589) 425.64 (0.001)
c1 2.232 (52.506) 2.228 (40.370) 1.404 (0.359)
c2 14.423 (332.546) 9.350 (0.139)
goodness-of-fit measures
se 0.505 0.504 0.541
AIC -1.350 -1.351 -1.217
R2 0.493 0.495 0.418

Table 9: Baa Spread: summary estimates of LSTR model. (Full estimation results
for these models are shown in Table 11, Appendix C.)

8 Conclusions

This paper tested affine RFMs of credit risk against their non-parametric counterparts to
better explain the determinants of risk premia. The analysis, based on corporate spread in-
dices, showed that, despite their common use, there is no empirical evidence to support the
restrictions imposed by affine models. On the contrary, evidence suggests that parametric
choices in affine RFMs are too restrictive.

This paper demonstrated the non-linearity of functions that describe how the models’
factors contribute to the determination of spreads. This was confirmed using a formal test
for the linearity of a regression function. The goodness-of-fit of the non-linear models over
the estimation period, and the adequacy of the non-parametric approach, was further eval-
uated by comparing observed spreads and predicted values from non-parametric models.
The non-parametric models have proved to be able to fit the data well.

The paper showed that the inflation rate plays an important role in explaining corpo-
rate spreads. Increasing inflation is associated to widening spreads, and this relationship
is stronger when inflation is low (or high), which is consistent with the view that higher
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inflation increases the number of bankruptcies, leading to an increase in the spread. This
non-linear effect of inflation is also confirmed by the estimation of a non-linear but para-
metric model of the spread.

This analysis showed that the use of non-parametric techniques together with non-
linear but parametric modelling offers interesting insights, revealing relations of interests
among economic and financial time series. It also showed the relevance of non-parametric
techniques, as non-linear but parametric models are often unable to capture in full non-
linear dynamics.

This paper provided evidence in favour of non-parametric methods to improve spread
forecasts. Conditional forecasts based on non-parametric models out-perform forecasts
based on linear models. Linear time series models are widely used in forecasting. In
general, this is motivated by the assumption that data are normally distributed. Yet, as
shown in this paper, many financial variables do not have a normal distributions. Non-
parametric modelling avoids the problem of structural instability in the parameters, which
is well known to cause the break-down in the forecasting performance of linear predic-
tive models, because it naturally accomodates changes in parameters. Regime changes,
varying parameters, and more complex non-linearities are captured without the need of
pre-specifying models’ functional forms. Nonetheless, this work pointed out important
limitations of conditional non-parametric forecasting, for which recursive formulas are un-
available. This make non-parametric forecasting difficult and calls for further research in
this area. Future work will look at the use the time series process of the variables of interest
to form multi-step ahead forecasts.

Computations. The non-parametric analysis was performed in this paper have been
carried out using the open-source statistical software R (R Development Core Team, 2007).
The estimation of the LSTRs was carried out using the freely available software JMulTi

(see Lütkepohl and Krätzig, 2004).
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Genève, 2008.

J. C. Cox, J. E. Ingersoll, and S. A. Ross. A theory of the term structure of interets rates.
Econometrica, 53:385–407, 1985.

Q. Dai and K. J. Singleton. Specification analysis of affine term structure models. The
Journal of Finance, LV:1943–1978, 2000.

A. C. Davison and D. V. Hinkley. Bootstrap methods and their application. Cambridge
University Press, 1997.

J. Driessen. Is default risk even priced in corporate bonds? Review of Financial Studies,
18:165–195, 2005.

G. R. Duffee. The relation between treasury yields and corporate bond yield spread. The
Journal of Finance, 53:2225–2241, 1998.

G. R. Duffee. Estimating the price of default risk. The Review of Financial Studies, 12:
197–226, 1999.

D. Duffie and K. J. Singleton. An econometric model of the term structure of interest-rate
swap yields. The Journal of Finance, LII:1287–1321, 1997.

D. Duffie and K. J. Singleton. Modeling term structures of defaultable bonds. The Review
of Financial Studies, 12:687–720, 1999.

37



D. Duffie and K.J. Singleton. Credit Risk: Pricing, Measurement and Management. Prince-
ton Series in Finance. Princeton, Princeton, New Jersey, 2003.

D. Duffie, L. Saita, and K. Wang. Multiperiod corporate default prediction with stochastic
covariates. Journal of Financial Economics, 2007), volume = 83, pages = 635-666,.

E. J. Elton, M. J. Gruber, D. Agrawal, and C. Mann. Explaining the rate spread on
corporate bonds. The Journal of Finance, 56:247–277, 2001.

J. Fan. Design-adaptive nonparametric regression. Journal of the American Statistical
Association, 87:998–1004, 1992.

J. Fan and J. Jiang. Nonparametric inference with generalised likelihood ratio tests. TEST,
16:409–444, 2007.

J. Fan and J. Jiang. Nonparametric inference for additive models. Journal of the American
Statistical Association, 100:890–907, 2005.

J. Fan and Q. Yao. Nonlinear time series. Nonparametric and parametric methods. Springer
series in statistics. Springer, 2003.

J. Fan, C. Zhang, and J.Zhang. Generalized likelihood ratio statistics and wilks phe-
nomenon. The Annals of Statistics, 23:153–93, 2001.

S. Figlewski, H. Frydman, and W. Liang. Modeling the effect of macroeconomic factors
on corporate default and credit rating transitions. 2008.

J. Gil-Bazo and G. Rubio. A nonparametric dimension test of the term structure. Studies
in Nonlinear Dynamics and Econometrics, 8, 2004.

J. G. De Gooijer and R. J. Hyndman. 25 years of time series forecasting. International
Journal of Forecasting, 22:443–473, 2006.
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A The spread formula

This appendix illustrates the derivation of the linear spread equations of section 1 (equa-
tions 6 and 7).

Duffie and Singleton (1997) showed that the price of a defaultable zero-coupon bond is
given by the expectation of a cumulative risk-adjusted interest rate:

Pt = EQ
t [exp{−

∫ T

t

Rsds}], (37)

where T denotes the maturity date and R the risk-adjusted rate; the risk-adjusted rate
equals the risk-free rate r plus a premium, λ, which captures default risk:

R = λ + r; (38)

In the financial literature, λ is often referred to as the mean-loss rate, because it depends
on the probability of default and on the fraction of market value of the asset lost upon
default. Here, for simplicity, I assume that the recovery rate is zero so that λ depends only
on the probability of default. (This is why, in this article, λ is referred to as the default
rate.)

Alternative approaches to the econometric modelling of spreads on risky securities follow
from equation 37 above. These are based either on the direct parameterisation of R, or on
the parameterisation of its components λ and r. Duffie and Singleton (1997) pursued the
first approach, and modelled the risk-adjusted rate as the sum of unobservable factors, or
state variables, described by square-root diffusion processes (Cox et al., 1985). In contrast,
Duffee (1999) specified dynamic processes for both r and λ as follows:

r = y1 + y2,

λ = b1y1 + b2y2 + y3;

One can see that this model allows the default rate to depend on the risk-free rate via the
common factors y1 and y2 and the “correlation” coefficients b1 and b2. (Factors yis follow
independent square-root stochastic process.)

From the models above, one can obtain an analytic solution for the price of the risky
bond as a function of the underlying variables (Bolder, 2001; Duffie and Singleton, 2003).
This function represents the link between the factors’ dynamics and the term-structure
of the risk-adjusted rate, the latter being represented as a deterministic static relation
between yields and state variables. Once the bond price is known, the spread is easily
calculated as the difference between the yield on the risky bond and the yield on the
risk-free bond.

Consider again the pricing equation 37. Substituting equation 38 in 37, one can see
that the price of the zero-coupon zero-recovery risky bond can be written as the product
of the risk-free bond price ∆ and a price component that depends on the default rate D:

P
(τ)
t = D(τ)(λ)∆(τ)(r); (39)
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(Here, τ ≡ T − t denotes time to maturity.) The two price components have the following
analytical forms:

D(τ)(λ) = AD(τ) exp{−BD(τ)λ}, (40)

∆(τ)(r) = A∆(τ) exp{−B∆(τ)r}; (41)

Here, the coefficients A∆, B∆, AD, BD are deterministic functions of underlying diffusion
parameters and time to maturity. (These functions are given in Bolder, 2001, , pg 42-
46.). Substituting equations 40 and 41 back into the price equation 39 yields an analytic
expression for the risky-bond price as a function of factors. Yields are then easily computed
by taking logs. The resulting observable spread, obtained by subtracting the risk-free yield
from the yield on the risky bond, is linear in the default rate λ:

s = − log AD(τ)

τ
+

BD(τ)

τ
λ; (42)

(Note that this expression correspond to equation 6 in the main text.)
Let us consider a simplified version of Duffee’s model above:

r = y2, (43)

λ = y1 + by2, (44)

Where ys are independent state variables following, say, square-root processes. (Note
that λ depend on the risk-free rate r, so that the risk-adjusted rate has the general form
R = λ(r)+r.) Using 43 and 44, the risk-adjusted rate can be written as R = y1 +(1+b)y2,
and the pricing equation becomes:

Pt = EQ
t

[
exp

{
−

∫ T

t

y1 + (1 + b)y2ds

}]

= EQ
t

[
exp

{
−

∫ T

t

y1ds−
∫ T

t

(1 + b)y2ds

}]
;

The price of the risky bond is, once again, the product of a default and risk-free component,
and is given by:

P
(τ)
t = AD(τ) exp{−BD(τ)y1}A∆(τ) exp{−B∆(τ)(1 + b)y2; } (45)

(As above, B and A denotes deterministic coefficients depending on underlying diffusions’
parameters.) The price of a risk-free bond can be written as follows:

∆ = A∆(τ) exp{−B∆(τ)y2; } (46)

The spread is computed by subtracting the yield of the risk-free asset from the yield on
the risky bond:

s = −logD/τ + log∆/τ

= − logAD(τ)

τ
+

BD(τ)y1

τ
− logA∆(τ)

τ
+

B∆(τ)(1 + b)y2

τ
+

logA∆(τ)

τ
− B∆(τ)y2

τ
;
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Which gives:

s = − log A(τ)

τ
+

bB∆(τ)

τ
y2 +

BD

τ
y1; (47)

Using the fact that y1 = λ− by2, some algebraic manipulations lead to a spread equation
linear in default rate and risk-free rate:

s = − log A(τ)

τ
+

b(B∆(τ)−BD(τ))

τ
r +

BD

τ
λ; (48)

By setting bB∆ = B̃∆ and bBD = B̃D, one can see that equation 48 above is equivalent
to equation 7 in Section 1. (Note that the spread equation derived in this section can
be inverted to write the mean-loss rate as a linear function of observable variables.) One
should also note that, in terms of implications on yield-spread, the models proposed by
Duffee (1999) and Duffie and Singleton (1997, 1999) are equivalent (this is not proved here
for reasons of space).

B Back-fitting of GAMs

The back-fitting algorithm, used for fitting additive models such as y = α+m1(x1)+ ......+
mD(xD) + ε consists of the following steps:

• Step 1. Initialisation (i = 0):
α̂ =

∑
y/n; m0

j = 0, j = 1, .., d;

• Step 2. i = i + 1;
for each j = 1, .., D define partial residuals εj = y − α̂−∑

d6=j m̂
(i)
d (xd);

compute m̂j
(i+1) = Sj(εj), where S denotes a univariate smoother (usually, this is a

local-linear smoother or a spline smoother);

• Step 3. Keep cycling step 2 until convergence is reached.

The idea is to produce a fit, compute partial residuals, re-fit, until some convergence
criterion is satisfied. One can see that the basic building block of the algorithm is the
linear smoother S, which estimates the individual functions. (This article uses the local-
linear smoother.) Intuitively, a justification to this approach is provided by the following
fact: if the additive model is correct, then

E[Y − α−
∑

d 6=j

md(Xd)|Xj] = mj(Xj); (49)

The back-fitting algorithm is detailed in Buja et al. (1989). One can also see Hastie and
Tibshirani (1990), and Chambers and Hastie (1992) for its implementation in S.
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C Smooth transition model of the spread

(a) (b)

Figure 12: LSTR(1) models for Aaa (a) and Baa (b) spread: transition function (G) against
the transition variable (inflation).

(a) (b)

Figure 13: LSTR(2) models for Aaa (a) and Baa (b) spread: transition function (G) against
the transition variable (inflation).
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model LSTR(1) LSTR(2)
coefficient estimates t value estimates t value
linear part
int -0.777 (0.110) −7.031∗∗∗ -0.822 (0.115) −7.127∗∗∗

y 0.592 (0.044) 13.467∗∗∗ 0.586 (0.0442) 13.261∗∗∗

r 0.176 (0.0284) 6.203∗∗∗ 0.175 (0.028) 6.161∗∗∗

π 0.132 (0.048) 2.745∗∗∗ 0 .171 (0.056) 3.0587∗∗∗

nonlinear part
int 1.888 (0.126 ) 14.947∗∗∗ 1.932 (0.130) 14.813∗∗∗

y -0.535 (0.047) −11.479∗∗∗ -0.529 (0.047) −11.296∗∗∗

r -0.235 (0.030) −7.853∗∗∗ -0.233 (0.030) −7.815∗∗∗

π -0.137 (0.048) −2.804∗∗∗ -0.176 (0.057) −3.110∗∗∗

transition parameters
γ 166.683 (369.268) 0.451 158.791 (330.180) 0.481
c1 2.266 (0.080) 28.625∗∗∗ -0.722 (0.049) −14.851∗∗∗

c2 2.267 (0.071) 31.904∗∗∗

goodness-of-fit measures
se 0.381 0.381
AIC -1.911 -1.911
R2 0.412 0.414

Table 10: Determinants of Aaa Spread: LSTR models. For coefficients’ estimates,
values in parentheses are coefficients’ standard errors; significance code: ∗∗∗ corresponds to
1% significance.
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model STR(1) STR(2)
coefficient estimates t value estimates t value
linear part
int -0.822 (0.147) −5.589∗∗∗ 1.195 (0.082) 14.525∗∗∗

term-spread 0.935 (0.058) 16.026∗∗∗ 0.227 (0.021) 10.853∗∗∗

inflation 0.144 (0.064) 2.235∗∗ 0.036 (0.012) −1.131∗∗∗

short rate 0.284 (0.038) 7.500∗∗∗ 0.024 (0.012) 2.005∗∗

nonlinear part
int 1.989 (0.168) 11.845∗∗∗ -1.976 (0.166) −11.871∗∗∗

term-spread -0.707 (0.062) −11.430∗∗∗ 0.265 (0.039) 6.757∗∗∗

inflation -0.101 (0.065) −1.529∗ 0.038 (0.037) 1.030∗∗∗

short rate -0.262 (0.039) −6.574∗∗∗ 0.731 (0.059) 12.352∗∗∗

transition parameters
γ 113.297 (109.801) 1.032 34.288 (58.232) 0.589
c1 2.232 (0.042) 52.506∗∗∗ 2.228 ( 0.055) 40.370∗∗∗

c2 14.423 ( 0.043) 332.546∗∗∗

goodness-of-fit measures
se 0.505 0.504
AIC -1.350 -1.351
R2 0.493 0.495

Table 11: Determinants of Baa Spread: STR models. For coefficients’ estimates,
values in parentheses are coefficients’ standard errors; significance code: ∗∗∗ corresponds to
1% significance.
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