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ABSTRACT 
This paper considers the classical Newsvendor model, also known as the Newsboy problem, 
with the demand to be fully observed and to follow in successive inventory cycles one of the 
Exponential, Rayleigh, and Log-Normal distributions. For each distribution, appropriate 
estimators for the optimal order quantity are considered, and their sampling distributions are 
derived. Then, through Monte-Carlo simulations, we evaluate the performance of 
corresponding exact and asymptotic confidence intervals for the true optimal order quantity. 
The case where normality for demand is erroneously assumed is also investigated. 
Asymptotic confidence intervals produce higher precision, but to attain equality between their 
actual and nominal confidence level, samples of at least a certain size should be available. 
This size depends upon the coefficients of variation, skewness and kurtosis. The paper 
concludes that having available data on the skewed demand for enough inventory cycles 
enables (i) to trace non-normality, and (ii) to use the right asymptotic confidence intervals in 
order the estimates for the optimal order quantity to be valid and precise. 
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1. INTRODUCTION 
Inventory management is a crucial task in the operation of firms and enterprises. For 

products whose life-cycle of demand lasts a relatively short period (daily and weekly 

newspapers and magazines, seasonal goods etc), newsvendor (or alternatively newsboy) 

models offer quantitative tools to form effective inventory policies. The short period where 

demand refers to and inventory decisions should be made represents an inventory cycle. In 

general, applications of such models are found in fashion industry, airline seats pricing, and 

management of perishable food supplies in supermarkets. 

Among the alternative forms of newsvendor models, the classical version refers to the 

purchasing inventory problem where newsvendors decide on a one-time basis and their 

decisions are followed by a stochastic sales outcome. In such cases, newsvendors have to 

predict order quantities in the beginning of each inventory cycle (or period) and products 

cannot be sold in the next time period if the actual demand is greater than the order quantity, 

as any excess inventory is disposed of by buyback arrangements. At the same time, there is an 

opportunity cost of lost profit in the opposite situation (Chen and Chen, 2009), where at the 

end of the inventory cycle an excess demand is observed. 

During the last decades, a number of researchers have explored the issue of the 

optimal order quantity for cases of uncertainty in demand. Alternative extensions of 

newsvendor models have been published in the literature, and Khouja (1999) provides an 

extensive search of these works till 1999. Since then, various papers have explored the 

newsboy-type inventory problem like Schweitzer and Cachon (2000), Casimir (2002), Dutta 

et al. (2005), Salazar-Ibarra (2005), Matsuyama (2006), Benzion et al. (2008), Wang and 

Webster (2009), Chen and Chen (2010),  Huang et al. (2011), Lee and Hsu (2011), and Jiang 

et al. (2012). However, the crucial condition of applying these models in practice is that 

parameters of demand distributions should be known, something that does not hold. And, 

unfortunately, the extent of applicability of newsvendor models in inventory management to 

determine the level of customer service depends upon the estimation of demand parameters. 

The problem of uncertainty becomes even more severe for certain types of product, like 

seasonal clothing, for which data on demand are available only for few inventory cycles 

(ensuring that market conditions do not change), and this makes estimation procedures to be 

under question. 

Research on studying the effects of demand estimation on optimal inventory policies 

is limited (Conrad 1976; Nahmias, 1994; Agrawal and Smith, 1996; Hill, 1997; Bell, 2000). 
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Besides, none of these works addressed the problem of how sampling variability of estimated 

values of demand parameters influences the quality of estimation concerning optimal ordering 

policies. And recently, it has been recognized that effective applications of newsvendor 

models to form reliable inventory policies depend upon the variability of estimates for the 

parameters of probabilistic laws which generate demand in successive inventory cycles. 

Assuming that demand follows the normal distribution, for the classical newsvendor model, 

Kevork (2010) developed appropriate estimators to explore the variability of estimates for the 

optimal order quantity and the maximum expected profit. His analysis showed that the weak 

point of applying this model to real life situations is the significant reductions in precision and 

stability of confidence intervals for the true maximum expected profit when high shortage 

costs occur. Su and Pearn (2011) developed a statistical hypothesis testing methodology to 

compare two newsboy-type products and to select the one that has a higher probability of 

achieving a target profit under the optimal ordering policy. The authors provided tables with 

critical values of the test and the sample sizes which are required to attain designated type I 

and II errors. Prior to these two works, Olivares et al. (2008) presented a structural estimation 

framework to disentangle whether specific factors affect the observed order quantity either 

through the distribution of demand or through the overage/underage cost ratio. 

When demand follows specific non-symmetric patterns, this paper explores the extent 

of applicability of the classical newsvendor model to form effective ordering policies on the 

basis of studying quality and precision of estimates for the optimal order quantity. To the 

authors’ knowledge, this is performed for the first time for skewed distributions of demand. 

Assuming that demand is fully observed and is formed independently in successive inventory 

cycles according to the Exponential, Rayleigh, and Log-Normal distributions, appropriate 

estimators for the optimal order quantity are established, whose form incorporates known 

estimators for the parameter(s) of each distribution. To measure the variability of different 

estimates for the optimal order quantity, exact and asymptotic confidence intervals for the true 

optimal order quantity are derived. Organizing appropriate Monte-Carlo simulations, the 

properties of confidence intervals are traced by evaluating at different sample sizes (a) the 

coverage, namely, the estimated actual confidence level attained by the intervals, and (b) their 

relative precision regarding the true optimal order quantity. 

The choice of Exponential and Rayleigh distributions was made as their coefficients of 

variation, skewness, and excess kurtosis remain unaltered in changes of their parameter. The 

Log-Normal distribution was also selected to study effects of changing coefficients of 

variation, skewness and excess kurtosis on quality and precision of estimates for the optimal 
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order quantity. For this reason, two sets of distributions are defined. The first set includes the 

Rayleigh and Log-Normal, and the second set the Exponential and Log-Nornal again, but the 

values of mean and variance for the two Log-Normal distributions were specified in such a 

way that the distributions of each set to have the same coefficient of variation. Comparing 

also the two sets, (a) in each set the Log-Normal displays greater skewness and higher 

kurtosis than the Rayleigh or Exponential respectively, and (b) the second set including the 

Exponential distribution presents as a whole larger coefficients of variation, skewness and 

excess kurtosis than the first set having the Rayleigh distribution. 

The Exponential, Weibull (a special case of which is the Rayleigh) and Log-Normal 

distributions have been extensively used in various papers related to inventory management, 

but with different aims than those which are considered in the current work. For the Newsboy 

problem, Khouja (1996) used an exponential distributed demand to illustrate the effect of an 

emergency supply, and Lau (1997) offered closed-form formulas for computing the expected 

cost and the optimal expected cost when demand follows the exponential distribution. Hill 

(1997) used the exponential distribution to perform analytical and numerical comparisons 

between the Frequentist and Bayesian approach for demand estimation. The Log-Normal 

distribution was used in the work of Ridder et al. (1998), who illustrated for the newsvendor 

model that a reduction of demand uncertainty will not result in the desired cost reduction. Lau 

and Lau (2002) used both the exponential and Weibull distributions in a manufacturer-retailer 

channel to study the effects of retail-market demand uncertainty on revenues, order quantities 

and expected profits. For the multi-product Newsboy model with constraints, Areeratchakul 

and Abdel-Malek (2006) modeled demand as Exponential, Log-Normal, and Weibull to 

provide a solution methodology, which was based on quadratic programming and a triangular 

presentation of the area under the cumulative distribution function of demand. Considering 

that demand follows the Weibull distribution and including risk preferences of the inventory 

manager to the classical newsvendor problem, Jammernegg and Kischka (2009) showed that 

robust ordering decisions can be derived from assumptions on stochastic dominance. For the 

multi-product competitive newsboy problem, Huang et al. (2011) used the exponential 

distribution to test the validity of a static service-rate approximation for the dynamic and 

stochastic availability of each product. Apart from the previous indicative list of papers, the 

Exponential and the Log-Normal distributions have been also used to many other works like 

Geng et al. (2010), Grubbstrom (2010), Dominey and Hill (2004), Mostard et al. (2005), Choi 

and Ruszczynski (2008). 
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The experimental framework of the current work also allows the study of effects of 

assuming a normal demand when in fact demand distribution follows a non-symmetric 

pattern. Under a normal demand, exact confidence intervals are given, while for large 

samples, Kevork’s (2010) confidence interval form is followed. Assuming erroneously 

normality, we investigate, analytically and through Monte-Carlo simulations, the performance 

of exact and asymptotic confidence interval methods held under a normal demand, when in 

fact demand follows one of the three skewed distributions under consideration. The two 

criteria are again the coverage and the relative precision regarding the true optimal order 

quantity which is obtained from the true demand distribution. 

The aforementioned arguments and remarks lead the rest of the paper to be structured 

as follows. Section 2 establishes the experimental framework for the adopted skewed 

distributions and develops alternative estimators for the optimal order quantity. Section 3 

derives exact and asymptotic distributions of the estimators and presents Monte-Carlo 

simulation results for the coverage and precision that the corresponding confidence intervals 

attain under different combinations of finite samples and probabilities of not observing stock-

outs at the end of any inventory cycles. Under both an analytic way and through Monte-Carlo 

simulations, section 4 explores the validity of applying confidence intervals held under a 

normal demand to different sample sizes from the three specific skewed distributions. Finally, 

the last section summarizes the most important findings of the current work.  

 

2. ESTIMATORS FOR OPTIMAL ORDERING POLICIES  
SPECIFICATIONS 

 
Regarding the classical form of the newsvendor model, the aim is to determine at the 

start of the cycle the order quantity, Q, which maximizes the expected value of profit 

function, 
 

    
   







QX   if            XQsQcp
QX   if   XQvpQcp

, (1) 

 
where, X is a random variable representing size of demand at any inventory cycle, p the 

selling price, c the purchase (or production) cost, v the salvage value, and s the shortage cost 

per unit. A vital assumption of the model is that any excess inventory at the end of the 

inventory cycle is disposed of by buyback arrangements which are carried through by using 

the salvage value. In case where at the end of the cycle excess demand is observed, shortage 
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cost per unit incorporates current losses and present value of future payoffs expected to be 

lost from present unsatisfied customers. 

Taking first and second derivatives of  E  by using Leibniz’s rule, the optimal order 

quantity maximizing expected profit function satisfies the equation, 

    R
svp
scpQFQXPr ** 




 , (2) 

where R is a critical fractile whose value identifies the product as low profit (R<0,5) or high 

profit (R>0,5) according to the principle stated by Schweitzer and Cachon (2000).   
 
 For the Exponential, Rayleigh, and Log-Normal distributions, the specifications of (2), 

and the optimal order quantities, *
jQ   ( j = EX, RY, LN), are given as follows: 

Exponential (λ):   



*Q

* eQF  and 

 RlnQ*
EX   (3a) 

 

Rayleigh (σ)  =  Weibull  2σ, 2 :  




















*Q
* eQF  and 

 RlnQ*
RY   (3b) 

 

Log-Normal  2
LNLN σ , μ :     RzZPr

Qln
ZPrQF R

LN

LN
*

* 










  and 

LNRLN z*
LN eQ   (3c) 

where  Rz  is the inverse function of the standard normal evaluated at R. 

To study changes of the optimal order quantity, *
jQ , at different levels of R, initially, 

for the three distributions, we set a common expected demand,   XE . To attain this size 

of expected demand for the Exponential and Rayleigh distributions, the values of their 

parameters should be defined respectively at   and  . Regarding the Log-

Normal distribution, we consider two specifications, coded as (log-normal)1 and (log-

normal)2, which have common  
LNLN ln .  In the first specification, by setting 

  lnLN , we make the coefficient of variation,    XEXsdCV  , to be equal among 

Log-Normal and Rayleigh, while in the second specification, to equate CV’s of Log-Normal 

and Exponential, we set  lnLN . Table 1, summarizes the characteristics of each 

distribution, (note that the coefficients of skewness and kurtosis were computed from 
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formulae available in Johnson et al, 1994), and figure 1 presents their probability density 

functions. From figure 2, *
jQ  is an increasing function of R, and given R, how large *

jQ  

should be for each distribution to maximize expected profits depends upon the size of CV. So, 

for low-profit products (R is relatively small), the lower the CV of demand distribution we 

observe, the higher the quantity the newsvendor orders. Contrary to that, for R relatively high 

(high-profit products), the newsvendor will order higher quantities with demand distributions 

characterized by larger CV’s. 

Skewness and kurtosis also affect the optimal order quantity when demand follows 

distributions belonging to the same set and having the same CV. For such cases, when R takes 

on values relatively close to zero or relatively close to unity, greater skewness and higher 

kurtosis lead to larger optimal order quantities. However, how far R lies from zero or how 

close R is to unity in order the previous remark to hold depends upon the size of CV. For the 

pair of Rayleigh and (Log-Normal)1, greater skewness and higher kurtosis give larger *
jQ  

when R is closer to zero or R lies further away from unity, compared to the other pair of 

Exponential and (Log-Normal)2 which has a larger CV. 
 
Table 1: Summary of parameters for the three distributions,   XE  

 Demand Parameters CV Skewness Excess Kurtosis 
Rayleigh   = 239,3654 0,5227 0,6311 0,2451 
(Log-normal)1 LN = 5,5830 , LN =0,241564 0,5227 1,7110 5,6197 

Exponential =300 1 2 6 
(Log-normal)2 LN = 5,3572 , LN =0,693147 1 4 38 
  

To estimate now the optimal order quantity for the next inventory cycle (period), let 

nX,...,X,X   be a sequence of independent random variables representing demand for a 

sample of n consecutive inventory cycles. Modeling demand in each period by each one of the 

three distributions under consideration, the following consistent estimators for the optimal 

order quantity of the next inventory cycle, n+1, are defined on the basis of forms (3a)-(3c): 
 
Exponential (λ):  

   







n

t
t

*
EX X

n
Rln

RlnˆQ̂ , (4a) 

where nXˆ
n

t
t



  is an unbiased estimator for λ. From the Weak Law of Large Numbers, 

̂limp , and thus   *
EX

*
EX QˆlimpRlnQ̂limp  . 
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Figure 1: Plots of probability density functions 
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Figure 2: Plot of Optimal Order Quantities, *

jQ , against critical fractile, R 
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Rayleigh (σ): 
 

 RlnˆQ̂*
RY  ,  (4b) 

where 




 







 

,n

t
t nXˆ  (Johnson et al., 1994), and 


  n~ˆn  (Balakrishnan and 

Cohen, 1991). Using the last distributional result,    ̂E , and     nˆVar , as 

n . Thus  ̂limp , and     *
RY

,*
RY QˆlimpRlnQ̂limp 

 . 
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Log-Normal  2
LNLN σ , μ : 

LNRLN
*
LN szˆQ̂ln  , (4c) 

or alternatively 

LNRLN ˆzˆ*
LN eQ̂  , (4d) 

where nXlnˆ
n

t
tLN 



 ,   nˆXlnˆ
n

t
LNtLN 



  , and  


 LNLN ˆ
n

ns . Since 

  LNLNt ,N~Xln ,   *
LN

limpzˆlimp*
LN QeQ̂limp

,
LNRLN 

  and *
LN

*
LN QlnQ̂lnlimp  . 

Estimators (4c) and (4d) will be used in the next section to derive respectively exact and 

asymptotic confidence intervals for  *
LNQ .  

 
 
3. CONFIDENCE INTERVALS FOR THE OPTIMAL ORDER 
QUANTITY 
  

In this section, first we derive exact and asymptotic distributions for *
jQ̂ , and then we 

evaluate the performance of the corresponding extracted confidence intervals for the true 

optimal order quantity through Monte-Carlo simulations. 

 

Exponential (λ): From (4a), as  


,nGamma~X
n

t
t , it is easily deduced that 

 







 


n
Rln

 , nGamma~Q̂*
EX . 

The last result makes the construction of exact confidence intervals for *
EXQ  impossible since 

the required critical values of the gamma distribution cannot be obtained as they depend upon 

the unknown λ. The alternative solution, therefore, is to derive the asymptotic distribution of 
*
EXQ . By defining  XVar  , the central limit theorem,      ,  Nˆn D , and the 

consistency of *
EXQ̂  allow the application of univariate delta method, which leads to, 

 
      Rln ,  NQQ̂n 2*

EX
*
EX

D . (5) 
 
From the last asymptotic distributional result, an approximate   %  confidence 

intervals for *
EXQ  is given by  

  Rln
n
ˆ

zQ̂*
EX 


  , (6) 
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where     


 nˆXˆ
n

t
t  . 

 
Rayleigh (σ) 

Regarding the estimator of σ, 




 







 

,n

t
t nXˆ , we stated in the previous section 

that the statistic   ˆn  follows the Chi-squared distribution with 2n degrees of freedom. 

Using also the property that the product of a chi-squared variable with v degrees of freedom 

by a constant b follows the gamma distribution  b,v  , we obtain the following 

distributional result 
 

      





























R-1ln
1 ,n    ~  

Q

ˆnˆn
Rln *

RY

, 

 
which leads to the   %  exact  confidence interval 
 

    











































 Rln
,n

nˆQ

Rln
,n

nˆ *
RY . (7) 

 
Further, in Appendix we prove that, 
 

   












  Rln
 , 0 NQQ̂n *

RY
*
RY

D . (8) 

 
Convergence to normality, as it is stated in (8), enables us to use also in finite samples the 

approximate   %  confidence interval 
 

 



 

Rln

n
ˆ

zQ̂*
RY . (9) 

 
Log-Normal  2

LNLN σ , μ  

For the estimator defined in (4c), we show (see Appendix) that for small samples and 

R<0,5, the   %  exact confidence interval for *
LNQ  is constructed from 

    

























 n
s

tˆexpQ
n

s
tˆexp LN

,nLN
*
LN

LN

,nLN , (10a) 
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while for R>0,5, from 

    

























 n
s

tˆexpQ
n

s
tˆexp LN

,nLN
*
LN

LN

,nLN , (10b) 

 
where   nt  is the non-central t-student distribution with non-centrality parameter 

nzR  for R<0,5, and nzR  for R>0,5. 

 Additionally to (10a) and (10b), for the estimator defined in (4d), we derive in 

Appendix the asymptotic distributional result, 

    




















 


LN
*
LN

R*
LN

*
LN Q 

z
, 0 NQQ̂n D , (11) 

which leads to the following approximate   %  confidence interval for finite samples, 

n
z

Q̂zQ̂ LNR*
LN

*
LN









 . (12) 

To study in finite samples the performance of confidence intervals given in (6), (7), 

(9), (10) and (12), 10000 replications of 300 observations each were generated from each 

distribution, by using the parameter(s) values of table 1, and applying traditional inverse-

transform algorithms to 10000 sequences of random numbers uniformly distributed on (0,1). 

The algorithms can be found in Law (2007), on pages 448, 452, and 454 respectively for the 

Exponential distribution, the Rayleigh (setting  ), and the Log-Normal. For the latter 

distribution, the required sequences of random numbers for the standard normal were 

generated using the method of Box and Muller (Law, 2007, p. 453). Details for the random 

number generator and its validity can be found in Kevork (2010).  

For each distribution, using each replication, estimates for the corresponding 

parameter(s) were taken ( ̂ , ̂ , and LNLN ˆ,ˆ  ) at different sample sizes. Then, for each 

sample size, n, corresponding estimates for the optimal order quantity were computed for 

different values of the critical fractile, R, using (4a) for the Exponential Distribution, (4b) for 

the Rayleigh and (4c), (4d) for the Log-Normal. Finally, for each distribution, and for each 

combination of n and R, 10000 different confidence intervals were computed using the exact 

forms (7), (10) and the asymptotic ones (6), (9) and (12). The critical values for the non-

central t and the gamma distributions were computed using the statistical package MINITAB. 

Having available for each distribution 10000 different confidence intervals for each 

combination of method (exact or asymptotic), n, and R, two statistical measures have been 
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computed: the coverage (COV) and the relative average half-length (RAHL). The first 

measure, COV, is the percentage of the 10000 confidence intervals containing the true 

optimal order quantity, *
jQ , estimating in that way the actual confidence level that the 

corresponding methods attains. RAHL refers to the precision of confidence intervals that the 

method produces and is computed by dividing the average half-length from the 10000 

confidence intervals by *
jQ . Tables 2 and 3 display respectively the values for COV and 

RAHL, at 95% nominal confidence level. 

A first important remark concerns the Exponential and Rayleigh distributions, for 

which COV and RAHL are the same regardless of the value of R. This is deduced by 

considering first the asymptotic confidence intervals of these two distributions given 

respectively in (6) and (9), whose COV estimates in finite samples the following probabilities: 

 
 

 
 































  z
ˆ
ˆnzPrz

Rlnˆ
QQ̂n

zPr
*
EX

*
EX , 

 

 
 

 













































 



z
ˆ
ˆnz

Prz
Rln

ˆ

QQ̂n
zPr

*
RY

*
RY . 

 
In each one of these two equalities, the second probability does not depend on R, 

verifying in that way the previous remark Similarly, for the Rayleigh distribution, using (3b) 

and the scaling property of the Gamma distribution, the exact confidence interval given in (7) 

takes the following final form, 

 

   












 , n

nˆ        
 , n

nˆ . 

 
which again does not contain R. 
 

From Table 2 we verify that exact confidence interval methods attain coverage 

(rounded at two decimal digits) equal to the nominal confidence level at any sample under 

consideration. We also observe that for the asymptotic methods, the convergence rate of 

coverage to the nominal confidence level depends upon the coefficients of variation (CV), 

skewness and kurtosis. For the Log-Normal distribution, the rate of convergence depends also 
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on the crirical fractile, R. So, given CV, skewness and kurtosis, the larger the R we take, the 

slower the rate of convergence we face. For example, for (Log-Normal)1, when R=0,4 an 

approximate coverage of 93% is attained with approximately 20 observations, while with 

R=0,95  to observe the same coverage, we need a sample size of at least 50 observations. 

Comparing the coverage of asymptotic methods among the two sets of distributions, 

the simultaneous increase of CV, skewness and kurtosis, produces slower convergence rates 

to the nominal confidence level. Among the Rayleigh and Exponential, coverage of 93% is 

attained for the first distribution with a sample of at least 15 observations, while for the 

second with a sample of 40 observations or more. The same remark holds for the Log-Normal 

distribution. For (Log-Normal)1, to take COV=93% for R=0,8, we need samples of 

approximately 40 observations, whereas for (Log-Normal)2, samples over 50 observations. 

On the other hand, given CV, the extent where skewness and kurtosis affect convergence rates 

depends upon the size of CV itself, and the value of R. So for relatively low CV’s, the 

increase of coefficients of skewness and kurtosis leads to slower rate of convergence even for 

moderate or low values of R.  For large CV’s, slower rates of convergence are observed only 

for large R’s. To indicate this remark, consider the first set of distributions having the lowest 

CV. To attain COV=93%, we need a larger sample for the (Log-Normal)1, compared to the 

Rayleigh distribution, even with a moderate value of R=0,4. For the second set, larger 

samples are needed for (Log-Normal)2, compared to the Exponential distribution, only when 

R is large, and especially close to unity.   

Although exact confidence interval methods attain the required coverage at any 

sample size, we find out in Table 3 for rather small samples that these methods give very low 

precision, especially for high coefficients of variation, skewness and kurtosis. As an 

indicative example we mention the case of (Log-Normal)2 where, for R=0,95, a sample of 10 

observations gives confidence intervals with an average length of 1290 units. Such intervals 

offer almost zero information at the stage of decision making in inventory management 

practices, when in fact the average demand is 300 units and the true optimal order quantity 

834 units. On the contrary, given R, CV, skewness and kurtosis, asymptotic confidence 

interval methods produce on average higher precisions compared to the exact methods. 

Therefore, for sample sizes where asymptotic methods attain acceptable coverage, they should 

be preferred against the corresponding exact ones. Finally, we identify from the cases of 

(Log-Normal)1 και (Log-Normal)2, that average half lengths are increasing as R is getting 

larger values.   
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Table 2: Coverage of 95% confidence interval methods for *

jQ  

 Rayleigh (Log-Normal)1 Exponential (Log-Normal)2 
n  Exact Asymptotic  Exact Asymptotic 

 Exact Asymptotic R=0,4 R=0,8 R=0,95 R=0,4 R=0,8 R=0,95  R=0,4 R=0,8 R=0,95 R=0,4 R=0,8 R=0,95 
5 0,95 0,90 0,95 0,95 0,95 0,85 0,80 0,75 0,81 0,95 0,95 0,95 0,85 0,78 0,72 

10 0,95 0,92 0,95 0,95 0,95 0,90 0,87 0,84 0,87 0,95 0,95 0,95 0,91 0,85 0,81 
15 0,95 0,93 0,95 0,95 0,95 0,92 0,90 0,87 0,90 0,95 0,95 0,95 0,92 0,89 0,85 
20 0,95 0,94 0,95 0,95 0,95 0,93 0,91 0,89 0,91 0,95 0,95 0,95 0,93 0,90 0,88 
25 0,95 0,94 0,95 0,95 0,95 0,93 0,92 0,90 0,92 0,95 0,95 0,95 0,93 0,91 0,89 
30 0,95 0,94 0,95 0,95 0,95 0,93 0,92 0,91 0,92 0,95 0,95 0,95 0,94 0,92 0,90 
40 0,95 0,95 0,95 0,95 0,95 0,94 0,93 0,92 0,93 0,95 0,95 0,95 0,94 0,92 0,91 
50 0,95 0,94 0,95 0,95 0,95 0,94 0,93 0,92 0,93 0,95 0,95 0,95 0,94 0,92 0,91 

100 0,95 0,95 0,95 0,95 0,95 0,94 0,94 0,94 0,94 0,95 0,95 0,95 0,94 0,94 0,93 
300 0,95 0,95 0,95 0,95 0,95 0,95 0,94 0,95 0,95 0,95 0,95 0,95 0,95 0,94 0,95 
 

Table 3: Precision of 95% confidence intervals for *
jQ  

 Rayleigh (Log-Normal)1 Exponential (Log-Normal)2 
n  Exact Asymptotic  Exact Asymptotic 

 Exact Asymptotic R=0,4 R=0,8 R=0,95 R=0,4 R=0,8 R=0,95  R=0,4 R=0,8 R=0,95 R=0,4 R=0,8 R=0,95 
5 0,517 0,429 0,584 1,281 3,407 0,382 0,430 0,570 0,761 1,102 4,260 27,209 0,682 0,766 1,051 

10 0,335 0,306 0,348 0,495 0,805 0,291 0,331 0,437 0,573 0,613 1,022 2,014 0,505 0,574 0,773 
15 0,267 0,251 0,272 0,354 0,528 0,243 0,276 0,365 0,479 0,472 0,673 1,114 0,418 0,476 0,636 
20 0,228 0,218 0,231 0,290 0,416 0,212 0,242 0,319 0,421 0,397 0,531 0,820 0,364 0,415 0,552 
25 0,202 0,195 0,204 0,251 0,354 0,191 0,218 0,288 0,380 0,351 0,453 0,674 0,327 0,373 0,496 
30 0,184 0,178 0,185 0,225 0,313 0,175 0,200 0,264 0,349 0,317 0,401 0,583 0,299 0,342 0,454 
40 0,158 0,155 0,159 0,190 0,260 0,153 0,174 0,230 0,303 0,271 0,334 0,472 0,260 0,297 0,393 
50 0,141 0,138 0,141 0,167 0,227 0,137 0,156 0,206 0,272 0,241 0,291 0,406 0,233 0,266 0,351 

100 0,099 0,098 0,099 0,115 0,154 0,097 0,111 0,146 0,194 0,168 0,197 0,267 0,165 0,189 0,249 
300 0,057 0,057 0,057 0,065 0,086 0,056 0,064 0,085 0,113 0,096 0,111 0,147 0,095 0,109 0,144 
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4. EFFECTS OF NON-NORMALITY 
Traditional textbooks on inventory management (see for example Silver et al, 1998) 

illustrate how to apply optimal ordering policies with a normal demand. Assuming normality 

for simplification reasons, some practitioners apply such policies even when enough data on 

demand are available. Others apply traditional normality tests to either small or large samples 

before they use such optimal ordering rules based on a normal demand. Either assuming or 

testing normality for demand, such actions from practitioners raise certain issues which 

should be addressed: First, to what extent non-normality can be identified, especially when 

data on demand are available for few past inventory cycles, and, if we erroneously accept 

normality, how accurate and precise the estimates of the optimal order quantity held under a 

normal demand are. 

Using again for each one of the four distributions under consideration the 10000 

replications for demand, the Jarque-Bera statistic for testing normality (Judge et al., 1982) 

was computed in each replication for different sample sizes. Table 4 displays the percentage 

of those replications where the null hypothesis could not be rejected at level of significance 

1% and 5%. These percentages estimate the type II error of not rejecting normality, when in 

fact demand is generated by the Exponential, Rayleigh and Log-Normal Distributions. 

Depending upon the size of coefficients of variation, skewness and kurtosis, there is a certain 

range of relatively small samples for which non-normality cannot be traced. For the Rayleigh 

distribution (which has the lowest CV, skewness and kurtosis), even with n=100, the 

probability not to reject normality at α=0,05 is almost a half, while for the (Log-Normal)2, 

even with samples of 20 observations this probability is approximately 40%. For levels of 

significance 1%, the corresponding probabilities are much higher, namely, more than 70% for 

the Rayleigh distribution and approximately 50% for (Log-Normal)2. 

 
Table 4: Estimated probabilities of not rejecting normality 
 
 Rayleigh (Log-Normal)1 Exponential (Log-Normal)2 
n α = 0,01 α = 0,05 α = 0,01 α = 0,05 α = 0,01 α = 0,05 α = 0,01 α = 0,05 
10 0,9958 0,9834 0,9566 0,911 0,9192 0,8513 0,8603 0,7868 
15 0,9762 0,9526 0,8574 0,7895 0,7747 0,6723 0,6612 0,5619 
20 0,9614 0,9301 0,7662 0,6801 0,639 0,5162 0,4927 0,3846 
25 0,9473 0,9077 0,6755 0,5724 0,52 0,3808 0,3613 0,2536 
30 0,9328 0,88 0,5964 0,484 0,4129 0,2749 0,2527 0,1578 
40 0,9032 0,8337 0,4559 0,3295 0,2451 0,1245 0,1161 0,0571 
50 0,8767 0,7869 0,334 0,2083 0,1291 0,0488 0,0477 0,015 
100 0,7107 0,493 0,0425 0,0118 0,0008 0 0,0001 0 
300 0,0395 0,0026 0 0 0 0 0 0 
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Suppose now that the sample nX,...,X,X   of demand for the past n inventory cycles 

has been generated from a normal distribution. Following the proofs of (10a) and (10b) in 

Appendix for the Log-Normal distribution, the exact confidence intervals held under 

normality for the true optimal order quantity are derived in a similar manner and are given by 
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If n is sufficiently large, the asymptotic confidence interval for *
NMQ  is given in Kevork 

(2010), as 
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where  nRn
*
NM SzXQ̂  . 

Using the available 10000 replications of demand, for each one of the three skewed 

distributions under consideration, we computed the coverage which is attained by (13) and 

(14). From figures (3a) and (3b), exact confidence intervals held under normality attain 

acceptable coverage, when demand is in fact skewed, only for small samples and when R<0,5 

(low profit products). For high-profit products, and especially when R is close to unity, the 

coverage is lower than the nominal confidence level even for samples of small size.  

The coverage, which is attained by (14), is illustrated in figures (4a) and (4b). In this 

case, for both moderate and large R’s, the coverage is lower that 95% even for small samples. 

Besides, the coverage tends to zero as the sample is getting larger and larger. The last result 

holds for every R, as for the Rayleigh, Exponential and Log-Normal distributions, we show in 

Appendix that the following probability, 

 






























R
n

*
j

*
NM

z
S

Q̂Q̂n
zPr  (15) 

when n .  



 17 

Figure 3a: Coverage of 95% exact confidence intervals assuming normality, R=0,4 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 50 100 150 200 250 300

Rayleigh (Log-Normal)-1 Exponential (Log-Normal)-2
n

COV

 
 
Figure 3b: Coverage of 95% exact confidence intervals assuming normality, R=0,95 
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Figure 4a: Coverage of 95% asymptotic confidence intervals assuming normality, R=0,4 
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Figure 4b: Coverage of 95% asymptotic confidence intervals assuming normality, R=0,95 
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Finally, table 5 displays for R=0,4 the RAHL of (13a) only for those samples for 

which coverage is greater than 90%. RAHL values of table 5 are larger compared to those 

ones of table 3. This indicates that for R=0,4, applying exact confidence interval held under 

normality to small samples from the three skewed distribution under study, although we attain 

satisfactory coverage, the penalty of not rejecting normality is higher sampling errors which 

we get for the estimated values of the true optimal order quantity.  

 
Table 5: RAHL of 95% exact confidence intervals for *

jQ  assuming normality, R=0,4 
 

n Rayleigh Exponential (Log-Normal)1 (Log-Normal)2 
10 0,4587 1,3194 0,4558 1,0879 
15 0,3583 1,0453 0,3595 0,8729 
20 0,3044 0,8951 0,3064 0,7521 
25 0,2693 0,7960 0,2723 0,6743 
30 0,2442  0,2478 0,6183 
40 0,2093  0,2133  
50 0,1862    

 

 
5. CONCLUSIONS  

The current paper explores the effectiveness of applying optimal ordering policies to 

newsvendor type of products, when demand is skewed and follows the Exponential, Rayleigh 

and Log-Normal distributions. The coefficients of variation, skewness, and kurtosis of the 

Exponential and Rayleigh remain the same regardless the parameter values of each 

distribution. Among the two, the Exponential distribution has the highest coefficients. 

Regarding the Log-Normal distribution, two specifications are defined. Assigning appropriate 
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values to its parameters, the first specification has the same coefficient of variation with the 

Rayleigh distribution and the second with the Exponential. In each pair, Rayleigh-Log-

Normal, or Exponential-Log-Normal, the Log-Normal distribution has higher coefficients of 

skewness and excess kurtosis. 

  At a theoretical level, the optimal order quantity depends upon the size of the three 

coefficients, as well as, the value of a critical fractile, R, expressing the probability of not 

experiencing stock-outs in successive inventory cycles. Given R, for the pair of Exponential-

Log-Normal, optimal order quantities are larger (smaller) compared to those ones of the 

second pair Rayleigh-Log-Normal, only when R is relatively high (low). Besides, within each 

pair, higher coefficients of skewness and kurtosis result in larger optimal order quantities only 

when R is relatively close to zero or to unity. 

Theoretical analysis relies on the assumption that the parameter(s) of demand 

distribution are known. In real-life inventory problems, unfortunately, this is not true. 

Practitioners have as the only alternative to estimate the parameters from available data on 

demand in samples of past successive inventory cycles. Then these estimates are used to take 

corresponding estimates for the optimal order quantity. To offer useful guidelines to such an 

estimation process, the current paper determines the validity and precision of estimates for the 

optimal order quantity, when demand follows one of the aforementioned three skewed 

distributions. Exact and asymptotic confidence intervals for the true optimal order quantity 

are derived, and their coverage (as an estimate of the actual confidence level) and precision 

are estimated in finite samples using appropriate Monte-Carlo simulations.  For different 

sample sizes and different combinations of values of the critical fractile and values of the 

coefficients of variation, skeweness and excess kurtosis, the coverage and the average half-

length (as a percentage of the true optimal order quantity) are reported for both the exact and 

asymptotic confidence intervals. 

The two tables of section 3 displaying all previous information facilitate researchers to 

evaluate their estimates for the optimal order quantity when they face empirical demand 

distributions displaying similar characteristics with the Exponential, Rayleigh and Log-

Normal. To provide a summary of prons and cons of exact versus asymptotic confidence 

intervals methods, we report that exact methods attain the required coverage at any sample 

size, but their precision is on average lower compared to the corresponding asymptotic 

methods. Regarding the latter ones, the rate of convergence of coverage to the nominal 

confidence level depends upon the coefficients of variation, skewness and kurtosis. The larger 
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the values these coefficients can take on, the slower the rates of convergence the coverage 

attain. 

This paper also investigates the validity of confidence intervals held under a normal 

demand, when in fact the true demand follows the Exponential, Rayleigh and Log-Normal 

distributions. When data on demand from these three distributions are available only for few 

inventory cycles, it is very likely to accept normality applying the classical Jarque-Bera test. 

Nonetheless, using the exact confidence intervals held under normality in such small samples, 

we finally get acceptable coverage. On the other hand, the use of the asymptotic confidence 

intervals held under normality would lead to acceptable coverage only for small or moderate 

values of R. However, applying either the exact or the asymptotic confidence intervals held 

under normality, we shall experience lower precision compared to that we would have with 

the true skewed demand distribution. For the three distributions under consideration, we also 

show that when the sample is sufficiently large, the actual confidence level of the asymptotic 

intervals held under normality is close to zero. Further using either the exact or the asymptotic 

confidence interval method held under normality, we find out that convergence rates of 

coverage to zero are differentiated not only between different values of coefficients of 

variation, skewness and kurtosis of the true demand distribution, but also between different 

values of the critical fractile.  

Closing this last section we summarize the drawbacks of having limited past data on 

demand. First, it is very likely to accept that the true distribution is normal. But even if this 

will not happen and we use the right exact or asymptotic confidence interval methods, we 

experience low precision for the exact methods, and coverage not close enough to the nominal 

confidence level for the asymptotic methods. We conclude, therefore, that a large sample is 

necessary no matter how expensive the process of its collection might be. The large sample 

will enable researchers to trace non-normality, and to use the right asymptotic confidence 

interval method in order to attain the required coverage and precision. Unfortunately, for 

certain types of newsvendor products, due to their nature and market conditions, past history 

of demand is limited. Seasonal clothing belongs to this category of products. In such cases, 

we would not recommend the application of newsvendor models with parametric estimation 

as this might lead to ordering policies which will be far away from the real optimal ones, 

especially when the true demand distribution is characterized by large coefficients of 

variation, skewness, and kurtosis. 
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APPENDIX 
 
 

Proof of (8): 

For n sufficiently large   
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The result follows from (A1) since  
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Proof of (10a): 
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follows the non-central t-student distribution with n-1 degrees of freedom and non-centrality 

parameter equal to δ. Setting nzR  in (A2), we take 
 

      nzt~
s

Qlnˆn
s

zˆn
Rn

LN

*
LNLN

LN

LNRLNLN






, (A3) 

and 

      






















nzt

s
Qlnˆn

nztPr R,n
LN

*
LNLN

R,n
. (A4) 

 



 22 

From (A4), the   %  confidence interval for *
LNQln  will be 
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from which the result follows.   

 

 

Proof of (10b): 
 
The result follows from (A2), (A3) and (A4), setting nzR , and noting that 
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Proof of (11): 

Knight (1999, p. 258) states that  Σ0,
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The result follows after replacing (A6) to (A5). 

 

 

Proof of (15): 
 

For the Exponential (j=EX), Rayleigh (j=RY), and Log-Normal (j=LN) distributions 

rewrite the probability given in (14) as 
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(i) By the Weak Law of Large Numbers, 
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(ii) Knight (1999, p. 189) proves that 
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and 
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Using (3a)-(3c) of section 2, the asymptotic distributional results (5), (8), (11) of 

section 3, and (A8), (A9) and (A10), the three probabilities of (A7), as n , tend to 
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