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§1. Introduction

WHICH: IMPROVES WELFARE MORE:
NOMINAL OR INDEXED BOND?

1. Introduction

Despite economists' long standing arguments in favor of systematic indexation of loan con-
tracts to removetherisks associated with fluctuations in the purchasing power of money (Jevons
(1875), Marshall (1887, 1923), Fisher (1922), Friedman (1991)), surprisingly few loan contracts
are indexed in most Western Economies. In the United States even thirty year corporate and
government bonds are not indexed. The situation is however different in many Latin American
countries where indexing is widely used as a way o coping with high and variable inflation
rates. What seemsdifficult to explain is that it takes high variability in inflation rates before
private sector agents shift from unindexed to indexed contracts.

In practice, indexing a loan contract means linking its payoff to the value o an officially
computed price index such as the Consumer Price Index (CPI). Such an index is always an
imperfect measure o the purchasing power of money: in particular, it fluctuates not only with
variations in the general level d prices but aso varies with changes in the relative prices o
goods. Thi s paper formalizesthe idea that the imperfectionsdf indexing may serve te explain
why agents prefer nominal bonds in economies with a low variability in purchasing power o
money and only resort to indexing when the variability becomessufficiently high.

The model isa variant o the two-period general equilibrium mode with incomplete markets
(&) in which the purchasing power d money depends on a (broadly defined) measure of the
amount o money available in the economy and on an index o real output. The objective o
the analysis is to compare two second-best situations, in which in addition to a given security
structure, there is either a nominal bond which has the risks induced by fluctuations in the
purchasing power d money or an indexed bond which has the risks induced by relative price
fluctuations.

Adding a bond to an existing market structure has two effects: the first is the direct effect
of increasing the span o the financial markets i.e. increasing the opportunity sets of agents
for transferring income; the second is the indirect effect o changing spot and security prices,
which can either increase or decrease agents’ welfare. Thi S paper only compares direct effects,
all indirect effects being absent by virtued the specification d agents preferences. The direct
effects are always present, even with more general preferences, but some o the results that we
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obtain mav no longer apply if theindirect effects are sufficiently strong (see Cass-Citanna (1994)
and Ellul (1995) for a complete local analysis d the combined effects). The characteristics of
the economy (described in section 2) are such that:

(i) the multigood model can be mapped into a purchasing power economy in which there

are well-defined (utility-based) indices of the purchasingpower of money and aggregate output;

(ii) an efficient equilibrium is obtained if agents can trade a bond whose purchasing power

payoff is constant;

(iii) if there is no such (real) riskless bond, but only a risky bond, then the loss in welfare
depends on the distance (in the appropriate probability metric) of the market subspace from
the riskless income stream.

Thus the welfare gain from adding a bond to a given security structure is measured by how
much closer the market subspace is moved to the riskless income stream. The welfare gain is
summarized by a function which we call the statistical gai ns function, since it depends on the
statistical properties o the bond, its standard deviation per unit o expectation and its vector
of correlation coefficients with the existing securities.

A complete analysis d the properties of this gains function (Propositions 3 and 4) is the
main mathematical contribution d the paper: thisis a necessary preliminary for determining
which type of bond (nominal or indexed) leads to higher welfare. It followsfrom the properties
o the gains function that either a low variability of the bond's (real) income stream or a
strong (positive or negative) correlation d its payoff with the payoffs of the other securities
(or a combination of the two) permits a high proportion d the potential welfare gains to be
captured: alow variability directly createsa security without muchrisk, while a high correlation
permits a hedge portfolio of the bond and the underlying securities to reduce risk.

In the reduced form purchasing power economy, three groups o factors influence the real
payoffsdf the indexed and nominal bonds. The first are sectoral shockswhich affect the relative
output o the different sectors (goods) and hence the relative pricesd the goods: these shocks
determine the variability o the payoff of the indexed bond. The second are economywide
shocks which affect aggregate output and the third are monetary shocks which influence the
"amount” o purchasing power: the ratio of these two magnitudes determines the purchasing
power of money, which is the payoff of the nominad bond. In Proposition 5 it is shown that
in an economy in which inflation and output are positively correlated and sectoral shocks lead
to relative price fluctuations, there is a critical levd o fluctuations in the purchasing power o
money below (above) which the nominal (indexed) bond is preferred. Thus in the framework of
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this model, it is the existence of sectoral shocks, in conjunction with a relativelv strong positive
correlation between inflation anti output which serve to explain the lack of indexation.

The benefits and costs of indexation have been extensively discussed in the macroeconomic
literature (see for example Dornbusch and Simonsen (1983)). While the potential costs of
indexation have been stressed in the analysis of wage contracts (indexation of wages can lead
to built-in inflation and to misallocations arising from inflexible real wages), in the analysis
o indexed bonds no such costs have been identified and most of the attention has focused on
the benefits of isolating agents in the private sector from price leve fluctuations. It has thus
appeared as something of a mystery that so few indexed contracts are used in most Western
economies.

In a series of papers,! Fischer systematically examined possible explanations for this stub-
born fact. Fischer (1975) provided the first forma analysis of the impact of indexation of
bonds in an equilibrium framework, using the continuous-time, Brownian motion version of
the one-good CAPM model in which there are price level fluctuations and in which agents can
trade a nominal bond, a perfectly indexed bond and an equity contract. As Modigliani (1976)
pointed out, since the perfectly indexed bond permits the riskless transfer of income and since
the two-fund separation theorem holds, there is no trade in the nominal bond in equilibrium:
with perfect indexation and a variable price level, an indexed bond will aways drive out the
nominal bond. This result, while providing a formalization o the classicad argument in favor
o indexation does not provide a model that explains why in practice so few indexed loans are
traded. A step in thisdirection was made by Viard (1993), using Fischer's model with constant
relative risk aversion preferences. he argued that for some values of the parameters the welfare
gains df introducing an indexed bond are small, once the nomina bond is traded.

Finally the idea that a multigood GEI model can be reduced to a finance model by using
homothetic preferences within states, was studied by Geanakoplos-Shubik (1990), who were
interested in the appropriate definition of a riskfree asset in the context of a multigood CAPM
model.

'Collected in Fischer ( 1986)
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2. The Economy

In thissection we present avariant o the general equilibrium mode with incomplete markets
(&) which leads to a tractable study o the issue df indexation of nominal bonds. Consider
a two-period (t = 0,1) economy with Sz 2 states o natures (s = 1,...,S) at date 1; for
convenience we include date 0 as state 0 and write s =0,1,...,S There are | agents; each
agent 4 is characterized by an initial endowment consisting o a vector w = (w§, «j, .. .,wk) of
L goods in each stateand a utility function U : Rf;(s"'l) = Rreflect ng his preferencesfor the
goods across the states. Agents can trade on t wo typesd markets. Goods can be bought and
sold on spot markets, the vector o spot prices ps = (ps1,...,Ps) iN State s being expressed
in units of money. Let p = (pg, 1, - ., ps) denote the vector of spot prices. In addition agents
can trade (at date 0) on a system o financial markets. To provide a convenient framework for
analyzing the potential benefits of indexing a bond, we consider a family of J+ 1 securities.
Security zero, which is the bond that may or may not be indexed, has a date O price gp and a
date 1 payoff stream

A= (A,..., As)

The remaining J securities have prices(q,...,qs) at date 0 and date 1 payoffs summarized by

an Sx J matrix
Yo YIJ]
Y = [ : :

LYg YSJJ
the payoff of security j in state s being Y7, Let

'7=(QO,QI,---,‘1J)y [AY]

denote the vector of prices o the J * 1 securities and their combined date 1 payoff matrix. The
payoffs of the securities can be either red (dependent on the spot prices) or nominal (indepen-
dent of the spot prices) and in both cases are denominated in units of money. When security
zero isindexed (unindexed) its payoff isreal (nominal). The payoffs on the remaining securities
can be either real or nominal, but will be required to satisfy certain spanning conditions (As-
sumption S) which imply that some of these securities arereal (inessence, that they beequity
contracts). To simplify notation, we omit the explicit dependence o the securities' payoffs on
the spot prices.

If z* = (28,2,...,2%) € R denotes the portfolio of the J+ 1 securities purchased by
agent i and if z* = (b, 2%, ...,z%) € RX* denotes his consumption stream o the L goods,

4
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then the agent's budget set is given by

i

po(zh —wp) = —qz', 2 € R’
L...,S

B(p, g, wi) - {xi € Ri(SH) _ » .
l ps(zs —wy) = [As Ys]2%, s =
where [A, Y;] denotes row s of the matrix [A Y].

One of the interesting properties of the 3 mode with nominal securities is that price
levels affect the real equilibrium allocation. This result can either be interpreted as exhibiting
the indeterminacy of equilibrium allocations when there are no forces determining price levels
(Balasko-Cass (1989), Geanakoplos-Mas-Colell (1989)) or asexhibiting thefact that fluctuations
in the purchasing power of money (ppm) induced by monetary policy have real effects (Magill-
Quinzii (1992)). In this paper we adopt the latter interpretation. The general idea is to draw
on the logic of the quantity theory: agents use money for transactions and a combination of
a private sector banking system and a monetary authority determines the quantity d money
that is available for making transactions. If p, $1_, £ isthe demand for money in state s and
M, isthe quantity o money made available, then the price level in state s is determined by
the monetary equation J

pv,Zmi:Ms, s=0,1,...,8 (1)

i=1

For the sake of interpretation we suppose there is a monetary authority with some (in certain
cases very little) control over M = (My, M',..., Ms) and we call M the nonetary policy. If
U=U,...,U)andw=(!,. . ,Wr), then £(U,w, A, Y, M) denotes the economy with agents
characteristics (U, w), financial structure (A, Y') and monetary policy M. The exogenously given
random variables (w, M) which describethe underlying real and monetary sides o the economy,
can have a very genera stochastic dependence. This permits a wide class of economues to be
considered which can differ not only in the way in which monetary policy or shocks intervene,
but dso in the way money and output are correlated.

2.1 Definition: An equilibrium o the economy £(U,w,A,Y,M) isapair of actions and prices
((Z,2),(5,9) = ((&4,...,2, 2, ..., 1), (P, q)) such that
(i) # € argmax {U(z') {3 €B(5,q,w")} and 2 financesz*, i=1,...,I

L. _ I
(i) (@ -whH=0 (i) z=0
i=1 i=]
I
(iv) ﬁ,;:z’:‘;:Ms, $s=0,1,...,S.
The abstract model presented above is (capabled covering many different types d financial

5
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securities, in particular, two important classes d securities which are used to finance many
activities in an economy — bonds and equity contracts. Equity contracts are readily included
by adapting the abstract exchange economy to represent a production economy in which firms
have fixed production plans. Theinitial ownershipdf the K firmsin the economy is distributed
among the I agents, é, of firmk being onned by agent i. Agent ¢ then has initial resourcesin
the abstract economy consisting of two components

K
W =wt Y Gy (2)

k=1
wherew® € Rf:(s“ isaproxy for the agent's labor incomeand y* isthe production plan o firm

k. If the financial markets include a stock market on which the equity contract of each firm is
traded, then there is a security with payoff in state s (s =1,...,S) given by

Ysk:psyf, k=1)"'vK (3)

If 8%, is the amount of equity k purchased by agent i (at date 0), then 2z} = 6} — 6% is the agent's
net trade in the £*® equity contract. As a class o contracts, bonds are typically designed to
be less risky than equity contracts: modulo the problem of default, a bond promises a stable
nominal payoff across the states d nature, while equity contracts have payoffi which fluctuate
directly with the contingencies that affect the performance of individual firms. However, the
stable nominal payoff of a bond only translates into a stable real payoff if there are no fluctu-
ations in the purchasing power of money. The fact that variations in ppm introduce risks into
securities designed to be essentialy riskfree has long been viewed by economists as introduc-
ing an inefficiency that should be avoided. Hence the idea that monetary policy should. seek,
as far as possible, to achieve astable ppm or,,if imperfectionsin the control o the monetary
transmission mechanism or political.factors make this unfeasible, that bonds should be indexed.

Our objective is to find a way of formalizing these ideas. We vill not try to address the
general problem o indexing a family of nominal securities. Rather, we shall focus on the
benefits and costs of indexing the least risky nomina bond — namely the default-free bond. To
do this, we need to give more specific structure to thecharacteristicsof the economy — basically
assumptions on agents endowmentsand preferencesand on the security structure which ensure
that agents would really benefit from the presence o a bond with a riskless real purchasing
power. We want to show that, in a multigood setting, indexing is not the universal panacea
“or neutralizing fluctuations in ppm that is often suggested: indexing inevitably introduces the
risks of relative price fluctuations and in some cases these risks may exceed the risks arising

6




§2. The Economy

from fluctuationsin ppm. Thefirst assumption placesa restriction on agents' preferenceswhich
implies that spot pricesare independent of the incomedistribution and are thusindependent of
agents' choices on the financial markets. This eliminates a feedback between the spot markets
and the financial markets, and greatly simplifies the analysis of the model.

Assumption H: Agents have separable-homothetic utility functions of the form

S
U'(2) = \gh(zp) + D v fH(h(zy)), i=1,....1
s=1
where 1, ...,7s are strictly positive probabilities of the states, Xj >0, h: RZ TR, ft:
R — R, both h and f* are increasing, concave and differentiable and h is homogeneous of
degree 1.

Let w, = L, w! denote the aggregate output in state s (s=0,1,...,S). Assumption H
implies that the equilibrium vector d spot prices 7, in state s is proportional to the gradient
d h at the aggregate endowment. Using the Euler identity Vh{w;)ws = h(w,) and writing the
monetary equations as psws = M, s=0,1,...,Sleads to the equilibri umspot prices

M,
—3 = 8/ = 1 kAR ] 4
P h(ws)Vh(w ), s=0,1 S (4)

In an equilibrium the maximum problem of each agent can be decomposed into two steps:
the first is a choice of a portfolio (z*) on the financial markets, the second is the choice of a
vector of consumption (x')on the spot markets. The choice of a portfolio by agent ¢ generates
an income stream across the states

Powp — g2' (5)
mi, = pwl+[4; Yile, s=1,...,S (6)

"
i

my

The agent then selects a vector of consumption which is affordable given thisincome stream
p,:z:"s =m§, s=01,...,S

In view of Assumption H, the vector of consumption chosen by agent i can be deduced once
his expenditure stream m' = (mf, m}, ..., mY) is known
i

xi:%ws, $s=0,1,...,8 (7)
s
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Substituting (7) into the utilitv function U*(z*} in Assumption H and exploiting the homo-
geneity of degree 1 of h, gives the utilitv of agent i as a function of his expenditure Stream

m
. . . . S . .
@'(m*) = MNpomg + Z'ysf’(u,m;) (8)
s=1

where
_ Vh(ws)ws _ h(w,)

v M, M, '
isa utility index d the purchasing power d money. The numerator in (9) is an ideal (utility

s=01,...,8 (9)

based) i ndex o aggregate output in state s. The aggregate output wye of good £ in state s is
weighted by its social (representative agent) marginal utility in state s, %’ and the index
measures the representative agent's utility h(w,) at the total output ws?!.

Purchasing Power Economy. Since agents preferences over expenditure streams are ex-
pressed by (8), the analysisdf the equilibrium problem for the economy £(U,w, A,Y, M) can be
reduced to the analysis of the equilibrium of a finance economy in which all quantities (income
and expenditure streams, security payoffs) are converted to real (i.e. purchasing power) values.

To thisend, define each agent's rea! income and expenditure stream (i =1,...,1)
e.is = I/,p‘,w;, F’-; = u,mi, s=01,...,8 (10)
and let 5
ut (i) = Ao + > ¥ FH(u3) (11)
s=1

denote the utility to agent i of the redl expenditure stream u* € RS, |f we define the red
prices and payoff streams o the securities (j=0,1,...,J)

@ =10qj, a5 = VsA,, w=uY, s=1,..,S (12)

then the financial problem of agent i reduces to choosing a portfolio z' € R’/*! which maximizes
4! in the budget set

b =ey—q7, #eRM!
, S

B(g,e)={put e RSO T .
ph=ey +as Vsl 25, s=1,...

If h isthe Cobb-Douglas utility function then theindex of output in state s is the geometric mean of the L
componentsaf aggregat e output (ws:, - .. ,w,r), the weight assigned to good £ being its coefficient in the Cobb
Douglasfunction. The purchasingpower »f money v, isthen obtained by dividing the index o aggregate. output
by the money supply M,.
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where V = [v!...v7] is the matrix o real pavoffs d securities j = 1,...,J and V; is the row
corresponding to state s. Let € = (el e}, ...,e%), e = (e!,...,e’) denote the real values of
agents endowments, u = (u',...,u/ ) their utility functionsfor real incomeand a= (ay,...,as)
the real pavoff stream on the default-free bond, then we call £(u, e,a,V ) the purchasing power
economy induced by the monetary economy (U, w,A,Y, M).

The next assumption permits explicit calculations to be made of the welfare consequences
of alternative real payoff streams a for the bond, depending on whether the nominal payoff
A isindexed or unindexed furthermore the welfare comparisons have a natural economic and
geometric interpretation. The assumption requires that agents have mean-variance preferences
— aconvenient (if crude) first approximation for describing the wav agents evaluate risks.

Assumption Q: For each agent the function f* : R — R in Assumption H is quadratic
filu) = —%(ai -w)? i=1,....1

Finally we include a spanning assumption on the security structure Y which ensures that
in the purchasing power (pp) economy the riskless real incomestream 1.= (1,...,1) becomes a
reference income stream for measuring the losses due to fluctuations in ppm and the potential
gainsfrom indexation. For when the security structure Y is well-adapted to the agents" endow-
ment risks (Fsw?)3_;, then in the pp economy the most important missingsecurity is the riskless
real bond 1 and welfarelosses or gains can be expressed in terms o the distance of the market
subspace ([a V]) from 1. We use the following notation: for any vector x = (zo, z1,...,Ts),
z1 = (z1,...,zs) denotes the vector o date! 1 components.

Assumption S. Foreach agenti =1,...,I

(Frwi, ..., Psws) €(Y) &= e} € (V)

If the agents endowments have the form given in (2), then the spanning assumption amounts
to requiring that Y contains the equity contracts of the corporate firms and enough additional

securities to permit agents to share their personal income risks (swi)S_; — or equivalently,
that their private sources o income (for example their wage income or their income from
individually owned firms) are subject to the same shocks as the corporate sector. However we
assume that the security structure is incomplete in that the subspace (V) of the pp economy
does not contain 1 and has dimension less than S — 1 (there are no securities which, provide
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direct insurance against monetary shocks and it would take more than one additional bond to
complete the markets). For convenience we add two purely technical conditions: real pavoff
streams are non-redundant and bave positive expected values.

Assumption I: (i) ¢ (V) (i) rank V=J (iii)) =S -2 (iv) E(+/) >0, j=1,...,J

Assumption H reducesthe analysisd the multigood economy £(U,w, A,Y, M) to the anal-
ysis of the purchasing power economy £(u, e, a V). Under Assumptions Q, S and |, this pp
economy satisfies the assumptions of the Capital Asset Pricing Modd ( CAPM) , in which how-
ever, if aisrisky (or more precisdy if 1 @(a,V)), theriskless transfer of income is not possible.
Ha=1oa 1e&(a V) then by astandard result the equilibria of £(u,e g V) are Pareto op-
timal: thus when a isrisky there is a loss :relativeto the ided situation a = 1. If A is the
default-free nominal bond then its nominal payoff is A" = 1 and its rea payoff is just the
purchasing power o money aN = v = (v1,...,vs): the greater the fluctuations in ppm, the
greater the risksof aV. On the other hand if A is indexed on the valued a reference bundle of
goods b= (b1,...,bz) € RE then its nominal, payoff stream is AR = (51b, ... ,psb) and in view
d (4) and (9), its real payoff stream is aR = (Vh(w1)b, ..., Vh(ws)b). While aR is isolated
from fluctuations in ppm, it does :however vary with fluctuations in Vh(w,) i.e. those induced
by underlying real shocks which affect the relative aggregate supplies o the goods. In order to
explain the conditions under which the agents are better of using the nominal or the indexed
bond, we need to understand how the welfare of the agents in an equilibrium depends on the
characteristics of the income stream a — its variability and the way it covaries with the other
securities in the economy summarized by V.

3. Wdfare and the Statistical Characteristics of the Bond

A geometric approach to the welfare analysis o equilibria df an economy in which agents
have mean-variance preferencescan be obtained using projections under the probability induced
inner product on R defined by

S
[z, ¥]l =Y 7szsys = E(zy) = E(z)E(y) + cov (z,7) (1)

g=1
and its associated norm

s 3
Iz ll= (Zmz) - (B@)
s=1

= ((E(z:))2 + var z)% (2)

Wi
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Two vectors z, y € RS are said to be y-orthogonal if [[ z,¥]) = 0. For asubspace W < R®, let
w-L denote the vy-orthogonal complement, namely the subspace of vectors ~v-orthogonal to al
vectorsin W. Since R® can be decomposed as a irect sum RS = WGBW-”-, any vector x € RS
can be written uniquely
X==X*+x', z*eW, X ewl

x* (resp. ') is caled the «-orthogonal projectiond x onto W (resp. onto W-u-) and we write
X* = proj,,z, ¥ = projW RS The y-projection z* onto W is the vector in the subspace W
which liesclosest to x in the y-norm i.e. it solves the problem

gt =argmin{fjz-yl,lyeW} 3)

f W is the subspace o RS spanned by the k linearly independent columns o an Sx |- matrix
W (i.e. W= (W) and rank W = k) then the matrix which represents the 7-projection (in the
standard basis) is

B,, = WIW W)Wy @
where
M 0
M=
0 s

is the diagonal matrix of probabilities. The matrix B, in (4) can be readily derived by solving
the problem (3) and showing that x* = B ,z. Notethat if z € W then B, x = z.

f W is the payoff matrix o & securities in a one-good two-period economy £(u, e, W) in
which agents' utility functions are linear-quadratic

S
ui(z') = Nyzh + Z sl = zi)?, i=1,...,1 (5)

s=1
then the welfare of the agents at an equilibrium can be expressed as a function o the subspace
W = (W). The expression is smplified when the date 1 initial endowmentsd the agents liein
the market subspace i.e. when e‘l eW,i=1,...,Il.

Proposition 1 (EquilibriumWelfare of Agents): Let£(u, e, W) beaone-good, two-period
economy in which agents have linear quadratic utility functions (5) and in which e} € W,i =

1,...,1. Then the welfare of the agents at the equilibriumisgiven by
i 1, (a a 2 2 ; 6
The = - : —— ] kt : = “ e

11
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wherea = Yl o’ Ag = T0_, ¥ and (k)i_, are constants depending on the characteristics

(M. @, ')l of the economy.

Proof: Let (z!,...,2%,2,...,2(,4) denote the equilibrium and let ey = 1., e} denote the
date 1 aggregate endowment d the economy. A straightforward calculation (see Magill-Quinzii
(1994, Exercise 5, Chapter 3) shows that the equilibrium security prices are given by

(al —e)T [yjW (7)

=1
Ao

the agents portfolio vectors are
. -1 DY i A
#=[winw|™ wh ((a - %a)l ~ (e} ~ X-g-el))

and their equilibrium consumption streams are

it = el R P —/\—aa (al - e1)T[y]|B ]1+-1-(a1 —e1 )Tl | e — A—ael
0 0 ,\0 AO 1 Y w AO 1 1 /\0
b Ab P A .

331-/\0'31‘*‘(0‘ AOQ)BWI’ i=1,...,7

where we have used the equality B, e} = ¢} implied by ef € W. Inserting the expression for
Z* into the utility functions (5) leads to (6). d

Since there is a sufficiently rich structure of financial securities for agents to share their
endowment risks, the maximum welfare is obtained when, in addition, the riskless transfer of
incomeis possible (1 € W); in thiscase, || proj,,, 1 ||l,=ll 1 |},= 1 and the equilibrium allocation
is Pareto optimal, since the allocation is the same as if the markets were complete (W := R5).
When the riskless transfer o income is not possible (1 ¢ W), then || proj,, 1 |ly< 1 and if
agents do not have identical preferences(i% # % for some i), there is aloss of welfare The
smaller the y-distance of the market subspace W from 1, the greater the norm || proj,, 1 ||y o
the v-projection of 1 onto W, and the greater the welfared the agents.

Since the vector proj,, 1 playsan important role in the analysisthat follows, it is useful to
introduce the shorthand notation

n,, = proj,, 1

and to summarize its main properties.

12
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Proposition 2 (Propertiesof Least R sky Security): The v-projection 7,,, of 1 ontoW
has the following properties:
(i) Under the y-inner product on RS ,1,, Fepresents the expectation operator on W

E(n,y) =In,, y]] = E(y) forally e W

(ii) n,, isthe least risky income stream in the market subspace W in the following two
senses:
() geometrically,itis the vector inW which lies closest to &

nw=argmin{||l—yllilyew}

(b) statistically, it is the vector in W which has the minimum standard deviation per
unit of expected return

n, = srg ain {0 (55 )| y e W, £ # 0]

(iii) theminimain (a)and (b) lead to two measures of the riskiness of the market subspace:

(3)'1‘E("w)—”1(’7w§ ) )

Proof: (i) Since | —nweWJLE )= y]] =[n, vl fordly e Ww.

(ii) (a) followsfrom (3). To prove (b), consider the problem: min{ vary |y € W, E(y) == 1) and
suppose that n,,,/E(n,,) is not the solution. Then thereexists y € W with E(y') = 1 and var
¥ <varn,/E(n,)? Let§=E(n,,)y then j satisfiesE(§) = E(n,,) and var § < varn,, =
E(#) < E(n,)%. Then | 1 -7 |3=1-2E(@) t E@®) <1-2E(n,) T E(2,) = 1 -n,, I3
contradicting the definition df 7,,,.

(iii) followsby noting that (i) implies E(nfv) = E(n,,) 0

Weéfare Gai ns Function. We want to apply Proposition 1 to a purchasing power economy
E(u,e,a, V), namely a one-good economy with payoff matrix

When a changes, it alters the market subspace
Vo = (Va)

13



83. Wadfareand the Statistical Characteristics of the Bond

and our objective is to understand how the weifare o agents varies with the "characteristics"
of the bond a. Since in (8), V is taken as fixed, a convenient wav of analyzing how welfare
depends on ais to make the comparison with the case where a is redundant (a< V = (V)).
The utility of agent i at the equilibrium with. market subspace V, can be written as

iy, = (@), — @) + @y

where the first term G = @}, — @}, can be interpreted as the utility gain to agent i of having
the bond with characteristics a. By Proposition 1, this gain can be written as

Go=¢ (Im, 15 - Inv I2)

where ¢* = 3§ (i— - %)2 is a non-negative coefficient which is positive for al “non-average”
agents. Since the subspace V, contains V, || ny, 12 > 1| ||?,, so that the gain G% is non-
negative for d| agents and isstrictly positiveif ¢t >0 and a¢ V. We are thus led to study the
function G: RS R defined by

G(a) = m, I3 = Il I3 (9)

which we call the welfare gains function, since the utility gains to all agents are proportional to
thefunction G. This property of tht: model, that the utility gainsof all agentsare proportional to
the common function G — in particular that all agents are made better off when a nonredundant
bond a is added to an existing security structure V — requires some explanation.

In general, introducing a new security has two effects: the first — which we may call the
direct effect — is to increase the span o the marketsi.e. the trading opportunities available in
the economy, and this tends to increase the welfare of the agents; the second — which we may
call the indirect effect — is to change d| prices, both spot and security prices, and this can
either increase or decrease agents' utilities. Combining the two effects can lead to the apparently
paradoxical result that introducing a new security decreases the welfare o al agents, as first
shown in an example by Hart (1975). More recently Cass-Citanna (1994) and Ellul (1995) have
studied the case where all (and hence the indirect) effects are marginal and have shown that
if the markets are sufficiently incomplete then in a multigood economy the combination of the
two effects can lead to any possiblelocal change in agents' utilities. Even in a one-good model,
because the prices of the existing securities normally change with the introduction of a new
security, typically some agents gain and some agents loose from the introduction of a security.
In this paper the indirect price effects are canceled: there is no effect from spot prices because

14



§3. Wdfareand the Statistical Characteristics of the Bond

of Assumption H, and no effect from security prices because of the linear-quadratic form of the
agents' utility functions?as can be seen from formula (7) for the equilibrium security prices.
Thus the analysis concentrates on the direct; effect of changing the span of the marketsand this
effect is present in dl economies. The analysis can thus be applied to an economy in which the
price effects are sufficiently small., or it can be taken as the first haf of a more complete study
in which indirect effects are also explicitly taken into account.

The next step is to analyze the properties of the welfare gains function G(a): we will
show that the gain depends only on the statistical properties o the income stream a € R
summarized by its mean, standard deviation and its correlation coefficients with the securities
v}, ..., v/, Furthermore we will show that the gain can be described in a very complete way
for any number of securities J, and any number of states of nature S. The derivation o the
propertiesd G as afunction of the statistical attributes of a requiressome calculations which
are left to section 5. Here we summarize these properties and for the case (J= 1,S = 3)
provide a simple geometric interpretation of' the results.

Since G(a) is derived by projecting 1 onto V, and V, it depends only on the directions of
the vectors (a,v!,...,v>) and not on their lengths. Thus all these vectors can be normalized
and the most natural economic interpretation is obtained by normalizing each vector <0 that its
expected value is one. This requires that each of these date 1 payoff streams have a non-zero
expected value: thisis assured for v},...,v7 by Assumption | (iv), and will be assured for the
bond by restricting attention to bonds with positive expected values (a€ RY with E(a) > 0).
The following notation for normalized variables is convenient: for any random variable z € R®
with E(z) > 0, the normalized variable with expectation 1 is denoted by

z

E(z)

I=

If o(z) denotesthe standard deviation of z, then ¢(Z) = UES(% measures the standard deviation
o the income stream x per unit of expected value: for brevity we write oz = o(Z). Since the
correlation coefficient p(z, y) = %f—’(";% between a pair of vectors x,y € RS does not depend

on their lengths, p(Z,%) = p(z,y): for brevity we write pz,. Let

Pulpl v Pylyd
Pa = (Pavis-- -+ Pavd)s P, =
Pydpt ... Bulud
denote the vector of correlation coefficients between the bond a and the securities v, ..., v~

and the matrix of correlation coefficients between these securities, respectively.

15



§3. Wdfareand the Statistical Characteristics d the Bond

The next proposition asserts that the gain G(a) dependsonly on (3, pa) i.e. thereexists a
function g : R x RY — R such that G(a) = g(4, pa). Inorder to deduce the properties of G
from those o g it is necessary to determine the subset (domain) o R x R’ on which g coincides
with G i.e. the values (a,p) € R x R’ which correspond to the standard deviation and vector
of correlation coefficientsof a normalized random variablea € RS

Proposition 3 (Existenceof Statistical Gai ns Function):

(i) Let (ap) € R x R, then there exists a random variable a € R® with E(a) > 0 such
that (oa, pa) = (o, p) if and only if either (o,p) =(0,0) or > 0 and p belongsto the convex
domain R. defined by

R={peR’|[p, - poT)is positivesemi-defnite} (10)

(i) The boundary of R is IR = {p € RI det [p, — ppT] = 0}. If ais a random variable

with pe € R, then there exists y € V such that
pla,y)=+1 <= d-1 =Xy~ E(y)1) for someA € R (11)

(iii) There exists a functiong R x RV R such that if (s,p) &€ R++x R U {0,0} then
q(a,p) = G(a) for all ae RS (withE(a) > 0) such that (o4, pa) = (a,0).

Proof: (Seesection 5)

The next proposition describes the propertiesof the function g, which we call the statistical
gai ns function, sinceit expressesthe gain from abond aasafunctiond itsstatistical properties
(oa, pa)- Since the securities (v!, ..., v~) aretaken asfixed, the projection 7y, of lLonto V forms
part of the data d the problem: to reflect this we let

n =1y = projyl
In Proposition 2 we introduced the two measures, 1 - E(n) and a5, of the riskinessdf V (i.e.
the market subspace in the absenced &g. Both play an important rolein the next proposition.
1 - E(n) measures the maximum gain that can be attributed to any bond asince

I, 12=17n12 < 1-linl2=1-E@#* =1-E(n)

The maximum gain is attained when 1 € V,, which happenseither if a= 1, or if aisrisky and
¥ can be obtained by a combination o a and some vector in V: by (11) this occurs when a is
perfectly correlated with some vectory # ainV.
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For normalized bonds o a given variability a. the minimum gain as a function o p depends
on whether the bond is less or more variable than the (normalized) least risky income stream
7 in V. when a < o3 the bond is less risky than any security in V and thus necessarily leads to
a positive gain; when az o;; then the bond will not contribute towardsrisk reduction if it does
not permit therisks in V to be hedged.

Al bonds a € R® with the same vector of correlation coefficients ps = p with v!,...,v=,
have the same correlation coefficient p(a,7) with the least risky security n in V, regardless of
their variability: for n can be written asn = ZLI A0, S0 that
J J
Y AjPayi®alys ,—% AjPavi Tv;

cov (a,n) _ j=1

plan) = = =
O'ad,’ Uaan 0’-,,

which isalinear function of (pay1, - - -, Pays) Which isindependent o o,. Asa result acoefficient
o correlation r € [~1, 1] definesa subset of R

’R,,.:{pé'l?,‘ p(a,n) = r for all a € RS withpazp}

which is the intersection of R by a hyperplane in R/. The domain R is thus partitioned into
t wo regions depending on the sign o the correlation coefficient between a and the least risky
security n

R* = {p 612’ p{a,n) >0 for dl ae RS with p, = p}

R™ = {p € R| p(a,n) <0 for al aa R’ with p, =P}

Proposition 4 (Properties of' the Statistical Gains Function):
(A) Properties of g asafunction of p (for fixed a > 0):
(0) For anya>0, g(o,-) isa convex function on the interior of R.
(i) (Low variability): if 0 <o < o3, then the maximum of g{(o, ) is attained for all p € R

and
1
glo,py=1-E(n)=1- 1+_a% for all p € OR

The minimum is attained for the unique vector p* = (o /031, ...,0/032) and
1 1
p)

1402 l+o;

g(o,p*) =

17



§3. Wdfare and the Statistical Characteristicsof the Bond

(ii) (High variability): if ¢ > o4, the minimum of g(o,-) isattained for the vectors p which
liein the 3= 1 dimensional subset R, with ro = 04/0 and g(o,p) =0 forallpe R,,. The
maximum of g{a, ) isattained for all vectorsp € OR\R,, and

1
9(o,p)=1~E(m) =1~ 752 for all p € IR\R,, (12)
7

Ifdim V > 2, then g(o,-) isdiscontinuous at the pointsdRN R, .

(iii) (Intermediate case): if o = oy, thesubset R, = R on which g{e, -) attai ns itsminimum
reduces to the point p* = (o/o3,...,0/05s) € OR and g(o,p*) = 0. The waximum of g(a, )
isattained for all vectorsin @R\R, andisgiven by (12). If dim V > 2, then g is discontinuous
a p*.

(B) Properties of g as afunction of a (for fixed p e R\OR).

If p € R™, then g(-, p) isstrictly decreasing for all a > 0; if p € R*, then there exists a
critical variability a* = o4/p(a,n) such that g(-,p) is strictly decreasing for a € (0,¢*) and
strictly increasing for a € (a* ,00). Thusg(-, p) isstrictly decreasing for all a> 0 if and only if
PERT.

Proof: (Seesection 5)

Single Security Case (J=1). A geometric proof of Propositions 3 and 4 can be given in the
simplest case J=1,S = 3 (recall that Assumption | (iii) requiresS> J+ 2). Let v denote the
payoff on the single security, (v) = V. Since the welfare gain only depends on the normalized
income streams, it suffices to restrict attention to income streams lying in the plane

P={ceR? B(z) =1} ={zeR?|[[z-1,1]]=0)

which passes through the riskless income stream 1 and is y-orthogonal to £. To simplify the
geometry we consider the case d equal probabilities so that the y-inner product coincides (up
to the coefficient 1/3) with the Euclidean inner product.! Since for a normalized income stream
| a—1 ||2= 0?(3), acirclein the plane P centered at 1 o radius o represents all the normalized
random, variables a which have the same standard deviation a. Sincedim V =1, n = proj,1
is collinear to v so that 7 = ¥ and o3 = o3. The three cases appearing in Proposition 4A,

‘The sane Hgures 1-3 are valid in the general case of unequal probabilitiesby appropriately changing units
along the co-ordinate axes i.e. by changing from the standard basis {el, e2,e3} to the basis {ef,e5, €3} with
e, = 7%(‘:,, $=1,23
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a < (>,=) o4 correspond to the cases where 7 lies outside (inside, on) the circle of' radius «
(see Figures 1-3). For any choice of 2, the market subspace V, = (a,v) intersects the plane P
along the line (&,8) passing through a and 8 i.e. PN (ay) = (a,G). The closer the line (4,7)
is to 1, the greater the gain in velfare.

Given 8, the distance o the line (5,%) from 1 depends only on the radius a of the circleon
which a lies and on the angle #(a — 1, — 1) between the vectorsa — 1 and 3 — 1 — or more
precisely (by symmetry) on the cosined thisangle. This cosineis the correlation coefficient p,
between aand v, since

~ ~ _ Ha-1v-1]]  cov(a,9)
s b@=-10-N) = AT, o@e0)

= p(a,v) = pq (13)

Thus the gain function G(a) depends only on (o3, 04) i.€. g(a) = g(o,p) for dl a such that
(¢4, pa) = (a,p). In order for a pair (a,p) € R x R to correspond to the standard deviation
and correlation coefficient of a random variablea, a must be non-negative and if a > 0, p must
belong to the domain R = [-1,1].

Figures 1-3 show how the welfare gains from a normalized bond a of a given standard
deviation a vary as a function o the correlation coefficient p between a and the vector v, for
the three cases a < (>,=) o¢3. In each case the maximum gain arises when the line (&, v)
passes through 1, so that 1 € V,. Thisoccursif and only if a — 1 and ¥ — 1 are collinear and
distinct; since, by (13), p 1s the cosineof the angle betweena — 1 and ¥ — 1, when a # o this
corresponds to the case p = £1. When a = ¢; only p = —1 gives the maximum gain, since
when p =1, a =8 and there is no welfare gain.

To study the behavior o the function g(e, -) consider first the case of low-variability bonds
(a< ogg) shown in Figure 1. If we move clockwise around the circle of radius a from p = -1,
where 1 € (5,7), the normalized market line (&, %) moves further away from 1, reaching its
maximum distance when p = p*, corresponding to the minimum of the gains function (shown
on the right side of the figure) and then moves back toward 1 until it reaches p = 1, where
once again 1 € (2,9) and the gains function returns to its maximum value. The normalized
market line (a,8) is at its maximum distance from 1 when a — ¥ 1L 4 — 1 which is equivalent
toE((@a-9)@-1)) =cov(5-8,2)=0 < p* =oa/o;. At p* theline (4,9) iscloser to 1
than 8, so that the minimum gawm g(e, p*) is strictly positive.

A similar analysis can be made for the case of high variability bonds (a > o3) shown in
Figure 2. Movingfrom p= —1to p=1 thedistanced the line (a,8) from 1 at first increases,
reaching its maximum at p = p*, where8 —a 1L 7 — 1 <= p* = o3/0 and then decreases to
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Hgure 1. Low variability case: (left) in the plane P, the market line (a,6) for different values
of p and a fired a < oy; (right) the graph o g(o, ).
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Hgure 2: High variability case (a> o3).
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Figure 3. Internedi ate case (a= o3).

zero at p = —1. At p* the distance of the line (a,%) from 1 is the same as the distance of ¥
from 1 so that there is no welfare gain from a and g¢(e, p*)=0.

In theintermediate case (a= o) shown in Figure 3, moving clockwise around thecircle from
p= -1 (wherel € (&, G)) the line (a,v) moves progressively further away from 1, reaching its
maximum distance for p* = 1: at thisvalued the correlation coefficient, theline (a, ¥) collapses
to the point ¥ (i.e. thereisadrop in the dimension o the market subspace) and g(o, 1) = 0.

In all three cases the minimum gain aways occurs when there is no "synergy” between the
bond a and the security ¥ for reducing market risks: the projection of 1 onto the market line
(a,5) isa when a < ¢ and is5 when a > o;. For al other valuesd p (i.e. p # p*), a
combination of & and ¥ creates the least risky security on the line (2,%) and this security is
less risky than either a or 5 taken on their own. Placing the family of curveson the right side
o Figures 1-3 on a common graph (Figure 4) shows how the welfare gains change when the
variability of the bond is increased,? for a given p. For negative correlation —1 < p < 0, g(-, p)

2The family of curves in Figure4 isbest under stood by notingthat therearethree'limit curves" corresponding
tothecases o = 0,0 = 0; and ¢ = co. Whena — 0 thegraph o thegainsfunction noves towar dsthe horizontal
line obtained for a = 0; as o is i ncreased the curves are pulled down towards the curve obtained for o = o3, the
m ni mumin each case being on the dotted line. For a > ¢, as ¢ isincreased the curves dide towards the curve
obtained for & = oo, the m ni mumin each case being zero.
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Figure 4 Welfare gains for a family of bonds of increasing variability.

isadecreasing function for al valuesd a; for positive correlation0 < p <1, g¢(-, p) isdecreasing
for a < o3/p and increasing for a > o3/p: note that for a > o3/p, while g(-, p) is increasing it
is bounded above by g(co, p). Note aso that increasing the variability of alow variability bond
(a< o3) adways decreases the welfare gain, provided p # 1.

General Case (J > 2). Direct geometric arguments of the kind given above are no longer
available in the multidimensional case J > 2, since by Assumption |, S> J+ 2. What is
remarkable is that by explicitly calculating the function g(e, p) and deriving analytically its
properties, it is possible to show how these results extend to the multi-dimensional case J= 2.
The explicit derivation o the function g(e, p) and the study d its properties is given in section
S.

In geometric terms, Proposition 3(iii) asserts that the welfare gain from a normalized bond
a depends only on itsdistance a from 1 and on the angles (more accurately the cosines of the
angles) p1, ..., ps with the J securitiesv?, ..., v>. Part A d Proposition 4 showsthat the gains
function g(e,-) behaves somewhat differently according as this distance a is smaller or greater
than the distance o5 o the (normalized) least risky security 7 in V from 1. The restriction
onp=(p1,...,ps) given by the domain R, which generalizes the constraint p € {—~1, 1} when
J=1, describes the restrictions on p in order that the pair ( a,p) correspond to a bond a E RS.

For any a > 0, when p € dR, a bond with angles p = (p1,...,ps) is perfectly correlated
withavectory € Vie. a—1iscollinear tog-1 (see(11))andif a¢ V then 1 € V,. If o < o3,
then a cannot belongto V and al p € R give the maximum of g(e,-). If a 204, then a may
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liein V: thus when p variesin R, the subspace V, can either contain 1. in which case thegain
is maximal, or for some values "collapse” to V, in which case the gain is zero. These changesin
the dimension of V, create the discontinuities referred to in (ii) and (iii) o Proposition 4(A).

When 0 < ¢ < o3, the distance from 1 to V, is less than or equal to the distance from 1
to(a) and the minimum is attained when the projection n,, of 1 onto V, is collinear toa It
turns out that this occurs for a unique vector p* > 0 of correlation coefficients. When a2 o3,
the distance from 1L to V; is less than or equal to the distance from 1 toV and the minimum
is attained when the projection ny, of 1 onto V, coincides with the projection n of 1 onto V:
in this case the bond does not contribute anything toward ri sk reduction and the minimum is
zero. If a> a3, this occurs for all the vectors p in the intersection R, of a hyperplane with
R, the hyperplane being tangent: to 9R when a = 0.

Figure 5. Welfare gains as function of p for the two security case (J = 2). (a) Low variability:
a family of gains surfaces for increasing values of the parameter a. wth a < 0. (b) High
variability: a gains surface witha > ;.

Figures 5 (@) and (b) show the graphs of the gains function g(o, -) when 3= 2, for the case
of bonds of low variability (a< o3) and high variability (a> o) respectively. The graphs are
obtained from the explicit expressionsfor g derived in section 5 assuming that p12 = 0 (so that
OR is the unit circle) and o1 = o,2. When (p1, p2) are restricted to lie dlong the line p1 = p2,
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the family o gains surfaces reduce to curves similar to those in Figures 1 and 2.

Part B of Proposition 4 which analyses the gains function g(-, p) shows that the result
demonstrated in Figure 4 when J = 1, holdsfor the general case 3 2 provided o/ p is replaced
by a* = o3/p(a,n). In particular if p(a,n) > 0 then even though g(-, p) decreases for a< a*,
it isstrictly increasing for a > d: thus p(a,n) £0 is a necessary and sufficient condition for
g(:, p) to bestrictly decreasing for dl a> 0. This playsan important rolein the general version
o Proposition 5 studied in the next section.

4. Nom nal versus Indexed Bond

The model outlined in section 2 when combined with the results o the previous section
provides a framework for analyzing the circumstances under which a nominal and/or an indexed
bond are more likely to be traded, in an economy. We begin by considering two extreme cases
where the answer is clear cut, since one o the bonds is the "ided" bond with constant real

purchasing power payoff.

(a) Conditions under which al=1oraR=1

The payoff o the nominal bond in the purchasing power economy is
h(ws)\°

The variations in the purchasing power of money v, depend on how the money supply M, varies
with aggregate output, as measured by the index h(w,). In order for v, to be constant across
the states, the money supply M, must be proportional to h(ws) or, in terms o growth rates,
the rate of growth M, d the money supply must match the rate d growth g, o real output so
that (for some constants)

vs _ h(w,)/h(wo) _ 1+g5 _

w MM, 1+M, °
This condition would be satisfied in the idedlized setting where a monetary authority (or a

s=1,...,8

banking system) perfectly controls (adapts) the money supply to the fluctuations in real output
(h(w,)). In this case, since the nominal bond is the ideal bond aV = v = 1, there is no role for
an indexed bond.

If the bond isindexed on the value of a bundled goodsb € RE then it becomes areal bond
whose purchasing power across the states

a® = (Vh(ws)b)S_,
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84. Nominal versus Indexed Bond

is not influenced by fluctuations in the purchasing power of monev. However if the relative
prices of the goods (proportional to Vh(w;)) vary across the states, then the purchasing power
aR fluctuates. In this model, in view o Assumption H, it would be possible to avoid these
fluctuations by indexing on a state dependent bundle b, = w,/h(w,) which is proportional to
aggregate output in state s. Indexing on thisideal state dependent bundle permits the creation
o the riskless real income stream
af = (Yh(w,)w,)s -1
h(ws) /4y

If indexation could create such a riskless real income stream, then agents would only use the
indexed bond and the nominal bond would disappear.

In a more realistic model in which agents do not have identical preferencesfor goods within
each state, no such ideal reference bundle — and hence no such ideal index — exists. We
invoked Assumption H to simplify the analysis of equilibrium — by factoring out the influence
o the income earned by agents on the financial markets on the determination of spot prices —
certainly not to suggest that there is an ideal index. To capture the inherent imperfections of
indexation in spite of the simplifying Assumption H, we assume that the reference bundle must
be state independent. This assumption also captures the fact that in practice an index is more
credible if its computation does not involve the use o astate dependent reference bundle, since
the possibility of changing the bundle as the contingenciesvary opensthedoor to manipulations
to either understate or overstate inflation, depending on the interests of the parties involved.

Although neither of the extreme cases where the purchasing power of money is constant
or there exists an ideal index is likely to be met in practice, it is instructive to identify the
circumstances in which one of the two types o bond — nominal or indexed — has a relative
advantage over the other. Thismay be done by analyzing which bond creates the greater socia
welfare, under the assumption that only one of the two bonds is traded.

(b) Conditions under which a® or aR is socially preferred.

We want to apply the analysis o section 3 to a purchasing power economy £(u, e a, V)
where a denotes either the nominal or the .indexed bond and V isthe matrix of payoffs on the
underlying risk sharing securities, al payoffs being expressed in purchasing power. Consider
first the simplest case where V consists of a single security (J= 1). Given Assumption S its
payoff v must be

v = (Vh(w,)ws) i, = (h(ws))3o; = h(w1)
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The projection n o 1 onto V must then be collinear to v so that 77 = A(wq)/E(h(wy)). Thus
oy depends on the variabilityof a  egate output (measured with the aggregator h).

Therisk characteristicsd the real bond depend on the underlying red side of the economy.
Since aR = Vh(w,)b, the variability 0,2 of the normalized indexed bond depends on the
magnitude d the fluctuationsin relative prices, which in turn depends on the extent to which
supply-side shocks influence the relative quantities of the goods across the states. If the red
shocks which affect the economy are primarily economy-wide, affecting dl sectors (goods) in
a similar fashion, then the fluctuations in output captured by o; will be greater than the
fluctuationsin relative pricessummgjdized in oz (see Figure6(a)). Conversely thecase o3z > o3
arises when the redl shocks are primarily sectoral, affecting sectors differentially while creating
only small fluctuations in the level d output (seeFigure 6(b)). Clearly the greater the relative
price fluctuations the smaller the potential gai ns from an indexed bond. The correlation p,»

Wsy
%

b

W, Ws,

@ (b)

Figure 6. In (a), economy-wide shocks are greater than sectoral shocks (o5 > ozr); in (Ih), the
reverse (o; < o4r).

depends on how the prices d the goods which are most heavily weighted in b covary with
aggregate output: if the supply w, d the goods ¢, whose components b, in the index have a
substantial weight, are positively (negatively) correlated with aggregate output (h(ws)), then
p.r Will be negative (positive). In view of Figure 4, when the correlation is relatively small, the
potential gain is greater when the correlation is negative than when it is positive.

The risk characteristics o the nominal bond depend on the interaction between the real and

26



§4. Nominal versus Indexed Bond

the monetary sides o the economy. In the analvsis that follows it is useful to distinguish two
categories of economiesdepending on the role attributed to monetary policy:
(i) Economies in which a primary objective of monetary policy is to stabilize the purchasing
power of money. Most developed countries are in this category with average annual inflation
lying between 1 and 15% per annum and standard deviation of the same order of magnitude.
Even in these economies, there is aways some variability in the purchasing power of money
due to imperfectionsin the control of the money supply process by the Central Bank or to the
fact that monetary policy must also meet other objectivessuch as full-employment. Thisis the
category of economies in which the absence of indexed bonds has been somewhat o a puzzle
to economists.
(i) Economies in which the money supply is used to finance government expenditure. These
are typically economiesin which inflation is high and very variable, the variability in inflation
being due to periodic attempts to drastically lower the rate of inflation. Many less developed
countries are in this category, having mean and standard deviation of inflation per annum in
excess of 200%. In these economies nomina bonds are typically replaced by indexed bonds.
The economies in (i) and (ii) differ by the magnitude of o;~. For both categories of
economies, however, the statistical relation underlying the Phillips curve, namely that inflation
and output are positively correlated, suggests that typically the purchasing power of money
and output are negatively correlated {p,~» < 0). The fact that nominal bonds are typically used
in economies of type (i), while indexed bonds are typically used in those o type (ii), can then
be explained by the following proposition which is a corollary of Proposition 4.

Proposition 5 (Nominal versus Indexed Bond): Given (¢;r,p,r) Which depend on the
real side of the economy, with p,r # +1, and given p,~ satisfying —1 < po~ < 0, there exists
a* such that if oz~ < o*, then the nominal bond leads togreater social welfareand if ozv > a* ,
then the indexed bond leads to greater social welfare.

Proof: Since —1 < p,~ £0, by Proposition 4B, the function g(-, p,~) is strictly decreasing in
a. Thusif a* is defined by
g(atv aN) = g(U&Rw paﬂ) =g

then g(oan, pav) > G if oan <a*,and g(ozw, pn) <G if ogn > a*. a

Thus in an economy which is subjected to real shocks there is aways an interval [0,a*)
of fluctuations in the purchasing power o money on which the nomina bond is preferred.
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This interval is larger, the greater the relative price fluctuations o3z and the more negative the
correlation p,~,, between the purchasing power d money and aggregate output. The existence of
sectoral shocks leading to relative price fluctuations and a relatively strong positive correlation
between inflation and output may thus be two important el ements which help to explain the
lack of indexing in Western economies. The proposition also supports the observation that in
economies with high and variable inflation, agents typicaly resort to indexed bonds. For even
in economies with substantial relative price fluctuations there is always a level of variation in
the purchasing power of money beyond which agentsswitch from a nominal to an indexed bond.

Proposition 5 extends in a relatively straightforward way to the case where there are many
securities (J> 1) that generate the market subspace V. If neither p,z nor p,~ are in R,
that is, if neither the indexed nor the nominal bond is perfectly correlated with a marketed
(real) income stream y € V (p(a®,y) # £1 and p(a®,y) # =1, Yy € V) and if p(a™,7) £0,
where the least risky income stream n in V no longer coincides with aggregate output h(wy),
then by Proposition 4B, g(, p.~) is strictly decreasingin a so that there exists a ¢* with the
propertiesstated in Proposition 5, namely if o;» < a* then the nominal bond is preferred, while
if ozv > a* then the indexed bond gives greater social welfare. If the least risky income stream
n in V is positively correlated with aggregate output h(wy), then the condition p(a®,n) £0is
likely to be satisfied. A qualitative analysis similar to that given for the single security case
can then be made in the more realistic case J> 1 — many securities inevitably being required
if the spanning Assumption S is to be a reasonable approximation.

(c) When the restriction to trading only one d the two bonds is a reasonable assumption.

The analysis in (b) was based on the assumption that only one o the two bonds is traded.
We need to clarify the conditions under which this restriction is reasonable. For there can
be circumstances when the correlations p(a, v?), p(a®,+?) and p(af,aN) are such that agents
would be much better. off trading both the nominal and the indexed bond, so that restricting
them to trading only one d the two securities gives an artificial result. The analysisin (b) leads
to a result with explanatory power only if, when agents trade the preferred bond, augmenting
their opportunity set by permitting trade in the other bond would not add much to their
welfare. In such circumstances, even a small transaction cost would cancel the benefit o using
the second-best bond.

To cover the two cases where the nominal (resp. indexed) bond is preferred, let a denote
the preferred bond and let & denote the second best bond. The market subspace when the
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preferred bond (from the analysisin (b) above) is used is W = (V. a) and bv Proposition 4,
the maximum welfare gain from adding the second bond & is1- E(»,, ), wheren,, is the least
risky security in W. There are two reasons why introducing the bond & may add only a smaller
welfare gain. First, the maximum potential gain 1= E(»n,,,) from introducing any additional
security may besmall. Second, the characteristics of the bond & may besuch that only a small
part of this maximum gain can be captured: since ais preferred to & the least risky security
n,, must be closer to 1 than a i.e. o(@) > a(ﬁw), so that & fals into the high variability
category of Proposition 4, in which the gain may be zero.

In the case of economies o type (i), in which the nominal bond is preferred, a combination
o these two reasons serves to explain why the indexed bond is not more widely used. First,
if the nominal bond is negatively correlated with most of the securities V (the stocks), then
diversification between the nominal bond and the stocks may permit risks to be significantly
reduced, in which case o(7,,,) issmall. If o(a®) isrelatively large and the correlation p(aR,ﬁw)
is positive then the gains from introducing aR may be close to the minimura which is zero.

In the case of economiesd type (ii),in which the indexed bond is preferred, it is the second
reason which is likely to explain why the nominal bond is not used. Even if the potential
gan is large, the nomina bond is not well-adapted to capture these gains, since the high
variatiability o a” is not compensated by a high correlation with rea variables. In these
economies the correlation between money and real output (the Phillips curve) is likely to be
significantly reduced. First, variations in the ppm are due to alternations between periods
of high government expenditure supported by increases in the money supply and periods o
stabilization, whose timing has :more to do with political events than with the objective of
smoothing real output. Second, indexation serves to isolate the private sector from the impact
o monetary shocks. By Proposition 4, in the high variability case, the minimum gain of zero
occurs when p(aN,nw) =0, \ogn: thusif the variability ozw is very high and p(aN,nw) ~0,
then the welfare gain from introducing the nominal bond is likely to be close to zero.

5. Proof of Propertiesof tlhhe Statistical Gains Function

In this section we prove Propositions 3 an 4. The order o the proof will not exactly follow
the statements of these propositions. It isconvenient to begin by calculating thestatistical gains
function, namely the function g(¢s, pa) Which expressesthe welfare gain G(a) from a blond a as
afunction of its normalized standard deviation and itsvector of correlation coefficientswith the
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underlying securities v?,..., v’ ((iii) of Proposition 3). We then exhibit the domain on which
the function g(o, p) expresses the welfare gain of some random incomestream a < RS ((i)and
(i) of Proposition 3). Finally we establish the properties of g as a function of p and a (A and
B of Proposition 4).

Some matrix notation simplifies the calculation of g. Since the purchasing power payoffs on
the securities can be normalized to have unit expectation, we let

7 R 114 _
~ . ) . w
V=1: : ¥ = .
' E(v?)
i .

denote the matrix of normalized payoffs. The J x Jdiagonal matrix of standard deviations of
these J normalized payoffs is denoted by

o ... O

oy =
0 ... oy
and py = [Pyiyilij=1,..s denotes their J x J matrix o correlation coefficients. For some
intermediate calculations, it is convenient to introduce the following measure of stochastic
dependence, defined for non-centered random variables. if X,y € RS, E(z) # 0, E(y) # 0 define
o E(zy)
k(z,y) = E(1y) = EDED

Since k(z,y) = 1% p(z,y)o(Z)o(3), k(z,y) is greater (less) than 1 for positively (negatively)
correlated random variables. This measure d stochastic dependence appears naturally in the
projection formulae. Thus we define

ka = (a1, -, kas) = (k(a,v%),..., k(a,v7))
k(vl,vt) ... k(v v))
K= : : = VTV
k(v!,v1) .o k(! v)
Computation of the function g. Recal that the gain function G : RS R is defined
by G(a) =(@y, I3 — || » 2. Not surprisingly, the reduction in the distance from 1 (or the

increase of the length o the projection) achieved by changing the market subspace from V to
V. = (V, @) depends only on the innovation component of a relative to the subspace V. Let

a=a‘*+a, a*eV, a eyl
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denote the decompositiond ainto its component & on V and its innovation componentd € V 1L
and let n,, = proj(ay 1 denote the projection d 4 onto the one-dimensional subspace generated

by d.

Lemma 1: Thevelfare gain G(a) fromintroducinga bond a € RS isgiven by G(a) =|| ot ||3,.

Proof: The decompositiondf d.onto V, and its orthogonal complement v gives
L=mp, t1, mn €V VeVl
SnceV, =V & (a'),ny, canin turn be decomposed into
ny, =u+tv, uel, veE(@)

sothat 1 = u+v+1’. Since v € (@) Cc VL and 1V € VL c VL, by uniqueness of the
orthogonal decomposition u = 7,,. Since u € V C (a’)‘|L and 1’ € V,;u- - (a’)‘u', v = 1,,. Thus
Ty, =T + 7y and by Pythagoras theorem G(a) =|| ny, |13 — | my |3=1 n,, 113 a

Lemma 2: The welfare gains function G : RS — R can be expressed as a function g :
R, xR’ R of the normalized variables (E(52), ka) for dl a € RS such that E(a) # 0

_ aT =11 \2
(1-1TK"k,) ifa ¢ (V)

Gla) =3 (E@Y), k) = ! E(3%) - kTK-1k,’ )
Lo, ifa e (V)

Proof: By formula (4) of section 3 for the projection matrix B,,, with W = (a'),

E(a’) a
E (a'2)

n, =@y a1 =

so that oy s
et =tn, 1y = 52 - U0
Sinced = a — Bya,
(B@)-10lBva)” 1 -aThimva

@) = G BaThia=Bva) ~ E@) —a(|Bva

where the second equality is obtained by dividing the numerator and denominator by E(a)?
and exploiting the orthogonality d aand & aT[4](a = Bya) =0. Since the y-projection onto
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(V) is not affected bv the length o the vectors which span the subspace (V), the v-projection
matrix can be written as

By = VIVT V)10 = VKV
Ui ng the relations 17[y]¥ = 1T and VT[4]a = &, leads to formula (1). w
Since the variables (E(a?%), k,) can be expressed as functionsof (¢4, fa),
E@) =140, ke=1+ o3l0y)pa (2)
substituting the expressions in (2) into equation (1), leads to a function g(o3, p,) satisfying
G(a) = g(oa,pa) =g (1 +of 1+ U&[Uf/]f’a)

which proves (iii) o Proposition 3. The exact formula for g is cumbersome and it is aways
more convenient to make calculations using the function g.
Consider therefore the functionsg : R x RY — R defined by

1-1TK-1k
oA k. T R-1L
0, if m = kTK~1k
and g: R x RJ_"Rdefinedby
g(mﬂ):g(l +(T2, 1+0[0"~/]p) (4)

When the variables( a,p) correspond to the standard deviation and vector of correlation coeffi-
cients of a normalized random variabled € R, then g(o, p) is the wdfare gain attributable to
the bond a. Thus the properties o g need to be studied only for these relevant valuesd (a,p)
which we now characterize.

Relevant domai n of g. We begin by proving the sufficiency part d Proposition 3(i).

Lemma 3: If a€ RS, then either (a,, pa) = (0,0) or oo > 0 and pa issuch that [py — papl)
is positive semi-definite. Furthermore if E(a) # 0 and o4 > 0 then the following properties are
equivalent:

(i) det [pv — papl] =0
(ii) there exists y € V such that p(a,y) = 1
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(iii) thereexist y € V and X € R such thata — 1 = A(y — E(y)1)
Note that if a¢ V then (iii) impliesthat 1 ¢ V),

Proof: If a € RS, then -1 < p(a,y) < 1for al y € RS and in particular for al y € V. If
o(a) =0 and E(a) #0thena= A1 and p, = 0. If o(a) >0, then —1< p(a,y) <1, ¥YyeV
isequivalent to

J 2 J J :

(Z ijavidaavi) < of (Z 3 :\i~jpu‘viau‘avi) , VAeR’ (5)

Jj=1 i=1 j=1
Letting Aj = Xjo,s, (5) is equivalent to ATppTA < ATpyA for all A € R or [pv — pap?]
positive semi-definite. There existsy € V such that p(a,y) = %1 if and only if there exists
X € R’ such that (5) holds with equality, or if and only if there exists A € R’ such that
AMTpy — papTIA =0 == det [pv — papl] = 0. Thus (i) isequivalent to (ii). On the other hand
(i) isequivaent to

[[a- E(a)L,y - EQL =fl a- E(@)1 3]y~ E(y)1 [3#0 forsomey €V
If E(a) # 0, dividing by (E(a))? gives
(B-1y-E@LUP=la-1{5ly-E@1[3#0 forsomeyeV
By the Cauchy-Schwartz inequality this occursif and only if a — 1. and y — E(y)1, which are
non-zero, are linearly dependent, which gives (iii). (iii) can be written as (1- AE(y))1 = a— Xy
forsome A eR. If a¢ Vthen1l-- AE(y) #0 and 1 € V,. O

The next lemma proves that the restriction a > 0 and [py — pp®] positive semi-definite,
completely characterizes the( o,p) which correspond to the standard deviation and vector of
correlation coefficients of non-constant random variablesin R,

Lemma 4: Let R = {p €R’ l[pv — pp”] is positive semi-deﬁm'te}
(i) R isa convex subset of R’
(i) OR = {p < R’ | det [ov - po"] = 0)
(i) If (a,p) € (0,0)UR++X R, then thereexistsa€ RS with E(a) # 0 such that(a, pa) =
(a,p).

Proof: The proof o (i) and (ii) is straightforward and is left to the reader. Proving (iii) is
equivalent to showing that if a > 0 and p € R then the following system of equations has a
solution:
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Find a € RS such that

S
Z’YS(aS - E(a))(vﬁ—E(vJ)) = PjOCyi, ]= 17"'7']

s=1

S
(A) Z VYsAg = E(a)

s=1

s
D vs(as - E(a))* =o?

s=]1

In terms of the standardized variables

the problem (A)is equivalent to:
Find x € RS such that

S ,
Y. Ysxsc), =p5, i=1,...,J cl ck
g=1 ! s
= - p

1 o <[ oo
(A ) Z 7123 - O @ O C = = J J
s:l I\ ET('Y]I =1 1 o] Cg

)3 "‘/s-'-’::'; =1 1 L

%
i
—

~

Since rank C < J +1 < S, the problem (A-) has a solution if and only if the minimum value

function

(P) h(p) = min {xT['y]xl Chlz = [g} , TE RS}

satisfies h{p) < 1. For if z* gives the minimum of this problem then, for dl solutionsy € RS of
~ ~ P
the homogeneous equations Clyly = 0, x = z* + )y satisfies Clylz = [0} and an appropriate

choice of A leads to zT[y]z = 1 The solution  the problem (P) is given by z* = Cpylp
where p, = C[]CT is the symmetric positive definite matrix of correlation coefficientsof the
vectors v!,...,v°, and h(p) = =*T[ylz* = pTpylp. If [py — pp¥] is positive semi-definite,
then for ¢ = pylp, €T[py — ppT)€ > 0 which implies pTpylp = (pTpylp)? > 0 and since
£Toylp >0, hip) < 1.

Note that for any (o, p) € R++ xR, the expected valuedf the random variables a € R® such
that (ca,pa) = (a,p) is arbitrary: if x isasolution to (A'), then for any A € R,a=oz+ Al is
asolution to (A). m
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Lemmas 1-4 complete the proof o Proposition 3. It remains to establish the properties of
the statistical gains function g on the domain R, X R.

Properties of the function g. The function g(o, p) defined by (4) is obtained from the
function g(m, k) defined by (3), via the change of variable

m=14+0% k=1+olov]p (6)

While the variables (a,p) have a more natural economic interpretation, the variables (m, k)
are better adapted to analyzing properties derived from projection formulae: the properties of
g(o, p) will thus be derived from the properties of the function g(m, k).

The function g(m, k) is rational function which we write as

N(k) .
— fQ(m,k) #0
g(m, k) = { Qm, iy TO™E)
0, if Q(m, k) =0
The relevant domain for g is the image o R++ x R under the change of variable (6). It is
convenient to begin by studying when the denominator Q(m, k) vanishes.

Lemma 5 If(a,p) € R4+ X R and (m, k) isdefined by (6), then
(i) Q(m,k) 20
(i) @(m, k) = 0 <= every ac R® such that (a,, p) = (a,p) satisfiesae V
(i) Q(m, k) =0 = p€ IR and a> oy.

Proof: Let a€ RS besuch that (a3, pa) = (a,p) and let (m, k) be deduced from (a,p) by (6),
then g(m, k) = (E(a’))2/E(a’2) where d is the innovation component o arelative to V. Thus
Q(m,k) = E(a?) >0 and Q(m,k) =0 if and only if & =0 «= a € V, which proves (i) and
(i). F a€ V, then thereexistsy € V (y = a) such that p(a,y) =1, and by Lemmas 3 and 4,
p € OR. Moreover in thiscase a= o3 > 03, Since g; < o5 would contradict the minimum risk
property of # in Proposition 2 (ii) b. a

Lemma 6: For all a€ Ry, g(7,-) isaconvex functionon int R.

Proof: Given the linearity of the change of 'variable (6), it sufficesto prove that k — g(m, k)
is a convex function o k on the domain Q(m, k) > 0. The matrix o second derivatives of g
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with respect to k is given bv
- D?N(k) 1
D k) = ———= + N(k)D? <-————>
kkg(m ) Q(\m, k) + ( )Dkk Q(m,k) (7)
1 1
+ UN(K)VE (-—-—) +v (———-) VTN
©Ve\aemm) Qe )V
where V (resp. VT) denotes the gradient (resp. transpose of the gradient) and where

VN(k) = -2(1 -1TK"1k)K~ 11
D?N(k) =2K"'11TK1
1 2K~k
Vi <Q(m, k>) = m R
9 ( 1 >_ 2K-! +8K"1kkTK"1
*\Q(m,k)) ~ Qmk) T Q¥m,k)

Inserting these expressionsinto (7) leads to

1T -1 T -1\ 2
Q Q
2rTK-1z(1 — 3TK~1k)?
which is non-negative for al = € R’, since K~! is positive definiteand Q > 0. O

We now study the minimadf the function g(e, ). Since g is a convex function d int 2, the
vauesdo p € int R for which g attains a minimum are the solutions of the first order condition
V,g{o,p) =0. Since

V90, p) = oo Vig
and since (o] isinvertible, these values of p correspond to the valuesd k such that Vig(m, k) =
0 (with m = 1+ ¢?). DefinethefunctionsH: R’ ~ Rand F: R’ R’
H(k)=1-1TK%, F(mk) =K K %k-m)1+(1~-1TK k)k (8)

noting that the numerator o g satisfies N(k) = (H(k))®. Then

2H (k)K ~1F(m, k)
Q%*(m, k)

Since K~} isinvertible, V,g(m, k) =0 if and only if

ng(m) k) =

either (i) H(k) =0
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or (il) F(m,k) =0
The next two lemmas locate the zeros of H and F respectively. For fixed m = 1+ 2, the zeros

of H define a hyperplanein R”.

My ={peR/|HA +0oloylp) =0}

Lemma 7: (@)Letp € H,NR, then (i) g(e, p) = 0 and (i) a € RS issuch that (aa,ra) = (a.,0)
if and only if
0. i,
pla,n) = _‘;'l_ <= @,1-79=0 & n =7

(B) If a < a3, then H, doesnot intersect R.

(v) f a =03, then H, istangent to R at the unique point p* = ooy ] ™11 € AR,

(6) If a > a3, then 31, intersectsR and therelativeinterior of H,N int R isan open subset
of dimension J— 1.

2
Proof: (a) (i) If p € Hy N Rthen g(o,p) = §(m, k) = QHL"L = 0. (i) Note that E(37) =
1,7=1....,Jimplies VT[y]1 = 1. Thusn, which is the projection cf 1 onto (V), is given by

n=7 [VTm?]” VT = VK11 (9)

so that
Em=1THVK-'1=1TK"!1 (10)

Thus if a€ RY, since k, = (E(3.3),.... E(3”,3)) = V3
E@n) =1TK"'VWTHja=1TK 'k, (11)
(11) and the definition of H in (8) imply
H(k)=0 ¢= 1-E(@an) =0 < [[3,1-7]]=0

Thus 1 — 7 isorthogonal to a. Since by definition 1 — 7 isorthogonal to V,1 —n € ValL which
implies that 7 is the projection of 1 onto V, i.e. n =y, . Furthermore 1— E(an) =0 <=
1- E(n) — p(a,n)oo, = 0 and dividing by E(n) thisis equivalent to
1 o5
—— —1-pla,n)oo; =0 < pla,n) = —
where the last step is derived from the equality o = g7 — 1 proved in Proposition 2 (iii).

37



§5. Proof of Properties o the Statistical Gai ns Function

(8) By (a) p € H,NR implies p(a,n) = 0/ which isimpossibleif ¢ < 7;: thus H, NR = 0.
(y) If ae RS issuch that (¢a,pa) = (o, p) Witha =g, and p € H,NR then by (a), p(a,n) =1
and by Lemma 3,a—1 = A(n— E(n)1) = N (7—21)with X > 0 since the correlation is positive.
o =05 = | a—-1|,y=|7- 1], whichimpliesa =7 so that p, = p, and by Lemma5,
Py € OR. py isreadily computed, sincek, = Vvl = gl VTHIVE 'L = g5 KK ™11 = o
so that solving from | + oj{op]pn = ks gives

0 == lo)™ (g - 1) 1= onloyl 2

7

(6) Since H, isa hyperplanein R, it suffices to show that HeN int R # 0. Consider k* = g~

By (10), H(k*) =0. Let us provethat p* such that k* =1+ oloy]p* namely p* = f&'?l[af,]‘ln
liesin the interior  R. For any A € R”, consider the vector y = Z,J:l A7 with co-ordinates
X on the normalized basisd V. Then

4
os
Mlegllov = o' Tlloyir = Mogloviogh - 727117

2 ‘737 2 2 O 2
=0y = ;(E(y)) = (fﬁ; - U-Z) (E(y))

Since a > o5 and since 7} is the minimum risk income stream in V, g3 > o3, SO that the
expression is aways strictly positive, implying that p* € int R. o

For fixed m = 1+ a2, the zeros of F define the subset of R’

Fo={peR!|F(1+0% 1+0loylp) =0}

Lemma 8 (a)ifa < &, then 3,NR = {p*} where p* = ooy |™!1 = (-;—,...,: ) €
o1 ord
int R, and v
(0,67) = g =
ROl =T 5 1+02 (12)

(B) If 0 > 04, then F, N R C H, NIR.

Proof: By (8), F(m,k) = —Q(m, k)1 + H(k)k so that F isalinear combination d the vectors
{1,k). Either k is collinear to 1 or these vectors are linearly independent. In the first case
F =0 only if k=m1l and this corresponds to a value p* such that

1+ofoplp' =01+ o)l = p'= a[av]‘ll (13)
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p € Rif foral A ¢ R’

Mlogllov - o o Mloplr 2 0
which is equivalent (see proof of Lemma 7(§)) to o2 —o* > O0fordl y €V,ortoa < oy. If

o < oj then the inequality isstrict so that p* € int R. Since k* =ml , it followsfrom (10)that
e ey LT PTETD? (1 - mE() ®
g(o, p*)=g(m.K*)= = gT-11 ~ m(1 — mE(n))

1 1
- E(n) = -
(m) 1+ 0% l-i-a'?7

(14)

If a = oy, then p* isgiven by (1.3)with a = a5 and thus coincideswith the point in H, N OR
given by Lemma 7(vy) and g(e, p*) = 0.

If the vectors{k, 1) are linearly independent., then F=0if and only if Q=0 and H =0:
by Lemma 5, the former implies p € 9R and ¢ > oy and the latter implies p € H,. Thus if
o > 045, FsNRCHsNIR. w

Since by Lemma6, g(e, -) isconvexon int R, it followsfrom Lemmas7 and 8that if a < o5
then g(a,) attainsits minimum at the unique point p* given by (13), and g(a,p*) is given by
(14). If o > o4 then g(o,-) attains its minimum for dl points p on the intersection o the
hyperplane H, with R and g(o, p) = 0 for d| such points. By Lemma 7(a), H, N R coincides
with the set R,, with r, = ¢;/¢ consisting of the vectors p € Rsuch that p(a,n) = o3/0 for
dl ae R with p, = p

The next lemma locates the values o p for which g(o, -) attains its maximum on R: this
consists of dl the boundary points of R which do not lie on the hyperplane H,. Since g is
zeroon H,, it followsthat g has a discontinuity at the boundary points which lie on H,, when
J>2

Lemma 9: (a)g(o,-) attains its maximum on R for dl p € IR\H, and g(o,p) = 1 -
E(m), Vpé€0R\H,.

(B) If a < g3, then g{o,-) is continuom on R. If a > 03 and J > 2, then g(o,-) has a
discontinuity at p€ dRNH, and g(o, p)=0, ¥V pedRNH,.

Proof: (a)Since g(o, p) = G(a) =|| ny,_ |12 - || ny, |I2, for dl a € RS such that (0, p4) =

(a,p),g attains its maximum when n,, = 1 <= 1 € V,. By Lemmas 3 and 4, this occurs
when p € 9R and a ¢ V. Since a € V is equivalent to E(a')= 0 where & is the innovation
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component d &, and since (see proof o Lemma 2) £(a’) = H(k,), the maximum of g(o,-) 1s
attained for p € OR\H,.

(B) Since g is a rational function it can be discontinuous only at the points where the
denominator is zero. When a < o3, by Lemma5, Q > 0, so that g(e,-) is continuous on R.
When a > a3, Q = 0 when p € R N3l and ¢(o, ) has a potential discontinuity at such
points. Since R is a manifold with boundary of dimension J, its boundary R is a manifold
o dimension J—1 When J-1 = 0,9R consists o isolated points and we saw in section 3
that g(e,-) is not discontinuousat p € JR N 3L, For J > 2, when p moves in 9R, which is
now of dimension J—= 12> 1, g(o,-) has the value 1= E(n) when p ¢ H, and 0 when p € 31,
Thus there is a discontinuity which arises from the drop in dimension o V, which looses one
dimension when agoes from being outside V (inwhich caseit contributesagreat deal) to being
inside V (in which caseit contributes nothing). a

Since R, = H, N R, this completes the proof of part A of Proposition 4. It remains to
study che properties of g as a function of ¢. In section 3 it was shown that the correlation
coefficient p(a,n) with the least risky security 7 is thesame for dl a € RS with the same vector
of correlation coefficients p,. The expression for p(a,n) asa function o p, is

cov (a4,n7) E(an) - E(n) _ 1TKk, -1TK-11

a = =
pla,n) Ta0n 030y Ta0n

Substituting the expression for k4 in (2) gives

1TK! [Uf/]pa
On

pla,n) = (15)

Thus
peR* (resp.R™) <= 1TK Y[oy]p >0 (resp. <0) (16)

The behavior of g as a function o a depends on whether p liesin R* or R™.

Lemma 10: Consider any p€ int R.

(a)lf p € R, then g(-, p) isstrictly decreasing for al a > 0.

(B) If p € R*, then there exists a* = o5/p(a,n) such that g(-,p) is strictly decreasing for
a € (0,a) and strictly increasingfor o € (a* p0).

Proof: agg: p) = 208621:; k)

+ pTloy|VG(m, k) where
(m, k) = (1 + a2, ]l+a[a‘-,]p) (17)
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Define
L(o,p) = apT[a‘-,]K'IF(m, k) - o2H(k)

with (m,k) given by (17).Then
dg _ 2HL

o ~ oQ?
Let usshow that L(e, p) <0, ¥V (a,p) € R4+ X int R so that

(samZ = ~(sg)H
L can be written as
L(o,p) = (1 ~m)H(k) + (k = 1)TK ™ (-Q(m, k)1 + H(k)k)
with {m, K) given by (17), which by appropriately regrouping terms gives
L=Q(g-(1-E(m)<0

where L < 0 followsfromQ>0andg< | — E(p)fora>0and peint R Thusif H > 0
(resp. < 0) then g(-, p) is strictly decreasing (resp. increasing). The expression for H as a
function of (a,p) is

H(o,p) =1 -1TK"' (1 +oloylp) = 1- E(n) —o1TK oy lp
which by (15)can be written as
H(o,p) =1~ E(n) — ooqp(a,n)

Thus if p(a,n) <0 then H(o, p) > 0 for all a > 0, which proves (a).If p(a,n) > 0, define

g LB 1 1-E(m _ 9oy
onp(a,n)  oapla,n) E(n) pla,n)

If a € (0,a*)then H(c, p) >0 and if a € (a* po) then H{o, p) < 0, which proves (5). a

This completes the proof of Proposition 4.
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