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Abstract

Most research on count data regression models, i.e. models for where the
dependent variable takes only non-negative integer values or count values, has
focused on the univariate case. Very little attention has been given to joint
modelling of two or more counts. We propose parametric regression models
for bivariate counts based on squared polynomial expansions around a baseline
density. The models are more flexible than the current leading bivariate count
model, the bivariate Poisson. The models are applied to data on the use of
prescribed and nonprescribed medications.
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1. Introduction

Most research on count data regression models, i.e. models for the special case where
the dependent variable takes only non-negative integer values or counts, has focused
on the univariate case. Very little attention has been given to joint modelling of two
or more counts. A review of the literature on multivariate count models is given in
Gurmu and Trivedi (1994) and Cameron and Trivedi (1998, chapter 8).

Here we focus on the bivariate case. The leading model for bivariate counts is the
bivariate Poisson, proposed by Holgate (1964) and presented in Johnson and Kotz
(1969, pp. 297-300) and Gourleroux, Monfort and Trognon (1984). This model is
applied by King (1989) to annual number of presidential vetoes of social welfare bills
and defense bills, by Jung and Winkelmann (1993) to number of voluntary and in-
voluntary changes, and by Ozuna and Gomez (1994) to number of trips to different
recreational sites.

The bivariate Poisson is restrictive in that it limits the marginals to being Poisson,
so that, conditional on regressors, the variance equals the mean. This restriction is
generally violated by count data, the well-known overdispersion problem. Multivariate
negative binomial models are presented in Kocherlakota and Kocherlakota (1993), but
these models restrict the forms of correlation and do not appear to have been applied
to the regression case.

Another model for multivariate counts is the mixed multinomial-Poisson model, see
Terza and Wilson (1990) and Hausman, Leonard and McFadden (1995). This model
is for counts on several types of events that are mutually exclusive and collectively
exhaustive, and is therefore not applicable to all settings in which multivariate counts
arise.

We present parametric models for bivariate count data based on a squared poly-
nomial expansion around a given joint count density. The approach is based on the
univariate count data model of Cameron and Johansson (1997); see also Gurmu (1997),
Gurmu, Rilstone and Stern (1998) and Gurmu and Elder (1998) for a related approach.
These papers are in turn based on models for continuous data, using a squared Her-
mite series expansion from a baseline normal density, developed by Gallant and Nychka
(1987) and applied to finance data in many applications, beginning with Gallant and
Tauchen (1989). For continuous data using Hermite expansions the models have been
extended to the multivariate case. Other multivariate orthogonal series expansions
were considered by Cameron and Trivedi (1993), but they considered only hypothesis
tests of departures from independence and did not square the series expansion term.

Specific models vary with choice of baseline density, which can be the product of
two univariate marginal densities or a more general bivariate density. In turn these
densities may, for example, be Poisson or the more general negative binomial. Further
variation can be obtained by choice of functional form of the polynomial.



In section 2 we present the model and its properties, with additional details pro-
vided in an appendix. A detailed simulation analysis is presented in section 3. Appli-
cation to data on the number of prescribed medicines and number of nonprescribed
medicines used is presented in section 4. Concluding remarks are made in section 5.

2. Models based on squared polynomial expansions

2.1. General approach

We begin with a general presentation for any type of multivariate data and baseline
density, before specializing to bivariate count data with the product of two univariate
Poisson densities as the baseline density. Consider a vector random variable y with
baseline density f(y|\), where A is a parameter vector. Let h(y|a) denote a polyno-
mial function of y, where a denotes the coefficients of the polynomial. The density
based on a squared polynomial series expansion is

h?(yla)
n(Aa)’

where 7(\, a) is a normalizing constant term that ensures that the density g(y|A,a)

9(y|x a) = fy|A) x (2.1)

sums to unity, and squaring the polynomial ensures that the density is nonnegative.
Note that for the new density g(y|A, a), the 7 moment of y will generally differ from
the 7™ moment of the baseline density. In particular, this is the case for the mean.

The univariate case was studied by Cameron and Johansson (1997), who let
h(yla) = S0 _, axy® where ag = 1. Then n(X\ ja) = >0 _ P jaraymy, where m, =
m,(A) denotes the 7' non-central moment of the baseline density f(y|A). The mo-
ments of the scalar random variable y with density g(y|A, a) are then readily obtained
from those of the baseline density f(y|A) as E[y"] = S5 _o S0 Gk 11+ /Mp (N, Q).

Note that (2.1) can be generalized to g(y|A,a) = f(y|A)h*(y|a)/n(\ a), where
h*(+) > 0. The attraction of choosing h*(y|a) as the square of a polynomial function
is that the normalizing constant 7(\, a) is then relatively easy to find.

2.2. A simple bivariate model

For the bivariate case, y =(y1,y2), it is more difficult than in the univariate to simply
present general results. Instead we consider in detail a specific simple model. The
polynomial is of the form

h(yla) =1+ ayys, (2.2)

and the baseline joint density is the product of two marginal densities

TIA) = fi(ya A1) L2 (2| A2). (2.3)
Then



(1+ ayrys)?

9(y|A a) = fi(y1| A1) fa(ya|A2) - 2.4
(¥IA2) = Al - (24)
In the appendix it is shown that the normalizing constant is

n()\,a) = (1 + 2am11m21 + a2m12m22), (25)

where mj, = Ey, [y;] is the 7" moment of y; with respect to the baseline density.
Interest lies in both the marginal and conditional densities. The marginal density
of ¥ is

(1 + 2ay1ma; + a®y2myy)
n(A,a)

g1(y1|xa) = fiyi ), (2.6)

with marginal mean

(a1 + 2amy9ma + a®mysma,)
(A, a)
The marginal mean will generally differ from my;, the mean of 7, in the baseline

density f1(yi|A1).
The conditional density of y; given v, is

E[yl] =

(2.7)

(14 2ay192 + ayiys)
1 4 2aysmyy + a?y3mas)

gl\2<y1’y27>‘7a) = ( f1<y1’>‘1) (28)

with conditional mean

(M1 + 2ayemas + a*yimys)
(1 + 2ayamay + a®yamyy)

Elyilys] = (2.9)
Thus the conditional mean of y; given v is a quite nonlinear function of s.

Note that if we extend to the case where the baseline density is instead given by
J1(y1|ya, A1) f2(ya]A2) then all of the above extends with ms,. = Ep,[y5] as above but
now my, = Ep| 5, [Y]|ys] which involves conditional moments for the baseline density.

For univariate Poisson baseline densities, A; is a scalar and f;(y,|A;) is given by

e N \Yi
Filysl i) = —
Yy

The normalizing constant 7(X, a) defined in (2.5) and the moments E[y;] and E[y|y2]
defined in (2.7) and (2.9) are evaluated at the moments m,(\) of the Poisson, which

can be obtained from the moment generating function using m,(\) = 9" exp(—A +
Ae!) /Ot |—o whose first three moments are

, j=12 y;=0,1,2,.... (2.10)

my = A
my = )\—I—)\2
ms = A+3X24+ N



2.3. More general bivariate models

More general polynomial functions than (2.2) may be considered. In particular in
sections 3 and 4 we consider

hi(yla) =1+ aiyi + asys (2.11)

and

ho(yla) = 1+ a1y; + asys + anys + assys + apye- (2.12)

In simulations and applications below we use these two polynomials, with baseline
density the product of two independent Poissons. The models based on (2.11) and
(2.12) are then called the Bil and Bi2 models.

More general baseline densities may also be considered. For overdispersed data it
is natural to use univariate negative binomial baseline densities. Then A; = (p;, @) is
a two parameter vector and f;(y;|A;) in (2.3) is given by

-1

Ty+a) a ! \° gy
~ —r >0, y=0,1,2,..
f(y’/%o‘) P(y_l_l)l—w(a,l) 0471+M Oéil‘l‘/JJ ) a=VU, Y 3Ly Sy ey
(2.13)

where for notational simplicity the subscript 7, j = 1,2, is suppressed on y and pu.
This form of the negative binomial is often referred to as Negbin2, as the variance is

a quadratic function of the mean: E[y] = p and V[y] = p + ap®. Another possibility
is to use the bivariate Poisson as the baseline density.
2.4. Estimation

We consider estimation by maximum likelihood, based on a sample of independent
observations {(y1,X1), ..., (Yn,Xn)} of size n. The regressors x; introduced by let-
ting A; and/or a; be a function of these regressors. In the case where only A; is
parameterized, as A; = A(x;, 3), the log-likelihood function is

In£(B,a) = Y {In [(yi|A(x;,3)) + 2In h(yi|a) — Inn(A(x;, B),a)}, (2.14)
=1
which is minimized with respect to 3 and a.

2.5. Lagrange multiplier tests

A useful way to interpret the series expansion is to consider the lagrange multiplier
(LM) test of a = 0. The moment condition for this test in some gives the direction



of departure from the baseline density. It is helpful to replace h%(yl|a) in (2.1) by the
more general function h*(y|a). Then the log-likelihood (2.14) becomes

InL(B,a) = Zn:{ln f(yilA(x:,8)) + Inh*(y:la) — Inn(A(x;, 3),a)}. (2.15)

Consider a function that is a transformation of a function linear in the weights a, that

s,

W (yila) = h*(1+a'p(y;)),
where p(y,) is a column vector of polynomials in y;. In the appendix it is shown that

IEB - _ 5 ply) ~ Elp(y),

a=0 =1

aside from a scalar multiple.
Thus the LM test is a conditional moment test of whether

Elp(y;) — Erlp(y)]l =0, (2.16)

that is, whether the expected value of p(y,) equals that specified in the baseline
density.

For example, in the simple bivariate model (2.2)-(2.3) where a'p(y,) = ay,y, the
LM test is a test of whether E[y1ys] = Ey1|E[ys], i.e. a test of independence.

As a second example, if the baseline density is the product of Poissons, and
a'p(y,) = a{(yr — M)? —v1 H{(y1 — X2)> — y1 }, we get the independence test based on
the second-order orthogonal polynomial proposed by Cameron and Trivedi (1993).

3. Simulation

3.1. Definition of models

It is first helpful to define the following bivariate models.

e IP (independent Poisson): bivariate density is the product of two marginal Pois-
son densities defined in (2.10).

e INB (independent Poisson): bivariate density is the product of two marginal neg-
ative binomial densities, defined in (2.13), where overdispersion is parameterized

as the Negbin2 form with V[y|x] = E[y|x] + a(E[y|x])%.

e IPP1: bivariate density is the product of two marginal PP1 densities, each a
first-order expansion with univariate baseline density a Poisson density. This is
the obvious specialization of the PP3 given below.
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e IPP2: bivariate density is the product of two marginal PP2 densities, each a
second-order expansion with univariate baseline density a Poisson density. This
is the obvious specialization of the PP3 given below.

e IPP3: bivariate density is the product of two marginal PP3 densities, each a
second-order expansion with univariate baseline density a Poisson density, with

glylna) = filyi] M)+ anuyr + any; + asyi)’/m(A, ay) (3.1)
X fa(ya| Ao) (1 + ao1ye + a22y§ + a23y§)2/n2()\2, a,),

where 71(A1,a,) and 79(Ag,a,) are normalizing constants.

e BP: bivariate Poisson density as implemented by King (1986), who calls this the
Supreme model, with

min(y1,y2) A *l)\yl *l)\l
1 2 3

Aa)=expAM+ A+ A .
9(y|x,a) = exp [X + Az + Ag] ; = D0 — !

(3.2)

This model arises if y; = 21 + 23, ¥o = 20 + 23 and z; ~ P(\;), 7 =1,2,3.

e Bil: first-order expansion bivariate density with baseline density a product of
two marginal Poisson densities, with

g(yIA a) = [1(m] M) fa(y2lA2) (1 + arys + asy2)?/n(X, a). (3.3)

e Bi2: second-order expansion bivariate density with baseline density a product
of two marginal Poisson densities, with

g(yIx,a) = fi(ya] M) fo(2] Xe) (L + ar1ys + arys + annyi +anny; + ayiye)’ /n(A, a).
(3.4)

In all these models regressors are introduced via

N=ep(x'B), =12 (3.5)

For the BP model, following King (1986) who called this the Supreme model, A3 is a
scalar parameter that does not vary with x.

The models Bil-Bi2 and IPP1-PP3 can be grouped as polynomial models. For the
polynomial models the baseline densities are univariate Poisson

The IP model is therefore a special case of all the other models considered.



3.2. Data generating processes

The simulations are based on d.g.p’.s with no regressor (intercept-only) and one regres-
sor (plus intercept). The single regressor z is drawn from the uniform [0, 1] distribution
and held fixed in all replications. The following d.g.p.’s were considered, with sample
sizes n = 50 and n = 200.

e Model 1: y; ~ P(1 4+ x), yo ~ P(1 + x). This is the product of conditionally
independent Poissons.

e Model 1: y; ~ P(141.5z), yo ~ P(141.5x). This is the same as model 1 except
different slope coefficient (see below).

e Model 3: y; ~ P(1+z+wy), ¥y ~ P(14+x+wsy), where w; and wy are exponentially
distributed with parameter 1/2. Since different draws of w are used for y; and
19 there is still conditional independence between 11 and ¥s.

e Model 4: (yl,yQ) ~ BP()\l,)\Q,)\?,), where )\1 =1 —I—a:, )\2 =1 —I—a:, )\3 =1.In

this and subsequent models 77 and 79 are conditionally dependent.

e Model 5: (y1,¥y2) ~ BP(A1, A9, A3), where A\; = 1+, Ay = 14z, A3 = 1.25.

This is the same as model 1 except different parameter value for As.

e Model 6: y; ~ P(1+ 2z +w), yo ~ P(l + 1z +w), where w = k(n* — 1) and
n ~ N(0,1). For n =50, k = 0.25, and for n = 200, x = 0.15.

e Model 7: y; ~ P(14z+w), yo ~ P(14+z+4w), where w = k1 and 1 ~Uniform[0, 1].
For n =50, k = 1.0, and for n = 200, x = 0.70.

e Model 8 1y ~ P(14+z+w), yo ~ P(1+ x4 wy), where w; = k(n; + 19— 1) and
wy = —k(n1 + 1), with 1y ~Uniform[0, 1] and 7y ~Uniform[0, 1]. For n = 50,
k = 3.0, and for n = 200, k = 1.75.

These d.g.p.’s were used by Cameron and Trivedi (1993) in the context of estab-
lishing the size and power of tests of independence based on estimation of univariate
Poisson models. Here we consider estimation of more general bivariate models.

In addition we use as d.g.p. the Bi2 model.

e Bi2: The Bi2 model, defined by (3.4)—(3.6), for different values of the means
(E, and Fj) the variance-mean ratio (R; and R, taking values 0.7, 1.0 and 2.0)
and the correlation parameter (p = —0.15, 0.0, 0.15).

The following summary illustrates the ability of the new distribution to explain a
wide range of data behavior.



Moment Values Explanation
p = corr(yi,y2) —0.15,0.0,.15 Correlation
E, = Elyi] 0.5 Marginal mean for
Ry =V[nl/E[yi] 0.7,1.0,2.0  Marginal variance-mean ratio for 1,
Ey = Elys) 1.0 Marginal mean for 1,
Ry = V{ya|/ Eys] 0.7,1.0,2.0  Marginal variance-mean ratio for ¥

When there are no regressors, so A\; = exp(x’ﬁj) = exp(fjo), 7 = 1,2, values of
a = (ay,a9,0a11,a9,a12) and By = (B9, Pa0) are chosen to correspond to the specified
values of Fi, Fy, R1, Ry, p. Two normalizations are needed, usually aq; and agy. The
27 different possibilities considered are summarized in Table 1.

When a scalar regressor is introduced, exp(x'3;) = exp(fj0 + 3512), j = 1,2. Then
the same values of a and (3, are used, and B, = (10, f20) = (0.5,0.5). For each n we
perform 54 = 3 X 9 x 2 experiments: for each of the three p values, nine experiments
are performed, and simulations are done with and without regressors.

Some more detailed analysis is performed of model 6, with different parameter
values. In particular both y; and ys are drawn from P(3 + 1z + w), where Fy = 1
and 3 = 0.0, 0.3, 0.6 or 1, and w has the same distribution as in model 6. There are
four different d.g.p.’s corresponding to the different values of ;.

3.3. Results of simulation

The models are estimated using analytical derivatives and the BFGS iterative method.
Summary of results to come.

4. Application

We consider count data from a sample of single adults of size 5190 from the Australian
Health Survey 1977-78. Several measures of health service utilization such as doctor
visits, days in hospital and number of medicines taken were modelled in Cameron,
Trivedi, Milne and Piggott (1988). In their analysis these counts were separately
modelled by univariate negative binomial regression.

Here we consider joint modelling of pairs of such measures. In section 4.1 we model
the number of prescribed medicines (PRESC) and non-prescribed (NONPRESC) med-
ications used in the past two days.

The dependent and regressor variables are defined, and summary statistics given,
in Table 2. Regressors can be grouped into four categories: (1) socioeconomic:
SEX, AGE, AGESQ, INCOME; (2) health insurance status indicators: LEVYPLUS,
FREEPOOR, FREEOTHER with LEVY (government Medibank health insurance)
the omitted category; (3) recent health status measures: ILLNESS, ACTDAYS; and
(4) long-term health status measures: HSCORE, CHCOND1, CHCOND2.



4.1. Prescribed and nonprescribed medicines

In this section we model the number of prescribed medicines (PRESC) and non-
prescribed (NONPRESC) medications used in the past two days. The sample means
and variances, given in Table 2, reveal sample means less than 1, and modest amounts
of overdispersion with variance-mean ratios of, respectively, 2.32 and 1.42. The actual
counts are given in Table 3. The two series are negatively correlated, with sample
correlation coefficient equal to -0.044.

All the regression models in this section include as regressors the twelve variables
summarized in Table 2, plus an intercept.

The standard modelling approach for these data is to estimate separate negative
binomial models (INB) for PRESC and NONPRESC. The INB results are given in
Table 5. To interpret coefficients note that for this model E[y|x] = exp(x'3) so
OFEy|x|/0x = BEJy|x]. The coefficient [3; therefore is a semi-elasticity, giving the
percentage change in Ey|x] due to a one-unit change in z;. The last column of Table
reports %Z?:l Bj eXp(X;B), the sample average effect on the conditional mean of a
one-unit change in x;.

The coefficients in Table 5 indicate that medicine usage is higher for women, in-
creases with age (at a rate that is decreasing with age), and varies little with income.
Compared to the reference group of people who get the default government-provided
health insurance by paying an income levy, people who receive government coverage
through low income have essentially the same level of use of medicines, people who
recelve government coverage through old-age, disability or veteran status use more pre-
scribed medicines and fewer nonprescribed medicines, and people with private health
insurance cover use more prescribed medicines and a similar number of nonprescribed
medicines. Recent illness increases substantially use of both prescribed and nonpre-
scribed medicines. A higher value of HSCORE, indicating lower self-assessed health
status, leads to a small increase in use of medicines. Days of reduced activity and
chronic conditions have great impact on the use of prescribed medicines but little
impact on the use of nonprescribed medicines.

The overdispersion parameter («) is highly statistically significant in both regres-
sions, indicating the need to control for overdispersion and rejection of the Poisson
model. The model explains prescribed medicines much better than nonprescribed
medicines, with deviance R-squared (based on Poisson regression) of 0.41 for PRE-
SCR and 0.06 for NONPRESC. Finally, inclusion of regressors increases the magnitude
of the negative correlation between PRESCR and NONPRESC from -0.043 to -0.093.

In Table 6 results are given when the Bi2 model is estimated. This is a bivariate
model based on a series expansion around a baseline density that is the product of
two Poissons. The statistical significance of the coefficients is quite similar to that for
the INB model, with similar qualitative conclusions to those already given for INB.

The models IP, INB, IPP1, IPP2, IPP3, BP, Bil and Bi2, defined in section 3.1,
were all estimated. The first five models separately model PRESCR and NONPRESC,
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while the last three models are bivariate models. Various information criteria to
discriminate between the models are given in Table 4.

The IP model is nested within all models. The IPP1 model is nested within IPP2
and IPP3 and the IPP2 is nested within the PP2. The Bil model is nested within
the Bi2 model. Using likelihood ratio tests leads to rejection of the IP model, and
favoring the IPP2 model within the IPP class and the Bi2 model within the Biclass.

To compare non-nested models we use the log-likelihood with a penalty for the
number of parameters that need to be estimated. These measures are the Akaike in-
formation criterion (AIC), the Bayesian information criterion (BIC) and the consistent

Akaike information criterion (CAIC). They are defined by

AIC = —2InlL+k
BIC = —2InL+klnn
CAIC = —2InlL+(1+1nn)k,

where k is the number of parameters in the model and n is the number of observations.
Models with low values for the information criteria are preferred.

Among the first six models the INB model is preferred using AIC, while the IPP3
model is preferred using BIC and CAIC, which give a larger penalty for additional
parameters. Among the last three models the BP is preferred to Bil, while the Bi2 is
strongly preferred to BP. Across all models the Bi2 model is preferred.

In addition the models are compared by their ability to predict the empirical prob-
ability distribution of the count dependent variables. Let Pr[y = j|x|] = f;(x,8), the
conditional probability that the count equals 7. Then Table 7 reports % S fi(xa, é),
the sample average predicted probability that y = 7. It is clear that IP does a poor
job, confirming the need to model overdispersion. Both INB and Bi2 do quite well,
with Bi2 performing a little better especially for Pr[PRESCR = 1].

Turning to the joint distribution, let Prly; = j,y2 = k|x| = f;x(x,0), the condi-
tional probability that the two counts equal j and k. Then Table 8 reports % S0y Fin(x, é),
the sample average predicted probability that y; = j and y9 = k. Again it is clear
that IP does a poor job, and Bi2 performs a little better than INB.

5. Concluding Remarks

New parametric bivariate models for counts have been proposed. The simulations
and application indicate the feasibility of using these models. In the application
considerable gain comes from appropriately modelling overdispersion by any method,
such as the negative binomial. This is better than using the bivariate Poisson model.
Better still is to use the new model proposed, which is capable of simultaneously
modelling overdispersion and correlation between the two variables of interest.
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Appendix A: Derivation of Results
Derivation of Section 2.2 Results

While proof is for the discrete case, the same result holds for the continuous case.
For the normalizing constant

nAa) = 2, 2,1+ ayiye)? fi(yi|An) fa(yel Ae)
= Y (T (1 + 2091y + a3ad) fo(1/A0)) fi (1 M)

= Xy (1 + 2ay1mg; + a2y%m22)f1 (y1| A1)
= (1 + 2am11m21 + a2m11m22),

where m;, = Fj, [y;] is the 7" moment of y; with respect to the baseline density.
Note that if we extend to the case where the baseline density is instead given by
f1(y1ly2, A1) fa(y2]A2) then the above extends with my,. = Ep,[v5] but now my, =
Ef 1 [y7]ye] which involves conditional moments for the baseline density.

The marginal density of v, is

amlxa) = ¥, 9(Aa)
= 3, (14 2ap1ys + a*y7y3) [1(v1] M) fa (2] A2) /0( X, &)
= (14 2ayima + a’yimas) fi(y1| M) /n(X, a)
The ' moment of y; is
Elyil = X, vig1(y|Xa)
= >, Yi(1 + 2agnmar + a’yimas) f1(y1] M) /n(A, a)
= X (U1 + 2ay7  may + @Y7 P ma) fily | M) /(X @)
= (M + 2amy o 1M + APy 9me) /(X a).
The conditional density of y; given v, is
gi2(ily2, Xa) = g1, v2|A.a)/g2(y2|A.a)

(1+2ap1y2+ayyd) A1 (w1 A ) fa(y21A2)) /n(X @)
(1+2ayami1+a?y2mia) f(y2A2)/n(Aa)

1+ 2ay1ys + a?a2
= ( 2122) Ji(yi] As)-
(14 2ayamyy + a’y3mys)
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The r*"* conditional moment of y; given y, is

E[yﬂyﬂ = Zy1y§91\2(y1’y27>\7a)

(5 + 2ayi iy + a?yf ys)

(14 2ayomay + a?y3may)

= D J1(y| A1)

2,2 2
(mlr + 2ayomy 41+ a mel,r+2)

(1 + 2ayoma1 + a’y3mas)

Derivation of Section 2.5 Results

Differentiating (2.15) with respect to a yields
dlnL(B,a) z":{ah*(yi]a)/aa _ Oni(B,a)/0a
=1

9a R (yila) Boa)

Note that by construction the normalizing constant

Th‘(ﬁa a) = Efi [h* (yz,aﬂ

When we consider a function that is a transformation of a function linear in the weights
a, that is

W (yila) = h*(1+a'p(y;)),
where p(y,) is a column vector of polynomials in y;, it follows that

oh* <Yi ]a)
Oa

where h*(-) denotes the first derivative, and

= h"(L+a'p(y,)p(y,),

8m<£’ 2)_ 9% [h;;maﬂ' = Iy, [—ah*?a)] = Eg[h7(1+a'p(y,)p(y,)]-
Therefore
81n£ B a) Z{h*’ (1 +ap(y,)ply,) Exh”(1+a'p(y,))p(y,)] 3
h(1+a'p(y,)) Ep[h*(1+ a'p(y;)]
Setting a = 0 and simplifying yields
TREN ) el — ey
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Table 1: Bi2 model: correlation (p), dispersion ratios (R) and means () for various

parameter values

Negative correlation: p = —0.15
By, by By A1 Az aq o a11 Qg2 aq2
Ry=2 5,1 .7 .081896 .439508 1.96028 —.353101 25 =5 —2.72337
1 .180432 .835089 510999  —612837 25 .25 —.183852
2 .650376 .725245 —.636298 —.499630 25 .25 —.153765
Ry=1 5,1 .7 055615 .448635 2.70949 .293915 BH0 25 1.09250
1 .152824 .336132 .550754 .225607 50 .50 454137
2 .383783 .682762 —.161606 .251300  -50 .00 .238102
Ry =07 5,1 .7 .063032 277207 3.08855 1.52426 25 .25 3.09575
1 .206324 .228654 .656464 1.47452 25 .50 .655819
2 .600454 .198941 —.268590 1.37489 —.25 .50 —.125128
Positive correlation: p = 0.15
I, By Iy Ay Ao aq as a11 a22 Q12
Ry=2 5,1 .7 .0569265 873774 1.28563 —.814245 .25 .25 .583622
1 162931  .805859 0778445 —.742451 .25 .25 .360745
2 503011 704533  —.684899  —.628238 .25 .25 .146498
Ry=1 5,1 .7 318065  .839209 .834059  .0177319 —.50 .00 .230282
1 484645  1.25856 267565 —.151779 —.25 .00 115651
2 269653 1.25613  —.904233 —.131972  -.25 .00 .0531537
Ry=07 5,1 .7 .0575247  .268306 1.25571 .736058 .25 .25 4.89590
1 351952 652238 —.0785113 1.18105 .00 —-.50 447888
2 259259 411630  —.978133 1.20811 —.25 —.25 —1.64842
No correlation: p =0
I, By Iy Ay Ag aq as a11 22 Q12
Ro=2 5,1 .7 .080993 .979559 3.68552  .442750 —.50 —.25 —2.24328
1 .50 366611 .00 .606779 .00 —.915115 .00
2 .256516 .852704 —.606442 225172 —.50 —.25 .00
Ry=1 5,1 .7 .304786 1.00 1.12114 .00 —.521258 .00 .00
1 .50 1.00 .00 .00 .00 .00 .00
2 26787 1.00 .808913 .00 —.954750 .00 .00
Ry=07 5,1 .7 .143960 .706698 1.96595 1.32805 —.50 -5 473791
1 B0 727695 .00 1.18664 .00 —.433797 .00
2 483804 .534965 —.904283 1.05825 .50 .00 .103759
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Table 2: Health data: summary statistics for dependent and regressor variables

Variable Definition Mean St.Dev.
PRESC # of prescribed medications used in past 2 days .863 1.415
NONPRESC  # of nonprescribed medications used in past 2 days .356 712
DOCTORCO  # of consultations with a doctor or speacialist in past 2 weeks 302 .798
NONDOCCO  # of consultations with non-doctor health professionals 215 .965
(chemist, optician, physiotherapist, social worker, chiropodist,
district community nurse or chiropractor) in past 2 weeks
SEX = 1 if female 521 .500
AGE age in years divided by 100 .406 .205
AGESQ AGE squared 207 .186
INCOME annual income in hundreds of dollars .583 .369
LEVYPLUS = 1 if private health insurance 443 497
FREEPOOR =1 if free government health insurance due to low income .043 .202
FREEREPA =1 if free government health insurance due to 210 .408
old age, disability or veteran status
ILLNESS number of illnesses in past two weeks 1.432 1.384
ACTDAYS number of days of reduced activity in past two weeks due to .862 2.888
illness or injury
HSCORE general health questionnaire score using Goldberg’s method 1.218 2.124
CHCONDL1 = 1 if chronic condition not limiting activity .403 491
CHCOND2 = 1 if chronic condition limiting activity A17 321

Table 3: Health data: actual frequency distributions (n = 5190)

Count 0 1 2 3 4 5 6 7 8 9

PRESCR
NONPRESC 3814

3085 994 509 276 157 80 40 23 26 O

1055 228 64 15 7 2 4 1 0
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Table 4: Prescribed and nonprescribed medicines: information criteria for IP, INB,

IPP1, IPP2, IPP3, BP, Bil and Bi2 models

Criteria 1P INB IPP1 IPP2 IPP3 BFP Bil Bi2

-2InL 19083.7 18746.6 19083.7 18722.0 18722.0 19067.8 19083.7 18709.4
AIC 19109.7 18774.6 19111.7 18752.0 18754.0 19094.8 19111.7 187404
BIC 19306.2 18986.1 19323.3 18978.6 18995.7 19298.8 19323.3 18974.6

CAIC 19332.2 19014.1 19351.3 19008.6 19027.7 19325.8 19351.3 19005.6

Table 5: Prescribed and nonprescribed medicines: parameter estimates, standard
errors, t-statistics, and sample average effect on conditional mean of a one unit change
in regressor, for independent negative binomial (INB) model

(1) Prescribed medicines

Variable Coefficient  Standard error t-statistic dE[y|x]/dx
ONE -2.7282 0.1477 -18.48

SEX 0.5509 0.0425 12.97 0.482
AGE 2.1621 0.7317 2.95 1.890
AGESQ -0.3518 0.7798 -0.45 -0.308
INCOME 0.0306 0.0649 0.47 0.027
LEVYPLUS 0.2666 0.0577 4.62 0.233
FREEPOOR -0.0541 0.1357 -0.40 -0.047
FREEREPA 0.2916 0.0689 4.24 0.255
ILLNESS 0.2069 0.0132 15.65 0.181
ACTDAYS 0.0344 0.0050 6.89 0.030
HSCORE 0.0203 0.0081 2.71 0.019
CHCOND1 0.7725 0.0505 15.30 0.675
CHCOND?2 1.0201 0.0620 16.46 0.892
o 0.2981 0.0307 9.70

(2) Nonprescribed medicines

Variable Coefficient ~Standard error t-statistic dE[y|x]/dx
ONE -2.3234 0.1928 -12.05

SEX 0.2494 0.0579 4.30 0.089
AGE 4.7731 1.0787 4.43 1.700
AGESQ -6.0050 1.2157 -4.94 -2.139
INCOME 0.1086 0.0855 1.27 0.039
LEVYPLUS -0.0424 0.0656 -0.65 -0.015
FREEPOOR -0.0200 0.1403 -0.14 -0.007
FREEREPA -0.2872 0.1044 -2.75 -0.102
ILLNESS 0.2071 0.0208 9.94 0.074
ACTDAYS 0.0038 0.0091 0.42 0.001
HSCORE 0.0293 0.0123 2.38 0.010
CHCOND1 0.1565 0.0631 2.48 0.056
CHCOND?2 -0.0028 0.0941 -0.03 -0.001
o 0.7390 0.0827 8.93
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Table 6: Prescribed and nonprescribed medicines: parameter estimates, standard
errors and t-statistics from Bi2 model

Variable Coefficient Standard error t-statistic
ONE -2.4532 0.1336 -18.36
SEX 0.3894 0.0332 11.72
AGE 2.1944 0.5476 4.01
AGESQ -0.8933 0.5717 -1.56
INCOME 0.0102 0.0489 0.21
LEVYPLUS 0.2196 0.0466 4.71
FREEPOOR -0.0363 0.1109 -0.33
FREEREPA 0.2144 0.0531 4.04
ILLNESS 0.1632 0.0102 15.94
ACTDAYS 0.0242 0.0034 7.04
HSCORE 0.0175 0.0057 3.06
CHCOND1 0.6146 0.0438 14.02
CHCOND2 0.7931 0.0508 15.60
ONE -2.2932 0.1999 -11.47
SEX 0.2396 0.0465 5.16
AGE 3.8696 0.8521 4.54
AGESQ -4.6244 0.9688 -4.77
INCOME 0.0912 0.0678 1.35
LEVYPLUS -0.0018 0.0514 -0.03
FREEPOOR -0.0220 0.1112 -0.19
FREEREPA -0.1925 0.0835 -2.31
ILLNESS 0.1871 0.0170 11.01
ACTDAYS 0.0077 0.0070 1.09
HSCORE 0.0240 0.0093 2.59
CHCOND1 0.1856 0.0507 3.67
CHCOND2 0.1074 0.0747 1.44
al -0.1689 0.0265 -6.37
all 0.1237 0.0172 7.18
a2 -0.1509 0.0492 -3.07
a22 0.1375 0.0224 6.14
al2 -0.1135 0.0185 -6.15
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Table 7: Prescribed and nonprescribed medicines: actual probabilities and predicted
probabilities from Independent Poisson, Independent negative binomial and Bi2 mod-
els

(1) Prescribed medicines
Count Actual 1P INB Bi2

0 0.5944 05491 0.5805 0.5901
1 0.1915 0.2435 0.2233 0.2040
2 0.0981 0.1057 0.0927 0.0892
3 0.0532 0.0507 0.0449 0.0511
4 0.0302 0.0253 0.0239 0.0310
5 0.0154 0.0127 0.0134 0.0177
6 0.0077 0.0064 0.0079 0.0092
7 0.0044 0.0032 0.0048 0.0044
8 0.0050 0.0016 0.0030 0.0019

(2) Nonprescribed medicines

Count  Actual 1P INB Bi2

0.7349 0.7085 0.7377 0.7335
0.2033 0.2369 0.1948 0.1993
0.0439 0.0463 0.0492 0.0502
0.0123 0.0072 0.0130 0.0130
0.0029 0.0010 0.0037 0.0032
0.0013 0.0000 0.0011 0.0007
0.0004 0.0000 0.0004 0.0001
0.0008 0.0000 0.0001 0.0000
0.0002 0.0000 0.0000 0.0000

jan)

XL~ U= W=
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Table 8: Prescribed and nonprescribed medicines: Joint probabilites (1) actual; and
(2) predicted from independent Poissons (IP model), (3) predicted from independent
Poissons (INB model), (4) predicted from Bi2 model

(1) Actual joint probabilities
Prescrib \ Nonprescrib 32 =0 yo=1 y3=2 y2=3 yo=4 y2=5 yo=6 ys=7

y1 =0 0.4295 0.1283 0.0266 0.0071 0.0013 0.0008 0.0004 0.0002
yp =1 0.1393 0.0389 0.0094 0.0023 0.0006 0.0004 0.0000 0.0006
Yy =2 0.0738 0.0183 0.0033 0.0017 0.0008 0.0002 0.0000 0.0000
Y =3 0.0408 0.0098 0.0021 0.0004 0.0000 0.0000 0.0000 0.0000
y1 =4 0.0252 0.0027 0.0017 0.0004 0.0002 0.0000 0.0000 0.0000
Y1 =5 0.0119 0.0025 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000
yp =6 0.0060 0.0015 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000
Yy =7 0.0033 0.0012 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Y =38 0.0050 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(2) Independent Poissons (IP) for joint distribution
Prescrib \ Nonprescrib 32 =0 yo=1 y2=2 y2=3 yo=4 y2=5

yp =0 0.3978 0.1255 0.0224 0.0031 0.0004 0.0000
=1 0.1709 0.0586 0.0119 0.0019 0.0003 0.0000
Yy =2 0.0725 0.0262 0.0057 0.0010 0.0002 0.0000
yp =3 0.0342 0.0129 0.0029 0.0005 0.0001 0.0000
yp =4 0.0168 0.0066 0.0016 0.0003 0.0000 0.0000
Yy =05 0.0082 0.0034 0.0008 0.0002 0.0000 0.0000
yp =6 0.0041 0.0018 0.0004 0.0001 0.0000 0.0000
Yy =7 0.0020 0.0009 0.0002 0.0000 0.0000 0.0000

(3) Independent negative binomials (INB) for joint distribution
Prescrib \ Nonprescrib 32 =0 yo=1 yp2=2 y2=3 yo=4 y2=5

yp =0 0.4352 0.1102 0.0263 0.0065 0.0017 0.0005
=1 0.1633 0.0441 0.0115 0.0031 0.0009 0.0003
Yy =2 0.0667 0.0187 0.0051 0.0015 0.0005 0.0002
yp =3 0.0319 0.0092 0.0026 0.0008 0.0002 0.0001
yp =4 0.0168 0.0050 0.0014 0.0004 0.0001 0.0000
Yo =05 0.0094 0.0029 0.0008 0.0003 0.0001 0.0000
Yo =6 0.0054 0.0017 0.0005 0.0002 0.0001 0.0000
Yo =17 0.0033 0.0010 0.0003 0.0001 0.0000 0.0000

(4) Bi2 model for joint distribution
Prescrib \ Nonprescrib 32 =0 yo=1 yp2=2 y2=3 yo=4 y2=5

yp =0 0.4259 0.1219 0.0320 0.0081 0.0018 0.0004
yp =1 0.1524 0.0378 0.0099 0.0029 0.0008 0.0002
Yy =2 0.0686 0.0157 0.0035 0.0010 0.0003 0.0001
Y1 =3 0.0392 0.0094 0.0019 0.0004 0.0001 0.0000
yp =4 0.0232 0.0063 0.0012 0.0002 0.0001 0.0000
Yo =5 0.0128 0.0039 0.0008 0.0001 0.0000 0.0000
Yo =6 0.0065 0.0022 0.0005 0.0001 0.0000 0.0000
Yo =7 0.0030 0.0011 0.0003 0.0000 0.0000 0.0000
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