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1 Introduction

This paper! introduces an alternative specification procedure to that proposed in Terisvirta (1994)
for the specification of Smooth Transition Autoregressive (STAR) models. STAR models are a
general class of state-dependent non-linear time-series models in which the transition between
states is endogenously generated.? Together with Hamilton’s (1989) regime-switching model,
where the transition between states is exogenously determined by a Markov Chain, state-dependent
models are reduced-form models that allow for different dynamic responses that depend on the
“state.” Consequently, these models are particularly well suited to accommodate the asymmetric
behavior of economic fluctuations recently documented in a variety of studies.

The two main results of this paper rely on a Taylor series approximation of the transition
function (between states) around the scale parameter.? The first result is the introduction of a new
specification strategy to choose between logistic and exponential STAR models. This alternative
strategy is simpler and significantly more successful in selecting the correct model while avoiding
the pitfalls of the procedure proposed in Terésvirta (1994). The second result concerns the test of
the null hypothesis of linearity against STAR-type nonlinearity.” We propose a simple modification
of this test that improves its power against alternatives containing an exponential STAR model
as a special case. Our claims are supported by Monte Carlo evidence and an empirical example
based on Terésvirta and Anderson (1992).

The paper is organized as follows: Section 2 briefly reviews STAR models and nonlinearity

I The first author acknowledges support from Spanish DGCIYT, PB95-0298. The sccond author acknowledges
support from “La Caixa” and the Bank of Spain. We wish to thank two anonymous referees, R. F. Engle, J.
Gonzalo, C. W. J. Granger, J. D. Hamilton, M. H. Pesaran and T. Teriisvirta for useful comments and suggestions.

2 In addition, STAR models encompass other popular families of non-linear time-series models such as the
Threshold Autoregressive (TAR) and the Exponential Autoregressive (EAR). See Haggan & Ozaki (1981), Tong
(1983), Tsay (1989) and Granger and Terésvirta(1993).

3 Sec Neftci (1984), Rothman (1991), and Terisvirta and Anderson (1992) for example.

4 Luukkonen, Saikkonen and Teriisvirta (1988a), based on Davies (1977), introduced this solution for STAR
models.

° Note: this alternative is an assumption imposed by the practitioner. This allows one to narrow down gencral
nonlinearity into a workable family of non-linear models, namely STAR models.



testing. Section 3 discusses the decision rule proposed by Terésvirta (1994) and introduces the
alternative procedure advanced in this paper. Section 4 reports on the small sample properties
of the alternative test procedures using Monte-Carlo techniques. Section 5 presents an empirical

application, and Section 6 concludes.

2 STAR Models and Nonlinearity Testing

2.1 Overview

Consider the following STAR model:

Yt = 7T/Xt -+ F (Zt_d, Vs C) @/Xt —+ Ut (1)

where y; is a scalar; x; = (L,ye 1, ¥%_p) = (1,X) ;7 = (70,71, ..., Tp) = (71'0,77'/); e =
(00,01,..,0,) = (@0, é’) and 1 < d < p. z_g4 is usually chosen to be y; 4, (although it could
be any other predetermined or exogenous variable), u; is a martingale difference sequence with
constant variance.® The process in (1) is assumed to be stationary and ergodic. The function
F (zi—q,7, ¢) is at least fourth order continuously differentiable with respect to the scale parameter
v.

The exponential STAR model (ESTAR)” has a transition function F, defined by

F(z—q,7,¢) = [1 — exp {—’y (zt—aq — C)ZH . (2)

The logistic STAR model (LSTAR)® has as transition function:

F o ame) - [{1 Fexp (v (2 — )} - %] | 3)

6 This assumption is usually introduced to simplify the derivation of the asymptotic distribution of the LM test,
sec White (1984).

7 The exponential autoregressive (EAR) model of Haggan and Ozaki (1981) is a particular case of ESTAR when
o=c=0and z4_qg=yYt_gq.

8 The term % is added here merely for convenience and does not affect the results.



Testing linearity against STAR-type nonlinearity implies testing the null hypothesis, Hy : @' =
0 in (1). However, under the null, the parameters v and ¢ are not identified. Alternatively, we
could choose HS : v = 0 as our null hypothesis in which case neither ¢ nor ® would be identified.
Davies (1977) first showed that conventional maximum likelihood theory is not directly applicable
to this problem. A solution proposed in Luukkonen et al. (1988a) and adopted in Teriisvirta
(1994) is to replace F' (24,7, c) with a suitable Taylor series approximation. Under the null of
linearity, the LM test is shown to possess the usual x? distribution asymptotically.’

In practice, the test is performed by constructing the following auxiliary regression:

v = 7'x + Fy(zi_a,7 = 0,¢) O'x4y + v14 (4)

where Fy(.) indicates the first derivative of F(z;_4,v7 = 0,¢) with respect to . Substituting the

expression for Fy(.) into (4) gives:

Yr = 8o + 81X + B Xezi—a + BoXe2E 4+ vi (5)

where the null hypothesis of linearity becomes H{ : 37 = 35 = 0. Call this test NL2. In the special
case where F(.) is the logistic function 85 = 0. The process in (5) can be explosive and generally
it is not a meaningful time series model (see Granger and Andersen (1978)).!Y Luukkonen et al.
(1988a) realized that this test could have low power against alternatives where @’ is “small” and
O is “large” in absolute value if the model is LSTAR. To overcome this difficulty, they proposed

to include up to third order powers. The final version of their test therefore becomes:

yr =60+ 6% + B Xezi—a + 5/2>~<t2t2_d + 5{3;%43_(1 + vzt (6)

where the null hypothesis is HJ : 8] = 35 = B3 = 0. The LM test based on the auxiliary

9 The delay parameter d is usually unknown. Based on Tsay (1989), Terdsvirta (1994) proposes choosing d that
minimizes the p-value of the nonlinearity test.

10" Also note that the alternative hypothesis will include models other than the STAR.



regression (6) is the test adopted by Saikkonen and Luukkonen (1988), Terdsvirta et al. (1994),
and Terésvirta (1994). Their test-statistic is computed by the following procedure: First, estimate
(6) under the null hypothesis H{ by OLS and calculate the sum of squared residuals, SSRg. Second,
using the residuals from the previous step, estimate a model that contains the regressors of (6) to
compute the sum of squared residuals SSR;. Then, the statistic T(SSRo-SSR1)/SSRo will have an
asymptotic x? distribution with degrees of freedom given by the number of parameter restrictions
under Hy. We refer to this test-statistic as NL3 and make it the focus of our analysis. In practice,
the use of the approximation given by the F-distribution is recommended because of the better
size and power properties it has in small samples. An alternative approach is to use the Wald test
of Hansen (1996). This procedure approximates the unknown limiting distribution by generating

p-values based on simulation methods.!

2.2 Modifying the Nonlinearity Test

The transition function of a STAR model exhibits two important features. First, the logistic
function in (3) has a single inflection point, while the exponential function in (2) has two inflection
points. Second, the even powers of the Taylor series expansion of a logistic function around v = 0
are zero. Conversely, the odd powers of the Taylor series expansion of an exponential function
around v = 0 are zero. In this section we use the first feature to improve the power of NL3. The
second feature is exploited in the next section to derive the new selection procedure (decision rule)
introduced in this paper.

The power of the nonlinearity test NL3 depends crucially on the quality of the Taylor series
approximation to the transition function. Consequently, the difference in shape between the
logistic and the exponential functions suggests that at least a second order Taylor expansion is
necessary to capture the two inflection points of the exponential function. Therefore, fourth order

terms should be included in regression (6). We have:

11 See Pesaran and Potter (1997) for an interesting application of this technique.



1
F(Zt—da Y, C) = F’y(zt—dv Y= 0, C)’Y + _F’Y’y (Zt—dv Y= 0, 0)72 (7)

2
which for the exponential becomes:
2 1 4 2
F(ze-a,7v,¢) = (zt-a =€) 7 = 5 (2-a =€) 7" (8)

The second term of a Taylor series expansion for the logistic function is simply zero. Based on

the previous discussion, we recommend augmenting the auxiliary regression (6) as follows:

yr = b0 + 81%; + B1Xi21—a + BoXezi_ g + BsXezi_gq + BuXezig + vt 9)

where the null hypothesis of linearity now becomes H{’ : 8] = 8, = 85 = 3, = 0. The LM
test-statistic of this joint hypothesis is called NL4.'> Compared to NL3, NL4 requires p extra
regressors in the auxiliary regression. Testing nonlinearity in practice involves several important
steps such as choice of lag length of the AR model and choice of delay parameter d. These are
well documented in Terésvirta (1994).

In situations where lack of parsimony is of concern, we recommend a simplified version of NL4
based on the results in Luukkonen et al. (1988a). Parallel to their augmented first order procedure,

the auxiliary regression in the STAR case becomes:

Yo = 8o + 61%¢ + B Xezi—a + B3z g+ izt g + Bizi_a + Vi (10)

The corresponding null hypothesis of linearity is H}Y : 8] = 0; 35 = 85 = 85 = 0.
3 Choosing between LSTAR or ESTAR

This section exploits an attractive feature of Taylor series approximations to the transition function

of a STAR model. We begin by presenting Terésvirta’s (1994) specification procedure and detailing

12 When 2z;_q = ys_q, this test is similar in spirit to a high order RESET test, scec Ramscy (1969).



its deficiencies. In response to these concerns, we propose an alternative procedure. Upon rejecting
the null hypothesis of linearity one might consider using a STAR model as a useful non-linear
alternative. Terdsvirta (1994) suggests a model selection procedure (which we will denominate TP
for short) based on Equation (6). Terdsvirta motivates his procedure by observing the following

sequence of nested F-tests:

1. Test the null: Hoys : 85 = 0 with an F-test (F3). Teréisvirta notes that in principle, rejection
of this null would imply rejection of the ESTAR specification since cubic powers of z;_4 in

a first order approximation of F(z_g4,,c) are 0.

2. Test the null: Hpy : 35 = 0|85 = 0 with an F-test (F3). Terdsvirta’s reasoning is that the
22, terms of a first order Taylor series approximation to a logistic function are zero when
¢ =0y =0, see (1). However, these terms will be nonzero in the ESTAR case (except in
the unlikely case when ©’ = 0). Failure to reject this null is taken as evidence in favor of a

LSTAR model. Nevertheless, rejection of Hpo is not very informative one way or the other.

3. Test the null: Hy : B = 0 |3, = 35 = 0 with an F-test (F}). Following Terésvirta, failing
to reject Hpy after rejecting Hpz points to an ESTAR model. On the other hand, rejecting

Hy; after failing to reject Hpe supports the choice of LSTAR.

Based on these tests, Terisvirta’s rule consists on noting which hypotheses are rejected and
then comparing the relative strengths of the rejections. If the model is LSTAR, typically Ho;
and Hos are rejected more strongly than Hogz. Therefore, Teréisvirta proposed to select an ESTAR
specification if the p-value of Fy is the smallest of Fy, Fy, F3, otherwise the LSTAR alternative is
preferred.

Ter#svirta recognizes that this procedure might cause problems. For example, even if the
model is ESTAR, Ho3 might be rejected since 35 = 0 only if ¢ = ©g = 0 in (1). These concerns
and others are best illustrated by analyzing the terms of the Taylor series expansion for each

non-linear state in (1):



0'x, [{1 +exp (—y (zi—a — c))}f1 — %} ~ WX (2_q — ¢) + WXy (2p_a — ) (11)

for the logistic third order expansion, and

o'x, [1 — exp {—’Y (2t—a — C)QH ~ WXy (2a — ¢)* + WiXe(za — ©)* (12)

for the exponential second order expansion. The shorthand notation ¥/ for i = 1,2,3,4 collects
the parameters associated with each of the terms that result from expanding X;(2;_q — ¢)?, namely
the 3, parameters in (9).

Terdsvirta’s concerns can now be easily understood by inspecting (12). Whenever ¢, my and/or
0o are non-zero, expansion of X;(z;_4 — ¢)* yields non-zero X;z; , terms. In addition, when
the variance of the error term is “large” the distribution of the data into each state around the
threshold ¢ is asymmetric. As a result, the null hypothesis Hgy : 85 = 0|35 = 0 does not
discriminate between a LSTAR with ¢ # 0 and an ESTAR in general.

An additional source of complications lies in the design of the rule itself. For example, if the
true model is LSTAR, it is unclear that by conditioning on the cubic terms to be zero (that is,
restricting 35 = 0 in (1)), the joint significance of the square terms, X;22 , (from (11), these are
non-zero since ¢ # 0) will be also zero. These terms are now left to approximate the transition
function — an approximation that the cubic terms presumably were successfully capturing.

Inspection of equations (11) and (12) provides clues on how to correct the deficiencies of TP.
Consider the following example. Suppose ¢ = 0. Based on (11), it is clear that if the model is
LSTAR, the terms )Nitzf_d for j = 2,4, are zero (i.e. By = B, = 0in (9)). Alternatively, if the
model is ESTAR, based on (12), the terms itzg;d for j = 1,3, are zero (ie. B = 85 = 0 in
(9)). This behavior of the Taylor series approximation suggests a natural alternative selection

procedure (which we will call EJP for short) based on (9). Conditional on rejecting linearity:

1. Test the null: Hog : 35 = B} = 0 with an F-test (Fg).



2. Test the null: Hor, : 3] = 85 = 0 with an F-test (Fp).

If the minimum p-value corresponds to Fp,, select LSTAR, otherwise select ESTAR.

This selection procedure is clearly consistent when ¢ = 0 following the motivation in our
example. However, when ¢ # 0, EJP is still effective since we are comparing the joint significance
of linear and cubic terms relative to the joint significance of quadratic and fourth order terms,
without conditioning on other parameters being zero.

Aside from its simplicity and effectiveness, EJP provides information about non-zero thresh-
olds, ¢. Linear and cubic terms are exactly zero when ¢ = 0 and the model is ESTAR. Quadratic
and fourth order terms are exactly zero when ¢ = 0 and the model is LSTAR. Therefore, rejecting
Hyy, and failing to reject Hyg suggests an LSTAR model with ¢ = 0. Rejecting Hgg and failing
to reject Hyr suggests a ESTAR model with ¢ = 0. This feature is useful to set ¢ = 0 as a good

starting value in the estimation stage.
4 Monte Carlo Experiments

This section provides Monte Carlo evidence in support of our recommended decision procedure,
EJP. Additional evidence is provided to compare the nonlinearity tests NL3 and NL4. The models
simulated in this study are taken from Luukkonen et al. (1988a,b) and Terdsvirta (1994). Each
experiment is replicated 1,000 times. The first 100 observations of each series are disregarded to

avoid initialization problems.!?

4.1 Selection Frequencies of the EJP Selection Procedure
Table 1 summarizes the simulation results when the true data generating process (DGP) is an

ESTAR model. Table 2 presents similar evidence when the true DGP is a LSTAR model. Both

tables compare the accuracy of EJP and TP in selecting the correct model. The correct selection

13 Extensive Monte Carlo evidence and detailed description of the experiments is available in Escribano and
Jorda (1997).



rate is reported as a percentage of those replications for which linearity was first rejected at the
conventional 95% confidence level.

Two features are worth noting from this exercise. First, EJP significantly outperforms TP.
The difference is most notable when the true DGP is an ESTAR model (see Table 1). While
the margin by which EJP outperforms TP can be as wide as 76.5% to 3.9%, only in a few cases
of the LSTAR did TP outperform EJP and then by a small amount (the biggest difference was
80.2% versus 63%). The second feature is the lack of consistency of TP, argued in section 3 and
clearly revealed in our simulations. For example, consider i = 1 in Table 1 TP’s correct selection
frequency is 12.9%, 9.5% and 3.9% for sample sizes of 50, 100 and 200 observations, respectively.
The selection rates for EJP in the same example are 62.4%, 70.4% and 76.5%, respectively. Except
for one case (Table 2, 1y = —0.5;6; = 0.5; EJP = 73.6% for T = 50 versus EJP = 72.3% for T =
100), EJP’s selection rates improved as the sample size increased. We view these results as strong

support in favor of EJP.

4.2 Power Properties of the NL4 Test

Table 3 compares the power of the nonlinearity tests NL3 and NL4. The key question is whether
the gain in power from augmenting the auxiliary regression in (6) with the terms X2} ,; outweigh
the losses from including these additional regressors in (9). For ¢ = 0, if the true DGP is a LSTAR
model, we will lose power by including redundant regressors. However, if the true model is an
ESTAR, NL4 should have higher power. If ¢ # 0, the power of each test needs to be evaluated on
a case by case basis.

The simulations indicate that with large sample sizes (in our study 300 observations), there is
little difference between NL3 and NL4. Both tests detect non-linearity adequately, with the power
approximating 1 in most cases. However, for smaller sample sizes, (in our study 100 observations),
NL4 has higher power than NL3 when the true model is ESTAR (in particular when the variance

of the error term is high and/or ¢ and ©¢ are nonzero). When the true model is LSTAR, NL4 does



not significantly lose power with respect to NL3. In view of these results and with the disclaimer
of their limited scope, we recommend NL4 when the sample size is small and parsimony is not an

5 Terdsvirta and Anderson (1992) Revisited

Teridsvirta and Anderson (1992) analyze the dynamic properties of industrial production indices of
thirteen OECD countries and an European aggregate using STAR models. The data is quarterly,
seasonally unadjusted,'* and spans from 1960:I to 1986:IV.'> This section replicates nonlinearity
testing and model selection with our alternatives, NL4 and EJP. Our goal is to compare the
performance of the new procedures in practice. Table 4 reports p-values of nonlinearity tests,
delay parameter choice, and STAR model selection for those countries in which nonlinearities
were detected either by NL3 or NL4.'6

NL3 and NL4 obtain their minimum p-values for the same choice of delay parameter, d, except
in the case of the U.S.A. While the results of both tests are similar, NL4 fails to reject linearity at

the usual 5% level for 3 countries.!”

With regard to EJP, the same models are selected as with
TP except for Austria and Sweden. In the case of Japan, Terdsvirta and Anderson (1992) report
that choosing between models (LSTAR or ESTAR) was hard with TP and hence estimated both
specifications. The preferred model was an ESTAR — a choice that EJP selects unequivocally.
We estimated both LSTAR and ESTAR specifications for Austria and Sweden to determine
which specification fitted best. The basic statistics of the preferred models for each specification
are reported in Table 5 The estimates for Austria are harder to compare since the final models

have a different number of parameters — Schwarz’s information criterion (SIC) favors the ESTAR

specification while Akaike’s (AIC) favors the LSTAR specification. However, in the case of Sweden,

14 They make the series approximately stationary by fourth lag differencing (xt-xt—4).
5 . . .
15 Source: OECD Main Economic Indicators.
16 French and Italian indices were adjusted for strikes and other anomalies and arc therefore not considered here.

17 A sample of 104 observations and the extra regressors required by NL4 probably justify this result.
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the final models have the same number of parameters. The preferred specification is the ESTAR
(which was selected by EJP but not by TP) with a better fit overall than its LSTAR counterpart.
Of course, the true model is unknown. The value of this exercise was to check what specification

seemed to work best and what specification test led us to it.

6 Conclusion

This paper provides a new selection procedure to choose between a logistic and an exponential
specification when the alternative to linearity considered is a STAR model. This new decision
rule, EJP, is simpler, more intuitive, and has better power and consistency properties than TP.
Along the way, we have also provided practical guidelines regarding nonlinearity testing. In
support of our claims, we conducted Monte-Carlo simulations and applied our procedures to
the industrial production indices of thirteen OECD countries and to a European aggregate. All
the tests developed here can be easily generalized for use in Smooth Transition Regression and

multivariate models.!®
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Table1

Relative frequencies of correct specification of STAR modd (as a proportion of replications for which
linearity isregjected at a 95% confidence level). Table 4, pg. 172, Luukkonen et al. (1988b). 1 = 100%
accuracy selecting the correct model, 0 = 0% accuracy. DGP:

Y- 03y, - feol vo.’)- Jooy,, =m+e, & ~N(0,030)
Sample Size m TSP EJSP  Power NL4
50 0 0.632 0.792 0.106

0.3 0.472 0.736 0.125
1 0.129 0.624 0.210
100 0 0.805 0.898 0.256
0.3 0.552 0.830 0.317
1 0.095 0.704 0.493
200 0 0.899 0.963 0.616
0.3 0.659 0.923 0.692
1 0.039 0.765 0.881

Table 2

Relative frequencies of correct specification of STAR model (as a proportion of replications for which
linearity is regjected at a 95% confidence leve). Fig. 2, pg. 496, Luukkonen et al. (1988a). 1 = 100%
accuracy sdlecting the correct model, 0 = 0% accuracy. DGP:

Yo - PoYer + (@Y, )2+ expl- 0.5y,,}) " =

e, € ~N(0,2)

p1 =-05 p1 =05
Sample o1 TSP EJSP  Power o1 TSP EJSP  Power
Size NL4 NL4
50 -04 0500 0594 0.064 -14 0568 0.947 0.322
0 . . 0.039 -1 0872 0.872 0.203
05 0736 0736 0.072 -0.5 0.802 0.630 0.081
1 0.853 0.871 0.170 0 . . 0.047
15 0904 0936 0.467 0.5 0841 0.690 0.113
100 -04 0459 0811 0.122 -14 0594 0978 0.744
0 . . 0.043 -1 0941 0935 0491
05 0811 0724 0.127 -0.5 0.898 0.814 0.118
1 0952 0.936 0.498 0 . . 0.037
15 0963 0978 0.883 0.5 0919 0.860 0.272
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Table3

Power simulations. Data generated from models 4.1-4.2 and 4.6, pg. 210-211, in Ter@virta (1994).

DGP:

Y, =18y, ; - L0BY, , +(py - 09y, ; +0.795y, ,)F(y,;) +u;; u, ~N(0 ,0.04)
F(ye) =+ epl alye, - o)), LSTAR; F(y.,)=1- exp: 1000(y,, - ¢/}, ESTAR

ESTAR LSTAR ESTAR LSTAR
M odel NL3 NL4 NL3 NL4 NL3 NL4 NL3 NL4
po=c=0 0.612 0.722 0.962 0.951 0.825 0.835 1.000 1.000
P2 =0.02;¢c=0 0.983 0.997 0.691 0.656 1.000 1.000 0.993 0.993
P2 = 0.04; c=0.02 0.611 0.623 0.157 0.139 0.984 0.992 0.378 0.373

Sample Size= 100

Table4

Sample Size = 300

Linearity testing, determining the delay parameter and selecting between LSTAR and ESTAR models

Country Max. Lag P - value P - value Delay TSP EJSP

(AIC) NL3 NL4 Parameter  Choice Choice
Austria 5 0.010 0.033 1 LSTAR ESTAR
Belgium 5 0.050 0.259 1 LSTAR LSTAR
Japan 5 0.000 0.000 1 ? ESTAR
Norway 8 0.031 0.200 5 LSTAR LSTAR
Sweden 5 0.015 0.040 3 LSTAR ESTAR
UK. 8 0.047 0.192 4 ESTAR ESTAR
U.SA. 6 0.006 0.054/0.016* 3/5* LSTAR LSTAR
EUR 9 0.015 0.043 3 ESTAR ESTAR
Note: For U.S.A. NL4 minimum p-valuewasfor d = 5.
Table5
Summary Statistics for STAR model estimation: Austria and Sweden.

AUSTRIA SWEDEN

Summary LSTAR ESTAR Summary LSTAR ESTAR
Statistics Statistics
R-Squared 0.7079 0.6778 R-Squared 0.7251 0.7311
Adj. R? 0.6819 0.6607 Adj. R? 0.7039 0.7104
SR 0.0503 0.0554 SR 0.0538 0.0526
AlC -7.4036 -7.3770 AlC -7.3560 -7.3781
SC -7.1677 -7.2207 SC -7.1463 -7.1684
Durbin-Watson  2.3350 2.0845 Durbin-Watson 1.8476 2.0132
No. of params. 9 6 No. of params. 8 8
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