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Estimation and Inference by the Method of Projection Minimum Distance∗

Abstract

A covariance-stationary vector of variables has a Wold representation whose coefficients can be semi-
parametrically estimated by local projections (Jordà, 2005). Substituting the Wold representations
for variables in model expressions generates restrictions that can be used by the method of mini-
mum distance to estimate model parameters. We call this estimator projection minimum distance
(PMD) and show that its parameter estimates are consistent and asymptotically normal. In many
cases, PMD is asymptotically equivalent to maximum likelihood estimation (MLE) and nests GMM
as a special case. In fact, models whose ML estimation would require numerical routines (such as
VARMA models) can often be estimated by simple least-squares routines and almost as efficiently by
PMD. Because PMD imposes no constraints on the dynamics of the system, it is often consistent in
many situations where alternative estimators would be inconsistent. We provide several Monte Carlo
experiments and an empirical application in support of the new techniques introduced.
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1 Introduction

Projection Minimum Distance (PMD) is a two-step, efficient, limited-information method of

estimation based on the minimum chi-square principle (Ferguson, 1958). The first step con-

sists in estimating the coefficients of the joint Wold representation of endogenous, exogenous

and instrumental variables semi-parametrically by local projections (Jordà, 2005). We will

show that these estimates are consistent and asymptotically normal even for infinite order

processes and can be obtained with simple, least-squares algebra. The second step consists

of minimizing the weighted quadratic distance function that relates the model’s parameters

with the first-step estimates. Relationships between model parameters and Wold coefficients

are obtained by substituting Wold representations for variables in model expressions. The

optimal weighting matrix turns out to be the inverse of the covariance matrix from the

first stage. We will show that PMD estimates of the model’s parameters are consistent and

asymptotically normal and have good finite sample properties.

Full information techniques, such as maximum-likelihood or recent Bayesian Markov

Chain-Monte Carlo approaches (see, e.g., Lubik and Schorfheide, 2004) achieve the lower

efficiency information matrix bound when the model is correctly specified. Under Gaussian-

ity, the Wold representation completely characterizes the likelihood so that, as the sample

size grows to infinity, PMD approaches this lower efficiency bound as well. In fact, be-

cause covariance-stationarity implies that the Wold coefficients decay exponentially, PMD

estimates are nearly fully efficient even in moderate samples. Furthermore, many models

whose full-information estimates require numerical or simulation techniques for their calcu-

lation, only require two simple least-squares steps with PMD (such as estimation of vector
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autoregressive, moving average models, VARMA, for example).

PMD is in the same class of limited-information estimators as GMM, M-estimators, sim-

ulated method of moments and indirect inference, to cite a few. In addition, a number of

informal minimum distance estimators have been proposed to estimate dynamic macroeco-

nomic models. We review some of these papers briefly to set our paper in context although

we stress that PMD is not limited to applications in macroeconomics but rather is a general

method of estimation.

Smith (1993) uses indirect inference1 methods and simulates data from a dynamic sto-

chastic model for different parameter values and then chooses the parameter values whose

pseudo-likelihood minimizes the distance with the likelihood of a VAR estimated from the

data. Naturally, the computational burden of this method is quite substantial and hence

only applicable to models with relatively few parameters. Diebold, Ohanian, and Berkowitz

(1998) instead minimize the distance between the spectrum implied by the model and that

from the data but provide no asymptotic results and resort to the bootstrap to provide infer-

ence. Along the same lines, Kozicki and Tinsley (1999) and Sbordone (2002) extend work by

Campbell and Shiller (1987, 1988) using VAR forecasts to proxy for expectations. Kozicki

and Tinsley (1999) provide asymptotic properties of their recommended two-step estimator

but implementation is computationally challenging in many situations. Sbordone (2002) es-

timates the parameters of the model by minimizing a distance function based on forecasts

from a VAR. Her approach can be applied to higher dimensional problems, alas, no results

are provided on the formal statistical properties of this estimator.

1 See Gourieroux and Monfort’s (1997) monograph for a more detailed discussion of indirect inference and
other related simulation based estimators.
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The Wold representation is sometimes referred to as the impulse response representation

and the principle of minimizing the distance between the data’s and the model’s impulse

responses has appeared in a number of recent papers, most recently in Schorfheide (2000)

and Christiano et al. (2005), for example (for an earlier application see Rotemberg and

Woodford, 1997). Briefly, the approach followed in this literature consists in simulating

impulse responses from the economic model and then minimizing the distance between these

and the impulse responses from an identified structural vector autoregression (V AR). These

techniques are unsatisfactory for two main reasons. First, the success of this estimation

strategy depends crucially on the ability to obtain structural impulse responses to the same

fundamental shocks described by the economic model so that the minimum distance step

effectively compares the same type of object. However, as Fernández-Villaverde, Rubio-

Ramírez and Sargent (2005) discuss, the ability to recover the structural impulse responses of

a model from a V AR is limited to very specific classes of models and depends on the ability

to determine the correct method of identification of the reduced-form residual covariance

matrix. Second, because it is difficult to calculate the covariance matrix of the stacked vector

of impulse responses from a V AR (and to our knowledge almost never done), a suboptimal

weighting matrix and simulation methods are required to estimate and report standard errors

for the parameter estimates that do not have an asymptotic justification and whose statistical

properties are not generally derived.

PMD is not based on identification of structural impulse responses nor does it generally

consist of minimizing the distance between responses generated by the data and the model.

In cross-sectional data, there is a one-to-one equivalence between PMD and GMM. In time-
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series and panel data, PMD is computationally equivalent to GMMwhen instruments are pre-

treated for serial correlation and the optimal weighting matrix is estimated by the parametric

form implied by the Wold representation of the data.

Before jumping into the theoretical results, we find it useful to present our method with

two simple examples in the next section. Theoretical results on consistency and asymptotic

normality are provided in sections 3 and 4 for the local projection and minimum chi-square

steps, respectively. Section 5 discusses the relative efficiency of PMD when compared to

GMM. The performance of PMD is explored through Monte Carlo experiments in section 6

and an application in section 7. Final comments are offered in section 8.

2 Motivating Examples

This section provides the basic intuition behind PMD by stripping off the technical assump-

tions and derivations presented in subsequent sections. We begin with a simple time series

example and then provide an example from the macroeconomics literature.

Suppose we want to estimate an ARMA(1,1) model on a sample of T observations of the

variable yt

yt = π1yt−1 + εt + θ1εt−1. (1)

Assuming yt is covariance-stationary it has a Wold representation given by

yt =
∞X
j=0

bjεt−j , (2)

where we have omitted the deterministic terms for simplicity. Substituting (2) into (1) and
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matching coefficients in terms of the εt−j , we obtain the following mapping:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

...

bh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
b(1,h)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

b1

...

bh−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
b(0,h−1)

π1 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
e

θ1

or more compactly b(1, h) = b(0, h− 1)π1 + eθ1. In section 3 we will show that an estimate

of b ≡ b(0, h) can be obtained from a least-squares first-stage

bbT = ¡Y 0My¢ ¡y0My¢−1 (3)

where Y is a (T−k−h)×(h+1) matrix that collects the elements Yt = (yt yt+1 ... yt+h) ;

y is a (T − k − h) × 1 matrix collecting the elements yt; M = I −X(X 0X)−1X 0 with X a

(T − k − h)× (k + 1) matrix with elements Xt = (yt−1 ... yt−k). Section 3 further shows

that

p
(T − k − h)

³bbT − b´ d→ N (0,Ωb)

with bΩb = bΣv (y0My)−1 ,that is, the familiar least-squares result with the only wrinkle being
that bΣv is an estimate of the residual variance whose specific form we will discuss in section

3.

Given the estimates bbT , an estimate of φ = (π1 θ1)
0 can be obtained from the second-

step, minimum-distance problem
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min
φ

bQT (φ) = f ³bbT ;φ´0cW f ³bbT ;φ´ (4)

where in this case f
³bbT ;φ´ = nbb(1, h)− hbb(0, h− 1)π1 + eθ1io and cW is a weighting matrix

to be described shortly. The first order conditions of this problem yield the simple least-

squares result

bφT = − h bF 0φcW bFφi−1 h bF 0φcWbb(1, h)i (5)

where bFφ = ³bb (0, h− 1) e
´
;cW =

³ bFbbΩb bF 0b´−1 ; and bFb = (0h,1 Ih)−
³bπ1 + bθ1´ (Ih 0h,1) .

Given cW , we show in section 4 that
p
(T − k − h)

³bφT − φ
´

d→ N (0,Ωφ)

where a convenient estimate of the covariance matrix of the parameter estimates is bΩφ =³ bF 0φcW bFφ´−1 .
The two least-squares steps (3) and (5) are the essence of PMD. It is worth remarking

that assuming the εt are i.i.d. Gaussian then PMD attains the maximum likelihood efficiency

lower bound when h→∞ as the sample size grows to infinity sufficiently rapidly. However,

because in most covariance-stationary processes the bj decay to zero exponentially, only a

rather small value of h is necessary to quickly approach the asymptotic efficiency bound in

finite samples. Secondly, PMD only requires two straight-forward least-squares steps for a

model whose likelihood would require numerical techniques for its maximization. Because

the method is directly scalable to vector time series, estimates for V ARMA models can be

obtained in a computationally convenient manner. For this reason, PMD can be seen as an
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alternative estimator to Hannan and Rissanen’s (1982) estimator for ARMA models.

The second example that we discuss in this section is based on the hybrid New Keynesian

Phillips curve presented in Galí and Gertler (1999) and which has been extensively cited in

the literature (see Galí, Gertler and López-Salido, 2005 for a rebuttal of several criticisms and

for additional references and citations). The basic specification in Galí and Gertler (1999)

and Galí et al. (2005) is found in expression (1) of the latter paper and reproduced here with

slight change of notation:

πt = λmct + γfEtπt+1 + γbπt−1 + επt (6)

with λ = (1− ω) (1− θ) (1− βθ) δ−1; γf = βθδ−1; γb = ωδ−1; δ = θ + ω [1− θ (1− β)] ;

where πt denotes inflation and mct log real marginal costs, both in deviations from steady-

state; 1−ω is the proportion of firms that optimally reset their prices, 1−θ is the proportion

of firms that adjust prices in a given period, and β is the discount factor. Assuming rational

expectations and that επt is i.i.d., Galí and Gertler (1999) estimate expression (6) by GMM

using variables dated t − 1 and earlier as instruments. For the purposes of the illustration,

we take no position on the economic justification of the model nor on the adequacy of the

estimation method given the data. Furthermore, we will only concentrate on the task of

estimating the parameters λ, γf , and γb since the structural parameters ω, θ, β can then be

estimated directly by classical minimum distance.2

Define y1t = (πt mct)
0 , y2t = xrt, and hence yt = (y1t y2t)

0 ; and εt = (επt εmt εxt)
0 .

Here xrt stands for the exchange rate, a natural predictor of inflation which appears in some

2 That is, since φ =
¡
λ γf γb

¢0
= g (ω,β, θ) and Ωφ is available, then an estimate of ω, β, and θ can

be obtained from the solution to the problem minω,β,θ (φ− g (ω,β, θ))0 Ω−1φ (φ− g(ω,β, θ)) .
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formulations of the Phillips curve in open economy models (see, e.g. Battini and Haldane,

1999) but not in the Galí and Gertler (1999) formulation. We use xrt to illustrate the

principle that variables omitted by the candidate model can be easily incorporated into the

formulation of the PMD estimator. If yt is covariance-stationary so that

yt =
∞X
j=0

Bjεt−j

with

Bj =

⎡⎢⎢⎢⎢⎢⎢⎣
bj11 bj12 bj13

bj21 bj22 bj23

bj31 bj32 bj33

⎤⎥⎥⎥⎥⎥⎥⎦
then it is easy to see that

πt =
∞X
j=0

bj11επt−j +
∞X
j=0

bj12εmt−j +
∞X
j=0

bj13εxt−j (7)

mct =
∞X
j=0

bj21επt−j +
∞X
j=0

bj22εmt−j +
∞X
j=0

bj23εxt−j

Substituting expression (7) into the expression for the Phillips curve in (6), we obtain the

following sets of conditions:

bj11 = λbj21 + γfb
j+1
11 + γbb

j−1
11 j ≥ 1 (8)

bj12 = λbj22 + γfb
j+1
12 + γbb

j−1
12 j > 1

bj13 = λbj23 + γfb
j+1
13 + γbb

j−1
13 j > 1
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In order to cast the problem in terms of the minimum distance function f(b,φ) of expression

(4), where b = vec(B) and B =

µ
I B01 B02 · · · B0h

¶0
, we find it useful to define

R1 =

µ
1 0 0

¶
, R2 =

µ
0 1 0

¶
and hence, the following selector matrices:

S0 =

µ
0h−1,3 (Ih−1 ⊗R1) 0h−1,3

¶
S1 =

µ
0h−1,3 (Ih−1 ⊗R2) 0h−1,3

¶
S2 =

µ
0h−1,3 0h−1,3 (Ih−1 ⊗R1)

¶
S3 =

µ
(Ih−1 ⊗R1) 0h−1,3 0h−1,3

¶
.

Thus,

f (b,φ) = vec
¡
S0B−

¡
λS1B+ γfS2B+ γbS3B

¢¢
with φ = (λ γf γb)

0 and hence it reflects the distance function associated with the

conditions in expression (7). Given a first stage estimator for b such that
√
T
³bbT − b0´ →

N (0,Ωb) , then,

bφT = −
³ bF 0φcW bFφ´−1 ³ bF 0φcWvec³S0 bB´´ (9)

cW =
³ bFbbΩb bF 0b´−1

bΩφ =
³ bF 0φcW bFφ´−1

where
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bFb =
¡
I3 ⊗

¡
S0 − λS1 − γfS2 − γbS3

¢¢
bFφ = −

µ
vec

³
S1 bB´ vec

³
S2 bB´ vec

³
S3 bB´ ¶

This example highlights an important feature of PMD: by recognizing that xrt can be of

predictive value for πt, not only can one use xrt as an instrument to estimate the parameters

of interest through the impulse response coefficients of the endogenous variables y1t with

respect to the omitted variables in y2t (as is done in the third line of expression (8)), but also

the impulse response coefficients of the endogenous variables y1t are themselves calculated

so as to be orthogonal to y2t and its lags, thus ensuring their consistency against xr (which

is omitted from the formulation of the Phillips curve). We now derive the properties of our

estimator.

3 First-Step: Local Projections

In this section we show that a semiparametric estimate of the Wold coefficients collected in

b = vec(B) based on local projections (Jordà, 2005) is consistent and asymptotically normal

under rather general assumptions. There are several reasons why we rely on local projec-

tions rather than the more traditional inversion of a finite order VAR. First, as we will show

momentarily, estimates based on local projections are consistent even for data generated by

infinite order processes. This is advantageous since many macroeconomic models often have

implicit reduced forms that are VARMA(p,q) representations. Second, Jordà (2005) shows

that local projections are more robust (relative to VARs) to several types of misspecifica-

tion. Third, the results derived here are based on linear local projections and hence are a
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natural stepping stone for extensions based on alternative nonlinear and/or nonparametric

specifications, specifications that we will investigate in a different paper and which are, for

the most part, infeasible or impractical in VARs.

Local projections have the advantage of providing a simple, closed-form, analytic ex-

pression for the covariance matrix of impulse response coefficients across time and across

variables. The ability to arrive at such an expression simplifies considerably the derivation

of a closed-form, analytic expression for the covariance matrix of the model’s parameter esti-

mates with good efficiency properties. Expressions derived by inverting a VAR require delta

method approximations and are analytically far too complex to be useful.

We begin by deriving conditions that ensure consistency of the local projection estimator

and then follow with the derivation of asymptotic normality.

3.1 Consistency

Suppose

yt =
∞X
j=0

Bjεt−j (10)

where for simplicity, but without loss of generality, we omit deterministic components (such

as a constant and/or a deterministic time trend), then from the Wold decomposition theorem

(see e.g. Anderson, 1994):

(i) E(εt) = 0 and εt are i.i.d.

(ii) E(εtε0t) = Σε
r×r

(iii)
P∞
j=0 kBjk <∞ where kBjk2 = tr(B0jBj) and B0 = Ir
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(iv) det {B(z)} 6= 0 for |z| ≤ 1 where B(z) =P∞
j=0Bjz

j

and the process in (10) can also be written as:

yt =
∞X
j=1

Ajyt−j + εt (11)

such that,

(v)
P∞
j=1 kAjk <∞

(vi) A(z) = Ir −
P∞
j=1Ajz

j = B(z)−1

(vii) det{A(z)} 6= 0 for |z| ≤ 1.

Jordà’s (2005) local projection method of estimating the impulse response function is

based on the expression that results from simple recursive substitution in this V AR(∞)

representation, that is

yt+h = A
h
1yt +A

h
2yt−1 + ...+ εt+h +B1εt+h−1 + ...+Bh−1εt+1 (12)

where:

(i) Ah1 = Bh for h ≥ 1

(ii) Ahj = Bh−1Aj +A
h−1
j+1 where h ≥ 1; A0j+1 = 0; B0 = Ir; and j ≥ 1.

Now consider truncating the infinite lag expression (12) at lag k

yt+h = A
h
1yt +A

h
2yt−1 + ...+A

h
kyt−k+1 + vk,t+h (13)
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vk,t+h =
∞X

j=k+1

Ahjyt−j + εt+h +
h−1X
j=1

Bjεt+h−j .

In what follows, we show that least squares estimates of (13) produce consistent estimates

for Ahj for j = 1, ..., k, in particular Ah1 , which is a direct estimate of the impulse response

coefficient Bh. We obtain many of the derivations that follow by building on the results

in Lewis and Reinsel (1985), who show that the coefficients of a truncated V AR(∞) are

consistent and asymptotically normal as long as the truncation lag grows with the sample

size at an appropriate rate.

More general assumptions that allow for possible heteroskedasticity in the εt or on their

mixing properties are possible. The key elements required are for the yt to have a, possibly

infinite-order, VAR representation (11) whose coefficients die-off sufficiently quickly; and for

the εt to be sufficiently well-behaved (i.e., a white noise or a martingale difference sequence

assumption) so that least-squares estimates from the truncated expression in (13) are as-

ymptotically normal based on an appropriate law of large numbers (for a related application

see, e.g. Gonçalves and Kilian, 2006). Under these more general conditions however, the

ability to map the infinite VAR representation (11) into the infinite VMA representation (10)

is not guaranteed. This is not a major impediment since impulse responses (understood as

linear forecasts rather than conditional expectations) can still be calculated from estimates

of Ah1 . On the other hand, when one assumes the εt are Gaussian, then PMD is asymptoti-

cally equivalent to maximum likelihood. Because we feel it is instructive to retain this point

of reference (which we illustrate in the Monte Carlo exercises) and to preserve the duality

between the VAR and VMA representations, we present our results in a more traditional
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setting by maintaining the slightly stricter assumptions (i)-(vii) in this paper and leave more

general assumptions for later research.

3.1.1 Definitions and Notation

We find it useful to define and collect the notation that we use for the derivations that follow

in the remainder of the paper in this subsection. Specifically:

(i) Xt,k−1
kr×1

=
¡
y0t,y0t−1, ...,y0t−k+1

¢0
(ii) Yt,h

hr×1
=
¡
y0t+1, ...,y0t+h

¢0
(iii) Mt−1,k

1×1
= 1−PT−h

t=k X
0
t−1,k

³PT−h
t=k Xt−1,kX

0
t−1,k

´−1
Xt−1,k

(iv) cΓ
r×r(j) = (T − k − h)

−1PT−h
t=k yty

0
t−j

(v) cΓ
r×r(j|1− k) = (T − k − h)

−1PT−h
t=k ytMt−1,ky0t−j

(vi) bΓk
kr×kr

= (T − k − h)−1PT−h
t=k Xt,kX

0
t,k

(vii) bΓ1−k,h
kr×r

= (T − k − h)−1PT−h
t=k Xt,ky

0
t+h

(viii) bΓ1−h|1−k
hr×r

= (T − k − h)−1PT−h
t=h Yt,hMt−1,ky0t

Then, the mean-square error linear predictor of yt+h based on yt, ...,yt−k+1 is bA(k, h)Xt,k−1
where bA(k, h) is given by the least-squares formula

bA
r×kr

(k, h) = ( bAh1 , ..., bAhk) = bΓ01−k,hbΓ−1k (14)

The following theorem provides conditions under which the least-squares estimates forA(k, h)

are consistent.
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Theorem 1 Consistency. Let {yt} satisfy (10) and assume that:
(i) E|εitεjtεktεlt| <∞ for 1≤ i, j, k, l ≤ r
(ii) k is chosen as a function of T such that

k2

T
→ 0 as T, k →∞

(iii) k is chosen as a function of T such that

k1/2
∞X

j=k+1

kAjk→ 0 as T, k →∞

Then: °°° bA(k, h)−A(k, h)°°° p→ 0

The proof of this theorem is in the appendix. A natural consequence of the theorem

provides the essential result we need, namely bAh1 p→ Bh.

3.2 Asymptotic Normality

We now show that least-squares estimates from the truncated projections in (13) are as-

ymptotically normal, although for the purposes of the PMD estimator, proving that bAh1 is
asymptotically normally distributed would suffice. Notice that we can write

bA(k, h)−A(k, h) = ((T − k − h)−1 T−hX
t=k

vk,t+hX
0
t,k

)bΓ−1k
= (T − k − h)−1

⎡⎣T−hX
t=k

⎧⎨⎩
⎛⎝ ∞X
j=k+1

Ahjyt−j

⎞⎠+ εt+h +
h−1X
j=1

Bjεt+h−j

⎫⎬⎭X 0
t,k

⎤⎦ bΓ−1k
= (T − k − h)−1

⎧⎨⎩
T−hX
t=k

⎛⎝ ∞X
j=k+1

Ahjyt−j

⎞⎠X 0
t,k

⎫⎬⎭nΓ−1k +
³bΓ−1k − Γ−1k ´o+

(T − k − h)−1
⎧⎨⎩
T−hX
t=k

⎛⎝εt+h + h−1X
j=1

Bjεt+h−j

⎞⎠X 0
t,k

⎫⎬⎭nΓ−1k +
³bΓ−1k − Γ−1k ´o

Hence, the strategy of the proof will consist in showing that the first term in the sum above

vanishes in probability so that,
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(T − k − h)1/2 vec
h bA(k, h)−A(k, h)i p→

(T − k − h)1/2 vec
⎡⎣(T − k − h)−1

⎧⎨⎩
T−hX
t=k

⎛⎝εt+h + h−1X
j=1

Bjεt+h−j

⎞⎠X 0
t,k

⎫⎬⎭Γ−1k
⎤⎦ .

By showing that this last term is asymptotically normal, we complete the proof.

Theorem 2 Let {yt} satisfy (10) and assume that

(i) E |εitεjtεktεlt| <∞; 1 ≤ i, j, k, l ≤ r

(ii) k is chosen as a function of T such that k
3

T → 0, k, T →∞
(iii) k is chosen as a function of T such that

(T − k − h)1/2
∞X

j=k+1

kAjk→ 0; k,T→∞

Then

(T − k − h)1/2 vec
h bA(k, h)−A(k, h)i p→

(T − k − h)1/2 vec
⎡⎣⎧⎨⎩(T − k − h)−1

T−hX
t=k

⎛⎝εt+h + h−1X
j=1

Bjεt+h−j

⎞⎠X 0
t,k

⎫⎬⎭Γ−1k
⎤⎦

The proof is provided in the appendix. Now, all that remains is to show that

AT ≡ (T − k − h)1/2 vec
⎡⎣(T − k − h)−1

⎧⎨⎩
T−hX
t=k

⎛⎝εt+h + h−1X
j=1

Bjεt+h−j

⎞⎠X 0
t,k

⎫⎬⎭Γ−1k
⎤⎦ d→

N(0,ΩA) with ΩA =
¡
Γ−1k ⊗ Σh

¢
; Σh =

⎛⎝Σε +
h−1X
j=1

BjΣεB
0
j

⎞⎠
Since, vec

h bA(k, h)−A(k, h)i p→ AT , andAT
d→ N(0,ΩA), then we will have vec

h bA(k, h)−A(k, h)i d→

N(0,ΩA). We establish this result in the next theorem.

Theorem 3 Let {yt} satisfy (10) and assume

(i) E|εitεjtεktεlt| <∞; 1≤ i, j, k, l ≤ r
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(ii) k is chosen as a function of T such that

k3

T
→ 0, k, T →∞

Then
AT

d→ N(0,ΩA)

The proof is provided in the appendix.

In practice, we find it convenient to estimate responses for horizons 1, ..., h jointly as

follows,

bΓ1−h|1−kbΓ(0|1− k)−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bA11
bA21
...

bAh1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bB1
bB2
...

bBh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= bB(1, h) (15)

Using the usual least-squares formulas, notice that

bB(1, h) = B(1, h) +((T − k − h)−1 T−hX
t=k

ytMt−1,kV 0t,h

)0 bΓ(0|1− k)−1 + op(1) (16)

where Vt,h ≡
¡
v0t+1, ...,v0t+h

¢0
;vt+j = εt+j +B1εt+j−1 + ...+ Bj−1εt+1 for j = 1, ..., h. The

terms vanishing in probability in (16) involve the terms U1T , U2T , and U3T defined in the

proof of theorem one, which makes use of the condition k1/2
P∞
j=k+1 ||Aj ||→ 0 as T, k →∞.

Under the conditions of theorem 2, we can write

(T − k − h)1/2vec
³ bB(1, h)−B(1, h)´ p→ (17)

(T − k − h)1/2 vec
"(
(T − k − h)−1

T−hX
t=k

Vt,hMt−1,ky0t

)bΓ(0|1− k)−1#

17



from which we can derive the asymptotic distribution under theorems 2 and 3.

Next notice that

(T − k − h)−1
T−hX
t=k

Vt,hV
0
t,h

p→ Σv
rh×rh

(18)

The specific form of the variance-covariance matrix Σv can be derived as follows. Let 0j = 0
j×j
;

0m,n = 0
m×n;and recall that Vt,h ≡

¡
v0t+1, ...,v0t+h

¢0
, specifically,

Vt,h =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εt+1

εt+2 +B1εt+1

...

εt+h +B1εt+h−1 + ...+Bh−1εt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ΨBεt,h,

where

ΨB
rh×rh

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ir 0r ... 0r

B1 Ir ... 0r

...
... ...

...

Bh−1 Bh−2 ... Ir

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; εt,h
rh×1

=

⎡⎢⎢⎢⎢⎢⎢⎣
εt+1

...

εt+h

⎤⎥⎥⎥⎥⎥⎥⎦ (19)

Then E
h
Vt,hV

0
t,h

i
= E

h
ΨBεt,hε

0
t,hΨ

0
B

i
= ΨBE

h
εt,hε

0
t,h

i
Ψ0B with E

h
εt,hε

0
t,h

i
= (Ih ⊗ Σε)

and hence

E
£
Vt,hV

0
t,h

¤
= Σv = ΨB (Ih ⊗Σε)Ψ

0
B (20)

and therefore

18



(T − k − h)1/2 vec
³ bB(1, h)−B(1, h)´ d→ N (0,Ωb)

Ωb
r2h×r2h

=

µ
Γ(0|1− k)−1

r×r
⊗ Σv
rh×rh

¶

In practice, one requires sample estimates bΓ(0|1− k)−1 and bΣv. With respect to the latter,
notice that the parametric form of expression (20) allows us to construct a sample estimate

of Ωb by plugging-in the estimates bB(1, h) and bΣε.

3.3 Practical Summary of Results in Matrix Algebra

Define yj for j = h, ..., 1, 0, —1, ..., —k as the (T −k−h)×r matrix of stacked observations of

the 1× r vector y0t+j . Additionally, define the (T −k−h)× r(h+1) matrix Y ≡ (y0, ...,yh) ;

the (T −k−h)×r matrix y0; the (T −k−h)×kr+1 matrix X ≡
¡
1(T−k−h)×1,y−1, ...,y−k

¢
and the (T − k − h) × (T − k − h) matrix M = IT−k−h − X (X 0X)−1X 0. Notice that the

inclusion of y0 in Y is a computational trick that has no other effect but to ensure that

the first block of coefficients is Ir, as is convenient for the minimum chi-square step. Using

standard properties of least-squares

bBT = cBT (0, h) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ir

bB1
...

bBh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
£
Y 0My0

¤ £
y00My0

¤−1 (21)

with an asymptotic variance-covariance matrix for bbT = vec(bBT ), that can be estimated with
bΩB = n[y00My0]−1 ⊗ bΣvo. Properly speaking, the equations associated with B0 = Ir have
zero variance, however, we find it notationally more compact and mathematically equivalent
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to calculate the residual variance-covariance matrix as bΣv = bΨB ³Ih+1 ⊗ bΣ²´ bΨ0B where we
extend bΨB in (19) as follows

bΨB
r(h+1)×r(h+1)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0r 0r 0r ... 0r

0r Ir 0r ... 0r

0r bB1 Ir ... 0r

...
...

... ...
...

0r bBh−1 bBh−2 ... Ir

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(22)

with bBj replacing Bj , bΣ² = cv10cv1
T−k−h ; and cv1 =My1 −My0 bB1.

Thus, it is readily seen that as h, T → ∞, this local projection estimator is equivalent

to the maximum likelihood estimator of the Wold representation of the process yt against

which one could test any candidate VARMA model with a quasi-likelihood ratio test or a

quasi Lagrange multiplier test. We set these issues aside since they can be recast in terms

of the second step of our estimator, which we now discuss.

4 The Second Step: Minimum Chi-Square

This section begins by deriving consistency and asymptotic normality of bφT obtained from
the second minimum chi-square step in expression (4), and then derives an overall test of

model misspecification based on overidentifying restrictions. The section concludes with a

summary of the main results for practitioners.

4.1 Consistency

Given an estimate of B (and hence b) from the first-stage described in section 3, our objective

here is to estimate φ by minimizing
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min
φ

bQT (φ) = f ³bbT ;φ´0cW f ³bbT ;φ´
Let Q0(φ) denote the objective function at b0. The following theorem establishes regularity

conditions under which bφT , the solution of the minimization problem, is consistent for φ0.
Theorem 4 Given that bbT p→ b0, assume that

(i) cW p→W, a positive semidefinite matrix

(ii) Q0(φ) is uniquely maximized at (b0,φ0) = θ0

(iii) The parameter space Θ is compact

(iv) f(b0,φ) is continuous in a neighborhood of φ0 ∈ Θ.

(v) f
³bbT ;φ´ is stochastically equicontinuous with respect to bbT .

(vi) Instrument relevance condition: rank [WFφ] = dim (φ) .

(vii) Identification condition: dim(f
³bbT ;φ´) ≥ dim (φ)

Then

bφT p→ φ0

The proof is provided in the appendix. We remark that one way to derive the consistency

of our estimator is to assume that h is finite (while still meeting the identification condition

(vi)) even as the sample size grows to infinity. In that case, b is finite-dimensional and the

proof of consistency can be done under rather standard regularity conditions. However, it is

more general to assume h, T →∞ at a certain rate for h/T (an example of such a rate is given

below in the proof of asymptotic normality) that will ensure that the maximum-likelihood

lower efficiency bound is achieved asymptotically. Since the proof of consistency requires

bQT (φ) p→ Q0 (φ) uniformly, we rely on Andrews (1994, 1995), who provides results from

the theory of empirical processes that allow one to verify uniform convergence when bQT (φ)
21



is stochastically equicontinuous. The conditions under which stochastic equicontinuity will

hold will depend on the specific form of f (.) and other features of each specific application.

Therefore, we prefer to state assumption (v) directly rather than stating primitive conditions

that would allow one to verify stochastic equicontinuity and hence derive the proof more

generically.

4.2 Asymptotic Normality

The proof of asymptotic normality relies on applying the mean value theorem to the first

order conditions of the minimization of the quadratic distance function bQT (φ) . For this
purpose, all that is required is that the weighting matrix cW converge in probability to any

positive semidefinite matrix (for example, cW = I). However, by choosing cW optimally, we

can find the estimator with the smallest variance. This optimal choice of cW happens to be

the covariance matrix of f
³bbT ;φ´ , which results in bQT (φ) having a chi-squared distribution,

the essential element to derive the test of over-identifying restrictions described in the next

subsection (and the basis for the minimum chi-square method of Ferguson, 1958). For these

reasons, the next theorem is derived for the optimal weighting matrix instead of a generic

cW.
Additionally, we provide conditions that permit h→∞ with the sample size. The choice

of relative rate at which h→∞ is chosen conservatively based on the literature of weak/many

instruments (see Stock, Wright and Yogo, 2002, for a survey). The rate is derived such that

the concentration parameter for bbT essentially grows at the same rate as h. For this reason
we need stochastic equicontinuity to hold here as well so that we can apply a central limit

theorem. However, in practice, and optimal choice of h can be made with the information
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criterion specifically derived for this type of problem in Hall et al. (2007).

Theorem 5 Given the following conditions:

(i) cW p→W, where W = (FbΩbF
0
b)
−1 , a positive semidefinite matrix with Fb as defined in

assumption (vi) below.

(ii) bbT p→ b0 and bφT p→ φ0 from theorems 1 and 4.

(iii) b0 and φ0 are in the interior of their parameter spaces.

(iv) f(bbT ;φ) is continuously differentiable in a neighborhood N of θ0, θ =
¡
b0 φ0

¢0
(v) There is a Fb and Fφ that are continuous at b0 and φ0 respectively and

sup
b,φ∈N

k∇bf(b;φ)− Fbk p→ 0

sup
b,φ∈N

k∇φf(b;φ)− Fφk p→ 0

(vi) For Fφ = Fφ(φ0), then F
0
φWFφ is invertible.

(vii) Let λ2 (h) = bb0T (h) (R⊗ I) [(R⊗ I)Ωb (R0 ⊗ I)]−1 (R0 ⊗ I)bbT (h) , such that λ2(h)
hr1r2

−1→
α > 0 for h, T → ∞ and R a selector matrix of the appropriate columns of B given
yt = (y01t y02t)

0 where r1 and r2 are the dimensions of y1t and y2t respectively and
r = r1 + r2.

(viii) f
³bbT ;φ´ is stochastically equicontinuous with respect to bbT .

(ix) rank[WFφ] = dim (φ).

(x) dim
³
f
³bbT ;φ´´ ≥ dim (φ)

Then:

√
T
³bφT − φ0

´
d→ N (0,Ωφ)

where

Ωφ =
¡
F 0φWFφ

¢−1 (23)
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The proof is provided in the appendix. This result follows derivations similar to those for

GMM and general minimum distance problems (see Newey and McFadden, 1994). The

complication here is that we allow bbT to become infinite dimensional as the sample size
grows. This has two consequences: (1) to ensure asymptotic normality we have to appeal

once more to empirical process theory and general stochastic equicontinuity results (see

Andrews, 1994; 1995); (2) the condition λ2/ (hr1r2) − 1 → α > 0 is a condition on the

concentration parameter of the bbT that ensures there is sufficient explanatory power in the
bbT as T → ∞ to avoid distortions in the asymptotic distribution due to weak instrument

problems (see Bekker, 1994 and Staiger and Stock, 1997). In practice, one simple way to

determine the optimal impulse response horizon is with the information criterion described

in Hall et al. (2007). In finite samples, all asymptotic expressions (such as Fφ, Fb and Ωb)

can be substituted by their plug-in small sample counterparts.

We note that Fb is a function of nuisance parameters, φ, and therefore construction

of cW = (FbΩbF
0
b)
−1 in practice requires a consistently estimated bφT to plug-in into the

expression for cW . One option is to realize that setting cW = I delivers consistent estimates

of φ under the conditions of Theorem 4. The covariance matrix of bφT with this choice of
weighting matrix is not that given in expression (23) but rather:

Ωφ =
¡
F 0φFφ

¢−1 ¡
F 0φFbΩbF

0
bFφ

¢ ¡
F 0φFφ

¢−1
The estimator based on the identity matrix is sometimes called the equally-weighted (EW)

minimum distance estimator and sometimes it has been found to have better finite-sample

properties than, for example, optimally weighted GMM estimators (see Cameron and Trivedi,
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2005).

Poor small sample properties of optimally weighted minimum distance estimators are

usually caused because the estimate of the optimal weighting matrix is correlated with the

minimum distance function: in the case of GMM, the optimal weighting matrix is estimated

as the average of the squares of the minimum distance function. In the optimally-weighted

PMD estimator, consistency of the nuisance parameter bφT is not required for consistency ofbbT
nor bΩb. For this reason, any finite-sample bias will be generated by any correlation between
the bφT plugged into the expression for Fb, and the bφT in the minimum distance function

f
³bbT ; bφT´ . This, of course, is very specific to each application so a general statement is
hard to make, although we have found little evidence of these issues in our Monte Carlo

experiments.

Optimal-weights PMD can be obtained with a preliminary estimate of φ with equal-

weights PMD which can then be used to construct bFb and then redo the estimation with
optimal-weights. In principle this procedure can be iterated upon, although asymptotically

there is no justification to do so, and our own experiments suggest one iteration is sufficient.

4.3 Test of Overidentifying Restrictions

The second stage in PMD consists of minimizing a weighted quadratic distance to obtain

estimates of the parameter vector φ, which contains 2r21 elements. The identification and

rank conditions require that the impulse response horizon h be chosen to guarantee that there

are at least as many relevant conditions as elements in φ. When the number of conditions

coincides with the dimension of φ, the quadratic function bQT (φ) obtains its lower bound of 0.
However, when the number of conditions is larger than the dimension of φ, the lower bound
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0 is only achieved if the model is correctly specified, as the sample size grows to infinity. This

observation forms the basis of the test for overidentifying restrictions (or J-test) in GMM

and is a feature that can be exploited to construct a similar test for PMD.

From the proof of asymptotic normality just derived, the appendix shows that a mean-

value expansion delivers the condition

√
T
³
f
³bbT ;φ´− f (b0;φ)´ = √TFb ³bbT − b0´+ op (1)

from which

√
T
³
f
³bbT ;φ´− f (b0;φ)´ d→ N

¡
0;FbΩbF

0
b

¢
and hence, when cW is chosen optimally to be cW = (FbΩbF

0
b)
−1 , then the minimum distance

function bQT ³bφT´ = f ³bbT ; bφT´0cW f ³bbT ; bφT´evaluated at the optimum is a quadratic form

of standardized normally distributed random variables and therefore, distributed χ2 with

degrees of freedom dim
³
f
³bbT ;φ´´− dim (φ) .

4.4 PMD: A Summary for Practitioners

Consider a dynamic system characterized by an r × 1 vector of variables yt = (y01t y02t)
0

where y1t and y2t are sub-vectors of dimensions r1 and r2 respectively, with r = r1 + r2.

A researcher specifies a model for the variables in y1t whose evolution can be generally

summarized by a minimum distance function that relates the impulse response coefficients

for yt and the parameters of the model, f (b,φ) . Although not required, we find it helps

clarify the method if we further assume that f (b,φ) is of the separable form
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f (b,φ) = g (b)− h (b)φ

for g(b) and h(b) two generic functions, so that we can express all the steps in straight-forward

matrix algebra.

The following steps summarize the application of PMD to this problem:

First Stage: Local Projections

1. Construct Y = (y0, ...,yh)
0 ; y0; X =

¡
1(T−k−h)×r,y−1, ...,y−k

¢
; M = I(T−k−h) −

X (X 0X)−1X, where yj is the (T − k − h) × r matrix of observations for the vector

yt+j .

2. Compute by least squares bbT = vec(bB), where
bB = £Y 0My0¤ £y00My0¤−1

3. Calculate the covariance matrix of b as bΩb = n(y00My0)−1 ⊗ bΣvo ,where bΣv = bΨB ³Ih ⊗ bΣε

´ bΨ0B
, bΨB is given by expression (22), and bΣε = (bv01bv1) / (T − k − h) ; with bv1 = My1 −

My0 bB1.
Second Stage: Minimum Chi-Square

4. The minimum distance function of the problem is

bQT (φ) = f ³bbT ;φ´0cW f ³bbT ;φ´
The equal-weights estimator consists on settingcWEW = I, which can be used to obtain

a preliminary estimate of φ

bφEWT =

µ
h
³bbT´0 h³bbT´¶−1µh³bbT´0 g³bbT´¶
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5. Now set cW =
³ bFbbΩb bF 0b´−1 where bΩb has been calculated as in bullet point 3 and

bFb = bGb −Pdim(φ)
i=1

bHi,b bφEWi,T where

bGb = ∂g
³bbT´
∂bbT ; bHi,b = ∂hi

³bbT´
∂bbT ,

hi

³bbT´ is the ith column of h³bbT´ and bφEWi,T is the ith element of bφEWT . Then, the

optimal-weights estimate of φ is

bφT = µh³bbT´0cWh³bbT´¶−1µh³bbT´0cWg³bbT´¶

which can be seen as a weighted least-squares estimator, and in the more general case

of a generic f (b;φ) , a non-linear least-squares estimator.

6. The covariance matrix of bφT can be estimated as
bΩφ =

µ
h
³bbT´0cWh³bbT´¶−1 .

7. Determine the optimal impulse response horizon bh by minimizing the information cri-
terion in Hall et al. (2007):

bh = arg min
h∈{hmin,...,H}

ln
³
|bΩφ|

´
+ h

ln
³√
T/k

´
³√
T/k

´
where hmin is such that dim(f(bbT ;φ)) ≥ dim(φ).

8. A test of model misspecification can be constructed as

bQT ³bφT´ d→ χ2
dim(f(bbT ;φ))−dim(φ)

when dim(f(bbT ;φ)) > dim (φ) .
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5 Relative Consistency and Efficiency with respect to GMM

Linear models represent a considerable portion of empirical research and conveniently sim-

plify the expressions of GMM and PMD estimators for simpler comparison. In this context,

we show that in correctly specified models with covariance-stationary data, the PMD covari-

ance matrix appropriately corrects for serial correlation automatically whereas the GMM

covariance matrix requires non-parametric solutions, such as the usual Newey-West het-

eroskedasticity and autocorrelation consistent covariance estimator. Such nonparametric

fixes tend to have poorer properties in small samples. When the model is dynamically mis-

specified, PMD can provide consistent estimates of parameters of interest in situations were

GMM would not be consistent. The reason is that PMD relies on instruments for endogenous

variables that are orthogonal to the omitted information whereas in GMM, the instruments

enter unconditionally.

Suppose we are interested in estimating the well-known canonical model

yt = ΦEtyt+1 + ut (24)

where yt is r × 1. Expression (24) can be thought of capturing a system of first-order Euler

conditions from a rational expectations model, for example, although by thinking of (24)

in state-space form, it is easy to see that a vast collection of models would fall under this

standard set-up. More generally, we can also think of (24) as a regression with endogenous

regressors. Next, we assume that the true DGP includes backward-looking terms, that is

yt = Π1Etyt+1 +Π2yt−1 + εt (25)
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or more generally, a regression with endogenous regressors and serial correlation. A researcher

interested in estimating (24) would often use a GMM estimator with yt−h; h = 1, ...H as

instruments. As long as Π2 = 0, then bΦ would a consistent estimate of Π1, but otherwise
this estimate will be biased. The reason, of course, is that the condition E

³
uty

0
t−j
´
= 0

is violated since E
³
uty

0
t−j
´
= E

³
[Π2yt−1 + εt]y

0
t−j
´
= Π2E

³
yt−1y0t−j

´
which will be

different from zero if Π2 6= 0 and E
³
yt−1y0t−j

´
6= 0 — that is, yt−h are valid instruments

from the perspective of the true DGP (25) but they are invalid from the perspective of

the specified model (24). One way to resolve the bias is as follows. Define Mt−1 = 1 −PT
t=2 y

0
t−1
³PT

t=2 yt−1y
0
t−1
´−1

yt−1, then notice that (25) can be recast as

ytMt−1 = Π1Etyt+1Mt−1 + εtMt−1 (26)

since yt−1Mt−1 = 0 by construction. Now yt−h; h = 1, ...,H are valid instruments for

Etyt+1Mt−1 since E(εtMt−1y0t−h) = 0;h = 1, ...,H. The lesson here is that one can estimate

the parameters of a misspecified model consistently as long as the instruments are orthogo-

nalized with respect to the possibly omitted variables. It turns out that this is exactly what

differentiates GMM from PMD.

To show this, recall definitions (i)-(viii) in section 3.1.1. It is easy to see that the GMM

estimator of expression (24) can be obtained from

min
Φ
vec

³bΓ0−(h−1),0 − bΓ1−h,0Φ´0cWGMM
T vec

³bΓ0−(h−1),0 − bΓ1−h,0Φ´ (27)

where the optimal weighting matrix is
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WGMM = Ξ0 +
∞X
j=1

(Ξj + Ξ
0
j) (28)

with bΞj = (T − k− h)−1 hPT−h
t=k Yt,hY

0
t−j,h−j ⊗

PT−h
t=k butbu0t−ji and a natural way to truncate

the infinite sum of the optimal weighting matrix is with a Barlett kernel as is done in Newey

and West (1987), for example. It is easy to see that the GMM estimator based on (27) taking

each lag yt−h individually results in an estimate of Φ such that E
³bΦGMMh

´
= Π1+Π2Γ(h+

1)−1Γ(h− 1). Thus, although Γ(h)→ 0 as h→∞ (due to the covariance-stationarity of yt)

the term Γ(h + 1)−1Γ(h− 1) does not necessarily vanish since both the numerator and the

denominator are simultaneously vanishing and the ratio is therefore indeterminate.

Consider instead the PMD estimator for this problem. First, we assume that yt is

covariance-stationary and has a Wold representation given by that in expression (10). Direct

application of the method of undetermined coefficients on expression (24) results in the set

of conditions

bB (0, h− 1) = bB(1, h)Φ
where from expression (15) we know that bB(1, h) = bΓ1−h|1−kΓ(0|1−k)−1. Consequently, the
PMD estimator in this simple linear case can be directly cast as the result of minimizing

min
Φ
vec

³bΓ0−(h−1)|1−k − bΓ1−h|1−kΦ´0cWPMD
T vec

³bΓ0−(h−1)|1−k − bΓ1−h|1−kΦ´ (29)

with
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cWPMD
T =

³bΓ(0|1− k)−1 ⊗ bΣv´−1 (30)

bΣv = bΨB ³Ih ⊗ bΣε

´ bΨ0B

Comparing the GMM expression (27) with the PMD expression (29) it is clear that the

main difference is that covariances that appear in PMD are conditional on up to k lags of the

dependent variables as opposed to the unconditional covariance matrices appearing in GMM.

In addition, the optimal weighting matrix in GMM is a nonparametric truncated estimate of

the autocorrelation consistent covariance matrix of the instruments and the residuals whereas

the PMD alternative provides a closed-form, exact expression that takes advantage of the

Wold assumption. These two differences have several consequences. First, calculating the

PMD bias as a function of each individual set of instruments yt−h as we did for the GMM,

results in the expression E
³bΦPMDh

´
= Π1+Π2Γ(h+1|k)−1Γ(h− 1|k). However, notice that

Γ(h|k) → 0 when either h → 1 (at h = 1 it is exactly zero) or h → ∞. Further, notice that

Γ(h|k) → Γ(h) as h → ∞. In fact, for h = 1, notice that the PMD estimator is equivalent

to the GMM estimator on the model in expression (26), albeit with an efficient parametric

weighting matrix. As h grows, bΦGMM − bΦPMD p→ 0 and both estimators are equivalent.

This observation suggests that a good diagnostic tool for model misspecification is to plot

bΦPMDh (or bΦGMMh − bΦPMDh ) as a function of h. This is what we do in the empirical section

to the paper.
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6 Monte Carlo Experiments

This section contains two types of experiments. First, we compare the finite sample properties

of PMD with maximum likelihood estimation of a traditional ARMA(1,1) model. The second

experiment compares PMD with GMM in the context of a traditional Euler equation. The

objective is to examine the way both approaches handle biases generated by possibly omitted

information and to compare the efficiency properties of both estimators in finite samples.

6.1 PMD vs. ML Estimation of ARMA Models

The set-up of the Monte Carlo experiments is as follows. We investigate four different

parameter pairs (π1, θ1) for the univariate ARMA(1,1) specification

yt = π1yt−1 + εt + θ1εt−1.

Specifically: cases (i) and (ii) are two ARMA(1,1) models with parameters (0.25, 0.5) and

(0.5, 0.25) respectively, and cases (iii) and (iv) are a pure MA(1) model with parameters (0,

0.5) and a pure AR(1) model with parameters (0.5, 0), both estimated as general ARMA(1,1)

models. In addition, we generated data from the model

yt = 0.5yt−1 + εt + θεt−1 εt ∼ N (0, 1)

where θ is allowed to vary between 0 and 0.5.

Each simulation run has the following features. We use 500 burn-in observations and

experiment with sample sizes T = 50, 100, and 400 observations. The lag-length of the
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first-stage PMD estimator is determined automatically by AICc.3 For the second stage, we

experimented with impulse response horizons h = 2, 5, and 10 (although we fix h = 5 for the

misspecification example). When h = 2, we have exact identification, otherwise, the model

is overidentified. Impulse responses for most model specifications examined generally decay

rapidly so that experiments with h = 10 are designed to examine the effects of including

many, and possibly irrelevant conditions.

All models are estimated by MLE and PMD and we report Monte Carlo averages and

standard errors of the parameter estimates, as well as Monte Carlo averages of standard error

estimates based on the MLE and PMD analytic formulas. This last computation is meant

to check that the coverage implied by the analytic formulas corresponds to the Monte Carlo

coverage. 1,000 Monte Carlo replications are used for each experiment.

Tables 1-4 contain the results of these experiments. Several results deserve comment.

First, PMD estimates converge to the true parameter values at roughly the same pace (and

sometimes faster) as MLE estimates as the sample size grows, with estimates being close to

the true values even in samples of 50 observations. However, with 50 observations, we remark

some deterioration of PMD parameter estimates when h = 10, as would be expected by the

loss of degrees of freedom. Second, PMD has analytic standard errors that in samples bigger

than 50 observations, virtually coincide with the MLE results and the Monte Carlo averages.

Hence, although technically PMD achieves the MLE lower bound only asymptotically (when

h → ∞ as T → ∞), these experiments suggest this convergence is quite rapid in finite

samples. Third, we remark that MLE estimates of the ARMA(1,1) specification for some of

3 AICc refers to the correction to AIC introduced in Hurvich and Tsai (1989), which is specifically designed
for autoregressive models. There were no significant differences when using SIC or the traditional AIC.

34



the cases in tables 3 and 4 failed to converge due to numerical instability — the likelihood is

nonlinear in the parameters and has to be optimized numerically. Rather than redoing these

draws somehow, we preferred to retain the entries blank to highlight that even draws were

MLE failed, PMD provided reliable estimates.

6.2 PMD vs. GMM estimation of Misspecified Models

Suppose a researcher wants to estimate the following Euler equation

zt = (1− µ)zt−1 + µEtzt+1 + γxt + εt. (31)

An example of such an expression in the New Keynesian hybrid Phillips curve in Galí and

Gertler (1999) and is similar to the expressions we estimate in the next section based on

previous work by Fuhrer and Olivei (2005). By assuming that xt in expression (31) follows

an AR(1) process, we can easily characterize the reduced-form solution as the first order

VAR

⎛⎜⎜⎝ zt

xt

⎞⎟⎟⎠ =

⎛⎜⎜⎝ a11 a12

0 a22

⎞⎟⎟⎠
⎛⎜⎜⎝ zt−1

xt−1

⎞⎟⎟⎠+Rεt. (32)

For example, when a11 = a12 = a22 = 0.5, then µ = 2/3 and γ = 1/3.

Figures 1 and 2 display GMM and PMD estimates based on this model for sample sizes

T = 100 and 400 respectively. 1,000 samples are generated with 500 burn-in observations.

Each sample is then estimated by both GMM and PMD by increasing the number of in-

struments/horizons from two to ten. The top two panels of each figure display estimates of

the parameters µ and γ respectively along with the Monte Carlo averages of the parameter
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estimates for each method and the average two standard error bands. The bottom panels

display the joint significance test of the hth horizon impulse responses (used as a gauge of

instrument significance) and the p-value of the misspecification test.

Several results deserve comment. The model is correctly specified with respect to the

DGP and hence both methods provide consistent estimates of the parameters of interest.

There is some slight drift in the parameter µ as the number of included instruments grows

but this bias is generally rather small. We note that the joint significance test on the

impulse response horizon suggests setting h to the smallest value possible (in this case 2) but

even though the p-value is above 0.05 for the smaller sample, we do not observe significant

distortions in the distribution. Further, higher values of h generate considerably more efficient

estimates of µ and γ based on PMD relative to GMM. The p-values of the misspecification

test are approximately in line with the nominal 5% value, with a slight deviation when more

instruments are included. However, the size distortion is kept within 10% in any case.

6.2.1 Neglected Dynamics

To investigate the effect of neglected dynamics on the consistency properties of GMM and

PMD, we experiment with a slight variation of expression (32),

⎛⎜⎜⎝ zt

xt

⎞⎟⎟⎠ =

⎛⎜⎜⎝ a11 a12

0 a22

⎞⎟⎟⎠
⎛⎜⎜⎝ zt−1

xt−1

⎞⎟⎟⎠+
⎛⎜⎜⎝ b11 0

0 b22

⎞⎟⎟⎠
⎛⎜⎜⎝ zt−2

xt−2

⎞⎟⎟⎠+Rεt.
Figures 3 and 4 examine what happens to the estimates of µ and γ now that expression (31)

is misspecified with respect to this DGP whenever b11 6= 0 (figure 3) or b22 6= 0 (figure 4).

In figure 3 we allow b11 to take values in the range [−0.5, 0.5] , which affect the persistence

of zt and which clearly should affect estimation of the parameter µ primarily. Since the
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process for xt remains an AR(1) and exogenous with respect to the process for zt, it is

tempting to conclude that the parameter γ will be unaffected. We experiment with samples

of size T = 100, and 300 for 1,000 replications and with models estimated with h = 2 both

by GMM and PMD. The top panel displays biases in the estimates of µ as a function of b11

whereas the bottom panel displays the biases for γ instead. The most striking feature is that

PMD provides virtually unbiased estimates of the coefficients µ and γ even for cases where

the bias for GMM is quite substantial (such as when b11 approaches 0.5 and then the system

has a unit root). It is interesting to note that GMM can also provide biased estimates of

the parameter γ in this instance as well, although for values of b11 close to 0.5, PMD also

presents some significant biases.

Figure 4 repeats this exercise but instead lets b22 vary between [−0.5, 0.5] . Here one would

expect the reverse: very little (if any) bias in estimating µ. In fact this is what we find. Even

for the extreme value of b22 = −0.5, the GMM bias is about 0.12 (PMD is essentially unbiased

for any value of b22). However, biases in estimating γ can be quite substantial in GMM and

practically non-existent in PMD.

These results are broadly consistent with our discussion in section 2: PMD takes on an

agnostic view on the underlying model that generates the data and is fully general with

respect to the directions in which the proposed model is silent (in our case, the assumption

that xt is generated by an AR(1)). These Monte Carlo experiments show how omitted dy-

namics can easily derail traditional GMM estimates whereas PMD provides a natural and

unsupervised method of adjusting previously invalid instruments for neglected serial corre-

lation. Even when the model is correctly specified, PMD provides more efficient estimates,
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the reason being that underlying the estimator is a parametric correction for serial correla-

tion that is more effective than a traditional semiparametric Newey-West correction of the

covariance matrix.

6.2.2 Omitted Information

To investigate the performance of GMM and PMD in the presence of misspecification owing

to an omitted variable, we consider a variation of (31),

zt = (1− µ)zt−1 + µEtzt+1 + γ(xt + δwt) + ²1,t, (33)

where, for example, in the case of a New Keynesian Phillips curve, wt might represent the

relative price of imports. We also assume that xt and wt both follow AR(1) processes:

xt = a22xt−1 + ²2,t

wt = a33wt−1 + ²3,t (34)

Model misspecification is introduced by estimating the model under the assumption δ =

0, but with data that is generated with δ = 0.5. This example is meant to represent a

hypothetical situation in which a NKPC for a closed economy is inappropriately applied to

data for an open economy.

Table 5 summarizes the extent of bias in estimates of NKPC parameters µ and γ for

PMD and GMM under this form of misspecification. In running the experiments, the shocks

²t = [²1,t ²2,t ²3,t]
0 were assumed to be iid N(0, I3). Results are presented for γ = 0.33,

µ = {0.67, 0.99}, a22 = {0.5, 0.8}, and a33 = {0.8, 0.95}, and for instrument lists consisting of

lags of {zt, xt} or {zt, xt, wt}. Each estimation was based on T = 300 simulated observations,

where an initial 500 burn-in observations were disregarded. Each experiment was repeated
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for 1000 Monte Carlo repetitions. The average bias in estimates of µ and γ are presented for

h = 2 and h = 10.

For h = 2, GMM has considerably larger bias for both µ and γ, the more persistent the

omitted variable and the more forward-looking the NKPC. This result holds whether or not

the instrument list includes the excluded variable wt. When the instrument list includes wt,

PMD estimates of µ have a very small upward bias. By contrast, GMM estimates tend to

have sizable downward bias.

For h = 10, differences between PMD and GMM are generally much smaller. Both PMD

and GMM have sizable downward bias when the instrument list excludes wt. When the

instrument list includes wt, performance of PMD tends to dominate that of GMM in terms

of estimates of µ. Performance of PMD dominates GMM for estimates of γ, when µ is close

to one.

7 Application: Fuhrer and Olivei (2005) revisited

The popular New-Keynesian framework for monetary policy analysis combines mixed, backward-

forward-looking, micro-founded, output (IS curve) and inflation (Phillips curve) Euler equa-

tions with a policy reaction function. This elementary three equation model is the corner-

stone of an extensive literature that investigates optimal monetary policy (see Taylor’s 1999

edited volume and Walsh’s 2003 textbook, chapter 11, and references therein). The stability

of alternative policy designs depends crucially on the relative weight of the backward and

forward-looking elements and is an issue that has to be determined empirically for central

banking is foremost, a practical matter.

However, estimating these relationships empirically is complicated by the poor sample
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properties of popular estimators. Fuhrer and Olivei (2005) discuss the weak instrument

problem that characterizes GMM in this type of application and then propose a GMM variant

where the dynamic constraints of the economic model are imposed on the instruments. They

dub this procedure “optimal instruments” GMM (OI−GMM) and explore its properties

relative to conventional GMM and MLE estimators.

We find it is useful to apply PMD to the same examples Fuhrer and Olivei (2005) analyze

to provide the reader a context of comparison for our method. We did not explore Bayesian

estimates on account that they are not reported in the Fuhrer and Olivei (2005) paper and

felt that, in a large sample sense, they are covered by MLE.4 The basic specification is (using

the same notation as in Fuhrer and Olivei, 2005):

zt = (1− µ) zt−1 + µEtzt+1 + γEtxt + εt (35)

In the output Euler equation, zt is a measure of the output gap, xt is a measure of the real

interest rate, and hence, γ < 0. In the inflation Euler version of (35), zt is a measure of

inflation, xt is a measure of the output gap, and γ > 0 signifying that a positive output gap

exerts “demand pressure” on inflation.

Fuhrer and Olivei (2005) experiment with a quarterly sample from 1966:Q1 to 2001:Q4

and use the following measures for zt and xt. The output gap is measured, either by the

log deviation of real GDP from its Hodrick-Prescott (HP) trend or, from a segmented time

trend (ST) with breaks in 1974 and 1995. Real interest rates are measured by the difference

of the federal funds rate and next period’s inflation. Inflation is measured by the log change

4 However, we encourage the reader to check the comprehensive summary in Smets and Wouters (2003)
for more details on applications of Bayesian techniques to estimation of rational expectations models.
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in the GDP, chain-weighted price index. In addition, Fuhrer and Olivei (2005) experiment

with real unit labor costs (RULC) instead of the output gap for the inflation Euler equation.

Further details can be found in their paper.

Table 6 and figure 5 summarize the empirical estimates of the output Euler equation and

correspond to the results in table 4 in Fuhrer and Olivei (2005), where as table 7 and figure

6 summarize the estimates of the inflation Euler equation and correspond to the results in

Table 5 instead. For each Euler equation, we report the original GMM,MLE, and OI−GMM

estimates and below these, we include the PMD results based on choosing h with Hall et

al.’s (2007) information criterion. The top panels of figures 5 and 6 display the estimates of

µ and γ in (35) as a function of h and the associated two-standard error bands. The bottom

left panel displays the value of the information criterion (denoted with the acronym RIRSC

used by Hall et al., 2007) and the bottom right panel, the p-value of the misspecification

test.

Since the true model is unknowable, there is no definitive metric by which one method

can be judged to offer closer estimates to the true parameter values. Rather, we wish to

investigate in which ways PMD coincides or departs from results that have been well studied

in the literature. We begin by reviewing the estimates for the output Euler equation reported

in table 6 and figure 5. The misspecification test is highly suggestive that the model is

misspecified independent of how output is detrended. Nevertheless, PMD estimates of µ are

very close to the MLE and OI-GMM estimates and with similar standard errors. On the

other hand, PMD estimates for γ are slightly larger in magnitude, of the correct sign and

statistically significant. However, while the estimates of µ appear to be rather stable to the
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choice of h, we note that estimates of γ vary quite a bit as displayed in figure 5. Together

with the low p-values of the misspecification test, these two pieces of evidence suggest it is

best not too make strong claims on these results.

Estimates of the inflation Euler equation differ more significantly from the results in

Fuhrer and Olivei (2005). For the HP filterered and ST adjusted output specifications,

µ is estimated to be larger (more than double) and γ is of the wrong sign. The parameter

estimates for µ and γ are rather stable to the impulse response horizon h, however. Estimates

based on real unit labor costs for µ and γ are considerably closer to the MLE and OI-GMM

estimates although the later does exhibit some variation as a function of h, so that some

caution in staking hard claims is warranted.

With the exception of the inflation Euler model estimated with RULC, we find that the

data reject most of the specifications commonly estimated (either outright, as indicated by

the overidentifying restrictions test, or because of the variation of the parameter estimates

as a function of h). The ability to check model specification by these two complementary

methods is useful (specially in instances when the data do not reject the model but variation

in parameters estimates for low values of h is substantial). With some notable exceptions,

PMD estimates are often close to estimates obtained by other methods but with smaller

standard errors so that at a minimum, we are able to ascertain that our results are not

caused by extreme differences.

8 Conclusions

This paper introduces a disarmingly simple and novel, limited-information method of esti-

mation. Several features make it appealing: (1) for many models, including some whose
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likelihood would require numerical optimization routines, PMD only requires simple least-

squares algebra; (2) for many models, PMD approximates maximum likelihood as the sample

grows to infinity; (3) however, PMD is efficient in finite samples because it accounts for serial

correlation parametrically; (4) as a consequence, PMD is generally more efficient than GMM;

(5) PMD provides an unsupervised method of conditioning for unknown omitted dynamics

that in many cases solves invalid instrument problems; (6) PMD provides many natural sta-

tistics with which to evaluate estimates of a model including, an overall misspecification test,

tests on the significance of the instruments, and a way to assess which parameter estimates

are most sensitive to misspecification.

The paper provides basic but generally applicable asymptotic results and ample Monte

Carlo evidence in support of our claims. In addition, the empirical application provides a

natural example of how PMD may be applied in practice. However, there are many research

questions that space considerations prevented us from exploring. Throughout the paper, we

have mentioned some of them, such as the need for a more detailed investigation of the power

properties of the misspecification test in light of the GMM literature; and generalizations of

our mixing and heteroskedasticity assumptions in the main theorems.

Other natural extensions include nonlinear generalizations of the local projection step to

extend beyond the Wold assumption. Such generalizations are likely to be very approach-

able because local projections lend themselves well to more complex specifications. Similarly,

we have excluded processes that are not covariance-stationary, mainly because they require

slightly different assumptions on their infinite representation and the non-standard nature of

the asymptotics are beyond the scope of this paper. In the end, we hope that the main con-
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tribution of the paper is to provide applied researchers with a new method of estimation that

is simpler than many others available, while at the same time more robust and informative.

9 Appendix

Proof. Theorem 1

Notice that

bA(k, h)−A(k, h) = bΓ01−k,hbΓ−1k −A(k, h)bΓkbΓ−1k =⎧⎨⎩(T − k − h)−1
∞X
j=k

vk,t+hX
0
t,k

⎫⎬⎭ bΓ−1k
where

vk,t+h =
∞X

j=k+1

Ahjyt−j + εt+h +
h−1X
j=1

Bjεt+h−j

Hence,

bA(k, h)−A(k, h) =

⎧⎨⎩(T − k − h−1)
T−hX
t=k

⎛⎝ ∞X
j=k+1

Ahjyt−j

⎞⎠X 0
t,k

⎫⎬⎭ bΓ−1k +

(
(T − k − h−1)

T−hX
t=k

εt+hX
0
t,k

)bΓ−1k +⎧⎨⎩(T − k − h−1)
T−hX
t=k

⎛⎝ hX
j=1

Bjεt+h−j

⎞⎠X 0
t,k

⎫⎬⎭ bΓ−1k
Define the matrix norm kCk21 = supl 6=0 l

0C0C0
l0l , that is, the largest eigenvalue of C0C. When

C is symmetric, this is the square of the largest eigenvalue of C. Then

kABk2 ≤ kAk21 kBk2 and kABk2 ≤ kAk2 kBk21

Hence °°° bA(k, h)−A(k, h)°°° ≤ kU1Tk°°°bΓ−1k °°°
1
+ kU2Tk

°°°bΓ−1k °°°
1
+ kU3Tk

°°°bΓ−1k °°°
1
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where

U1T =

⎧⎨⎩(T − k − h−1)
T−hX
t=k

⎛⎝ ∞X
j=k+1

Ahjyt−j

⎞⎠X 0
t,k

⎫⎬⎭
U2T =

(
(T − k − h−1)

T−hX
t=k

εt+hX
0
t,k

)

U3T =

⎧⎨⎩(T − k − h−1)
T−hX
t=k

⎛⎝ hX
j=1

Bjεt+h−j

⎞⎠X 0
t,k

⎫⎬⎭
Lewis and Reinsel (1985) show that

°°°bΓ−1k °°°
1
is bounded, therefore, the next objective is to

show kU1Tk p→ 0, kU2Tk p→ 0, and kU3Tk p→ 0. We begin by showing kU2Tk p→ 0, which is

easiest to see since εt+h and X 0
t,k are independent, so that their covariance is zero. Formally

and following similar derivations in Lewis and Reinsel (1985)

E
³
kU2Tk2

´
= (T − k − h)−2

T−hX
t=k

E
¡
εt+hε

0
t+h

¢
E(X 0

t,kX
0
t,k)

by independence. Hence

E
³
kU2Tk2

´
= (T − k − h)−1tr(Σ)k {tr [Γ(0)]}

Since k
T−k−h → 0 by assumption (ii), then E

³
kU2Tk2

´
p→ 0, and hence kU2Tk p→ 0.

Next, consider kU3Tk p→ 0. The proof is very similar since εt+h−j, j = 1, ..., h−1 and X 0
t,k

are independent. As long as kBjk2 < ∞ (which is true given that the Wold decomposition

ensures that
P∞
j=0 kBjk <∞, then using the same arguments we used to show kU2Tk

p→ 0,

it is easy to see that kU3Tk p→ 0.

Finally, we show that kU1Tk p→ 0. The objective here is to show that assumption (iii)

implies that

k1/2
∞X

j=k+1

°°°Ahj °°°→ 0, k, T → 0
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because we will need this condition to hold to complete the proof later. Recall that

Ahj = Bh−1Aj +A
h−1
j+1 ; A

0
j+1 = 0; B0 = Ir; h, j ≥ 1, h finite

Hence

k1/2
∞X

j=k+1

°°°Ahj °°° = k1/2
⎧⎨⎩

∞X
j=k+1

kBh−1Aj +Bh−2Aj+1 + ...+B1Aj+h−2 +Aj+h−1k
⎫⎬⎭

by recursive substitution. Thus

k1/2
∞X

j=k+1

°°°Ahj °°° ≤ k1/2
⎧⎨⎩

∞X
j=k+1

kBh−1Ajk+ ...+ kB1Aj+h−2k+ kAj+h−1k
⎫⎬⎭

Define λ as the max {kBh−1k , ..., kB1k} , then since
P∞
j=0 kBjk <∞ we know λ <∞ so that

k1/2
∞X

j=k+1

°°°Ahj °°° ≤ k1/2
⎧⎨⎩λ

∞X
j=k+1

kAjk+ ...+ λ
∞X

j=k+1

kAj+h−2k+
∞X

j=k+1

kAj+h−1k
⎫⎬⎭

By assumption (iii) and since λ < ∞, then each of the elements in the sum goes to zero as

T, k go to infinity. Finally, to prove kU1Tk p→ 0 all that is required is to follow the same steps

as in Lewis and Reinsel (1985) but using the condition

k1/2
∞X

j=k+1

°°°Ahj °°°→ 0, k, T → 0

instead.

Proof. Theorem 2 Define,

U1T =

⎧⎨⎩(T − k − h)−1
T−hX
t=k

⎛⎝ ∞X
j=k+1

Ahjyt−j

⎞⎠X 0
t,k

⎫⎬⎭
U∗2T =

⎧⎨⎩(T − k − h)−1
T−hX
t=k

⎛⎝εt+h + h−1X
j=1

Bjεt+h−j

⎞⎠X 0
t,k

⎫⎬⎭
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then

(T − k − h)1/2 vec
h bA(k, h)−A(k, h)i =

(T − k − h)1/2

⎧⎪⎪⎨⎪⎪⎩
vec

£
U1TΓ

−1
k

¤
+ vec

h
U1T

³bΓ−1k − Γ−1k ´i
+vec

£
U∗2TΓ

−1
k

¤
+ vec

h
U∗2T

³bΓ−1k − Γ−1k ´i
⎫⎪⎪⎬⎪⎪⎭

hence

(T − k − h)1/2 vec
h bA(k, h)−A(k, h)i− (T − k − h)1/2 vec £U∗2TΓ−1k ¤ =

(T − k − h)1/2

⎧⎪⎪⎨⎪⎪⎩
vec

£
U1TΓ

−1
k

¤
+ vec

h
U1T

³bΓ−1k − Γ−1k ´i
+vec

h
U∗2T

³bΓ−1k − Γ−1k ´i
⎫⎪⎪⎬⎪⎪⎭ =

¡
Γ−1k ⊗ Ir

¢
vec

h
(T − k − h)1/2 U1T

i
+n³bΓ−1k − Γ−1k ´⊗ Iro vec h(T − k − h)1/2 U1T i+n³bΓ−1k − Γ−1k ´⊗ Iro vec h(T − k − h)1/2 U∗2T i

Define, with a slight change in the order of the summands,

W1T =
n³bΓ−1k − Γ−1k ´⊗ Iro vec h(T − k − h)1/2 U1T i

W2T =
n³bΓ−1k − Γ−1k ´⊗ Iro vec h(T − k − h)1/2 U∗2T i

W3T =
¡
Γ−1k ⊗ Ir

¢
vec

h
(T − k − h)1/2 U1T

i
The proof proceeds by showing that W1T

p→ 0, W2T
p→ 0, W3T

p→ 0.

We begin by showing that W1T
p→ 0. Lewis and Reinsel (1985) show that under assump-

tion (ii), k1/2
°°°bΓ−1k − Γ−1k °°°

1

p→ 0 andE
³°°°k−1/2 (T − k − h)1/2 U1T°°°´ ≤ s (T − k − h)1/2P∞

j=k+1

°°°Ahj °°° p→

0; k, T →∞ from assumption (iii) and using similar derivations as in the proof of consistency

with s being a generic constant. Hence W1T
p→ 0.
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Next, we show W2T
p→ 0. Notice that

|W2T | ≤ k1/2
°°°bΓ−1k − Γ−1k °°°

1

°°°k−1/2(T − k − h)1/2U∗2T°°°
As in the previous step, Lewis and Reinsel (1985) establish that k1/2

°°°bΓ−1k − Γ−1k °°°
1

p→ 0 and

from the proof of consistency, we know the second term is bounded in probability, which is

all we need to establish the result.

Lastly, we need to show W3T
p→ 0, however, the proof of this result is identical to that in

Lewis and Reinsel once one realizes that assumption (iii) implies that

(T − k − h)1/2
∞X

j=k+1

°°°Ahj °°° p→ 0

and substituting this result into their proof.

Proof. Theorem 3

Follows directly from Lewis and Reinsel (1985) by redefining

ATm = (T − k − h)1/2 vec
⎡⎣⎧⎨⎩(T − k − h)−1

T−hX
t=k

⎛⎝εt+h +
h−1X
j=1

Bjεt+h−j

⎞⎠X 0
t,k(m)

⎫⎬⎭Γ−1k
⎤⎦

for m = 1, 2, ... and Xt,k(m) as defined in Lewis and Reinsel (1985).

Proof. Theorem 4

Since bbT p→ b0, then

f
³bbT ;φ´ p→ f (b0;φ)

by the continuous mapping theorem since by assumption (iv), f (.) is continuous. Furthermore

and given assumption (i)

bQT (φ) = f ³bbT ;φ´0cW f ³bbT ;φ´ p→ f (b0;φ)
0cW f (b0;φ) ≡ Q0 (φ)
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which is a quadratic expression that is maximized at φ0. Assumption (vi) provides a necessary

condition for identification of the parameters (i.e., that there be at least as many matching

conditions as parameters) that must be satisfied to establish uniqueness. As a quadratic

function, Q0(φ) is obviously a continuous function. The last thing to show is that

sup
φ∈Θ

¯̄̄ bQT (φ)−Q0(φ)¯̄̄ p→ 0

uniformly.

For compact Θ and continuous Q0(φ), Lemma 2.8 in Newey and McFadden (1994) pro-

vides that this condition holds if and only if bQT (φ) p→ Q0(φ) for all φ in Θ and bQT (φ) is
stochastically equicontinuous. The former has already been established, so it remains to

show stochastic equicontinuity of bQT (φ).5 Whether bQT (φ) is stochastically equicontinuous
depends on each application and, specifically, on the properties and assumptions made on

the specific nature of f (.) . For this reason, we directly assume here that stochastic continu-

ity holds and we refer the reader to Andrews (1994, 1995) for examples and sets of specific

conditions that apply even when b is infinite dimensional.

Proof. Theorem 5

Under assumption (iii) b0 and φ0 are in the interior of their parameter spaces and by

assumption (ii) bbT p→ b0, bφT p→ φ0. Further, by assumption (iv), f(bbT ;φ) is continuously
differentiable in a neighborhood of b0 and φ0 and hence bφT solves the first order conditions
of the minimum-distance problem

min
φ
f(bbT ;φ)0cW f(bbT ;φ)

5 Stochastic equicontinuity: For every ², η > 0 there exists a sequence of random variables ∆̂t and a sample
size t0 such that for t ≥ t0, Prob(|∆̂T | > ²) < η and for each φ there is an open set N containing φ with

supφ̃∈N
¯̄̄ bQT (φ̃)− bQT (φ)¯̄̄ ≤ ∆̂T , for t ≥ t0.
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which are

Fφ

³bbT ; bφT´0cW f(bbT ; bφT ) = 0
By assumption (iv), these first order conditions can be expanded about φ0 in mean value

expansion

f(bbT ; bφT ) = f(bbT ;φ0) + Fφ ³bbT ;φ´³bφT − φ0

´
where φ ∈ [bφT ,φ0]. Similarly, a mean value expansion of f(bbT ;φ0) around b0 is

f(bbT ;φ0) = f(b0;φ0) + Fb ¡b;φ0¢ ³bbT − b0´
Combining both mean value expansions and multiplying by

√
T, we have

√
T f(bbT ; bφT ) =

√
T f(b0;φ0) + Fφ

³bbT ;φ´√T ³bφT − φ0

´
+

Fb
¡
b;φ0

¢√
T
³bbT − b0´

Since b ∈ [bbT , b0], φ ∈ [bφT ,φ0] and bbT p→ b0, bφT p→ φ0 then, along with assumption (iv), we

have

Fφ

³bbT ;φ´ p→ Fφ (b0;φ0) = Fφ

Fb
¡
b;φ0

¢ p→ Fb(b0;φ0) = Fb

and hence

√
T f(bbT ; bφT ) = √T f(b0;φ0) + Fφ√T ³bφT − φ0

´
+ Fb

√
T
³bbT − b0´+ op(1)

In addition, by assumption (i) cW p→W and notice that f (b0,φ0) = 0, which combined with

the first order conditions and the mean value expansions described above, allow us to write

−F 0φW
h
Fφ
√
T
³bφT − φ0

´
+ Fb

√
T
³bbT − b0´i = op(1)
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Since we know that

√
T
³bbT − b0´ d→ N (0,Ωb)

then

√
T
³bφT − φ0

´
d→ − ¡F 0φWFφ¢−1 ¡F 0φWFb¢√T ³bbT − b0´

by assumption (vii) which ensures that F 0φWFφ is invertible and assumption (x) ensures

identification. Therefore, from the previous expression we arrive at

√
T
³bφT − φ0

´
d→ N (0,Ωφ)

Ωφ =
¡
F 0φWFφ

¢−1 ¡
F 0φWFbΩbF

0
bWFφ

¢ ¡
F 0φWFφ

¢−1
Notice that since we are using the optimal weighting matrix, then W = (FbΩbF

0
b)
−1 and

hence, the previous expression simplifies considerably to

Ωφ =
¡
F 0φWFφ

¢−1
W =

¡
FbΩbF

0
b

¢−1
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TABLE 1 – ARMA(1,1) Monte Carlo Experiments: Case (i) 
 
π1 = 0.25 Θ1 = 0.5      T = 50 
  h = 2 h = 5 h = 10 
  ρ θ ρ θ ρ θ 
PMD Est. 0.23 0.49 0.25 0.44 0.31 0.28 
 SE  0.22 0.20 0.20 0.19 0.20 0.18 
 SE (MC) 0.31 0.27 0.21 0.20 0.22 0.28 
MLE Est. 0.22 0.52 0.23 0.52 0.22 0.53 
 SE 0.21 0.18 0.20 0.18 0.20 0.18 
 SE (MC) 0.27 0.24 0.27 0.23 0.27 0.23 
       T = 100 
  h = 2 h = 5 h = 10 
  ρ θ ρ θ ρ θ 
PMD Est. 0.24 0.50 0.25 0.47 0.27 0.45 
 SE  0.15 0.14 0.15 0.13 0.14 0.13 
 SE (MC) 0.17 0.15 0.15 0.13 0.15 0.15 
MLE Est. 0.25 0.51 0.24 0.51 0.24 0.50 
 SE 0.14 0.13 0.14 0.13 0.14 0.13 
 SE (MC) 0.15 0.13 0.16 0.14 0.14 0.14 
       T = 400 
  h = 2 h = 5 h = 10 
  ρ θ ρ θ ρ θ 
PMD Est. 0.25 0.51 0.25 0.50 0.25 0.50 
 SE  0.07 0.07 0.07 0.06 0.07 0.06 
 SE (MC) 0.08 0.07 0.07 0.07 0.07 0.07 
MLE Est. 0.25 0.50 0.25 0.50 0.24 0.51 
 SE 0.07 0.06 0.07 0.07 0.07 0.06 
 SE (MC) 0.07 0.06 0.07 0.07 0.07 0.06 
 
Notes: 1,000 Monte Carlo replications, 1st-stage regression lag length chosen 
automatically by AICC, SE refers to the standard error calculated with the PMD/MLE 
formula. SE (MC) refers to the Monte Carlo standard error based on the 1,000 estimates 
of the parameter. 500 burn-in observations disregarded when generating the data. 
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TABLE 2 – ARMA(1,1) Monte Carlo Experiments: Case (ii) 
 
π1 = 0.5 Θ1 = 0.25      T = 50 
  h = 2 h = 5 h = 10 
  ρ Θ ρ θ ρ θ 
PMD Est. 0.46 0.23 0.47 0.17 0.49 0.15 
 SE  0.19 0.20 0.18 0.19 0.18 0.18 
 SE (MC) 0.23 0.23 0.21 0.22 0.20 0.28 
MLE Est. 0.45 0.29 0.44 0.27 0.45 0.29 
 SE 0.20 0.20 0.20 0.21 0.20 0.20 
 SE (MC) 0.21 0.23 0.23 0.25 0.19 0.22 
       T = 100 
  h = 2 h = 5 h = 10 
  ρ Θ ρ θ ρ θ 
PMD Est. 0.48 0.23 0.47 0.23 0.50 0.23 
 SE  0.13 0.14 0.13 0.14 0.12 0.13 
 SE (MC) 0.15 0.16 0.14 0.16 0.13 0.18 
MLE Est. 0.48 0.27 0.47 0.25 0.48 0.26 
 SE 0.14 0.14 0.14 0.15 0.13 0.14 
 SE (MC) 0.14 0.15 0.13 0.15 0.13 0.14 
       T = 400 
  h = 2 h = 5 h = 10 
  ρ Θ ρ θ ρ θ 
PMD Est. 0.50 0.5 0.49 0.26 0.49 0.25 
 SE  0.07 0.07 0.06 0.07 0.06 0.07 
 SE (MC) 0.07 0.08 0.07 0.08 0.06 0.07 
MLE Est. 0.50 0.25 0.49 0.26 0.49 0.26 
 SE 0.07 0.07 0.07 0.07 0.07 0.07 
 SE (MC) 0.06 0.07 0.07 0.07 0.06 0.07 
 
Notes: 1,000 Monte Carlo replications, 1st-stage regression lag length chosen 
automatically by AICC, SE refers to the standard error calculated with the PMD/MLE 
formula. SE (MC) refers to the Monte Carlo standard error based on the 1,000 estimates 
of the parameter. 500 burn-in observations disregarded when generating the data. 
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TABLE 3 – ARMA(1,1) Monte Carlo Experiments: Case (iii) 
 
π1 = 0 Θ1 = 0.5      T = 50 
  h = 2 h = 5 h = 10 
  ρ θ ρ θ ρ θ 
PMD Est. -0.06 0.56 0.06 0.40 0.16 0.28 
 SE  0.36 0.32 0.27 0.25 0.25 0.22 
 SE (MC) 0.61 0.55 0.28 0.29 0.31 0.37 
MLE Est. - - - - - - 
 SE - - - - - - 
 SE (MC) - - - - - - 
       T = 100 
  h = 2 h = 5 h = 10 
  ρ θ ρ θ ρ θ 
PMD Est. -0.03 0.54 0.04 0.45 0.09 0.41 
 SE  0.24 0.21 0.19 0.18 0.19 0.17 
 SE (MC) 0.33 0.30 0.21 0.21 0.22 0.23 
MLE Est. - - - - - - 
 SE - - - - - - 
 SE (MC) - - - - - - 
       T = 400 
  h = 2 h = 5 h = 10 
  ρ θ ρ θ ρ θ 
PMD Est. -0.01 0.51 0.00 0.50 0.02 0.48 
 SE  0.11 0.10 0.10 0.09 0.10 0.09 
 SE (MC) 0.11 0.10 0.10 0.09 0.09 0.09 
MLE Est. 0.04 0.50 0.00 0.50 0.00 0.50 
 SE 0.10 0.09 0.10 0.09 0.10 0.08 
 SE (MC) 0.10 0.09 0.10 0.09 0.09 0.08 
 
Notes: 1,000 Monte Carlo replications, 1st-stage regression lag length chosen 
automatically by AICC, SE refers to the standard error calculated with the PMD/MLE 
formula. SE (MC) refers to the Monte Carlo standard error based on the 1,000 estimates 
of the parameter. 500 burn-in observations disregarded when generating the data. 
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TABLE 4 – ARMA(1,1) Monte Carlo Experiments: Case (iv) 
 
π1 = 0.5 Θ1 = 0      T = 50 
  h = 2 h = 5 h = 10 
  ρ θ ρ θ ρ θ 
PMD Est. 0.47 0.04 0.43 0.03 0.54 -0.10 
 SE  0.28 0.30 0.24 0.26 0.21 0.23 
 SE (MC) 0.40 0.40 0.24 0.26 0.24 0.30 
MLE Est. - - - - - - 
 SE - - - - - - 
 SE (MC) - - - - - - 
       T = 100 
  h = 2 h = 5 h = 10 
  ρ θ ρ θ ρ θ 
PMD Est. 0.49 0.01 0.45 0.03 0.53 -0.04 
 SE  0.19 0.20 0.17 0.18 -.15 0.17 
 SE (MC) 0.20 0.20 0.19 0.19 0.18 0.21 
MLE Est. 0.49 -0.02 0.47 0.03 0.47 0.03 
 SE 0.17 0.20 0.18 0.20 0.18 0.20 
 SE (MC) 0.18 0.20 0.19 0.20 0.18 0.20 
       T = 400 
  h = 2 h = 5 h = 10 
  ρ θ ρ θ ρ θ 
PMD Est. 0.50 0.01 0.50 0.00 0.50 0.00 
 SE  0.09 0.10 0.08 0.09 0.08 0.09 
 SE (MC) 0.09 0.10 0.10 0.10 0.10 0.11 
MLE Est. 0.49 0.01 0.49 0.01 0.48 0.02 
 SE 0.09 0.10 0.09 0.10 0.09 0.10 
 SE (MC) 0.09 0.10 0.09 0.10 0.09 0.10 
 
Notes: 1,000 Monte Carlo replications, 1st-stage regression lag length chosen 
automatically by AICC, SE refers to the standard error calculated with the PMD/MLE 
formula. SE (MC) refers to the Monte Carlo standard error based on the 1,000 estimates 
of the parameter. 500 burn-in observations disregarded when generating the data. 
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TABLE 5 – Euler Equation Monte Carlo Experiments: Omitted Information 
 
 

h = 2 h = 10  
Bias(µ) Bias(γ) Bias(µ) Bias(γ) 

a33 a22 µ PMD GMM PMD GMM PMD GMM PMD GMM 
 
Instruments { zt , xt  } 
.95 .8 .99 -.34 -.52 -.24 -.38 -.48 -.48 -.33 -.32 
.95 .5 .99 -.31 -.52 -.31 -.50 -.48 -.40 -.49 -.38 
.80 .8 .99 -.13 -.20 -.07 -.12 -.27 -.27 -.12 -.16 
.80 .5 .99 -.13 -.20 -.11 -.18 -.26 -.23 -.15 -.17 
.95 .8 .67 .09 -.42 -.02 -.23 -.13 -.11 -.26 -.01 
.95 .5 .67 .09 -.45 .05 -.46 -.14 -.11 -.29 -.04 
.80 .8 .67 -.26 -.12 .26 .00 -.12 -.11 -.05 .00 
.80 .5 .67 -.26 -.18 -.13 -.14 -.16 -.16 -.13 -.09 
 
Instruments { zt , xt , wt} 
.95 .8 .99 .04 -.33 -.05 -.24 -.26 -.41 .06 -.25 
.95 .5 .99 .03 -.34 -.02 .33 -.24 -.41 .02 -.28 
.80 .8 .99 .04 -.12 -.04 -.05 -.19 -.25 .06 -.14 
.80 .5 .99 .04 -.11 -.01 -.10 -.13 -.19 .01 -.14 
.95 .8 .67 .03 -.06 -.05 .02 -.07 -.10 .15 .02 
.95 .5 .67 .06 -.06 .14 -.05 -.05 -.10 .07 -.02 
.80 .8 .67 .07 -.04 -.21 .04 -.07 -.10 .14 .02 
.80 .5 .67 .07 -.06 -.06 -.03 -.04 -.09 .05 -.03 
 
Notes: 1,000 Monte Carlo replications. Sample size is T=300 with an additional initial 
500 burn-in observations disregarded.  Reported results are for γ = 0.33. 
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Table 6 – PMD, MLE, GMM and Optimal Instruments GMM: A Comparison 
 

Estimates of Output Euler Equation: 1966:Q1 to 2001:Q4 
 

( ) ttttttt xEzEzz εγµµ +++−= +− 111  
 

Method Specification µ (S.E.) γ (S.E.) 
 

GMM 
 

HP 
 
0.52 (0.053) 

 
0.0024 (0.0094) 

GMM ST 0.51 (0.049) 0.0029 (0.0093) 
 

MLE 
 

HP 
 
0.47 (0.035) 

 
-0.0056 (0.0037) 

MLE ST 0.42 (0.052) -0.0084 (0.0055) 
 

OI-GMM 
 

HP 
 
0.47 (0.062) 

 
-0.0010 (0.023) 

OI-GMM ST 0.41 (0.064) -0.0010 (0.022) 
 

PMD (h* = 12) 
 

HP 
 
0.47 (0.025) 

 
-0.014 (0.008) 

PMD (h* = 12) ST 0.47 (0.027) -0.016 (0.009) 
 
Notes: zt is a measure of the output gap, xt is a measure of the real interest rate, and hence 
economic theory would predict γ < 0. GMM, MLE, and OI-GMM estimates correspond 
to estimates reported in Table 4 in Fuhrer and Olivei (2005). HP refers to Hodrick-
Prescott filtered log of real GDP, and ST refers to log of real GDP detrended by a 
deterministic segmented trend. Optimal value of h for PMD determined by Hall et al.’s 
(2007) information criterion and displayed in parenthesis as h*. 
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 Table 7 – PMD, MLE, GMM and Optimal Instruments GMM: A Comparison 
 

Estimates of Inflation Euler Equation: 1966:Q1 to 2001:Q4 
 

( ) ttttttt xEzEzz εγµµ +++−= +− 111  
 
 

Method Specification µ (S.E.) γ (S.E.) 
 

GMM 
 

HP 
 
0.66 (0.13) 

 
-0.055 (0.072) 

GMM ST 0.63 (0.13) -0.030 (0.050) 
GMM RULC 0.60 (0.086) 0.053 (0.038) 

 
MLE 

 
HP 

 
0.17 (0.037) 

 
0.10 (0.042) 

MLE ST 0.18 (0.036) 0.074 (0.034) 
MLE RULC 0.47 (0.024) 0.050 (0.0081) 

 
OI-GMM 

 
HP 

 
0.23 (0.093) 

 
0.12 (0.042) 

OI-GMM ST 0.21 (0.11) 0.097 (0.039) 
OI-GMM RULC 0.45 (0.028) 0.054 (0.0081) 

 
PMD (h* = 16) 

 
HP 

 
0.59 (0.036) 

 
-0.018 (0.019) 

PMD (h* = 9) ST 0.63 (0.050) -0.040 (0.019) 
PMD (h* = 15) RULC 0.56 (0.027) 0.022 (0.010) 

 
Notes: zt is a measure of inflation, xt is a measure of the output gap, and hence economic 
theory would predict γ > 0. GMM, MLE and OI-GMM estimates correspond to estimates 
reported in Table 5 in Fuhrer and Olivei (2005). HP refers to Hodrick-Prescott filtered 
log of real GDP, and ST refers to log of real GDP detrended by a deterministic 
segmented trend. RULC refers to real unit labor costs. Optimal value of h for PMD 
determined by Hall et al.’s (2007) information criterion and displayed in parenthesis as 
h*. 
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Figure 1  - PMD and GMM Comparison when the Euler Equation is Correctly 
Specified. Sample Size = 100 
 

 
 
Notes: The top two panels display the Monte Carlo averages of the parameter estimates 
and associated two standard error bands. The bottom left panel reports the average p-
value of the joint significance test on the coefficients of the hth horizon whereas the 
bottom right panel is the power of the misspecification test at a conventional 95% level. 
The line with squares are the PMD estimates and the two standard error bands associated 
with these estimates are given by the short-dashed lines. GMM estimates are reported by 
the solid line with diamonds and the associated two standard error bands are given by the 
long-dashed lines. 1,000 Monte Carlo replications. The true parameter values are 
obtained by choosing : 
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Figure 2 – PMD and GMM Comparison when the Euler Equation is Correctly 
Specified. Sample Size = 400 
 

 
 
Notes: The top two panels display the Monte Carlo averages of the parameter estimates 
and associated two standard error bands. The bottom left panel reports the average p-
value of the joint significance test on the coefficients of the hth horizon whereas the 
bottom right panel is the power of the misspecification test at a conventional 95% level. 
The line with squares are the PMD estimates and the two standard error bands associated 
with these estimates are given by the short-dashed lines. GMM estimates are reported by 
the solid line with diamonds and the associated two standard error bands are given by the 
long-dashed lines. 1,000 Monte Carlo replications. The true parameter values are 
obtained by choosing : 
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Figure 3 – PMD vs. GMM: Biases Generated by Neglected Dynamics in the 
Endogenous Variable 
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Bias of γ as a function of b(1,1)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

b(1,1)

Bias

PMD Bias T = 100
GMM Bias T = 100
PMD Bias T = 300
GMM Bias T = 300

 
Notes: Bias generated by neglecting second order dynamics in the endogenous variable. 
Notice that when b11 = 0.5 or -0.5 the system has a unit root. Both PMD and GMM 
estimated with the first lags of the endogenous and exogenous variables only. 1,000 
Monte Carlo replications.
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Figure 4 – PMD vs. GMM: Biases Generated by Neglected Dynamics in the 
Exogenous Variable 
 

Bias in Parameter µ as a Function of b(2,2)
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Notes: Bias generated by neglecting second order dynamics in the endogenous variable. 
Notice that when b22 = 0.5 or -0.5 the system has a unit root. Both PMD and GMM 
estimated with  the first lags of the endogenous and exogenous variables only. 1,000 
Monte Carlo replications. 
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Figure 5 – Output Euler PMD Parameter Estimates 
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Figure 7 – Estimates of Inflation Euler Equation 
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