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Abstract

This is the first draft of the entry “Game Theotg’appear in th&age
Handbook of the Philosophy of Social Science (editg lan Jarvie & Jesus
Zamora Bonilla), Part lll, Chapter 16.

1. Introduction

Game theory is a branch of mathematics that de#tsinteractive decision making, that
is, with situations where two or more individuatal{edplayers) make decisions that affect each
other?! Since the final outcome depends on the actiorenthly all the players, it becomes
necessary for each player to try to predict theagsoof his opponents, while realizing that they
are simultaneously trying to put themselvehigishoes to figure out whae will do.

The birth of game theory is usually associated withpublication in 1944 of the book

Theory of Games and Economic Behavior by the mathematician John von Neumann and the

1 An example is a sealed-bid first-price auction.eveheach participant submits a bid for an objectt, i
ignorance of the bids chosen by his opponents tlaaabject is assigned to the highest bidder wh fhés own
bid, while the others pay nothing and receive maghi


https://core.ac.uk/display/6832228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

economist Oskar Morgenstern, although importantltefiad been obtained earlfer.
Applications of game theory can be found in maejdB, most notably biology, computer
science, economicspilitary science, political science and sociology

Game theory has been traditionally divided into twanches: non-cooperative and
cooperative. Cooperative game theory deals wittagdns where there are institutions that make
agreements among the players binding. In suchtiagéhe central question becomes one of
agreeing on a best joint course of action, wheest'lcould have different meanings, such as
‘acceptable to all players and coalitions of plajfeor ‘satisfying some desirable propertfes’
Non-cooperative game theory, on the other hands a@th institutional settings where binding
agreements are not possible, whether it is becarsenunication is impossible or because
agreements are illedabr because there is no authority that can enfocooepliancé.

Because of space limitations we shall deal exedlgiwith non-cooperative games. Our

focus will be on the philosophical and epistematagissues that arise in non-cooperative

2 For a detailed historical account of the developinoé game theory see Aumann (1989).

% The Nobel prize in economics was awarded to gdmerists three times: in 1994 to John C. Harsanyi,
John F. Nash Jr. and Reinhard Selten; in 2005 teRd. Aumann and Thomas C. Schelling and in 26Q&onid

Hurwicz, Eric S. Maskin and Roger B. Myerson.
* For example, theore of a co-operative game identifies a set of “besffeements in this sense.
® For example, th&hapley value identifies the “best” agreement in this sense.

® For example, many countries have antitrust lawat tlorbid agreements among competing firms

concerning prices or production.

" As is the case in the international arena.



games, in particular on the notion of rationalibgdanutual recognition of rationality. We shall
begin with simultaneous or strategic-form gamesthed turn to games that have a sequential

structure (extensive-form games).

2. Strategic-form games and common knowledge of rationality

A gamein strategic formwith ordinal payoffs consists of the following elements:
(1) the setN ={1,...,n} of players,
(2) for every playei ON, the setS of strategies (or choices) available to player

(3) the set of possiblautcomes O;
(4) anoutcome function z: S - O that associates, with every strategy profile (gpeg a

choice for each playens,...,s,)0S=S x..xS , the resulting outcome;

(5) for every playei JN, aweak total order =, onO representing playets ranking of the

outcome$:®

8 Thus » ; 0 OxO is a binary relation o® which is connected (for ab,0' J O, eitherox , o', or
0' %, 0, or both) and transitive (i, = ; 0, and 0, % ; 0, theng, =, 0,). The interpretation 06 % , o' is that
playeri considers outcometo beat least as good as outcomeo’. We denote that playéprefers outcomeo to

outcomeo’ byo > 0’ and define it a®z ;0 and noto' Z ; 0. Playeri isindifferent betweero and o', denoted

by o~ 0',if 0z, 0 ando' %, o.

° For example a sealed-bid first price auction with bidders, two legal bids ($10 and $15), a tiealxing
rule that declares player 1 the winner and whech e&ayer values the object more than $15 and dléists
preferences corresponds to the following stratémicy gameN = {1,2}, Sl = 52 ={10, 15},0 ={a, b, c} (wherea

is the outcome “player 1 gets the object and pags,$ is the outcome “player 2 gets the object and ga%s and



In order to simplify the representation of a gaimelast three elements are usually
collapsed into g@ayoff function 7z : S — R, for every player, which is a numerical functiori
denotes the set of real numbers) satisfying tHevia@hg property: the strategy profiks
assigned a number greater than or equal to the ewassigned to the strategy profdeif and
only if playeri considers the outcome resulting freno be at least as good as the outcome
resulting froms'. Formally: for everys,s'0S, 77(s) = 77(s") if and only if z(s) =, z(s") 10

SinceZ . is a weak total order, @ is a finite set then such a payoff function alwayists;

furthermore, there is an infinite number of possibayoff functions that can be used to represent
Z . Itis important to note that the payoffs havenmeaning beyond the ordinal ranking that they
induce on the set of strategy profiles.

In the case of two players, a convenient way poegent a game is by means of a table
where each row is labeled with a strategy of pldyand each column with a strategy of player
2. Inside the cell that corresponds to the rowlkdbe and the column labelgdthe pair of
numbers(7z (X, y), 77, (X, y)) is given, denoting the payoffs of player 1 and/pte2, respectively.
Table 16.1 represents a two-player game wire{a b ¢ andS, ={d, e f}. In this game, for
example, player 1 is indifferent betweefg,e) (the outcome associated with the strategy profile

(a,e)) and z(b,e); on the other hand, he prefezéa,e) to z(c,e).

c is the outcome “player 1 gets the object and $4¥s), z(10,10) =a, z(10,15) =b, z(15,10) =z(15,15) =c,

a>1c>1b and b>2a~zc.



Player 2

d e f
Dlaver 3.2] 3.1] 0.1
1y bl 2.3 3.2] 0.1
C 1,2 1,2 4,1
TABLE 16.1

Theepistemic foundation program in game theory aims to identify, for every ganie, t
strategies that might be chosen by rational aralligént players who know the structure of the
game and the preferences of their opponents andedognize each other’s rationality. The
two central questions are thus: (1) under whauonstances is a player rational? and (2) what
does ‘mutual recognition of rationality’ mean? Tager notion has been interpretedcasimon
knowledge of rationality. Informally, something is commondwledge if everybody knows it,
everybody knows that everybody knows it, ... andsaad infinitum.** A defining characteristic
of knowledge is truth: if a player knovissthenE must be true. A more general notion is that of
belief, which allows for the possibility of mistakes: ie¢lof E is compatible witte being false.
Thus a more appealing notion is that of commorebeli rationality; however, in order to
simplify the exposition, we shall restrict attemtito knowledge and refer the reader to Battigalli
and Bonanno (1999) for the analysis of common bhelige state of interactive knowledge

among a set of players can be modeled by meansaeifaistates 2 and, for every player(IN,

% 1n the example of the previous footnote the folluyvare possible payoff functionsg(lO,lO) =3,

77(15,10) =77(15,15) = 2,7(10,15) = 1 andz(10,15) = 2,73(15,10) =75,(15,15) = 1.



a partitionXX, of 2 (thus K, is a binary relation o2 which is reflexive, transitive and
symmetric, that is, an equivalence relation). Giaestatew(] (2, we denote the cell ot
partition that containgv(that is, the equivalence classafby XK. (w) . The interpretation is
that, at statey playeri cannot distinguish between any two state&r{«w) , that is— as far as

she knows- the true state could be any of the elementXjifw) . The collection
<N’Q’{Ki}mw> is called arinteractive knowledge structure. A statecwO 2 is thought of as a

complete description of the world and the subsei,avhich are calledvents, represent
propositions about the world.

Knowledge pertains to propositions and a propasitgadentified with the set of states
where it is true. For every playemwe can define knowledge operator K, :2° - 2° (where2”
denotes the set of subsets@fas follows: K, E ={wl 2: K () OB . Thus at statevplayeri
knows (the proposition represented by) eeiftE is true at every state that playeonsiders
possible:w K E (i knowsE at«) if and only if 'O E (E is true atw") for everyw' [ K. (w)
(for every w' thati considers possible ab. This is illustrated in Figure 16.2 where
Q={aq, B, v, 9,& and the cells of the partition of a player areated by rounded rectangles.

Thus, for exampleJC, (B) ={B 1 , that is, at stat@ player 1 is uncertain as to whether the true

state is6 or y. Consider the everE ={a, 5, &} . ThenK.E={a, & andK,E ={a, 3 , so that

™ The notion of common knowledge was introduced jresielently by Lewis (1969) and Aumann (1976).



K, (K,E)={at while K,(K,E)=0 (O denotes the empty s€t)Hence at state both players

knowE (a OK,E anda OK,E) and, while player 1 knows that player 2 kndwéa O K K,E),

it is not the case that player 2 knows that pldyknowsE (a UK,K,E).

partition D @ <) [
I 2'

partiion @ EJ @
crowisdge [- . °] @

partition

FIGURE 16.2

Given an interactive knowledge structt{rN,Q,{Ki}iDO, in order to determine whether

an evenk is common knowledge at some stateve construct a new partition, called the

common knowledge partition, as follows. Letw @ [1Q. We say thatw' is reachable from w if
there is a sequendey, @, ...,«,) in 2 and a sequence of playeérg, j,,....j,.,) in N such that
(1) W =w, (2) w, = and (3) forevery =1,...n-1, @,, 0K, (). Let K.(«) denote the
set of states reachable framFor example, in Figure 16.2€. (a) ={a, B, )} . The common

knowledge patrtition is obtained by enclosing twaite$ in the same cell if and only if one is

reachable from the other. Figure 16.2 shows thentomknowledge partition constructed from

*2 From now on we shall writ&,K ,E instead ofK, (K E) .



the partitions of player 1 and player 2. We can wni@fine acommon knowledge operator
CK:2? - 22 as follows:CKE ={w0 2: K.(«) OB . In the example illustrated in Figure
16.2,CK{a, 5,6,& {9 & andCK {o,5,0}=0. Thus, if F ={a, B J, & then at staté both
players knowF and both players know that both players kriigvand so on; that is, & it is
common knowledge th&t has occurred. On the other handEiE{aq, £, & then, at stater both

players knowE but E is not common knowledge (indeed we saw aboveathait is not the case

that player 2 knows that player 1 knokjs

Armed with a precise definition of common knowledge can now turn to the central
guestion of what strategies can be chosen whea th@ommon knowledge of rationality. In
order to do this, we need to define what it meansfplayer to be rational. Intuitively, a player
is rational if she chooses an action which is “bgsten what she believes or knows. In order to

make this more precise we need to introduce themof model of a game. Given a gaf@and
an interactive knowledge structu<reJ,Q,{ﬂ<i}iDN> we obtain anodel of G by adding, for every
playeri, a functiong, @ - S that associates with every state a strategy geplaThe
interpretation ofs = o, () is that, at statey playeri plays (or chooses) strategyWe impose
the restriction that a player always knows whattsggy he is choosing, that is, the functmms
constant on the cells of playiés partition: if «/ 0K, (w) theno, () = 0, (w) . The addition of
the functionsg to an interactive knowledge structure yieldsraerpretation of events in terms

of propositions about what actions the players,ttiereby giving content to players’



knowledge. Figure 16.3 reproduces the game of THhle and shows a model of, where

g(a)=a o/(p)=0,(y)=c, o,(a)=0,(B)=eando, )=1 .

Player 2
d e f
Player 3,2 3,1 0,1
1 b|] 2,3 3,2 0,1
c| 1,2 1,21 4,1

Player 1's
partiton @ @
Player 2's
partition @ @

Common

Knowledge [. P .j
partition

Player 1's 4 C C
strategy

Player 2's g e f
strategy

FIGURE 16.3

The following is a very weak definition of ratiditg: at a state a player rational if it is
not the case that he knows that his payoff wouldreater if he had chosen a different strategy

than the one he is choosing at that state. Thisitleh can be stated formally as follows. First

we label a player asrational at statewif there exists a strategy ]S such that (1)5 # 5,



where§ =0, (w), and (2) for everyd UK (w), 7 (5,0 (w))>71 (5,0 (w"), whereo_ ()
denotes the strategy profile of players other ihatrstatec :

o.(dd) =(0,(d),...0,@)0,.,&),...0, ¢ ) [recall also that, by definition of model,

o, (w) = o, (w') for everya 0K, (w)]. Secondly, we define a player to kaional at statewif

and only if he is not irrational ab For example, in the model illustrated in Figuée3L(viewed

as a model of the game of Table 16.1), playerratisnal at statg despite the fact thatwould

be a better choice tharthere (since player 2 is choosigg because he does not know that
player 2 is choosing: he is uncertain as to whether player 2 is chapsior f andc is a best

reply tof. On the other hand, at stagteplayer 2 imot rational because she knows that player 1 is

choosingc and she would get a higher payoff by playithdg.et R denote the event that player
is rational. For example, in the model illustratedFigure 16.3,R ={a,3,)} andR, ={a,}.

Let R be the event that every player is ratiorRk ﬂ R . In the model illustrated in Figure 16.3,

iON
Rz{a,ﬂ} and there is no state where it is common knowleéldgeboth players are rational:

CKR=[ . We are now in a position to express more pregcibed question “what strategy
profiles are compatible with common knowledge diorelity?” as follows. Suppose that

wlCKR (that is, atwit is common knowledge that all players are ralinvhat can we say

about the strategy profile(w) = (Jl(a)), T (a))) ? The answer to this question we need to
introduce the following definition. Fix a game detls ,5 [0S be two strategies of playerWe
say thats strictly dominates s if 7z(5,s,)>7(S,s;) for every

s, 0S, =§x..x8_;x§,,%..xS, , thatis, if§ is strictly better tharg for playeri against

10



every possible profile of strategies of the oppds.eiRor example, in the game of Table 16.1,
strategyd of player 2 strictly dominates stratefyyA strategy of playeris strictly dominated if
there is another strategy of playehat strictly dominates it. In the game of Tabl, with the
exception of strategfyof player 2, there are no other strategies okeipthayer that are strictly

dominated.

A rational player would not play a strictly domiad strategys , since he can obtain a

higher payoff by switching to a strategy that doat@s it. If the other players know that he is
rational, they know that they are in fact playihg smaller game obtained by ruling out strategy

S . In this smaller game there might be a player Wa® a strictly dominated strategy and thus, if

rational, she will not play it. Hence this stratemn also be ruled out and the game can be
reduced further. This procedure of elimination toftegies is called théerated deletion of
strictly dominated pure strategies.™® For example, in the game of Table 16.2, deleticth®
strictly dominated stratedy of player 2 leads to a smaller game where styated player 1

becomes strictly dominated ly deletion ofc leads to a yet smaller game where strategly

13 The precise definition of this procedure is asdiet. Given a games :<N,{§}iDN J ni}iDN> (where
77:S - R is the ordinal payoff function of playéy, for every playei let S°,S*, ... be the sequence of subsets of
S defined recursively as follows: (1) 1§’ =S and letD? (1 S° be the set of strategies of playehat are strictly
dominated inG; (2) for m=1 let §" = §™*\ D™, where §"*\ D™ denotes the complement @™ in §™*
and Dim‘l is the set of strategies of playethat are strictly dominated in the game whoseaessasets are given by

S, S ,...,.S . Define S” = ﬂ S™ (whereN denotes the set of non-negative integers).
MmN

11



player 2 becomes strictly dominated @y after deletingg, strategyb of player 1 becomes

strictly dominated by and deletion ob leaves only the strategy profi(@,d).

One of the first and most important results ingpestemic foundations of game theory is
the following:common knowledge of the rationality of all the playersimplies the play of a
strategy profile that survives theiterated deletion of strictly dominated pure strategies.** For
example, in the game of Table 16.1, if there is wmm knowledge of rationality then player 1

will play a and player 2 will playl, since(a,d) is the only strategy profile that survives the

iterated deletion of strictly dominated strategies.

14 Formally, in an arbitrary model of a gamGeif wCKR theno(w)JS" x...xS; (where the set§”
are as defined in the previous footnote). The csevés also true, in the sense thatsf] §” x...x S’ then there is

a model ofG and a statew such thatwCKR and s=g(w). For more details on the history and various

formulations of this result see Bonanno (2008)pérticular, if one allows for cardinal rather than ordinat
payoffs (see Section 3) and/or the notion of ratlibyr is strengthened, then it may be possiblelimieate more

strategy profiles.

12



3. Nash equilibrium, cardinal payoffsand mixed strategies.
There are games where no strategy is strictly datathand, therefore, common
knowledge of rationality is compatible widery strategy profile. An example of such a game is

given in Table 16.4.

Player 2
C d

Player a | 3,3 1,0
1 pla,1]| 1,2

TABLE 16.4

A weaker notion than the iterative deletion ofcsly dominated strategies is thatNésh

equilibrium. Given a game with ordinal payofs :<N S} o lTi}iDN> , a strategy profile
S = (sisn) is called a Nash equilibrium if no player couldaih a higher payoff by

unilaterally changing his choice, that is, if, reryi ON, 77(S)=7(S,--,S4,S Suyr--S, )
for everys [0S . For example, in the game illustrated in Tablet1f,d) is a Nash

equilibrium, while none of the other strategy plesiiis™> A possible interpretation of Nash
equilibrium is in terms of aelf-enforcing agreement. Recall that in non-cooperative games it is

assumed that players cannot reach enforceableragné® and thus an agreement is viable only

> For instance,(b,c) is not a Nash equilibrium becausg(b,c)=1< 7, (b,d)= 2 and thus player 2

would be better off by unilaterally deviating franto d.

13



if nobody has an individual incentive to deviatenfrit, assuming that the other players will

follow it. A Nash equilibrium is precisely such agreement.

The Nash equilibriun{b,d) of the game of Table 16.4 has the following featdhnere is
another strategy profile, namefg, c), that gives rise to an outcome that both playeistly
prefer to the one associated w(thd). When this is the case, we say that the Nashibguih

is Pareto dominated or Pareto inefficient. This is a generic phenomenon: in “almost all” gam
Nash equilibria are Pareto dominated (see Dube86)1% is worth stressing that although in the

game of Table 16.4 the strategy profiec) yields a better outcome for both players than the

Nash equilibrium, it is not a viable agreemenpldyer 1 expects player 2 to stick to the
agreement by playing then he will gain by deviating from the agreemamd playing;
realizing this, player 2 would want to pldyrather than the agreed-uparThat is to say(a,c)

is not a Nash equilibrium.

There are games that have multiple Nash equildwthgames that have none. For
example, if in the game of Table 16.4 one repldicepayoffs associated wiil,d) with (0,2)

then the resulting game has no Nash equilibriahN&850, 1951) proved that every game with
finite strategy stets has an equilibrium if on@ak for mixed strategies. mixed strategy for

playeri is a probability distribution over his s&t of “pure” strategies. The introduction of

mixed strategies requires a theory of how playan& probabilistic outcomes tutteries. For

14



c
example, in the game of Table 16.4, suppose thgepk uses the mixed strate@y
3

dj 16

j, whereol is the

wln

0,

1
3

Then if player 1 chooses the pure strataedpe faces the Iotterg01

2
3
outcome associated witfa,c) ando, is the outcome associated with, d), while choosing the

0
pure strategyp means facing the IotterE/Ci3 N

j, whereo3 is the outcome associated with
3

wln

(b,c) ando, is the outcome associated wiiihd). TheTheory of Expected Utility, developed by
von Neumann and Morgenstern (1944), provides afisbnsistency-of-preferences-over-
lotteries axioms which yield the following repretsion theorem: there exists a numerical

functionU defined over the set of basic outcon@®s{o,...,0,} such that for any two lotteries

o 0, .. O , (0 0, .. O, o _
L= andL' = the individual considers at least as good as
P P2 o P 4 4 - 0,

L" ifand only if EU(L) = pU(0)+...+ p,U(©,)=EU (L")=qU (0,)+...+q,U ©,). EU(L) is
called theexpected utility of lotteryL. Such a utility function is calledwen Neumann-
Morgenstern utility function or a cardinal utility function. In the mixed-stegty extension of a
game the payoff of playeérassociated with a mixed-strategy profile is thpested utility of the

corresponding lottery over basic outcomes.

'8 For example, he rolls a die and if the outconteds 2 then he choosesotherwise he chooses

15



It is worth noting that the transition from ganveigh ordinal payoffs to games with
cardinal payoffs (when mixed strategies are comsdes not an innocuous one. Given a game,
it is implicitly assumed that the game itself (tigtthe sets of players, strategies, outcomes and
the players’ rankings of the outcomes) is commaoovkadge among the players. Assuming
common knowledge of ordinal rankings of the basitcomes is far less demanding than
assuming common knowledge of von Neumann-Morgemgtayoffs. A player might be fully
aware of his own attitude to risk (that is, his guweferences over lotteries), but will typically

lack information about the attitude to risk of bjgponents.

4. Extensive-form gameswith perfect information

While strategic-form games represent situationsre/tthe players act simultaneously (or,
equivalently, in ignorance of each other’s choicegjensive-form games represent situations
where choices are made sequentially.eftiensive-form game with perfect information consists
of a finite rooted tree, an assignment of a playezach non-terminal node and a ranking of the
set of terminal nodes for each player. The ternmaales correspond to the possible outcomes
and, as usual, we represent the rankings of theomés by using an ordinal payoff function for
each player. Nodes that are not terminal are caksision nodes. The arrows that emanate from
a decision node represent the possible choicabdgolayer assigned to that node. Figure 16.5
represents a perfect-information game with two @tayignore, for the moment, the fact that

some arrows have a double edge).

16



Player 1's payoff—== 4 5
Player 2's payoff = 5 3

FIGURE 16.5

The solution concept most commonly used for Yye tof game is that dfackward
induction, which is the following algorithm. Start from adilion node whose immediate
successors are all terminal nodes and select aechothat node that maximizes the payoff of
the player assigned to that node. Replace thasideanode with the payoffs associated with the
terminal node that follows the selected choice r@peat the procedure in the resulting smaller
tree. When applied to the game illustrated in FeglB.5, the backward induction procedure
selects the choices highlighted by the double edges backward induction algorithm yields an
actual play (in the game of Figure 16.5 the choica by player 1 followed by the choice oby

player 2) as well as hypothetical choices at ndldasare not reached by the actual play (for

17



example, in the game of Figure 16.5, player 2’satlygtical choice oé at the unreached node
y). A common interpretation of these hypotheticalichs is in terms afounterfactuals. For
example, in the game of Figure 16.5, player 2’saofe is interpreted as the counterfactual
statement “if player 2's nodewere to be reached, player 2 would chags€&urthermore, the
backward induction solution is often presentedaguring the notion of common knowledge of
rationality. For example, in the game of Figuresl @he reasoning would be as follows: “if node
zis reached and player 1 is rational, then hecshiloseh; thus if nodey is reached and player 2
knows that player 1 is rational, then player 2 kadlat player 1 would follow with if player 2
herself were to choogehence if player 2 is rational she will cho@sat nodey; etc.” There is an
ongoing debate in the game theory literature aghtether this reasoning is sound [see, for
example, Aumann (1995, 1996), Binmore (1987, 1986hanno (1991), Brandenburger (2007),
Halpern (2001), Reny (1992), Samet (1996), Stalngl@98)]. The reason for doubting the
validity of this interpretation of the backward iration solution can be illustrated in the game of
Figure 16.5. If the backward induction solutiornmgplied by common knowledge of rationality,
then common knowledge of rationality implies thatlay will not be reached. Hence the
hypothesis “player 2 is rational and knows thayeital is rational”, which is used to conclude
that player 2 would chooseat nodey, will be false at nodg. In particular, player 2 might
conclude that player 1 i®t rational and anticipate a choiceglby player 1 at nodg thus
makingf a better choice thamaty. In order to address these issues, once againesus to
have a precise definition of rationality as well pgssibly, a theory of counterfactuals.

A good starting point is the definition of ratiditused in Section 2. That definition was
formulated for strategic-form games and was basetth® notion of model of a game, which

associates with every state (in an interactive kadge structure) a strategy profile. It is possible

18



to associate with every perfect-information gansérategic-form game by using the following
definition: astrategy for playeri in a perfect-information game is a list of choicase for each
node assigned to player-or example, a possible strategy for player thengame of Figure
16.5is(a,g) and a possible strategy for player Zdse) . A strategy profile determines a
unique path from the root of the tree to a termim@e and thus one can associate with that
strategy profile the payoffs of the correspondieigrinal node. Figure 16.6 illustrates a perfect-

information game (whose backward induction plag,s,a,), its corresponding strategic form

and a model of the strategic form.

19
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X y z
» 3
al a2 a3 3
A perfect-information game: 01 d2 ds
2 1 0)
2 1 0
Player 2
d2 a2
dia3| 2,2 2,2
The corresponding strategic form: Player d1,d3| 2,2 2,2
1 ala3]| 1,1 3,3
ald3| 1,1 0,0

11 e .
o B
A model of the strategic form: 2 - @ @

1's strategy d1,a3 dl,a3

2's strategy d2 a2

FIGURE 16.6
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Using the definition of rationality introduced ire&ion 2, we have that both players are rational

at every state (the only strictly dominated stratsgplayer 1'sa,d, and, after deleting it, there

are no other strategies that are strictly domirjatéébllows that at stater there is common

knowledge of rationality, despite the fact that #issociated strategy profile &, d,), which is

different from the backward induction solution. Tiesue is whether at statewe can validly
label player 2 as rational. At that state play&n@ws that her nodg is not reached and therefore
her payoff is not affected by her choice. Hence,ishational in a weak sense. However, a

stronger notion of rationality would require usetaluate her choice af, as a plan ofvhat she

would actually do if her decision node were to be reached. This is a counterfactual statement at
statea, since her nodgis not reached there. Aumann (1996) proposesiamot rationality,
which he callssubstantive rationality, and shows that common knowledge of substantive
rationality implies the backward inductighay (but not necessarily the backward induction
strategy profile). While accepting the correctnafsthis result within the framework adopted by

Aumann, Stalnaker (1998, p.48) disputes its viglidirguing as follows:

«Player 2 has the following initial belief: playemwould choose, on her second move

if she had a second move. This is a causal ‘if -fansed to express 2’s opinion
about 1'sdisposition to act in a situation that they both know will not arigdayer 2
knows that since player 1 is rational, if she soowefound herself at her second node,
she would choosa, . But to ask what player 2 would believe about ptadif he

learned that he was wrong about 1’s first choide &sk a completely different
question — this ‘if’ is epistemic; it concerns pday2’s belief revision policies, and not
player 1's disposition to be rational. No assumpadout player 1's substantive
rationality, or about player 2’'s knowledge of hebstantive rationality, can imply that
player 2 should be disposed to maintain his béhaf player 1 will act rationally on her
second move even were he to learn that she acstidivally on her first.»

In order to be able to carry out a rigorous ansalgsthe implications of common

knowledge of rationality in perfect-information gas) we need to move away from the type of
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models that we have considered so far. The reasdhi is that the association of a strategy
profile with every state gives rise (implicitly) tavo types of counterfactuals: (1) an objective
statement about what the relevant player wouldtdorende that is not reached and (2) (with the
help of the partitions) a subjective statement aladwat a player believes would happen if he
were to take a different action from the one hacisially taking. The two can be disentangled by
(1) associating, with every state, not a strateg¥ilp but a play and (2) adding a set of relations
that can be used to obtain a formal interpretatiocounterfactual statements. We start from the

latter. For every state[] 2 let P, be a “proximity-toew” binary relation on2 and, for every
W@ let P (o) ={xOQ: JP % . The interpretation oB0P, o ) aw?P g is that stater is
closer to statevthanfis, so that?, (a) is the set of states that are not as closeds a is. We
assume that the closest statedis witself and, for simplicity, thaf?, is a strict ordering af2.*’
The truth of the counterfactual “@were the case thesi would be the case” at stadgis then
determined as follows: look for the closest statevait whichgis true, call ita ; if ¢is true at
« then the counterfactual is trueatotherwise it is false. Intuitively, closeness itenmpreted
as similarity: the closest state dowheregis true is interpreted as the most similar stai@ t

among the ones whergs true. This theory of counterfactuals is du&talnaker (1968) and

was later generalized by Lewis (1973).

Y That is, P, satisfies the following properties: (£ 0P, (w), for all «f 0.2 \{c} (centeredness), (2)
for everya, S0.Q with a # 5, eithera OP, (3) orB02P, & | (connectedness), (3) for evegy S0 2,
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We can use proximity orderings and counterfactteateodel strategies as well as
hypothetical beliefs, by modifying our earlier defion of a model of a perfect information

game as follows: (1) we replace théunction o, : 2 - S with a single functiord @ - P,

whereP is the set of plays of the game, and (2) we aslet @f proximity reIation%?w} one

W1’
for each state. Thus, with every state, we astoaiplay rather than a strategy profile and, for
each state, we give a proximity ranking of theestawith the state itself being the closest of all.

Figure 16.7 illustrates a model of the perfectinfation game of Figure 16.6.

liie] (o e [e
o B Y o
2:(e/ o e |e

play: d1 aid2 ailazaz aia2ds
closest O B % 0
proximity B 0 0 y
orderings: Y y B B
farthest § a a a
FIGURE 16.7

if BO0P,(a) thena OP, (B)(asymmetry) and (4) for every, S0 Q,
if BOP(a)then?, (B)0 P, @ )(transitivity).
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In this model, at state, nodez of player 1 is not reached because his initial@h@s d, . Is it
true, however, at stat that if nodez were to be reached player 1 would pthy? In order to

answer this question we use the proximity ranking # find the closes state tpat which node

zis reached. That state isThen we check whether gtplayer 1 playd, . Since at statg
player 1 playsa, rather thand,, the answer is negative: it is not true at stathat if nodez
were to be reached player 1 would ply The strategy profile implicitly associated witlte
ais thus(dlag,dz). In order to determine what a player would knovbelieve if a node which

is not reached were to be reached, we proceedithe way: we look for the closest state where
the node is reached and determine (using the t#ieanformation partition of this player that
contains that node) the player’s state of knowleatgbat node. For example, at statplayer 2

knows that player 1 is playind, and therefore knows that her ngde not reached. What

would player 2 know if her node were to be reachBu closest state wat which node is

reached ig7 and atf player 2 terminates the game by playohgand collecting a payoff of 1. Is

this a rational choice for player 2? The answereddp on what player 2 believes would happen

if she playeda, (if nodey were to be reached). To determine this we lookHerclosest state to
B at which node is reached. It is stai& At stated player 1 playsd,, giving a payoff of O to
player 2. Thus player 2's choice df is indeed rational at stgte This conclusion makes player
1's choice ofd, at statex rational. Furthermore, at stadeplayer 2 is rational not only in a weak

sense since she makes no choices at gtéiiecause her noges not reached) but also in the

stronger sense that the choice that she would mhake node were to be reached (chotteat
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statep) is rational, given her belief in that situatidhdt is, at statg). Since both players are
rational at stater and the common knowledge partition coincides whthindividual partitions,

at stater there is common knowledge of rationality, desgiefact that the play at is not the
backward induction play. Thus, using this analysised on a theory of counterfactuals one can
conclude that common knowledge of rationality doesimply the backward induction play (let

alone the backward induction solution, that is, tlackward induction strategy profile).

In the model of Figure 16.7 at stateplayer 2 believes that if nodavere reached then

player 1 would choose, (since the closest stated4ovhere node is reached is stageand there
player 1 chooses,); however, as we saw above, at stateis also the case that player 2 would
choosed, if her nodey were to be reached (stgBg based on the belief (at sta@@ethat if she
chosea, then player 1 would follow withl, (stated). Hence what player 2 believes about

player 1's behavior in the hypothetical world whaoelez is reached changes going from state
(where the game ends without ngdeeing reached) to the closest si@igherey is reached.
Stalnaker (1998, p.48, quoted above) argues tbat ik nothing wrong with such a change.
Halpern (2001) shows that if one imposes the caimgtthat such changes in beliefs are not
allowed, then Aumann’s result that common knowlediggubstantive rationality implies the

backward-induction play holds.

5. Extensive-form games with imperfect infor mation
An extensive game is said to hawgerfect information if at least one player is not fully

informed about the choices made by other playetisaérpast. To represent a player’s uncertainty
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concerning past moves, we ustormation sets (which play the same role as the cells of the
information partitions considered earlier). An infation set of playercontains several nodes

in the tree where playéhas available the same choices and the interfmetatthat the player
cannot tell at which of these nodes her choiceisgomade. Figure 16.8 illustrates an extensive
game with imperfect information. Player 2 has twimimation sets, one consisting of the two
nodesv andw and the other consisting of the single ned&The interpretation of information

set{v, W of player 2 is that, when choosing between activasdE, player 2 does not know
whether player 1 choseor B. Player 3 is in a similar situation at informatieet{ y, 2

concerning the earlier choice of player 2 betweamdG.

18 When an information set is a singleton it is cosoy not to enclose it into a rectangle.
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As in the case of perfect-information games, weassociate with every extensive-form
game with imperfect information a strategic fornngsthe following definition: atrategy for
playeri is a list of choices, one for every information skplayeri.*® For example, the set of
strategies of player 2 in the game of Figure 16.8,i={DF, DG, EF, EG} . The solution
concept most used in extensive games with impeirfiémtmation is that osubgame-perfect

equilibrium, which is a generalization of the notion of backivimduction used in perfect-
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information games. Aubgame is a portion of the entire game that (1) stars sihgleton
information set ¥} and includesall the successors of nogand (2) ify is a successor afthat
belongs to information sét(of some player) then every nodehirs a successor af For
example, in the game of Figure 16.8, the portiotheftree that starts at noxlef player 2 is a
subgame; the only other subgame is the entire garagbgame-perfect equilibriumis a Nash
equilibrium of the entire game that satisfies thiéofving property: for every subgame, the

restriction of the strategy profile to that subgama Nash equilibrium of the subgame. For

example, in the game of Figure 16(9;, DF,H) is the unique subgame-perfect equilibrium: it
is a Nash equilibrium of the entire game and, femtiore, the restriction c(fC DF,H) to the

subgame that starts at nodenamely(F, H) , Is @ Nash equilibrium of that subgame. It was

proved by Selten (1975) that if one allows for Weumann-Morgenstern payoffs and mixed
strategies (see Section 3) then every finite ektedfsrm game with perfect recdllhas at least

one subgame-perfect equilibrium in mixed strategies

9 This definition coincides with the earlier one games with perfect information since in the case of

perfect information the information sets of a plagee all singletons.

% An extensive game has perfect recall if it satsfihe following property, for every playierif h andg
are two information sets of playeand there is a node ghwhich is a successor of a nodehjrthen every node ig
comes after the same choicehaPerfect recall implies that a player remembessplaist choices as wells as what he

knew in the past (see Bonanno, 2004).
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6. Games with incomplete information

An implicit assumption in game theory is that tlaeng is common knowledge among the
players. The expression “incomplete informatiorféers to those situations where some of the
elements of the game (e.g. the preferences ofléyens) are not common knowledge. In such
situations the knowledge and beliefs of the plagdeut the game need to be made an integral
part of the model. Pioneering work in this direntizvas done by Harsanyi (1967,1968).
Harsanyi suggested a method for converting a situatf incomplete information into an
extensive game with imperfect information (thishe so-calledHarsanyi transformation). The
theory of games of incomplete information has b@®reloped for the case of von Neumann-
Morgenstern payoffs (see Section 3) and the salwtomcept proposed by HarsanyBayes-

Nash equilibrium which is simply a Nash equilibrium of the impetfedformation game so
constructed. Although the traditional definitionggmes of incomplete information is in terms of
types of players and of probability distributionsentypeé’, we shall illustrate the Harsanyi
transformation using the epistemic structures auoed in Section 2. States can be used to
describe possible games and thus represent thetaintgin a player's mind as to which game
she is truly playing. Figure 16.9 illustrates a tplayer situation of incomplete information
using an interactive knowledge structure with tdigon of a probability distribution for every

cell of the information partition of each player.

%L For an overview of the traditional approach setigslli and Bonanno (1999).
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Associated with every state is a strategic-form gapetG be the game associated with states

andg (it is the same game) ar@® the game associated with staté&ix a state, say, staie

Then stater describes the following situation:
(1) both player 1 and player 2 know that the aagiplg games,

(2) player 1 knows that player 2 knows that they@aying gamé,

(3) player 2 is uncertain as to whether player dwsthat they are playin@ (which is the

case if the actual statead or whether player 1 is uncertain (if the actuatesisp)

between the possibility that they are playing g&rend the possibility that they are

playing gameG' and considers the two possibilities equally likghat is, attaches

probability 5 to each); furthermore, player 2 attaches probgbglito the first case

(where player 1 knows that they are playing g&heand probability: to the second

case (where player 1 is uncertain between garaed gameG'),



(4) player 1 knows the state of uncertainty of ptad concerning player 1 (as described sub
(3) above),
(5) itis common knowledge that each player knossolwn payoffs and that player 2 also

knows player 1's payoffs.

Harsanyi’s suggestion was to represent a situatiamcomplete information such as the
one illustrated in Figure 16.9 as a game with irffgrinformation where the initial move is
assigned to a fictitious player, called Nature, séhmle is to choose the state with
predetermined probabilities. No payoffs are assigneNature and it makes no further choices.
Information sets are then used to capture the taingy of the players concerning both the
actual state and the choices made by the otheenslaiy order for such a representation to be
possible, it is necessary that the probabilistiebseof the players at the cells of their
information partitions be consistent in the follogyisense: there is a probability distributgan
over the set of states, calleda@mmon prior, which yields those probabilistic beliefs upon
conditioning on the information represented by laafean information partition. Conditional
probabilities ought to be obtained from the commuoar by using Bayes’ rule. For example, in

the situation illustrated in Figure 16.9 we waitiaction i:{a, 5,  -[0,1] such that

_1 __ M@ _2 _
=5 Ha {a, B) @+ ) 3 and u(a)+u(B)+uly) =1.

H(P)

HORED =ty + i)

In this case a common prior exists and is givenuy) =2 andu B )= i )=+ . Using this

common prior to assign probabilities to Nature’sichs we obtain the imperfect-information

game shown in Figure 16.10.
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A Nash equilibrium of this imperfect-informationrga is called @ayes-Nash equilibrium of

the corresponding incomplete-information situatibhe following pure-strategy profile is Nash
equilibrium of the game of Figure 16.10: player 4fsategy iAB (that is, he play# if informed
that the state ig and playsB if informed that the state is eithgror )) and player 2’s strategy is
CD (that is, she play€ at her information set on the left aDdat her information set on the
right). To verify that this is a Nash equilibriume need to check that no player can increase his
expected payoff by unilaterally changing his siggtéVe begin with player 1. (1) at the

singleton information set on the left,gives player 1 a payoff of 1 (given player 2’s iclecof C)
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while B would give him a payoff of 0 (heneeis the optimal choice); (2) at the information set

on the right, by Bayes’ rule player 1 must assigsbpbility 3 to nodes and probability} to
nodet; thus (given player 2’s strate@D) choosingA would give him an expected payoff of
51+3 0= while B gives him an expected payoff §0+33=3 (henceB is the optimal
choice). Similarly for player 2: (1) at the infortiean set on the left, by Bayes’ rule (given that
player 1's strategy i8B) player 2 must assign probabilifyto nodeu and$ to nodex; thus
choosingC gives her an expected payoff #8+10= 2 while D would give her an expected
payoff of 21+11=1 (henceC is the optimal choice); (2) at the information setthe right, by

Bayes'’ rule (given that player 1's strategyAB) player 2 must assign probability 1 to nagle
thus choosing would give her a payoff of O while gives her a payoff of 1 (hen€eis the

optimal choice).
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7. Conclusion.

There are several branches and applications of gja@oey that we were not able to
discuss because of space limitati6hBesides co-operative game thedrwhich was
mentioned in the introduction, we also left outletionary game theofy, the theory of repeated
game$’ and bargaining theofy

In the social sciences, game theory has becomagigevnot only in economics but also
in political scienc&’. Of particular relevance to social science is #igogame-theoretic
approach to ethical matters and to fundamentaltiunssof moral and political philosopK¥.
Finally it is also worth mentioning two new devetognts: experimental game theory and

neuroeconomics. The former tries to test the predictions of gahe®ry in controlled laboratory

22 An excellent source of information and resoura@sefducators and students of game theory is the web

site www.gametheory.net.
% For a recent overview of co-operative game thees/Peleg and Sudhélter (2007).

4 Evolutionary game theory was pioneered by theogist John Maynard Smith (1982) and has been

extensively applied not only in biology but alsalie social sciences (see Samuelson, 1998, anduilVdi895).
% For a recent account of repeated games see MaitatiSamuelson (2006).
% See, for example, Osborne and Rubinstein (1990).
2" Ordeshook (1986) is a classic reference. For @ mament account see McCarty and Meirowitz (2007).

% See Bicchieri (2006) and Binmore (1994, 1998).
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settings, while the latteaims to systematically classify and map the baaiivity that correlates

with (individual and interactive) decision-makify.
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