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TRUE STATE DEPENDENCE IN MONTHLY WELFARE PARTICIPATION: 

A NONEXPERIMENTAL ANALYSIS 

 

ABSTRACT 
This paper provides an empirical evaluation of true state dependence in welfare participation 

using unique administrative data from California that is measured at the monthly frequency, 

which coincides with the welfare eligibility period and so is free of time aggregation bias.  The 

analysis uses first- and second-order dynamic conditional logit models that non-parametrically 

control for permanent unobserved heterogeneity to test for state dependence in welfare behavior.  

The second-order model also absorbs individual-specific first-order Markov chains, and provides 

a more robust test for state dependence in high frequency data.  The results using the first-order 

model show substantial first-order state dependence in monthly welfare participation.  Absorbing 

heterogeneous first-order effects, the hypothesis of no second-order state dependence is also 

easily rejected.  This suggests that past welfare participation predicts future participation, given 

unrestricted effects of both the present state and unobserved heterogeneity, and provides 

substantive evidence of duration dependence at the individual level. 
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1. INTRODUCTION 

The substantial serial persistence exhibited in welfare participation over time is a well-

documented empirical fact (e.g., Bane and Ellwood 1983).  There are two potential explanations 

for this dependence in discrete outcomes that have been emphasized in the statistical literature 

(Heckman 1981a and c).  On one hand, persistence may be the result of “true” or “structural” state 

dependence in which current participation directly affects the preferences or opportunities of 

individuals and, therefore, an individual’s propensity to participate in the future.  On the other 

hand, persistence can also result from permanent unobserved heterogeneity across individuals, in 

that individuals have different underyling propensities to experience an outcome in all periods.  In 

this case, current participation does not structurally affect the future propensity to participate, but 

rather this source of serial correlation can be viewed as “spurious”. 

  The debate over the impact of welfare programs hinges crucially on the ability to credibly 

estimate the degree of true state dependence.  If welfare has “narcotic” incentive effects, then 

changing welfare program parameters, such as benefits levels, can reduce the average length of 

welfare spells.  If most participation is due to permanent characteristics, then changing the nature 

of welfare programs will have little real effect.  In addition, accounting for true lag adjustment in 

participation is necessary for obtaining consistent estimates of the long-run impact of changing 

welfare benefits.  Finally, since the outcomes examined are discrete, the existence of true state 

dependence suggests that small shocks to the process underlying the participation decision could 

have discontinuous, lasting effects. 

  This study attempts to differentiate state dependence from spurious serial correlation in 

nonlinear outcomes.  The ideal analysis of the relationship between current and past participation 

would involve a controlled experiment in which the researcher randomly assigns program 

participation across individuals and then observes differences in participation sequences in 

subsequent periods.  Due to the lack of experimental data with a rich time-series, this study 

examines “semi-parametric” non-experimental methods in which the longitudinal structure of the 

data is used to control for confounding biases.  The approaches used non-parametrically adjust 
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for permanent heterogeneity bias. 

  The key advantage of this study is that it analyzes unique and reliable administrative data 

from California that contain many families (over 80,000) observed over a long period (4 years) at 

frequent intervals (monthly).  This rich data allows us to precisely test for the presence of 

duration dependence in binary welfare participation sequences using relatively unrestricted 

models.  Specifically, we examine rarely used dynamic “fixed effects” conditional logit models 

(Cox 1958 and Chamberlain 1985), which do not require specification of the distributions of 

either the unobserved heterogeneity or the initial conditions.  The analysis leverages the multiple 

spells that each case experiences to obtain estimates of the duration dependence that are 

independent of the mixing distribution of the unobservables.  Consequently, these methods are 

less parametric than the ubiquitous single-spell duration models often used to address this 

question.  Another attractive feature of these models is that the “counterfactual” groups of 

families that are used to identify true state dependence are transparent. 

In the conditional logit model that absorbs individual-specific first-order Markov chains, 

the hypothesis of no second-order state dependence is rejected in our data.  This suggests that past 

welfare participation predicts future participation given the present state and unrestricted 

heterogeneity, and provides evidence that duration dependence exists at the individual level.  The 

estimates of the duration dependence vary slightly by the characteristics of the case, and 

aggregating the monthly data to the quarterly and semi-annual levels leads to severe attenuation in 

the estimated state dependence.  The patterns in our administrative data suggest that welfare 

durations cannot be represented by a mixture of exponential distributions. 

 

2. CONDITIONAL LOGIT MODELS 

2.1 Background on Welfare Dependence 

In the econometrics literature, it is well-established that identification of binary response 

panel data models that allow for both unobserved heterogeneity and state dependence is very 

tenuous, especially for the typical case of a data set with many individuals but a small number of 
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time periods.  A fundamental issue that arises is accounting for the effects of both the heterogeneity 

and the unobserved initial conditions of the dynamic process on the estimated parameters 

(Heckman 1981b). 

  An example of a dynamic panel data model of welfare participation that allows for 

unobserved heterogeneity and first-order state dependence is: 

yit = 1( *
ity > 0) = 1(γyit-1 + αi + uit > 0); i=1,…,N; t=1,…,T, 

where yit is the welfare participation outcome for individual i in period t, 1(•) is an indicator 

function equal to one if the enclosed statement is true and zero otherwise, *
ity  is the latent process 

that guides the participation decision, αi is an unobserved individual-specific effect, and uit is the 

transitory error which is assumed to be i.i.d. over time.  In our context, γ is the parameter of 

interest since it represents true state dependence in participation (i.e., the “welfare trap”).  A 

positive γ implies that participation in the previous period causes a greater likelihood of 

participation in the current period.  The term αi, on the other hand, is the source of spurious serial 

correlation attributable to permanent unobserved differences across individuals in earnings 

potential and tastes for leisure.  It allows for the possibility that different individuals have 

permanently different propensities to be on welfare in all periods.  

Few studies have tried to account for the contribution of unobserved heterogeneity to the 

serial persistence in welfare participation.  Blank (1989) and Sandefur and Cook (1997) estimate 

single-spell duration models in which the unobserved heterogeneity distribution is restricted to 

be a discrete random variable.  Plant (1984), on the other hand, estimates a three-period panel 

data probit model of participation that assumes that the heterogeneity is normally distributed.  

All three studies conclude that much of the observed serial dependence in welfare participation is 

attributable to individual heterogeneity and not state dependence.  However, their estimates are 

very imprecise due to the small samples (fewer than 1,000 welfare recipients) used in the 

analyses.  Fortin and Lacroix (1997) estimate a proportional hazard model that specifies the 

heterogeneity to be a multiplicative factor in the hazard.  Their estimates converge for only one 

of the many demographic groups examined.  More recently, Green and Warburton (2004) use a 
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quasi-experimental estimator for state dependence based on administrative data from British 

Columbia.  Their approach takes advantage of an experiment that provided a verification officer 

to a random sample of welfare offices which led to higher welfare application denial rates in 

those offices.  Green and Warburton use the assignment of the verification officer at the welfare 

office as an instrument for estimating the impact of welfare benefit denial on future welfare 

participation.  They find evidence for substantial state dependence among part of their sample.  

Other examples of studies that have examined welfare spell lengths are Gritz and MaCurdy 

(1992), Hoynes and MaCurdy (1994), and Gottschalk and Moffitt (1994). 

2.2 Conditional Logit Analysis of Binary Sequences 

  In the absence of a controlled experiment, non-experimental econometric methods are the 

only alternative for estimating the amount of state dependence in welfare participation.  We 

examine “fixed-effects” conditional logit models in which no assumptions are required on the 

mixing distribution of the unobserved individual effects.  Instead, certain restrictions on the 

distribution of the transitory errors imply that the unobservables can be “absorbed” with the 

proper conditioning statement in the likelihood analysis.  We illustrate this for the cases in which 

the individual is observed for at least 4 and 6 periods, respectively.  With access to additional 

time periods, one can match on richer participation sequences when estimating duration 

dependence.  The conditional logit model crystallizes the “treatment” and “control” groups that 

are used to identify the effect of the past on the present (and future). 

  If individuals are observed for at least four periods, then it is possible to identify the logit 

binary response model that allows for both unobserved heterogeneity and first-order state 

dependence.  Cox (1958) shows that if the transitory errors have an i.i.d. logistic distribution, 

then there exists a set of sufficient statistics that absorb both the individual effects and initial 

conditions when conditioned on.  The model is: 

 

P(yit = 1|αi, yi1,…,yit-1) = 
)yexp(1

)yexp(

i1it

i1it

α+γ+
α+γ

−

− . 
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The set of sufficient statistics is B ≡ {yi1, yiT, s}, where s = ∑
=

T

1t
ity  is the sufficiency class.  Then 

we have the following conditional probability: 

(1) P(yi1,…,yiT|B) = 
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where the relationship between the initial observation and the unobserved heterogeneity is left 

unspecified.  Consistent identification of γ is based on the fact that this conditional probability 

does not depend on the incidental parameters, αi.  In addition, conditioning on yi1 and yiT 

addresses both the problems of initial conditions (left censoring) and right censoring, 

respectively. 

Under the null of no first-order state dependence, the model suggests that individuals 

within the same sufficiency class and with the same realizations in the first and final periods are 

“exchangeable” and, therefore, provide a valid counterfactual for what would have occurred in 

the absence of state dependence.  Within a particular conditioning group B, sequences in which 

individuals participate in adjacent periods should be no more prevalent than sequences that have 

less “clumping” of participation, if there is no state dependence.  Systematic deviations from this 

in a sample of welfare cases provide evidence of state dependence.  When T=4, the following 

pairs of sequences give conditional probabilities that depend on γ; (1100 vs. 1010) and (0011 vs. 

0101).  The only difference between the sequences is the “path” taken in the two intervening 

periods that connect the same initial and final points.  To the extent that the first sequence in 

each pair occurs more often in the data, the observed relative probabilities suggest the existence 

of first-order state dependence in the process.  Estimates of γ are based on maximizing the 

sample log-likelihood analog of (1). 

Chamberlain (1985) notes that tests for the presence of first-order state dependence in 

binary sequences, even those which condition out individual heterogeneity, may not be strict 

tests of true duration dependence.  Specifically, the interpretation of measured serial correlation 

at the individual level depends on the interval between periods of observation.  As the interval 
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goes to zero (e.g., continuous time), the probability that a person who participated last period 

will participate this period goes to one.  Consequently, a more substantive test of duration 

dependence in binary sequences may be to see whether an individual’s past can predict the future 

conditional on the current state.  Deviations from a first-order Markov property would provide 

evidence of duration dependence at the individual level that is insensitive to the sampling frame.  

This framework provides a non-parametric test of the hypothesis that the welfare spells can be 

represented by a mixture of exponential distributions (Heckman, Robb, and Walker 1990).  

Residual serial dependence that remains after allowing for an “infinite” mixture leads to a 

rejection of the hypothesis. 

  Under the assumption of i.i.d. logistic errors, Chamberlain (1985) derives a conditional 

logit estimator for second-order state dependence that allows each individual to have individual-

specific first-order Markov chains.  If individuals are observed for at least six periods, then there 

exist sufficient statistics for two sets of individual-specific incidental parameters and for the 

initial conditions.  The model is: 

P(yit = 1|αi, yi1,…,yit-1) = 
)yyexp(1

)yyexp(

2it21iti1i

2it21iti1i

−−

−−

+++
++

γγα
γγα . 

Sufficient statistics for the incidentals (αi and γ1i) and initial conditions are B ≡ {yi1, yi2, yiT-1, yiT, 
s, s11}, where s11 = 1it

T

2t
ityy −

=
∑  is the total number of times individuals participate in adjacent 

periods.  It follows that: 

(2) P(yi1,…,yiT|B) = 
∑ ∑

∑
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This conditional probability does not depend on the incidental parameters. 

Under the null of no second-order state dependence, the model suggests that sequences 

within the same conditioning group B should be equally likely to occur.  The existence of 

duration dependence implies that individuals within the same conditioning group should be more 

likely to experience sequences in which they participate in every other period than sequences in 

which they do not.  When T=6, the following pairs of sequences give conditional probabilities 
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that provide information on γ2; (101000 vs. 100100), (000101 vs. 001001), (010111 vs. 011011), 

and (111010 vs. 110110).  To the extent that the first sequence in each pair occurs more often in 

the data, the observed relative probabilities suggest the existence of state dependence in the 

process. 

There are two important points about equation (2).  First, the conditional logit estimator 

identifies the duration dependence by comparing groups of individuals with similar sequences.  

As more time periods are observed, one can be more “judicious” about which comparisons will 

identify the structural state dependence due to the additional information that can be conditioned 

on.  Matching individuals within a conditioning group, the analysis attempts to determine which 

path/sequence is more likely to occur.  

Second, it is clear that the estimated state dependence is identified from multiple spells 

on and off welfare for a given individual.  For example, in the 6-period case, only individuals 

with two spells on welfare and two spells off welfare provide information on second-order state 

dependence.  In popularly used single-spell duration models, identification of duration 

dependence relies heavily on moment or tail conditions on the heterogeneity mixing distribution 

(Elbers and Ridder 1982, Heckman and Singer 1984 and 1985, Honoré 1990, Ridder 1990, 

Horowitz 1999).  Heckman (1991) concludes that these identifying assumptions are not 

verifiable and often drive the results.  Honoré (1993) shows that access to multiple spells 

facilitates the identification of duration dependence without any assumptions on the mixing 

distribution.  However, he does not derive an estimator.  The conditional logit fixed-effects 

approach makes no restrictions on the form of the heterogeneity, while incorporating multiple 

spells in an intuitive and simple manner. 

Before proceeding, we note two caveats with our analysis.  First, the above logit models 

do not allow for time-varying “exogenous” covariates.  Honoré and Kyriazidou (2000) derive a 

consistent conditional logit estimator of a model that allows for first-order state dependence and 

exogenous covariates.  However, when Chay and Hyslop (2001) apply this estimator to survey data 

on welfare participation, they find little evidence that allowing for covariates (children and marital 
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status) affects the estimated state dependence.  In addition, we find below that an important time-

varying covariate in our context, number of children in the case under 6 years of age, is changing 

very similarly in the comparison groups used to identify second-order state dependence.  Finally, 

note that equation (2) implies that the analysis will only be confounded by omitted variables that 

exhibit very frequent changes. 

Another caveat is that equations (1) and (2) rely on the assumption that the transitory 

errors have a logistic distribution function.  Although not providing direct evidence, we found 

that random effects probit models that allow for serially correlated errors (Gourieroux and 

Monfort 1993, Hyslop 1999) and instrumental variables linear probability models (Anderson and 

Hsiao 1981, Arellano and Bond 1991) generated similar estimates of the first-order state 

dependence.  

 

3. DESCRIPTION OF ADMINISTRATIVE DATA 

A great deal of information is absorbed in equation (2) to “non-parametrically” condition 

out the unobservable incidental parameters.  Consequently, these models may not have much 

power in detecting state dependence in the small samples generally used in the literature.  A large 

and rich administrative data set, on the other hand, could allow for a meaningful empirical 

implementation of these unrestricted tests for state dependence. 

This study uses the Longitudinal Database of Cases (LDB), which is administrative panel 

data providing information on monthly welfare participation for 10 percent of all Medicaid (or 

Medi-Cal) cases in California from 1987-1996 (UCData 1996).  The data file is constructed from 

a 10 percent sample of all Medicaid recipients in January 1987 and 10 percent samples of all 

“new” cases that start in each year from 1987 on.  A new case corresponds to a person who has 

not received Medi-Cal since January 1987.  The data, which are based on administrative records, 

contain monthly recipiency information from the time the case is first observed through the end 

of 1996.  Each case is followed as it moves into and out of welfare recipiency.  The data also 

contain demographic characteristics such as the age and race/ethnicity of each member of the 
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case.  This allows us to construct time varying case level variables such as the number of adults, 

the number and ages of children, and the race/ethnicity of case.1 

Our analysis focuses on individuals in the 1988-1992 cohorts of the LDB who receive 

AFDC, where the cohort is defined by the year in which the AFDC case entered the sample.  

Consequently, all of the cases in our sample are observed for at least 48 months.  We do not use 

the cases in the 1987 cohort because the vast majority of their welfare spells are left censored.  

We construct a balanced panel that follows 86,214 cases for the first 48 months after their initial 

entry onto AFDC.  For computational reasons (described below), our analysis of monthly 

welfare participation sequences focuses on recipiency status in the first 32 months.  To examine 

the sensitivity of the estimates of duration dependence to time aggregation, we also pool the 48 

months of participation data into 16 quarterly and 8 semi-annual periods, respectively.  Here, a 

case is recorded as being on AFDC if it participated in any month during the quarter or 6-month 

period. 2   

This data set is uniquely suited for our analysis for several reasons.  First and foremost, 

the size of our sample is unprecedented, in terms of the number of cases and the length and 

frequency of observation.  The richness of the data allows for a precise and powerful 

implementation of the semi-parametric tests for the presence of true welfare dependence 

described above.  Second, since the data are based on administrative records, the welfare spells 

are measured more reliably than those from survey data.  In particular, there is strong evidence of 

recall error in retrospective surveys that leads to severe “seaming” in the constructed welfare 

spells (Marquis and Moore 1990).  Thirdly, California contains about 15 percent of the nation's 

                                                      
1 The LDB contains one observation for each person in the case.  The persons in a given case are linked by a unique 
case identifier.  Because persons can enter and leave the case over time, the composition of the case (number and 
ages of children) is time varying.   The administrative data does not identify a “case head.”   We aggregate across 
each of the persons in the case and assign the case as participating in a given month if anyone in the case is 
participating in that month.  
2 According to discussions with county welfare administrators, some spell disruptions of one month are due to 
recipients’ delay in submitting routine eligibility forms.  The results that we present do not account for this potential 
reporting error. 
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AFDC caseload, more than twice the size of the next largest state (U.S. House of 

Representatives, 1994).3 

In addition, since the initial period of observation coincides with the actual start of each 

spell in our sample, the analysis circumvents the problem of initial conditions and left censoring 

(Heckman and Singer 1985).  Finally, the receipt of AFDC benefits requires satisfying 

California’s eligibility criteria on a monthly basis.  Although it is not clear that each family 

makes their participation decisions from month-to-month, the periodicity of our data does have 

some natural significance.  As a result, examining the above discrete time models with monthly 

participation data may not be a bad approximation to the agent’s decision process relative to 

continuous time duration models (Heckman and Singer 1985). 

 

4. EMPIRICAL RESULTS 

Figure 1 presents the empirical welfare hazard functions derived from the non-parametric 

Kaplan-Meier estimator applied to the pooled welfare spells (e.g. all first and later spells) 

constructed from both the monthly and quarterly participation sequences.  As has been 

documented in other data sets, the estimated probability of leaving AFDC is declining in the 

length of the welfare spell for both types of spells.  Although there is some evidence of seaming 

in the LDB data (i.e., a disproportionate number of spells end in December and begin in 

January), it does not account for the strong secular declines in the monthly hazard rates.  

However, changes in the composition of the cases could also explain the declining hazards, and 

this figure may mask these potential heterogeneity biases. 

Table 1 provides a first pass at examining first-order state dependence in the 32-month 

participation sequences, purged of fixed sources of bias.  In the Cox (1958) conditional logit 
model, the sufficiency class, s=∑

=

T

1t
ity , and the realizations in the first and final periods (P1,P32) are 

                                                      
3 This administrative data covers the period before the 1996 Federal welfare reform legislation was passed.  This 
reform dismantled the AFDC program and replaced it with Temporary Assistance for Needy Families (TANF).  
TANF has strict time limits and work requirements that did not exist under the AFDC program.   
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sufficient statistics for the unobserved heterogeneity.  If there is no state dependence conditional 

on the incidental parameters, one may observe different numbers of cases across “conditioning 

groups” (defined by s, P1, and P32), but would also see approximately the same number of cases 

in each sequence within a group.  In the presence of first-order state dependence, one should 

observe more cases in sequences with consecutive 1’s within a conditioning class. 

Table 1 presents the frequencies of cases in the sequences of the 10 largest conditioning 

classes, which contain about 57% of all cases.  Since there are 231=2.1 billion potential sequences 

a case can experience, we focus on these sequences for simplicity.4  The sequences are sorted by 

conditioning group and S11 (third column), which is the total number of times that an individual 
has two consecutive periods of participation ( 1it

T

2t
ityy −

=
∑ ).  The final two columns provide the 

actual frequency of cases in each sequence and the “expected frequency”, which is the number of 

observations that would be expected in the sequence under the null hypothesis of no first-order 

state dependence (γ=0).  This is calculated by determining the total number of possible sequences 

within the group defined by sufficiency class, P1, and P32.  The probability of each sequence 

occurring is then equal to 1/NP, where NP is the total number of possible sequences.  These 

probabilities are aggregated up into groups for each value of S11.  The expected frequency is 

equal to the S11 group probability multiplied by the total number of observations within the 

entire conditioning class.  

The data rejects the null of no state dependence if there are more cases than expected in 

sequences with higher numbers of S11 and fewer cases than expected in sequences with lower 

numbers of S11, within a given class.  Disregarding the two classes with only 1 value of S11, the 

patterns in the table clearly reject the null of no first-order state dependence.  In addition, the 

actual and expected frequencies in all of the informative classes imply extremely large odds 

                                                      
4 There would be 140 trillion (247) potential sequences if we examined all 48 months of participation data.  Sorting 
through this many sequences in the conditional logit analysis is not computationally feasible.  Thus we look at 32 
month sequences. 



12  

ratios for the relative likelihood that the sequence that exhibits greater state dependence will 

occur. 

Next, we examine Chamberlain’s (1985) conditional logit model testing for the presence 

of second-order state dependence conditional on individual-specific first-order Markov chains.  

As discussed above, controlling for sufficiency class, S11, and the first and last two periods of 

participation (P1, P2, P31, P32) absorbs a person-specific intercept, the initial conditions, and 

individual-specific first-order state dependence in the logit framework.  We define S12 to be the 

number of times an individual participates in every other period during the 32 months 
( 2it

T

3t
it yy −

=
∑ ).  In the absence of second-order duration dependence conditional on the incidentals, 

one should observe approximately equal numbers of cases in sequences with different values of 

S12 that are in the same conditioning group. 

Table 2 presents the actual and expected frequencies, under the null of no second-order 

dependence (γ2=0), in the sequences of the 10 largest conditioning classes that provide 

identifying information.5  These conditioning groups contain about 4% of all cases.  The 

sequences are sorted by the conditioning group and S12 values.  The expected frequencies are 

calculated in a manner analogous to the procedure used for Table 1.  For each sequence, the final 

two columns of the table show the average number of children under 6 years of age in a case 

(averaged over all periods when the case is on welfare) and the average change in the number of 

under-6 children from the first to final periods.  These provide a gauge of whether this important 

time-varying observable variable changed similarly over the period for the comparison groups 

used to test for the presence of duration dependence. 

  In the table, the data reject the absence of second-order dependence, if, within a class, 

sequences with higher (lower) values of S12 have more (fewer) cases than expected.  The 

patterns in the table seem to reject the hypothesis that the data can be represented by a mixture of 

exponential distributions.  For all 10 classes, it is true that sequences with greater second-order 

                                                      
5 Conditioning groups with only one sequence observed in the data do not provide information on state dependence. 
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dependence occur more often than expected.  The evidence systematically supports the existence 

of duration dependence in welfare participation. In addition, the covariate averages for cases in 

different sequences within the same group suggest that the findings are probably not the result of 

spurious correlations.  In particular, there does not appear to be a systematic relationship between 

the average change in the number of children under-6 from the first to final periods and the S12 

values of sequences within the same conditioning class. 

  Finally, Table 3 presents various estimates of the first- and second-order state 

dependence in monthly, quarterly, and semi-annual participation sequences, both for the whole 

sample of cases and for specific sub-groups of cases.  In particular, models are estimated for the 

following subgroups: race/ethnicity of “head”, age of “head”, number of children under age 6, 

aid type (FG or UP)6, number of adults in the case, and quarter and year of initial entry into 

welfare.7  All these case variables are assigned using the first month the case is on aid.  The 

results come from maximum likelihood estimation of the logit models implied by equations (1) 

and (2).  The likelihood that cases will experience sequences with greater state dependence can 

be calculated directly from the estimated state dependence coefficients.  This probability is 

presented in brackets in the table (see the table note). 

For the overall sample of cases (first row), there is a substantial amount of first- and 

second-order dependence in the monthly participation sequences, with estimated coefficients 

(5.91 and 0.60) that are highly significant.  However, as the periodicity of the data is aggregated 

to the quarterly and semi-annual levels, the estimates of the state dependence become severely 

attenuated.  This attenuation is particularly noticeable in the estimates of second-order state 

dependence, where semi-annual data lead to imprecisely estimated negative duration 

dependence.  This suggests that analyses of survey data, in which welfare participation is often 

                                                      
6 AFDC eligibility in California includes FG cases—for single parent families—and UP cases—for two parent 
families when one parent is unemployed. 
7 As described above, the administrative data does not identify a case head.  We use the oldest person in the case to 
assign the race/ethnicity and age variables. 
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observed at the annual or semi-annual levels, could lead to very misleading conclusions on the 

amount of duration dependence. 

  The estimates of first-order state dependence are extremely large, not quite as sensitive to 

time aggregation, and vary only slightly across the stratified groups.  The coefficient estimates 

for the quarterly and monthly sequences imply that a case has more than a 99-percent probability 

of experiencing a sequence that exhibits more first-order state dependence.  Based on the 

discussion above, this is likely to be an overstatement of the amount of true duration dependence 

in welfare participation due to the frequency of observation. 

  The estimates of the second-order dependence based on the monthly data are very precise 

for all of the groups examined, which highlights the richness of the administrative data.  The 

estimated duration dependence for all of the groups is positive and highly significant, suggesting 

that observable demographic and family structure characteristics and year and quarter of entry 

effects do not account for our findings.  Given the unrestricted nature of this analysis, these 

estimates may provide a reasonable lower bound on the amount of duration dependence in 

monthly welfare participation sequences.  The estimates also reveal some heterogeneity in the 

second-order dependence, with larger duration dependence for blacks cases, cases with older 

parents, and single parent cases.  Two-parent cases exhibit the least amount of duration 

dependence.  However, these differences are relatively small.  The biggest source of sensitivity 

comes from time aggregation of the data.  All of these results were previously unknown, and 

show how access to rich, administrative data facilitates the estimation of semi-parametric 

conditional logit models. 
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5. CONCLUSION 

The non-experimental analysis of the monthly binary sequences leads to several findings.  

Although not necessarily an appropriate test for duration dependence, the estimated first-order state 

dependence in monthly welfare participation, purged of individual effects, is substantial.  In the 

conditional logit model that absorbs individual-specific first-order Markov chains, the hypothesis 

of no second-order state dependence is also easily rejected.  This stricter test suggests that past 

welfare participation predicts future participation given the present state and unrestricted 

heterogeneity, and provides substantive evidence of the existence of duration dependence at the 

individual level.  The estimates of the duration dependence vary slightly by the characteristics of 

the case.  More importantly, aggregating the monthly data to the quarterly and semi-annual levels 

leads to severe attenuation in the estimated state dependence.  The results suggest that using fixed-

effects models to test for duration dependence would not be fruitful for the much smaller survey 

data sets typically examined in the literature. 
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Figure 1: Kaplan-Meier Monthly and Quarterly Empirical Hazards 
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Table 1. Actual and Expected Number of Observations by Conditioning Group and S11 
Under Null Hypothesis of No 1st Order State Dependence 

32-Period Monthly Sequences 

Tabulations for 10 Largest Conditioning Groups 
Conditioning Group     Conditioning 

Group 
   

Sufficiency 
Class 

 
P1,P32 

 
S11 

Actual 
N 

Exp. 
N 

 Sufficiency 
Class 

 
P1,P32 

 
S11 

Actual 
N 

Exp. 
N 

           
32 (1,1) 31 13355 13355  8 (1,0) 0 0 240 
3 (1,0) 0 7 2734    1 0 690 
  1 103 405    2 0 690 
  2 3036 7    3 1 303 

4 (1,0) 0 4 2197    4 5 61 
  1 9 791    5 49 5 
  2 194 61    6 380 0 
  3 2842 1    7 1554 0 

5 (1,0) 0 0 1500  31 (1,1) 29 1967 1967 
  1 1 1044  9 (1,0) 0 0 98 
  2 17 196    1 0 420 
  3 272 10    2 0 643 
  4 2460 0    3 0 454 

6 (1,0) 0 0 964    4 4 158 
  1 0 1148    5 7 30 
  2 3 417    6 63 2 
  3 29 54    7 375 0 
  4 341 2    8 1352 0 
  5 2213 0       

2 (1,0) 0 78 2186       
  1 2183 75       

7 (1,0) 0 0 501       
  1 0 948       
  2 1 593       
  3 4 151       
  4 31 15       
  5 369 1       
  6 1803 0       

NOTE: The sample consists of monthly welfare participation over a 32-month period for 62,034 families.  Actual N is the number of cases within 
a conditioning class (defined by sufficiency class, 1st and 32nd period participation), and S11 group (Σytyt-1).  Exp. N is the expected number of 
cases under the null hypothesis of no first order state dependence (the product of the total number of observations within the conditioning group 
times the conditional probability (under the null) that this value of S11 should occur). 
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Table 2. Actual and Expected Number of Observations by Conditioning Group and S12 
Under Null Hypothesis of No 2nd Order State Dependence 

32-Period Monthly Sequences 

Tabulations for 10 Largest Informative Conditioning Groups 
Conditioning Group     

 
Suff. 
Class 

 
 

P1,P2,P31P32 

 
 

S11 

 
 

S12 

 
Actual 

N 

 
Exp. 

N 

Average 
Number of 

Kids<6 

Change in 
Number of 

Kids<6 
        

11 (1,1,0,0) 9 7 157 296 0.742 (.05) 0.197 (.05) 
   8 181 54 0.689 (.05) 0.260 (.04) 
   9 14 2 0.864 (.25) -0.071 (.20) 
8 (1,1,0,0) 6 4 219 278 0.562 (.04) 0.055 (.04) 
   5 119 69 0.658 (.06) 0.160 (.05) 
   6 12 3 1.156 (.44) -0.083 (.15) 
9 (1,1,0,0) 7 5 229 275 0.749 (.04) 0.140 (.04) 
   6 102 60 0.537 (.06) 0.186 (.06) 
   7 6 2 0.944 (.52) 0.167 (.17) 

10 (1,1,0,0) 8 6 223 269 0.716 (.04) 0.126 (.04) 
   7 93 53 0.694 (.07) 0.172 (.05) 
   8 8 2 0.900 (.34) 0.000 (.19) 
7 (1,1,0,0) 5 3 198 246 0.623 (.04) 0.071 (.04) 
   4 111 73 0.395 (.05) 0.144 (.05) 
   5 12 3 0.381 (.14) 0.251 (.13) 
6 (1,1,0,0) 4 2 183 213 0.680 (.05) 0.158 (.05) 
   3 88 80 0.631 (.07) 0.125 (.06) 
   4 25 3 0.533 (.11) 0.120 (.07) 

12 (1,1,0,0) 10 8 200 228 0.781 (.05) 0.135 (.05) 
   9 61 39 0.687 (.05) 0.098 (.07) 
   10 7 1 0.667 (.27) 0.143 (.26) 

14 (1,1,0,0) 12 10 168 207 0.689 (.05) 0.196 (.05) 
   11 68 33 0.700 (.07) 0.088 (.08) 
   12 5 1 1.129 (.39) 0.200 (.20) 

15 (1,1,0,0) 13 11 161 199 0.748 (.05) 0.323 (.07) 
   12 68 31 0.624 (.07) 0.132 (.08) 
   13 2 1 0.267 (.38) 0.500 (.71) 

17 (1,1,0,0) 15 13 160 189 0.715 (.06) 0.050 (.06) 
   14 57 29 0.808 (.09) 0.123 (.09) 
   15 2 1 2.118 (1.8) 0.500 (.71) 

NOTE: See NOTE to Table 1.  Actual N is the number of cases within a conditioning class (sufficiency class, 1st, 2nd , 31st and 32nd period 
participation, S11), and S12 group (Σytyt-2).  Exp. N is the expected number of cases under the null hypothesis of no second order state (the 
product of the total actual number of observations within the conditioning group times the conditional probability (under the null) that this value 
of S12 should occur).  The average number of kids<6 is estimated over months in receipt of welfare; the change in the number of kids<6 is 
measured between the first and last months of welfare receipt (standard errors are in parentheses). 
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Table 3. Fixed-Effects Estimates of 1st and 2nd Order State Dependence in Welfare Participation 
Sequences 

Based on Conditional Logit Models 
 1st-Order State Dependence Estimates 2nd-Order State Dependence Estimates 
Sample of Cases Used 

8 Semi-

Annual 

16 Quarters 32 Months 

8 Semi-

Annual 

16 Quarters 32 Months 

All Cases {62,040} 3.85 (.019) 4.77 (.013) 5.84 (.011) -0.053 (.031) 0.149 (.022) 0.648 (.017) 
 [0.979] [0.992] [0.997] [0.487] [0.537] [0.657] 
Black {10,551}  4.80 (.033) 5.76 (.028)  0.256 (.058) 0.820 (.041) 
  [0.992] [0.997]  [0.564] [0.694] 
Hispanic {16,066}  4.59 (.025) 5.67 (.022)  0.138 (.042) 0.555 (.034) 
  [0.990] [0.997]  [0.534] [0.635] 
White {24,769}  4.70 (.020) 5.79 (.017)  0.103 (.033) 0.594 (.028) 
  [0.991] [0.997]  [0.526] [0.644] 
15-19 Years Old {5,696}  4.40 (.044) 5.27 (.037)  0.118 (.067) 0.602 (.054) 
  [0.988] [0.995]  [0.529] [0.646] 
20-24 Years Old {9,690}  4.62 (.032) 5.64 (.028)  0.110 (.047) 0.695 (.041) 
  [0.990] [0.996]  [0.527] [0.667] 
25-30 Years Old {10,199}  4.72 (.031) 5.83 (.028)  0.067 (.048) 0.640 (.044) 
  [0.991] [0.997]  [0.517] [0.655] 
31-37 Years Old {8,972}  4.77 (.033) 5.92 (.029)  -0.032 (.044) 0.560 (.049) 
  [0.992] [0.997]  [0.492] [0.636] 
38-64 Years Old {6,710}  5.12 (.045) 6.16 (.037)  0.187 (.073) 0.705 (.061) 
  [0.994] [0.998]  [0.547] [0.669] 
0 Kids Under 6 {31,631}  4.84 (.019) 5.88 (.016)  0.170 (.032) 0.703 (.025) 
  [0.992] [0.997]  [0.542] [0.669] 
1 Kid Under 6 {23,721}  4.71 (.021) 5.81 (.019)  0.116 (.035) 0.594 (.029) 
  [0.991] [0.997]  [0.529] [0.644] 
2+ Kids Under 6 {6,688}  4.67 (.039) 5.82 (.034)  0.179 (.062) 0.573 (.057) 
  [0.991] [0.997]  [0.545] [0.639] 
One-Parent FG {50,615}  4.80 (.015) 5.86 (.013)  0.160 (.025) 0.687 (.020) 
  [0.992] [0.997]  [0.540] [0.665] 
Two-Parent UP {11,425}  4.64 (.031) 5.78 (.027)  0.102 (.049) 0.468 (.045) 
  [0.990] [0.997]  [0.525] [0.615] 
1988 Cohort {16,732}  4.65 (.024) 5.75 (.022)  0.067 (.046) 0.632 (.033) 
  [0.991] [0.997]  [0.517] [0.653] 
1989 Cohort {15,544}  4.70 (.026) 5.88 (.023)  0.094 (.041) 0.616 (.037) 
  [0.991] [0.997]  [0.523] [0.649] 
1990 Cohort {15,463}  4.79 (.027) 5.84 (.023)  0.230 (.044) 0.606 (.037) 
  [0.992] [0.997]  [0.557] [0.647] 
1991 Cohort {14,301}  4.99 (.030) 5.92 (.024)  0.245 (.051) 0.747 (.038) 
  [0.993] [0.997]  [0.561] [0.679] 
1st-Quarter Entry {25,869}  4.84 (.021) 5.83 (.017)  0.263 (.035) 0.751 (.027) 
  [0.992] [0.997]  [0.565] [0.679] 
2nd-Quarter Entry {12,465}  4.70 (.029) 5.82 (.026)  0.083 (.063) 0.615 (.041) 
  [0.991] [0.997]  [0.521] [0.649] 
3rd-Quarter Entry {13,872}  4.76 (.028) 5.89 (.025)  0.091 (.042) 0.524 (.040) 
  [0.992] [0.997]  [0.523] [0.628] 
4th-Quarter Entry {9,834}  4.70 (.033) 5.85 (.030)  0.042 (.036) 0.554 (.047) 
  [0.991] [0.997]  [0.510] [0.635] 
NOTE: Sample sizes are in {braces}; standard errors are in (parentheses); and probabilities are in [brackets].  The probabilities correspond to the 
fraction of cases with sequences that exhibit more state dependence as implied by the estimates: p=exp(γ)/[1+exp(γ)].  The estimates of the 
standard errors are based on the Huber formula for a robust estimator of the variance-covariance matrix. 
 
 


