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Abstract

In this paper I investigate response bias in survey data on annual driving mileage and evaluate the

performance of a proposed remedy, Orbit. Individuals systematically exaggerate their deviation

from the sample average, and using the self-reported data leads to misleading estimates of the

income elasticity of travel mileage. I extend the Orbit procedure, which is designed to correct for

reporting bias, to allow misreporting at the lower censoring point. Orbit fails to detect the nature

of the bias and distorts the income elasticity estimate even further. The message for practitioners

using biased data is therefore a cautionary one.

Keywords: Orbit, response bias, travel demand, semiparametric estimation, censoring, ordered

choice data.



1 Introduction

Many microeconometric studies make use of survey data, such as answers to questions on an

individual’s job history, consumer expenditure, and use of technology. A potential concern with

any self-reported information is response bias. In this paper I investigate response bias in answers

to a particular survey question–how many miles the respondent drove last year–and evaluate the

performance of a remedy proposed in the econometric literature. I find that there is systematic

response bias, with individuals exaggerating their deviation from the sample average, and that

using the self-reported data leads to misleading estimates of the income elasticity of miles driven.

Klein and Sherman’s (1997) Orbit estimator, which is designed to correct for reporting bias, fails

to detect the nature of the bias and distorts the income elasticity estimate even further.

I make three contributions in this paper. First, I discuss pseudo-precision bias, caused by

asking respondents to quantify something they have never precisely measured, and estimate the

bias in a self-report of annual mileage driven. This estimation is non-trivial its own right due

to non-standard censoring of the data. I find that using the misreported data to estimate the

determinants of mileage leads to substantial bias in the estimates. Second, I extend Klein and

Sherman’s (1997) Orbit estimator slightly to match the requirements of the present application.

This generalized version may be useful in other settings as well. Finally, I demonstrate that Orbit

estimation using the self-reported data does not improve the accuracy of the estimated coefficients

caused by the misreporting of mileage, and furthermore does not correctly uncover the direction

of the pseudo-precision bias either. Thus, in this particular application no cure is found for the

problems caused by response bias. The message for practitioners using survey data where pseudo-

precision bias is a concern is therefore a cautionary one. As promising as techniques like Orbit

are for undoing the ills caused by biased self-reported measurements, in some applications the

assumptions required for Orbit will fail and there is no substitute for accurate data. Without more

accurate data one will not even be able to assess how badly Orbit is failing.
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I begin in section 2 by investigating the relationship between self-reported and odometer-

measured mileage using observations on both. I then explore the effects of various covariates

on miles driven in section 3, with an emphasis on estimating the income elasticity. The income

elasticity of mileage for low-income households is estimated to be much higher when self-reported

miles are used than when measured miles are used. The Orbit estimate of the income elasticity

is even higher yet. Furthermore, I show in section 4 that the Orbit estimate of the response bias

function fails to reveal the marked exaggeration by drivers who claim very low or very high mileage.

2 Investigating the Response Bias

To correctly answer a measurement question on a survey, the information must be accessible to

a respondent. Accessibility requires that the respondent had the information at some point and

understood it, and that he can retrieve it from memory (Kalton and Schuman, 1982). In most

surveys there is no way to directly measure response bias due to inaccessibility, because there is

no objective, external measurement of the quantity in question. Rarely authors in the economics

literature have been able to link to external data to verify the accuracy of the survey responses

(see Oyer (2004) and citations therein). These studies focus on recall bias of job history. Recall

bias pertains to the memory retrieval part of accessibility. In contrast, in this study I examine the

other component of inaccessibility bias, which I term pseudo-precision bias: that due to asking for

factual information the respondent never possessed in the first place.

To illustrate these two components of inaccessibility bias, consider a survey question asking a

part-time worker how many hours she worked last year. Pseudo-precision bias come from her esti-

mating the answer, if she never calculated her hours at year end. Recall bias comes into play if she

did the calculation in the past and has to remember the figure. There may be many daily activities

in which survey respondents do not normally quantify their amount of participation. Examples

of survey questions about these less-quantified activities include asking how often individuals use
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a cellular telephone while driving (Hahn and Prieger, 2004), how many days a home computer is

used each week (the Computer Use and Ownership supplement to the 1997 Current Population

Survey), and how much is spent on average gambling each month (Lesieur, 1998). Errors in such

reports are not caused by recall bias, but instead from the respondent’s attempt to quantify for

the sake of the survey that which he may never have quantified before in his daily life for his own

purposes. Often researchers using such survey data take them at face value, despite the possibility

of false precision.

The 2001 National Household Travel Survey (NHTS) by the U.S. Department of Transportation

offers an interesting opportunity to explore pseudo-precision bias in such measurement questions.

The survey asks drivers how many miles they drove their vehicle in the past 12 months. I call the

answer to this question SRMILES, for self reported mileage. Odometer readings were also taken by

the respondent at two points in time, the first of which was usually at the time of the main survey

questioning. From the odometer readings, the survey administrator created an annualized estimate

of miles driven by the vehicle during the period May 2001—April 2002 (the estimate adjusts for the

duration between odometer readings and seasonal and annual differences in miles traveled). I call

this measurement-based mileage variable ODOMILES. For the most accurate results, I restricted

the sample to observations where SRMILES and ODOMILES should be close to each other if

SRMILES were accurately reported: observations where the respondent is answering questions

about his or her own driving and is the primary driver of a single automobile. Vehicles with

odometer readings taken less than 90 days apart were excluded. Finally, I required a minimum

of six months overlap between the coverage period for ODOMILES (May 2001—April 2002) and

the period covered by SRMILES. This leaves 4,182 observations. Discrepancies between the two

variables are due to two factors: errors caused by the annualization of the odometer readings, and

reporting bias by the respondent.

The data are plotted in Figure 1. One unusual feature of the NHTS data is the non-standard

censoring of ODOMILES, which is immediately apparent in Figure 1. When the ratio of SRMILES
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to ODOMILES is greater than four or less than one-quarter, and the absolute deviation is greater

than 10,000 miles, ODOMILES is not reported. About 8.5% of the odometer readings in the

estimation sample are censored above or below.

Do respondents accurately report mileage? On average, yes. The means of odometer-measured

and self-reported miles (for the uncensored observations) are 11,912 and 11,728, respectively. How-

ever, the averages mask the imprecision in the relationship: correlation is only 0.64 between the

uncensored observations. It would most likely be lower if the censored ODOMILES were able to

be observed, because it is the observations for which the two variable differ widely that are cen-

sored. To further explore the relationship between SRMILES and ODOMILES, I use piecewise

polynomial splines and nonparametric smoothing. Mileage is measured in logs in all estimations,

although depicted in levels on the graphs. The censoring precludes the use of simple OLS for con-

sistent estimation of the piecewise polynomial splines, for reasons familiar to tobit model settings.

The parametric splines are fitted by MLE, assuming normal errors in a log-log specification of

SRMILES on ODOMILES (see the appendix for the likelihood). The resulting fit, depicted as the

heavy line in Figure 1, shows that odometer-measured mileage exceeds self-reported mileage up to

about 5,000 miles, is roughly equal to self-reported mileage between 5,000 and 13,000 miles, and is

less than self-reported mileage for higher mileage. Friedman’s (1984) variable-span local averaging

smoother, drawn in Figure 1 with the lighter solid line, shows a similar relationship between the

two measures of mileage. The smoother does not account for the censoring, however, and the

discrepancy up to 5,000 miles does not look as severe because the above-censored observations in

that region are dropped.

I interpret the discrepancy between fitted odometer-measured mileage and self-reported mileage

as pseudo-precision bias. In this view, then, drivers underreport actual mileage up to 5,000 miles

and overreport actual mileage beyond 13,000 miles. In other words, drivers exaggerate their devi-

ation from the average when they are far from it. The other potential cause of the discrepancy is

measurement error in ODOMILES caused by the annualization of the odometer readings. How-
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ever, this measurement error should be mean zero by construction because the annualization uses

national averages to account for seasonal and yearly differences in mileage. Censoring difficulties

aside, mean-zero measurement error in the dependent variable does not lead to inconsistent esti-

mates. Recall bias is less germane with this question, unless the driver calculated mileage weekly

or monthly during the course of the past year, which is unlikely for most. Therefore it appears safe

to interpret systematic differences between SRMILES and ODOMILES as pseudo-precision bias.

3 Estimating the Income Elasticity of Mileage

Now that the form of the reporting bias is known, I turn to estimating the determinants of miles

driven. Economists often use survey data to estimate relationships between variables. For the

sake of concreteness, here I assume to relationship of interest is the income elasticity of annual

mileage, although the same conclusions would be reached with many of the other variables as well.

The income elasticity may be of interest, for example, to a regional planner trying to forecast

transportation infrastructure needs over a forecast period in which household incomes are expected

to grow. A second example is the problem of evaluating the effects of environmental legislation

on gasoline consumption and pollution, in which the income elasticity of mileage may play a role

(Goldberg, 1998). I first estimate the income elasticity using the odometer-measured mileage, which

is taken to be the best estimate of the true income elasticity. I then demonstrate that using the

self-reported mileage instead leads to poor estimates of the income elasticity, and that an a priori

promising method to correct for survey bias, Orbit, does not improve the estimate but instead

exacerbates the bias.

In addition to income, many other factors such as age, gender, employment status, and mode

of travel to work may affect annual mileage. I control for these variables in all estimations, as well

as for vehicle type and age, rural location, and Census region. The estimation results when the

dependent variable is ODOMILES in logs are in the first columns of Table 1. The income elasticity
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significantly differs from zero only for the lowest household income quartile group (Income1 ), for

which it is a relatively inelastic 0.14. Thus the income elasticity of annual mileage with respect

to income is very small, and significant only for lower-income households. This finding accords

with the small income elasticities of gasoline demand found by Goldberg (1998) and others. Of

the other significant coefficients, newer vehicles, vans and minivans, male drivers, employment, and

rural location are all correlated with higher annual mileage. Age shows an inverted-U pattern with

peak mileage at age 35.

In a typical survey setting, ODOMILES would not be available to the researcher, and estimation

would instead be based on self-reported miles. The same estimation repeated using SRMILES as

the dependent variable is in the middle columns of Table 1. There is no censoring of SRMILES

and OLS can be used to estimate the income elasticity. The elasticity estimate is again significant

at the 5% level only for the first income quartile group. However, the estimate Income1 is 0.23,

nearly twice as high as (and outside the 95% confidence interval of) the previous estimate. The

same pattern applies to the other coefficients in the specification as well: the significance of each

is typically similar to the first estimation, but the magnitudes are often quite different. Thus,

in the examples mentioned above, the self-reported measure could lead to misleading forecasts of

demand for transportation infrastructure such as roadways, or to incorrect predictions of the effects

of environmental policy on gasoline consumption.

If one suspects that miles are measured with error when self-reported and other data are not

available, then one may look to the econometric literature for estimators designed to be consistent

in the presence of reporting bias of unknown form. One of the few such estimators appropriate for

continuous data is Klein and Sherman’s (1997) (hereafter KS) Orbit estimator. Other estimators

available in the literature for biased survey data (Klein and Sherman, 2002; Hsiao and Sun, 1999)

are designed primarily for discrete data. The model for the true quantity Q and the reported
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quantity Y is assumed to be

Q = Λ(Y ) = 1{X 0β0 + u > c}
¡
X 0β0 + u

¢
(1)

where 1{·} is the indicator function, X and β0 are k-vectors, u has a known parametric distribution,

c is a censoring point, and Λ is the inverse of a strictly monotone reporting function mapping the

truth into the report. Three advantages of the Orbit estimator are that it places few restrictions

on Λ (for example, Λ need not be differentiable), it can handle censored data, and it is relatively

easy and quick to implement, unlike many semiparametric estimators. One potential disadvantage

is that Λ must be the identity function at two known points: Λ(c) = c and Λ(s) = s for some

s > c. Without this latter assumption Λ is identified only up to location and scale. Assume that

u is distributed N (0, σ20). Define z = (y, x) ∈ [c,∞) × Rk, θ = (β, σ2) ∈ Θ, a compact subset of

Rk ×R++. For each λ1, λ2, t1, t2 (each greater than c) define

f(λ1, λ2, t1, t2, z, θ) = 1 {y ≤ t1} logΦ
µ
λ1 − x0β

σ

¶
(2)

+1 {t1 < y ≤ t2} log
∙
Φ

µ
λ2 − x0β

σ

¶
− Φ

µ
λ1 − x0β

σ

¶¸
+1 {y > t2} log

∙
1− Φ

µ
λ2 − x0β

σ

¶¸
where Φ is the standard normal cdf. The Orbit estimator of θ proposed by KS given a sample of

independent observations from model (1), z1, . . . , zN , is

θ̂(s) = argmax
θ

1

N

NX
i=1

f(c, s, c, s, zi, θ) (3)

Orbit takes its name because θ̂ is a maximum likelihood estimator for ordered choice data (along

with the tobit form of (1)). As such, it is
√
N -consistent for θ0 and asymptotically normal, and

the asymptotic standard errors reported by any econometric software for MLE will be correct.

The promise of the Orbit estimator is clear: if (1) is correctly specified, then even if respondents

misreport the truth almost everywhere across the range of the data the true parameter value θ0

can be consistently estimated. No parametric or continuity assumptions are required of Λ, beyond
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monotonicity and known value at two points. If the parametric assumption on u in (1) is of concern,

Klein and Sherman (2002) extend the procedure to allow estimation of θ0 without specifying a

distribution for u.

For the present application, c = 0 (i.e., there can be no negative miles reported). Because

the assumption that Λ(0) = 0 is problematic given that the data are to be transformed into logs

(and furthermore given the overreporting demonstrated in the previous section for small values

of SRMILES), I extend the Orbit estimator slightly. If the two fixed points of Λ required for

identification are instead s1 > c and s2 > s1 satisfying ΛΛ(s1) = s1 and Λ(s2) = s2, then let the

extended Orbit estimator for θ0 be

θ̂2(s1, s2) = argmax
θ

1

N

NX
i=1

f(s1, s2, s1, s2, zi, θ) (4)

This version of Orbit is useful in any application where the data may be misreported at the

censoring point. The results from this estimation, with s1 = 5,000 and s2 = 8,000 (chosen based

on Figure 1), are in the final columns of Table 1. It is worth noting that without the information

from Figure 1, which the researcher would not have if ODOMILES were not available, selection of

s1 and s2 would be more difficult (KS provide guidance on selection of the fixed points, however).

The elasticity estimate is again strongly significant only for the first income quartile group. The

estimate Income1 is 0.35, even higher than (and outside the 95% confidence interval for) the OLS

estimate using the self-reported data and 2.5 times as high as the estimate using ODOMILES.

If the fixed points s1 and s2 are incorrectly chosen but the model is otherwise correctly specified,

then θ̂ will be biased but β̂/σ̂ is still consistent for β0/σ0 for the slope elements of β0. However,

even if the ratio of the Orbit coefficient for Income1 to σ̂ is examined instead of the coefficient

itself, it is still more than twice the same ratio from the estimates using ODOMILES. Thus, in

this application, not only does Orbit fail to correct the bias evidenced in the OLS estimate using

SRMILES, it moves the estimate in the wrong direction.
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4 Estimating the Response Bias with Orbit

The Orbit procedure also allows semiparametric estimation of Λ itself. The next question, then,

is whether Orbit can correctly uncover the response bias pattern shown in Figure 1. Let Lt be a

compact subset of R containing Λ(t) for each t > c. Define

f−(λ, t, s, z, θ) = f(s, λ, s, t, z, θ) (5)

f+(λ, t, s, z, θ) = f(λ, s, t, s, z, θ) (6)

The Orbit estimator for Λ at t is

Λ̂(t; s) = argmax
λ∈Lt

1

N

NX
i=1

f−(λ, t, c, zi, θ̂(s)) (7)

Note that the estimate of θ0 from the first stage is used in this second stage. My extended estimator

for Λ is

Λ̂−(t, s2; s1) = argmax
λ∈Lt

1

N

NX
i=1

f−(λ, t, s2, zi, θ̂2(s1, s2)) for t ∈ [c, s2] (8)

Λ̂+(t, s1; s2) = argmax
λ∈Lt

1

N

NX
i=1

f+(λ, t, s1, zi, θ̂2(s1, s2)) for t ∈ [s1,∞) (9)

Note that for t ∈ [s1, s2] two estimates are available and must be reconciled in some way. Given

any two consistent estimators and their covariance, one can derive the minimum-variance linear

combination of the two. In this application (and in other simulations I performed), however, the

difference between estimates Λ̂− and Λ̂+ for t ∈ [s1, s2] is negligible (on the order of 0.02% at most)

and I simply average the two. Thus the extended estimator is

Λ̂2(t; s1, s2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Λ̂−(t, s2; s1)

1
2 Λ̂
−(t, s2; s1) +

1
2Λ̂

+(t, s1; s2)

Λ̂+(t, s1; s2)

for

t ∈ [c, s1]

t ∈ (s1, s2]

t ∈ (s2,∞)]

(10)

Λ̂2 is a step function with jumps at the sample values yi. Λ̂(t) is
√
N -consistent for Λ(t) and

asymptotically normal and Λ̂ converges in distribution to a Gaussian process; see KS for details.
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The extension of these results to Λ̂2 is straightforward. KS derive the pointwise variance of Λ̂2(t; ·),

which I do not replicate here, but the practitioner should note that the standard errors reported

by the MLE routine will not be correct, due to the embedded estimate θ̂2 in Λ̂2.

The estimate of Λ for the present application, with s1 = 5,000 and s2 = 8,000 as above, is shown

in Figure 2. One of the great advantages of Orbit is its speed of implementation. Generating the

data for the figure required estimating Λ̂2 at a grid of 300 t’s, each point of which requiring MLE.

However, each MLE requires estimation of but a single parameter, and the whole process took only

75 seconds using the software package TSP on a PC with a 1.6Ghz processor. Comparing Figure

2 with the bias pattern revealed in Figure 1 shows that Λ̂2 does not uncover the actual reporting

bias. Λ̂2 in Figure 2 suggests that self-reported miles mildly overreport ODOMILES up to 8,000

miles (best seen from the inset in the figure), after which gross underreporting sets in. However,

this is exactly the opposite pattern from that found in Figure 1 where ODOMILES were actually

used in the estimation.

Why does Orbit fail so badly to estimate the reporting bias? The problem lies not with the

estimator itself. KS show that Orbit does well in simulations (which I verified for my extension

of Orbit) when the assumptions of the model are satisfied. The first suspicion, then, may be that

the parametric assumption for u in (1) is incorrect. However, when u is assumed to be logistic, or

when u is assumed to be normal but SRMILES and ODOMILES are in levels instead of logs, the

same general bias pattern as in Figure 2 results. Neither varying s1 and s2 nor using the original

version of Orbit instead of my extension changed the results qualitatively, either. Furthermore,

normality appears to be a satisfactory assumption for u in (1), except possibly for the lower tail

of the distribution. A quantile-quantile(QQ)-plot (Figure 3) of the residuals from the regression of

ODOMILES (from the first columns of Table 1) shows that, apart from the lower 1% of the tail, the

residuals line up well with the standard normal distribution. If the distributional assumption for the

regression error is correct, the standardized residuals in a QQ-plot will be close to the 45-degree line

when plotted against quantiles of the standard normal distribution. In the figure, residuals from
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censored observations were replaced with random draws from the appropriate truncated normal

distribution (Dunn and Smyth, 1996).

A more likely reason for the failure of Orbit in this application is the nature of the misreporting

itself. While the fitted lines in Figure 1 reveal a clear pattern of bias, the figure also shows that

there is substantial deviation in the data from the average bias at any one value of SRMILES.

The correlation between SRMILES and ODOMILES is only 0.65 for the uncensored observations

(and it would probably be lower if completely uncensored observations were available), whereas if

the data lined up perfectly with the fitted polynomial spline the correlation would be 0.92. The

model in (1) assumes that the reporting function transforms the true measurement in a consistent,

deterministic fashion. This may be true if the misreporting at issue is recall bias. For exam-

ple, numerous studies have shown that individuals systematically bring events forward in time in

their memory–a phenomenon known as telescoping (Kalton and Schuman, 1982). However, when

pseudo-precision bias–the other component of inaccessibility bias–is at issue, (1) may not be a

good model of the outcome of the cognitive processes of the respondent. Asking a respondent to

report a measurement the individual has never taken may result in anything from random answers

to informed “guesstimates”. In such cases the correct model would be considerably more complex

than that in (1), and any assumed model would be untestable.

5 Conclusion

In this article I explore pseudo-precision bias, which is caused by asking survey respondents to quan-

tify something they have never precisely measured, and an attempted cure. The driving mileage

data I investigate exhibits systematic reporting bias, with respondents exaggerating their deviation

from the mean in the tails of the distribution. The misreported data leads to substantial bias in

the estimated income elasticity of mileage. An extension of Klein and Sherman’s (1997) Orbit

estimator fails to improve the accuracy of the income elasticity estimate, and in fact increases the
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bias. Orbit also incorrectly estimates the direction of the pseudo-precision bias. Practitioners using

survey data subject to pseudo-precision bias must therefore beware. No econometric technique can

remove the need for more accurate data.

Although the assumptions necessary for Orbit apparently fail in this application, the extended

version of Orbit I present may prove useful in other settings. For example, any model that is linear

in the covariates in a region around the mean but deviates from linearity in the tails (subject to

monotonicity of the transformation function) can estimated with the extended version of Orbit.

A Appendix: Likelihood for Censored Mileage

Assume the model relating ODOMILES (y) to SRMILES (x) is

log y = P3(log x) + ε

Here P3 is a piecewise cubic spline function: P3(w) = α +
P3

i=1

P4
j=0 βij(w − κj)

i, where (α, β)

are parameters to be estimated, κ0 = 0, and κ1, . . . , κ4 are the quintiles of SRMILES. The error ε

is distributed N(0, τ20). Let d be a censoring indicator that is zero if ODOMILES is not censored.

There are four types of censoring possible:

d = 1 if 0 < x ≤ 3, 333.3 and y > x+ 10, 000 (censored above)
d = 2 if 3, 333.3 < x ≤ 10, 000 and y

x > 4 (censored above)
d = 3 if 10, 000 < x ≤ 13, 333.3 and y < x− 10, 000 or y

x > 4 (censored above or below)
d = 4 if x > 13, 333.3 and y

x < 1
4 or

y
x > 4 (censored above or below)
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When d = 3 or 4, it is not known whether y is censored above or below. Define the following

censoring functions:

c1(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−∞ if d ≤ 2

log(x− 10,000) if d = 3

log(x)− log(4) if d = 4

c2(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
log(x+ 10,000) if d = 1

log(x) + log(4) if d = 2

∞ if d ≥ 3

Then the log likelihood for an observation i is

lnLi = 1{di = 0} ·
½
− log(σ) + log

∙
φ

µ
ln yi − P3(log xi)

σ

¶¸¾
+1{di ≥ 1} ·

½
log

∙
Φ

µ
c1 − P3(log xi)

σ

¶
+ 1− Φ

µ
c2 − P3(log xi)

σ

¶¸¾
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Figure 1: Direct Estimates of Bias in Self-Reported Miles. The parametric fit is from MLE of

a piecewise cubic spline with knots at the quartiles of the data. The nonparametric fit is from

Friedman’s supersmoother. The scatter plot is the data, which are censored above and below.
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Figure 2: Orbit Estimate of Bias in Self-Reported Miles. Inset graph shows detail for small values

of SRMILES.
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Figure 3: Quantile-Quantile Plot of the Residuals from the ODOMILES Estimation. Points off the

45-degree line indicate departures from normality.
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Dep var: ODOMILES SRMILES SRMILES
Estimator: MLE OLS Orbit

coef. s.e. coef. s.e. coef. s.e.

Constant 7.67 (0.46)∗∗∗ 7.07 (0.46)∗∗∗ 6.21 (0.90)∗∗∗

Income1 0.14 (0.04)∗∗∗ 0.23 (0.05)∗∗∗ 0.35 (0.09)∗∗∗

Income2 -0.08 (0.14) 0.15 (0.10) 0.36 (0.20)∗

Income3 0.00 (0.18) 0.17 (0.10)∗ 0.35 (0.22)
Income4 0.03 (0.22) 0.06 (0.12) 0.26 (0.26)

DriveToWork 0.04 (0.06) -0.04 (0.04) 0.15 (0.08)∗

Carpool -0.02 (0.14) -0.10 (0.09) -0.12 (0.18)
VehicleAge -0.05 (0.00)∗∗∗ -0.05 (0.00)∗∗∗ -0.09 (0.01)∗∗∗

Van 0.25 (0.08)∗∗∗ 0.15 (0.04)∗∗∗ 0.21 (0.09)∗∗

SUV 0.05 (0.06) 0.07 (0.04)∗ 0.20 (0.09)∗∗

Pickup -0.15 (0.06)∗∗∗ 0.01 (0.04) 0.03 (0.09)
Female -0.13 (0.04)∗∗∗ -0.27 (0.03)∗∗∗ -0.50 (0.07)∗∗∗

Age 0.03 (0.01)∗∗∗ 0.00 (0.01) 0.02 (0.01)∗∗

AgeSq 0.00 (0.00)∗∗∗ 0.00 (0.00)∗∗∗ 0.00 (0.00)∗∗∗

Employed 0.16 (0.06)∗∗ 0.25 (0.05)∗∗∗ 0.15 (0.09)

Rural 0.28 (0.05)∗∗∗ 0.16 (0.03)∗∗∗ 0.28 (0.07)∗∗∗

Midwest 0.01 (0.06) 0.01 (0.04) -0.03 (0.08)
South 0.10 (0.05)∗∗ 0.09 (0.04)∗∗ 0.08 (0.08)
West 0.07 (0.06) -0.02 (0.04) -0.02 (0.09)
σ 1.10 (0.00)∗∗∗ 0.85 1.31 (0.06)∗∗∗

ln(L) -6074.97 -5259.81 -2314.05

* = 10% level significance; ** = 5% level significance; *** = 1% level significance.
Table notes: N = 4, 182. For each pair of columns, the dependent variable is given in the top row and
the estimation technique in the second row. The model for ODOMILES is given in the appendix. The
Orbit estimator for the second SRMILES model is presented in (4). Asy. s.e. in parentheses. Incomen
is the income elasticity for the nth household income quartile group.

Table 1: Estimation Results for the Income Elasticity of Annual Mileage

18


