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Abstract

Microeconometrics researchers have increasingly realized the essen-
tial need to account for any within-group dependence in estimating
standard errors of regression parameter estimates. The typical pre-
ferred solution is to calculate cluster-robust or sandwich standard er-
rors that permit quite general heteroskedasticity and within-cluster er-
ror correlation, but presume that the number of clusters is large. In ap-
plications with few (5-30) clusters, standard asymptotic tests can over-
reject considerably. We investigate more accurate inference using clus-
ter bootstrap-t procedures that provide asymptotic re�nement. These
procedures are evaluated using Monte Carlos, including the much-cited
di¤erences-in-di¤erences example of Bertrand, Mullainathan and Du�o
(2004). In situations where standard methods lead to rejection rates
in excess of ten percent (or more) for tests of nominal size 0:05, our
methods can reduce this to �ve percent. In principle a pairs cluster
bootstrap should work well, but in practice a Wild cluster bootstrap
performs better.
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1 Introduction

Microeconometrics researchers have increasingly realized the essential need
to account for any within-group dependence in estimating standard errors of
regression parameter estimates. A leading example involves using ordinary
least squares (OLS) and U.S. household survey data to estimate the e¤ects
of changes in state policies on wages or labor supply. The policy regressor is
perfectly correlated (invariant) within state and, even after control for many
additional regressors, the error likely will be correlated within states given
that states are thought of as distinct labor markets.

In such settings the default OLS standard errors that ignore such cluster-
ing can greatly underestimate the true OLS standard errors, as emphasized
by Moulton (1986, 1990).

A common correction is to compute cluster-robust standard errors that
generalize the White (1980) heteroskedastic-consistent estimate of OLS stan-
dard errors to the clustered setting. This permits both error heteroskedas-
ticity and quite �exible error correlation within cluster, unlike a much more
restrictive random e¤ects or error components model. In econometrics this
adjustment was proposed by White (1984) and Arellano (1987), and it is im-
plemented in STATA, for example, using the cluster option. In the statistics
literature these are called sandwich standard errors, proposed by Liang and
Zeger (1986) for generalized estimating equations, and they are implemented
in SAS, for example, within the GENMOD procedure. A recent brief survey
is given in Wooldridge (2003).

Not all empirical studies use appropriate corrections for clustering. In
particular, for �xed e¤ects panel models the errors are usually correlated
even after control for �xed e¤ects, yet many studies either provide no control
for serial correlation or erroneously cluster at too �ne a level. Kezdi (2004)
demonstrated the usefulness of cluster robust standard errors in this setting
and contrasted these with other standard errors based on stronger distribu-
tional assumptions. Bertrand, Du�o, and Mullainathan (2004), henceforth
BDM (2004), focused on implications for di¤erence-in-di¤erence (DID) stud-
ies using data on individuals across states and years. Then the regressor
of interest is an indicator variable that is highly correlated within cluster
(state) so there is great need to correct standard errors for clustering. The
clustering should be on state, rather than on state-year.
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A practical limitation of inference with cluster-robust standard errors is
that the asymptotic justi�cation assumes that the number of clusters goes to
in�nity. Yet in some applications there may be few clusters. For example,
this happens if clustering is on region and there are few regions. With a
small number of clusters the cluster-robust standard errors are downwards
biased. Bias corrections have been proposed in the statistics literature;
see Kauermann and Carroll (2001), Mancl and DeRouen (2001), and Bell
and McCa¤rey (2002). But even after appropriate bias correction, with
few clusters the usual Wald statistics for hypothesis testing with asymp-
totic standard normal or chi-square critical values over-reject. BDM (2004)
demonstrate through a Monte Carlo experiment that the Wald test based
on (unadjusted) cluster-robust standard errors over-rejects if standard nor-
mal critical values are used. Donald and Lang (2004) also demonstrate this
and propose, for DID studies with policy invariant within state, an alter-
native two-step GLS estimator that leads to T-distributed Wald tests in
some special circumstances. Angrist and Lavy (2002) in an applied study
�nd that bias adjustment of cluster-robust standard errors can make quite
a di¤erence.

In this paper we investigate whether bootstrapping to obtain asymptotic
re�nement leads to improved inference for OLS estimation with cluster-
robust standard errors when there are few clusters. We focus on cluster
bootstrap-t procedures that are generalizations of those proposed for regres-
sion with heteroskedastic errors in the nonclustered case. Previous studies
have also investigated the performance of some cluster bootstraps, an early
simulation study being that by Sherman and le Cressie (1997). But there
have been relatively few such studies, and each study focuses on one partic-
ular bootstrap method.

Several features of our bootstraps are worth emphasizing. First, the
bootstraps involve resampling entire clusters. Second, our goal is to use
variants of the bootstrap that provide asymptotic re�nement, whereas most
econometric applications use the bootstrap only to obtain consistent esti-
mates of standard errors. Third, we consider several di¤erent cluster re-
sampling schemes: pairs bootstrap, residuals bootstrap and wild bootstrap.
Fourth, we consider examples with as few as �ve clusters, as it is not un-
usual in a clustered setting to have so few clusters yet still have parameter
estimates su¢ ciently precise that coe¢ cients may be statistically signi�cant
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at conventional signi�cance levels. Fifth, we evaluate our bootstrap proce-
dures in a number of settings including examples of others that were used
to demonstrate the de�ciencies of standard cluster-robust methods.

The paper is organized as follows. Section 2 provides a summary of
standard asymptotic methods of inference for OLS with clustered data, and
presents small-sample corrections to cluster-robust standard errors that have
been recently proposed in the statistics literature. Section 3 presents various
possible bootstraps for clustered data, with additional details relegated to an
Appendix. Sections 4 to 6 present, respectively, a Monte Carlo experiment
using generated data, a Monte Carlo experiment using data from BDM
(2004), and an application using data from Gruber and Poterba (1994).

The primary contribution of this paper is to o¤er methods for more
accurate cluster-robust inference. These methods are fairly simple to imple-
ment and matter substantively in both our Monte Carlo experiments and
our replications.

A second important contribution of this paper is to o¤er a careful and
precise description of the various bootstraps a researcher might perform, and
the similarities and di¤erences between our proposed methods and several
commonly-applied methods. Our primary motivation for presenting this
description is to be precise about our methods. However, it also o¤ers
empiricists a clearer understanding of the menu of bootstrap choices and
their consequences.

2 Cluster-Robust Inference

Before considering the bootstrap we present results on inference with clus-
tered errors.

2.1 OLS with Clustered Errors

The model we consider is one withG clusters (subscripted by g), and withNg
observations (subscripted by i) within each cluster. Errors are independent
across clusters but correlated within clusters. The model can be written at
various levels of aggregation as

yig = x0ig� + uig; i = 1; :::; Ng, g = 1; :::; G;
yg = Xg� + ug; g = 1; :::; G;
y = X� + u;

(1)

4



where � is k�1, xig is k�1, Xg is Ng�k, X is N �k, N =
P
gNg, yig and

uig are scalar, yg and ug are Ng � 1 vectors and y and u are N � 1 vectors.
Interest lies in inference for the OLS estimator

b� =

�XG

g=1

XNg

i=1
xigx

0
ig

��1�XG

g=1

XNg

i=1
xigyig

�
(2)

=

�XG

g=1
X0gXg

��1�XG

g=1
X0gyg

�
= (X0X)�1X0y:

Under the assumptions that data are independent over g but errors are
correlated within cluster, with E[ug] = 0, E[ugu0g] = �g, and E[ugu

0
h] = 0

for cluster h 6= g, we have b� a� N [�, V[b�]] where
V[b�] = (X0X)�1�XG

g=1
Xg�gX

0
g

�
(X0X)�1: (3)

This di¤ers from and is usually larger than the specialization

V[b�] = �2u(X0X)�1 (4)

that is based on the assumption of iid errors and leads to the default OLS
variance estimate when �2u is estimated by s

2 = bu0bu=(N �k). In the case
where the primary source of clustering is due to group-level common shocks,
a useful approximation is that for the jth regressor the default OLS variance
estimate should be in�ated by the variance in�ation multiplier

� j ' 1 + �xj�u( �Ng � 1); (5)

where �xj is the within cluster correlation of xj , �u is the within cluster
error correlation, and �Ng is the average cluster size. This result is exact
if cluster sizes are identical, all regressors are invariant within cluster (so
�xj = 1) and the error follows a random e¤ects model, de�ned below. In
practice it provides a useful guide in a range of settings.1 As one example,
if there are 81 observations per cluster, the regressor is invariant within

1Kloek (1981) provides the special case. Scott and Holt (1982) and Greenwald (1983)
give more general results for unbalanced clustering and within-cluster regressor and error
correlation that varies across clusters. Similar variance in�ation arises in survey design,
for example two-stage sampling, and in that literature the multiplier is called the design
e¤ect.
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cluster, and �u = 0:10, then default OLS standard errors should be in�ated
by
p
1 + 0:1� 80 =

p
9 = 3.

Clearly it can be important to control for clustering, a point emphasized
by Moulton (1986, 1990) and more recently by BDM (2004). The underesti-
mation bias is increasing in (1) cluster size; (2) within-cluster correlation of
the regressor; and (3) within-cluster correlation of the error. The challenge
for inference is that �g is unknown.

2.2 Moulton-type Standard Errors

One approach is to model �g to depend on unknown parameters, say �g =
�g(
), and then use estimate b�g = �g(b
). The random e¤ects (RE)
model speci�es

uig = �g + "ig, �g � iid [0; �2�], "ig � iid [0; �2"]: (6)

Then V[uig] = �2u = �
2
" + �

2
�, Cov[uig; ujg] = �

2
�, and �u = Cor[uig; uig0 ] =

�2�=(�
2
"+�

2
�) is called the error intraclass correlation coe¢ cient. This model

yields cluster error covariance matrix �g = �2"INg + �
2
�eNge

0
Ng
, where eNg

is an Ng � 1 vector of ones, and we use variance estimate

bVRE[b�] = (X0X)�1�XG

g=1
Xg b�gX0g� (X0X)�1; (7)

where b�g = b�2"INg + b�2�eNge0Ng , and b�2" and b�2� are consistent estimates for
�2" and �

2
�. We call the resulting standard errorsMoulton-type standard

errors.

2.3 Cluster-Robust Variance Estimates

The RE model places restrictions of homoskedasticity and equicorrelation
within cluster. A less parametrically restrictive approach is to use the
cluster-robust variance estimator (CRVE)

bVCR[b�] = (X0X)�1�XG

g=1
Xgeugeu0gX0g� (X0X)�1; (8)

which is consistent if plimG�1
PG
g=1Xgeugeug 0X0g = plimG�1PG

g=1Xg�gX
0
g.

Standard errors based on bVCR[b�] are called cluster-robust standard er-
rors. In the simplest case OLS residuals are used, so eug = bug = yg �Xgb�.
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The CRVE controls for both error heteroskedasticity across clusters and
quite general correlation and heteroskedasticity within cluster, at the ex-
pense of requiring that the number of clusters G ! 1. It is implemented
for many STATA regression commands using the cluster option (which useseug = pcbug where c = G

G�1
N�1
N�k '

G
G�1 with large N), and is used in SAS in

the GENMOD procedure (which uses eug = bug).
The CRVE estimate is an immediate extension of the heteroskedastic

consistent covariance matrix estimator (HCCME) of White (1980)
for nonclustered data, i.e. in the special case Ng = 1. Many of the methods
we consider below can be viewed as extensions to the clustered case to
proposed adaptations of the nonclustered HCCME case.

2.4 Unbiased Cluster-Robust Variance Estimates

A weakness of the standard CRVE with eug = bug is that it is biased, since
E[bugbu0g] 6= �g = E[ugu0g]. The bias depends on the form of �g but will
usually be downwards.2 Several corrected residuals eug for (8) have been
proposed. The simplest, already mentioned, is to use eug =pG=(G� 1)bug.

Kauermann and Carroll (2001) and Bell and McCa¤rey (2002) use

eug = [INg �Hgg]
�1=2bug; (9)

where Hgg = Xg(X
0X)�1X0g. This transformed residual leads to unbiased

CRVE in (8) in the special case that �g = �2I, though in simulations the
authors �nd the correction works quite well even if �g 6= �2I.3 Bell and
McCa¤rey (2002) also use

eug =rG� 1
G

[INg �Hgg]
�1bug: (10)

Then bVCR[b�] in (8) with eug calculated using (10) can be shown to equal
the jackknife estimate of the variance of the OLS estimator.4 This jackknife

2For example, Kezdi (2004) uses eug = bug and �nds in his simulations that with G = 10
the donwards bias is between 9 and 16 percent.

3These papers, and that by Bell, McCa¤rey and Botts (2001), also propose corrections
for the more general case that �g 6= �2I, provided �g has a known parameterization, and
for extension to generalized linear models.

4The jackknife drops in turn each observation, here a cluster, computes the leave-
one-out estimate b�(g), g = 1; :::; G, and then uses variance estimate G�1

G

P
g(
b�(g) � b�).
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correction does not make an assumption about �g, and leads to downwards-
biased CRVE if in fact �g = �2I. Angrist and Lavy (2002) apply the cor-
rection (9) in an application with G = 30 to 40 and �nd that the correction
increases cluster-robust standard errors by between 10 and 50 percent.

Similar corrections have been well-studied for the HCCME in the non-
clustered case. The correction (9) generalizes the HC2 measure of MacK-
innon and White (1985) that sets eug = (1 � hgg)�1=2 where hgg is the gth
diagonal entry of X(X0X)�1X0 and is called the leverage measure in the lit-
erature on in�uential data points.5 The correction (10) generalizes the HC3
measure (jackknife) of MacKinnon and White (1985). Chesher and Jewitt
(1987) obtain HCCME bias results under the more general assumption that
errors are heteroskedastic rather than iid, and show that the performance
of various HCCME corrections depends crucially on the leverage measures,
with greater problems the larger is the maximum leverage. Chesher and
Austin (1991) emphasize that di¤erent design matrices X can lead to di¤er-
ent assessments of HCCMEs, a result that can be expected to carry over to
the clustered case.

We refer to the residual correction (10) as the CR3 variance estima-
tor, since it is a cluster extension of the HC3 procedure. An additional
complication in the clustered setting is that for some con�gurations of the
regressor design matrix INg�Hgg need not be full rank, leading to problems
in implementing these corrections.

2.5 Cluster-Robust Wald Tests

We consider two-sided Wald tests of H0 : �1 = �01 against Ha : �1 6= �01
where �1 is a scalar component of �.

6 We use theWald test statistic

w =
b�1 � �01
sb�1 ; (11)

Applied to the OLS estimator, some algebra yields jackknife estimate of variance (8) whereeug = p
(G� 1)=G [INg �Hgg]

�1bug. This is a multiple of the related measure proposed
by Mancl and DeRouen (2001) in the more general setting of GEE.

5The motivation is that bu =Mu, where M = I�X(X0X)�1X0, so that for E[uu0] =
�2I, E[bubu0] = M�2IM = �2M. It follows that E[bu2g] = �2Mgg, so E[(M

�1=2
gg bug)2] = �2.

6The generalization to single hypothesis c0�� r = 0 where c is a k� 1 vector is trivial.
For multiple hypotheses C�� r = 0 the Wald asympototic chisquare test would be used.
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where sb�1 is the square root of the appropriate diagonal entry in bVCR[b�].
This "t" test statistic is asymptotically normal under H0, and we reject H0
at signi�cance level � if jwj > z�=2, where z�=2 is a standard normal critical
value. Often � = 0:05, in which case z�=2 = 1:960.

Under standard assumptions the Wald test is of correct size as the num-
ber of clusters G!1. The problem we focus on in this paper is that with
few clusters the asymptotic normal critical values can provide a poor ap-
proximation to the correct, �nite-G critical values for w, even if an unbiased
variance matrix estimator is used in calculating sb�.

Small sample results are not possible even if the (clustered) errors are
normally distributed. Some intuition can be gained, however, by considering
balanced clusters (Ng = NG) with all regressors invariant within cluster
(xig = xg) and errors uig that are iid N [0; �2]. OLS estimation at either the
individual level or the aggregate level will lead to the same OLS estimator.
But the estimate of �2 di¤ers, leading to t-tests with quite di¤erent degrees
of freedom.

Using individual-level data, yig = x0g�+uig, the Wald test statistic using
default OLS standard errors is distributed T(N �k), since the errors are iid
normal. Suppose we instead use aggregated data, �yg = x0g� + �ug. Then the
OLS estimator equals that from the individual-level regression, as clusters
are balanced. Since �ug are iid N [0; �2=NG] the Wald statistic using default
OLS standard errors is T(G� k) distributed. The very large loss of degrees
of freedom is due to aggregation leading to a di¤erent estimate of �2: here
s2 = (G� k)�1

P
g
b�u2g rather than s2 = (N � k)�1

P
g

P
i bu2ig .

Now suppose we instead use the CRVE in forming the Wald statistic for
OLS estimation with individual-level data. This robust Wald statistic is no
longer T distributed, even if the errors are iid normal. Some algebra yieldsbVCR[b�] = (

P
g xgx

0
g)
�1(
P
g bu2gxgx0g)(Pg xgx

0
g)
�1, where bug = N�1

g

P
i buig.

This is a more variable variance estimator than that used with aggregated
data and default OLS standard errors, which can be expanded as bV[b�] =
(
P
g xgx

0
g)
�1(
P
g s
2xgx

0
g)(
P
g xgx

0
g)
�1 with s2 = (G � k)�1

P
h bu2h. Given

this more variable estimate of sb�1 , the Wald statistic using cluster robust
standard errors will have fatter tails than those of a T (G � k) distribu-
tion. For more detailed discussion of a related result for the HCCME, see
Kauermann and Carroll (2001).7

7Kezdi (2004) �nds in his simulations with iid errors that CRVE standard errors have
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In practice, as a small sample correction some programs use a T distri-
bution to form critical values and p-values. STATA uses the T(G � 1) dis-
tribution, which the preceding example suggests is better than the standard
normal, but may still not be conservative enough to avoid over-rejection.
Bell and McCa¤rey (2002) and Pan and Wall (2002) propose instead using
a T distribution with degrees of freedom determined using an approximation
method due to Satterthwaite (1941).

Rather than use OLS, Donald and Lang (2004) propose an alternative
two-step estimator that leads to a Wald test that in some special cases is
T(G�k1) distributed where k1 is the number of regressors that are invariant
within cluster and often k1 = 2 (the intercept and the clustered regressor of
interest).

We instead continue to use the standard OLS estimator with CRVE,
and bootstrap to obtain bootstrap critical values that provide an asymptotic
re�nement and may work better than other inference methods for OLS when
there are few clusters.

3 Cluster Bootstraps

Bootstrap methods generate a number of pseudo-samples from the original
sample, for each pseudo-sample calculate the statistic of interest, and use the
distribution of this statistic across pseudo-samples to infer the distribution
of the original sample statistic. This is very similar to a Monte Carlo sim-
ulation, except the pseudo-samples are generated using fewer distributional
assumptions.8

There is no single bootstrap as there are di¤erent statistics that we may
be interested in, di¤erent ways to form pseudo-samples, and even for a given
statistic and resampling method there are di¤erent ways to use results for
statistical inference.

We provide considerable discussion here and in the appendix because in
later sections we use a range of bootstrap methods that may be unfamiliar

standard deviation 2 to 3 times that for default standard errors. He does not consider the
implications for Wald tests.

8The bootstrap was introduced by Efron (1979). Standard book treatments are Hall
(1992), Efron and Tibsharani (1993), and Davison and Hinkley (1997). In econometrics see
Horowitz (2001), MacKinnon (2002), and the texts by Davidson and MacKinnon (2004)
and Cameron and Trivedi (2005).
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to applied microeconometricians. The statistic considered is the Wald test
statistic w de�ned in (11), for two-sided test of H0 : �1 = �

0
1 against Ha :

�1 6= �01.
The data are clustered into G independent groups, so the resampling

method should be one that assumes independence across clusters but pre-
serves within cluster features such as correlation.

3.1 Pairs Cluster Bootstrap-T

The obvious method is to resample the clusters with replacement from the
original sample f(y1;X1); :::; (yG;XG)g. The following procedure provides
a starting point.

Pairs Cluster Bootstrap-T Procedure

1. Do B iterations of this step. On the bth iteration:

(a) Form a sample of G clusters f(y�1;X�1); :::; (y�G;X�G)g by resam-
pling with replacement G times from the original sample.

(b) Calculate the Wald test statistic

w�b =
b��1;b � b�1
sb��1;b ;

where b��1;b is obtained from OLS estimation using the bth pseudo-
sample, its standard error sb��1;b is estimated using the same cluster-
robust method as used in calculating w, and b�1 is the original
sample OLS estimate.

2. Use the empirical distribution of w�1; :::; w
�
B to determine critical values

and p-values. Thus reject H0 at level � if and only if

w < w�[�=2] or w > w
�
[1��=2];

where w�[q] denotes the q
th quantile of w�1; :::; w

�
B.
9

9For B realizations x1; :::; xB , the qth quantile x[q] is the smallest value of x such that a
proportion q of x1; :::; xB are less than or equal to x[q]. More formally x[q] is the smallest
value of x such that

PB
b=1 1(xb � x[q]) = qB.
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As an example, if w = �2:10, w�[:025] = �2:32 and w
�
[:975] = 1:87 then we

would not reject H0 at signi�cance level � = 0:05 since �2:10 does not fall
outside (�2:32; 1:87). This is called a nonsymmetric test, as the critical
values in the two tails di¤er. We could also do a symmetric two-tailed
test, in which case in step 2 we would reject H0 if jwj > jw�j[�], where jw�j[q]
denotes the qth quantile of jw�1j; :::; jw�Bj.

This resampling method is called a pairs cluster bootstrap because,
unlike other methods presented below, the pair (y;X) is jointly resampled.
Alternative names used in the literature include cluster bootstrap, case
bootstrap, nonparametric bootstrap, and nonoverlapping block boot-
strap. Because this resampling method views the original sample as the dgp
(with �1 = b�1), the pseudo-sample statistics w�b are centered on this dgp
value b�1.

The bootstrap-t procedure, proposed by Efron (1981) for con�dence
intervals, is also called a percentile-t procedure, because the �t� test
statistic w is bootstrapped, and a studentized bootstrap, since the Wald
test statistic is a studentized statistic. The bootstrap-t procedure has ad-
vantages that we now present.

3.2 Asymptotic Re�nement of Standard Bootstrap Methods

The bootstrap-t procedure was preceded by more obvious bootstrap proce-
dures that bootstrap the parameter estimate b�1, givingB estimates b��1;1; :::; b��1;B,
rather than the test statistic.

The percentile procedure simply rejects H0 if the original sample esti-
mate b�1 falls outside (b��1;[�=2]; b��1;[1��=2]) where b��1;[q] denotes the qth quantile
of (b��1;1; :::; b��1;B).

The bootstrap-se procedure uses these estimates to form the boot-
strap estimate of standard error

sb�1;B =
 

1

B � 1

BX
b=1

(b��1b � b��1)2
!1=2

; (12)

where b��1 = 1
B

PB
b=1
b��1b , uses sb�1;B to calculate the Wald test, so

wBSE =
b�1 � �01
sb�1;B ; (13)
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and rejects H0 at signi�cance level � if and only if jwBSEj > z�=2. Here the
bootstrap is used merely to obtain an estimate of the standard error of b�1,
an advantage if this is di¢ cult to do using conventional methods.

The bootstrap-t, percentile and bootstrap-se procedures are all asymp-
totically valid tests under standard modelling assumptions. In particular, a
test at nominal (or desired) signi�cance level 0:05 will have true size of 0.05
(and power of 1.00 against a �xed alternative) as G!1.

But for small G all three procedures will have true size di¤erent from
0.05 as they rely on asymptotic approximation. Consider a test with nominal
signi�cance level or nominal size �. An asymptotic approximation yields
an actual rejection rate or true size �+O(G�j=2), where O(G�j=2) means
is of order G�j=2 and G is the number of clusters. Then the true size goes
to � as G ! 1, provided j > 0. Larger j is preferred, however, as then
convergence to � is faster. A bootstrap provides asymptotic re�nement
if it leads to j larger than that for conventional (�rst-order) asymptotic
methods.

Asymptotic re�nement is more likely to occur if the bootstrap is applied
to an asymptotically pivotal statistic, meaning one with asymptotic
distribution that does not depend on unknown parameters; see Appendix
A.1 for a more complete discussion. The cluster-robust Wald statistic is
asymptotically pivotal as it is standard normal (no unknown parameters), so
the bootstrap-t procedure provides asymptotic re�nement. By contrast the
percentile and bootstrap-se methods bootstrap the OLS estimator, which
is not asymptotically pivotal as the asymptotic variance is dependent on
unknown parameters.

The bootstrap-t procedure is not the only way to obtain an asymptotic
re�nement. In particular, the bias-corrected accelerated (BCA) pro-
cedure, de�ned in Appendix A.2, is a variation of the percentile method
that leads to asymptotic re�nement of the same order as the percentile-t
method.

3.3 Wild Cluster Bootstrap-T

For a regression model with additive error, resampling methods other than
pairs cluster can be used. In particular, one can hold regressors X constant
throughout the pseudo-samples, while resampling the residuals which can
be then used to construct new values of the dependent variable y.

13



The obvious method is a residual cluster bootstrap that resamples
with replacement from the original sample residual vectors to give residuals
fbu�1; :::; bu�Gg and hence pseudo-sample f(by�1;X1); :::; (by�G;Xg)g where by�g =
X0gb� + bu�g.

This resampling scheme has two weaknesses. First, it assumes that the
regression error vectors ug are iid, whereas in Section 2 we were speci�cally
concerned that the variance matrix �g will di¤er across clusters. Second, it
presumes a balanced data set where all clusters are the same size.

The next bootstrap relaxes both these restrictions.

Wild Cluster Bootstrap-T Procedure

1. Obtain the OLS estimator b� and the associated OLS residuals bug,
g = 1; :::; G.

2. Do B iterations of this step. On the bth iteration:

(a) For each cluster g = 1; :::; G, form bu�g = bug with probability 0:5 orbu�g = �bug with probability 0:5, and hence by�g = X0gb� + bu�g. This
yields wild cluster bootstrap resample f(by�1;X1); :::; (by�G;X�G)g.

(b) Calculate the OLS estimate b��1;b and its standard error sb��1;b and
given these form the Wald test statistic w�b = (b��1;b � b�1)=sb��1;b .

3. Reject H0 at level � if and only if

w < w�[�=2] or w > w
�
[1��=2];

where w�[q] denotes the q
th quantile of w�1; :::; w

�
B.

The wild bootstrap was proposed by Wu (1986) for regression in the
nonclustered case. Its asymptotic validity and asymptotic re�nement were
proven by Liu (1988) and Mammen (1993). Horowitz (1997, 2001) provides
a Monte Carlo demonstrating good size properties. We use a version, called
Rademacher weights, that o¤ers asymptotic re�nement if b� is symmetrically
distributed, the case if errors are symmetric. If b� is asymmetrically distrib-
uted, our version is still asymptotically valid, but a di¤erent version provides
asymptotic re�nement. Davidson and Flachaire (2001) provide theory and
simulation to support using Rademacher weights even in the asymmetric
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case. See Appendix Section A.3 for further discussion. Here we have ex-
tended the wild bootstrap to a clustered setting. The only study to do so
that we are aware of is the brief application by Brownstone and Valletta
(2001).

Several authors, particularly Davidson and MacKinnon (1999), advocate
use of bootstrap resampling methods that impose the null hypothesis. This
is possible using both residual and Wild bootstraps. Thus we present results
based on bootstraps that impose the null, in which case the bootstrap Wald
statistics are centered on �01 rather than b�1, and the residuals bootstrapped
are those from the restricted OLS estimator e� that imposes H0 : �1 = �01.
For details see Appendix A.2.

3.4 Bootstraps with Few Clusters

With few clusters the bootstrap resampling methods produce a distinctly �-
nite number of possible pseudo-samples, so the bootstrap distribution w�1; :::; w

�
q

will not be smooth even for large B. Furthermore, in some pseudo-samplesb�1 or sb�1 may be inestimable.
First, consider pairs cluster resampling. Each bootstrap resample con-

tains G clusters. Some of the original sample clusters will appear more than
once, while others will not appear at all. For example, with G = 5 we might
obtain bootstrap resample f(y3;X3); (y5;X5); (y2;X2); (y3;X3); (y1;X1)g.
In general, this bootstrap has

�
2G�1
G�1

�
possible unordered recombinations of

the data; see Hall (1992, p.283). There are many possible combinations even
when there are few clusters: 126 combinations for G = 5 and 92; 378 com-
binations for G = 10. Nonetheless, implementation problems can arise. For
example, if the kth regressor is binary and is always invariant within cluster
(so always 0 or always 1 for given g) then with few clusters some bootstrap
resamples may have all clusters with the kth regressor taking only value 0 (or
value 1), so that b�k is inestimable. This issue does not arise when regressors
and dependent variables take many di¤erent values, such as in the Section 4
Monte Carlos. But it does arise in our application to the BDM (2004) and
Gruber and Poterba (1994) di¤erences-in-di¤erences example, because the
regressors of interest in those cases are indicator variables.

Second, consider the wild cluster bootstrap. For each cluster there are
two possible resample values, so with G clusters there are 2G possible recom-
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binations: 32 combinations for G = 5 and 1; 024 combinations for G = 10. In
general this is much less than for pairs cluster. However, a binary regressor
invariant within cluster will not cause a problem as we are not resampling
the regressors. And, as clear from Appendix A.2, the Wild bootstrap need
not be restricted to a two-point distribution, though we do not pursue this.

3.5 Bootstrap Discussion

Clearly there are many ways to bootstrap when data are clustered. The stan-
dard applied procedure is to use pairs cluster resampling and the bootstrap-
se procedure which o¤ers no asymptotic re�nement.10 There are just a few
studies that we are aware of that consider asymptotic re�nement.

In the statistics literature, Sherman and le Cessie (1997) conduct sim-
ulations for OLS with as few as ten clusters. For 90 percent con�dence
intervals, they �nd that the pairs cluster bootstrap-t undercovers by con-
siderably less than the percentile method which in turn is better than using
conventional robust con�dence intervals based on cluster-robust standard
errors. The bootstrap-t intervals are wider than the others, however, and
occasionally have very large end-points. The authors also study logit mod-
els, and they �nd occasionally that bootstrap resamples are inestimable due
to all dependent variables taking value zero (or one).

Flynn and Peters (2004) consider cluster randomized trials where a pairs
cluster bootstrap draws G clusters by separately resampling from the G=2
treatment clusters and the G=2 control clusters. For skewed data and few
clusters they �nd that pairs cluster BCA con�dence intervals have consider-
able undercoverage, even more than conventional robust con�dence intervals,
though in their Monte Carlo design the robust intervals do remarkably well.
The authors also consider a second-stage of resampling within each cluster,
using a method for hierarchical data given in Davison and Hinkley (1997)
that is applicable if the random e¤ects model (6) is assumed.

In the econometrics literature, BDM (2004) apply a pairs cluster boot-
strap using the bootstrap-t procedure. BDM use default OLS standard er-
rors, however, rather than cluster-robust standard errors, in computing both
the original data and the resampled data Wald statistics. Because of this

10Stata, for example, o¤ers this as an estimation option. Additionally it has a clus-
ter pairs bootstrap procedure that does provide BCA con�dence intervals in addition to
bootstrap-se con�dence intervals, but these are rarely used.
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their method will in general not yield tests of correct size. It can nonetheless
lead to considerable size improvement compared to using default standard
errors, since it controls for any inconsistent estimation of standard errors up
to a constant scale factor. Speci�cally, if w is computed using a � sb�1 and
w�b is computed using a� s�b�1 , for constant a > 0 that does not vary across
bootstrap samples, then we obtain the same rejection rate regardless of the
value of a and asymptotic re�nement is obtained.11 For the BDM exam-
ple the scale factor is data-dependent, however, and varies across bootstrap
resamples. The authors �nd that their bootstrap does better than using
default OLS standard errors and standard normal critical values, yet sur-
prisingly does worse than using cluster robust standard errors with standard
normal critical values.

The only study we know of that uses wild bootstraps in a clustered
setting is the brief application by Brownstone and Valletta (2001).

3.6 Test Methods used in this Paper

In the remainder of the paper we implement the Wald test using nine boot-
strap procedures, as well as four non-bootstrap procedures. Table 1 provides
a summary.

Our �rst four tests do not use the bootstrap and di¤er only in the method
from section 2 used to calculate bV[b�]. They use, respectively, the default
variance estimate (4), the Moulton-type estimate (7), the cluster-robust esti-
mate (8), and the cluster-robust estimate with jackknife corrected residuals
(10). Method 1 is invalid if there is clustering, method 2 is invalid unless
the clustering follows a random e¤ects model, while methods 3 to 4 are
asymptotically valid provided clusters are independent.

Methods 5 to 7 use the bootstrap-se procedure, with bootstrap standard
error computed using (12) and Wald statistic using (13). We use three dif-
ferent cluster bootstrap resampling methods, respectively, the pairs cluster
bootstrap, the residual clusters bootstrap with H0 imposed, and the wild
bootstrap with H0 imposed. For details see Appendix A.2.3. Methods 5-7
do not provide asymptotic re�nement, and method 6 is valid only if cluster
error vectors are iid.
11This fact follows since the cdf of a random variable is invariant to monotonic trans-

formations of the random variable.
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Method 8 uses the BCA bootstrap with pairs cluster resampling, see
Appendix A.2.2, to provide an asymptotic re�nement.

Methods 9 to 13 use the bootstrap-t procedure. The �rst three of these
methods use pairs cluster resampling with di¤erent standard error estimates.
Method 9 is the already discussed method of BDM that uses default stan-
dard errors rather than CRVE standard errors. Methods 10 and 11 use
di¤erent variants of the CRVE de�ned in (8), respectively, the standard
CRVE and the CR3 correction. In each case the same variance matrix esti-
mation method is used for both the original sample and bootstrap resamples.
Methods 12 and 13 use, respectively, residual and wild bootstraps, and both
use the standard CRVE estimate and impose H0. Method 12 is valid only
if cluster error vectors are iid. For details see Appendix A.2.1.

The bootstrap-t and BCA procedures should set the number of bootstrap
replications B so that (B + 1) � � is an integer. For an explanation see
Davidson and MacKinnon (2004, p.164), for example. Additionally for low
B there will be nontrivial simulation error in the bootstrap. A common
choice is B = 999, since 1,000�� is an integer for common values of � such
as � = 0:05.

4 Monte Carlo Simulations

To examine the �nite-sample properties of our methods we conducted sev-
eral Monte Carlo exercises for dgp a linear model with intercept and single
regressor. The error is clustered according to a random e¤ects model, with
either constant correlation within cluster or departures from this induced
by heteroskedasticity. This design is relevant to a cross-section study of in-
dividuals with clustering at the state level, for example. The regressor and
dependent variable are continuous and take distinct values across clusters
and (usually) within clusters, so that even with few clusters it is unlikely
that a pairs cluster bootstrap sample will be inestimable.

Then
yig = �0 + �1xig + uig; (14)

so � = [�0 �1]
0, with di¤erent generating processes for xig and uig used in

subsequent subsections. Estimation is by OLS, as in (1). Since �1 = 1 in
the dgp, we set �01 = 1 and the Wald test statistic is w = (b�1 � 1)=sb�1 .
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We perform R replications, where each replication yields a new draw of
data from the dgp, and leads to reject or nonrejection of H0 depending on
whether or not jwj > 1:96. In each replication there are G groups (g =
1; :::; G), with NG individuals (i = 1; :::; NG) in each group. We varied the
number of groups G from 5 to 30 and usually set NG = 30. The various
methods used down each column of Tables 2-4 are then applied to the same
generated data. For bootstraps we used B = 399 bootstraps rather than the
recommended B = 999 or higher. This lower value is �ne for a Monte Carlo
exercise, since the bootstrap simulation error will cancel out across Monte
Carlo replications.

We estimate the actual rejection rate a, by ba, the fraction of the R
replications for which H0 is rejected. This is an estimate of the true size of
the test which should be 0:05. With a �nite number of replications a may be
di¤er from the true size due to simulation error. The simulation standard
error is sba =pba(1� ba)=(R� 1). For R = 1000 replications, sba ' 0:007 forba = 0:05 and sba ' 0:009 for a = 0:10. We can reject that true size is the
desired 0:05 at the 95% signi�cance level when jba� 0:05j > 1:96� sba. With
R = 1000 a value of ba = 0:07 will be statistically signi�cantly di¤erent from
0:05, while a value of ba = 0:06 will not.12
4.1 Simulations with Homoskedastic Clustered Errors

In the �rst simulation exercise both regressors and errors are correlated
within group, with errors homoskedastic. Data were generated according
to:

yig = �0 + �1xig + uig = �0 + �1 (zg + zig) + ("g + "ig); (15)

with zg, zig, "g, and "ig each an independent N [0; 1] draw, and �0 = 0 and
�1 = 1. Here the components zg and "g that are common to individuals
within a group induce within group correlation of both regressors and errors
with �x = 0:5 and �u = 0:5. The simulation is based on R = 1000 Monte
Carlo replications.

Our �rst results appear in Table 2. Each column gives results for the
various number of groups (G = 5, 10, 15, 20, 25, 30) and throughout NG =
30. The �rst entry is the estimated true size of the test, the proportion

12Values of R higher than 1; 000 would be better, but each entry in a table already
requires RB ' 400; 000 separate estimations.
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of times the null hypothesis is rejected. The Monte Carlo standard error
is given in parentheses. Each row presents a di¤erent method, detailed in
section 3.6. For comparison, we also show the rejection rate that would
hold if we used the asymptotic normal critical value of 1:96, but the Wald
statistic actually had a T distribution with G�k = G�2 degrees of freedom.
This rejection rate is Pr[jT j > 1:96jT � TG�2], though recall from section
2.5 that even with normal errors the �nite distribution of the various Wald
statistics is unknown.

We begin with conventional (nonbootstrap) Wald tests using di¤erent
estimators of standard errors. The default OLS standard errors that as-
sume iid errors do poorly here, with rejection rates given in row 1 of 0:43 to
0:50 that are much higher than 0:05.13 This illustrates the need to correct
standard errors for clustering. The Moulton-type estimate for standard er-
rors should work well here since it this takes advantage of correct knowledge
of the dgp. The rejection rates in row 2 are considerably higher than 0:05,
especially for low G, though are similar to those expected if the Wald test
statistic is actually T(G� 2) distributed (see the bottom row). The cluster-
robust standard errors lead to rejection rates much better than those using
default standard errors, though still over-reject with rejection rates that are
0:01 to 0:06 greater than those using Moulton-type standard errors. The
CR3 correction to cluster-robust standard errors leads to larger standard
errors and to rejection rates that from row 4 are much closer to 0:05, though
still signi�cantly di¤erent from 0:05.

We then consider using the bootstrap to compute standard errors. The
pairs cluster bootstrap-se method yields rejection rates in row 5 that are
very similar to the cluster-robust method, except for G = 5. The residual
cluster bootstrap-se method leads to rejection rates in row 6 that are close
to 0:05. From row 7, the wild cluster bootstrap-se method under-rejects for
G � 10, and rejects at level close to 0:05 for G > 10. The closeness to 0:05
of the latter two bootstrap methods is surprising given that they do not o¤er
an asymptotic re�nement.

The BCA bootstrap with pairs cluster resampling should provide an

13These rejections rates are consistent with theory. The dgp is a classic bal-
anced two-way random e¤ect error, so (5) applies yielding standard error in�ationp
1 + (30� 1)0:5� 0:5 =

p
8:25 = 2:87. Using the underestimated standard errors leads

to a Wald statistic with actual asymptotic size equal to Pr[jzj > 1:96=2:87] ' 0:50. This
underestimation depends on group size rather than number of groups.
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asymptotic re�nement, yet from row 8 it has rejection rates similar to those
using CR standard errors (row 3), aside from small improvement for G = 5
and G = 10 where the rejection rates are nonetheless still in excess of 0:10.

The remainder of the Table use the theoretically preferred bootstrap-t
procedure with various resampling methods. Even though it uses default
standard errors, the BDM bootstrap (row 9) does better than using CR
standard errors and is a great improvement compared to not bootstrapping
(row 1). The pairs cluster bootstrap-t has rejection rates in row 10 of 0:08
that are much closer to 0:05 than tests without bootstrap, though they
are still signi�cantly di¤erent from 0:05. The CR3 correction makes little
di¤erence. Apparently while it leads to considerable decrease in the value
of the Wald statistic (see the di¤erence in rejection rates between rows 3
and 4), comparable decreases occur in the bootstrap resamples leading to
similar rejection rates. Both the residual cluster bootstrap-t and wild cluster
bootstrap-t rejection rates are not statistically di¤erent from 0:05 (with the
exception of the residual bootstrap with G = 5).

In summary, Table 2 demonstrates that all the bootstrap-t methods are
an improvement on the usual cluster-robust method with standard normal
critical values; the BCA method provides no improvement; and the residual
cluster bootstrap-se also performs well.

4.2 Simulations with Heteroskedastic Clustered Errors

The second simulation brings in the additional complication of heteroskedas-
tic errors. Then the Moulton-type correction and the residual bootstrap are
no longer valid theoretically.

We generated data according to the process:

yig = �+ �xig + uig = �+ � (zg + zig) + ("g + "ig); (16)

with zg, zig, "g and "g again independent N [0; 1] draws, but now "ig �
N [0; 9 � (zg + zig)2]. The dgp sets � = 1 and � = 1. Here �x = 0:5 again,
while the error is heteroskedastic both within and across clusters and has
correlation coe¢ cient less than the Table 2 case of 0:5.

Results appear in Table 3. Default OLS standard errors again do poorly,
with rejection rates hovering around 0:30, though these results are better
than those in Table 2 due to the lower error correlation in the present design.
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The Moulton-type correction breaks down given the heteroskedasticity, as
expected, with rejection rates in row 2 of 0:17 � 0:26. The cluster-robust
methods do a little better than in the preceding table, but in rows 3 and 4
still generally exceed 0:05.

The residual cluster bootstrap-se method now breaks down due to het-
eroskedasticity, with rejection rates in row 6 in excess of 0:15. The pairs
cluster bootstrap-se and wild cluster bootstrap-se methods (rows 5 and 7)
perform similarly to Table 2.

The BCA bootstrap again has rejection rates in row 8 similar to those
using CR standard errors (row 3), aside from small improvement for G = 5
and G = 10.

The results for the bootstrap-t methods in rows 9 to 13 are similar to
those in Table 2. The incorrect BDM bootstrap-t (row 9) has similar high
rejection rates to those in Table 2, aside from marked deterioration for G =
5. The remaining bootstrap-t methods all yield rejection rates less than 0:08,
with the residual cluster bootstrap-t and wild cluster bootstrap-t doing best.
The good performance of the residual cluster bootstrap-t is surprising given
that errors are heteroskedastic across clusters.

In summary, the Table 3 results for inference with heteroskedastic clus-
tered errors are similar to those for homoskedastic clustered errors except
that, as expected, the Moulton-type correction and residual cluster bootstrap-
se methods now perform very poorly. The bootstrap-t methods are an im-
provement on the usual cluster-robust method with standard normal critical
values, while the BCA method provides no improvement.

4.3 Alternative Critical Values, Cluster Sizes and Regressor
Design

We perform a third set of Monte Carlo experiments to examine how the
di¤erent estimators perform under varying assumptions. These simulations
are presented in Table 4 with each simulation based on G = 10 groups.

Column 1 of Table 4 provides a baseline against which the other results
are compared. It uses the same dgp as that of Table 2, though the simu-
lations begin from a di¤erent seed so that actual rejection rates di¤er from
the G = 10 column in Table 2 due to simulation variability.

Tables 2 and 3 used asymptotic normal critical values in performing the
Wald test using methods 1 to 7. In Table 4 column 2 we instead use critical
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values from a T distribution with 8 degrees of freedom, an ad hoc �nite
sample correction, so that we reject H0 if jwj > 2:306 rather than jwj >
1:960. Then the Moulton-type estimator and the CR3 correction lead to
rejection rates not statistically signi�cant from 0:05. The CR standard errors
and pairs cluster bootstrap-se still lead to over-rejection, though by not as
much. And the residual cluster bootstrap-se and wild cluster bootstrap-se,
which seem to do very well when asymptotic normal critical values are used,
now lead to great under-rejection.

In columns 3 to 5 of Table 4 we consider alternative cluster sizes of,
respectively, 2, 10 and 100 observations, whereas Tables 2 and 3 always
used NG = 30 observations per cluster. For method 1, the e¤ect of ignoring
clustering altogether increases greatly with cluster size, as predicted by (5).
Once clustering is accounted for, by any of methods 2-13, rejection rates do
not vary signi�cantly with cluster size.

In column 6 of Table 3 we examine the performance of the various testing
methods when there are there are three additional regressors, each with no
clustering component, and we continue to test the �rst regressor. The four
regressors are scaled down by a factor of 1/2, so that the sum of their
variances will equal the variance of the single regressor used in the dgp of
column 1. The only signi�cant change in rejection rates is an increase in the
already high rejection rate for method 1 which neglects clustering.

All preceding regression designs set the intraclass correlation �x of the
regressor of interest to be 0:5. In column 7 we increase �x to �x = 1 (cluster-
invariant regressor with xig = zg) and in column 8 we decrease �x = 0 in
column 8 (iid regressor with xig = zig). In both cases the regressor is scaled
up by

p
2 to keep V[xig] unchanged.

With cluster-invariant regressor (column 7) the failure to control for
clustering is magni�ed and the row 1 rejection rate is largest than that
in the benchmark column 1, as expected; the other nonbootstrap methods
that attempt to control for clustering also have higher rejection rates. For
bootstrap-se and bootstrap-t there is little change in rejection rates, except
that for reasons unknown the pairs cluster bootstrap (both bootstrap-se and
bootstrap-t) now has rejection rates not statistically signi�cantly di¤erent
from 0:05.

With iid regressor (column 8) and the current random e¤ects dgp for
the errors formula (5) predicts that the default OLS standard errors are
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consistent and the rejection rate in row 1 is close to 0:05. The Moulton-type
and CR estimators also have rejection rates much closer to 0:05. The various
bootstrap procedures lead to rejection rates that are all within 0:03 of those
in column 1, with no obvious pattern.

Finally, in column 9 we change the dgp to examine an unbalanced setting,
so that one half of the clusters are small (with group size NG = 10) and half
of the clusters are large (with group size NG = 50). The residual cluster
bootstrap requires equal cluster sizes, so it cannot be used in this design.
The remaining methods yield results qualitatively similar to those in column
1, with the main change being that the standard CRVE leads to much larger
over-rejection in row 3.14

In summary, all the bootstrap-t methods are an improvement on the
usual cluster-robust method with standard normal critical values; the BCA
method provides no improvement; and the residual cluster bootstrap-se also
performs well.

Table 4 indicates that when non-bootstrap methods are used to control
for clustering, it is better to use critical values from a T distribution than
from a standard normal, results vary little with cluster size, and control-
ling for clustering is more di¢ cult as the regressors become more highly
correlated within cluster. Rejection rates for bootstrap-t methods varied
little across the various designs, except that the pairs cluster and pairs CR3
bootstrap-t methods performed better when regressors are cluster invariant.

The remaining conclusions are similar to those from Tables 2 and 3.
Again the bootstrap-t methods are an improvement on the usual cluster-
robust method, while the BCA method provides no improvement. And again
for the bootstrap-t with pairs cluster resampling there is no advantage to
making �nite sample corrections to the CRVE.

14For the pairs cluster bootstrap we select with replacement ten clusters, so that with
unbalanced cluster sizes the number of observations in each bootstrap pseudo-sample will
generally di¤er from N . By contrast the wild cluster bootstrap pseudo-samples will all be
of size N .
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5 Bertrand, Du�o and Mullainathan (2004) Sim-
ulations

To enable a more practically familiar application of our methods, we now
consider the di¤erences-in-di¤erences setup explored in Bertrand, Du�o, and
Mullainathan (2004).15

The data set is of U.S. states over time. The dependent variable is the
state-by-year average log wage level (after partialling out certain individual
characteristics). For such a variable, the error term within cluster is serially
correlated, even if state and year �xed e¤ects are included as regressors. By
contrast the random e¤ects model implies equicorrelation for the error term
within cluster. The regressor of interest is a state policy dummy variable
that is binary, making it more likely that with few clusters a pairs cluster
bootstrap sample will be inestimable.

The original data is CPS data on many individuals over time and states.
Most of the BDM (2004) study uses a smaller data set that aggregates
individual observations to the state-year level. We begin with these data,
which have the advantage of being balanced and relatively small, before
moving to the individual data.

5.1 Aggregated State-year Data

Using our choice of subscripts, the igth observation is for the ith year in
the gth state. There are �fty states and twenty-one years, so G = 50 and
NG = 21. The model estimated is

yig = �g + 
i + �1Iig + uig;

where yig is a year-state measure of excess earnings (after control for age and
education), the regressors are state dummies, year dummies, and a policy
change indicator Iig.16

15We extracted individual-level data from the relevant CPS data sets and, when appro-
priate, aggregated these data using the method presented in BDM (2004). This gave data
similar to that in BDM (2004). We thank these authors for sharing some of their data
with us, enabling this comparison.
16We retain our notation for consistency with the rest of our discussion. However, more

obvious subscripts for this problem are i for individual, s for state and t for year. The
underlying model is yist = �s+
t+x

0
ist�+�Ist+uist, where yist is individual log-earnings

for women aged 25-50 years, and xist is age and education. BDM use a two-step OLS
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If a policy change occurs in state g at time i�, then Iig = 0 for i < i� and
Iig = 1 for i � i�. BDM�s experiments randomly assign a policy change to
occur in half the states, and when it does occur it occurs somewhere between
the sixth and �fteenth year. Since policy changes happen only once and are
not reversed, the regressor Iig will be highly correlated over i for state g. In
each simulation a di¤erent draw of G states with replacement is made from
the original 50 states.

The Wald statistic studied is w = b�1=sb�1 . BDM investigate size proper-
ties by letting the policy change be a �placebo�regressor that has no e¤ect
on yig. So for two-sided tests of H0 : �1 = 0 against Ha : �1 6= 0 at signi�-
cance level 0:05 we should reject H0 in �ve percent of the simulations. They
also investigate the power against the alternative power Ha : �1 = 0:02 by
actually increasing yig by 0:02 when Iig = 1.

BDM consider the e¤ect of having a small number of clusters by letting
G = 6, 10, 20, and 50. The key tables we consider are BDM�s Table 5, which
uses their version of the block bootstrap, and Table 8, which uses the cluster-
robust method. They �nd that (1) default standard errors do poorly, leading
to actual rejection rates between 0:4 and 0:5; (2) cluster-robust standard
errors do well for all but G = 6 (which has simulated rejection rate 0:12);
and (3) their bootstrap, which they call a block bootstrap and is discussed in
our section 3.5, does poorly for low numbers of clusters, with actual rejection
rates 0:44, 0:23 and 0:13 for G = 6, 10 and 20, respectively.

The �rst row of our Table 5 shows high rejection rates when default stan-
dard errors are used. Our results are similar to rows 1, 3, 5 and 7 of BDM�s
Tables 5 and 8, though in some cases they are as many as three simulation
standard errors di¤erent. The Moulton-type estimator gives rejection rates
in row 2 that show little improvement. This is a consequence of errors being
serially correlated rather than equicorrelated within cluster. The third row
uses the cluster-robust variance estimator, and gives results very close to
the comparable rows 2, 4, 6, and 8 of BDM�s Table 8.

Rows 4 to 6 of Table 5 give rejection rates when the Wald statistic is
calculated using bootstrap standard error estimates. These generally lead
to tests with actual size between 0:04 and 0:09. The one notable exception
is that the cluster-pairs standard error bootstrap (row 4) produces severe

procedure: (1) regress yist on xist yielding OLS residual buist; (2) regress bust = N�1
st

P
i buist

on state dummies, year dummies, and Ist. Thus our yij is their bust.
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under-rejection (0:001) with G = 6. Informal experimentation suggests to
us that this is due to the fact that many bootstrap replications (with only
a couple of states sampled) sample only one "treatment" or "control" state.
For these replications, the treatment dummy (or constant) is �t perfectly,
and so has zero estimated residuals. When these "zero" residuals are plugged
into the CRVE formula (8) the resulting bVCR[b��1] is unreasonably small,
leading to Wald statistics in some bootstrap resamples that are too large
to consistently represent the Wald statistic�s true distribution. This in turn
results in the severe under-rejection.17

The BCA method with pairs cluster resampling in general leads to
greater over-rejection in row 7 than when CR standard errors are used (row
3).

The remaining rows 8 to 11 of Table 5 give rejection rates for vari-
ous bootstrap-t procedures. From row 8 we �nd that the BDM bootstrap
performs similarly to cluster-robust standard errors. This is a substantial
improvement compared to row 1, but still there is over-rejection, especially
for G = 6. For reasons we cannot explain the rejection rates we obtain
are considerably lower than those given in BDM Table 5. The pairs cluster
bootstrap-t under-rejects appreciably for both G = 6 and G = 10 for reasons
already discussed for pairs bluster bootstrap-se. The residual and wild clus-
ter bootstrap-t methods (rows 9 and 10) do very well with actual rejection
rates approximately equal to 0.05, even for G = 6. Both these bootstraps
have the advantage that only residuals are resampled � the regressors are
not resampled.

The discussion so far has focused on size. The even columns in Table
5 report power against a �xed alternative. As expected, power increases as
the number of clusters increases, permitting greater precision in estimation.
In almost all cases in Table 5, for given G a test with higher actual size
has higher power, so the various testing procedures appear to have similar
power once we control for size.

5.2 Individual-Level Data

For completeness we additionally consider regression using individual-level
data. Recall that we are using g to denote the clustering unit and i to denote

17We thank Doug Staiger for suggesting this mechanism to us.
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year, so we use n to denote individual. Then the model is

ynig = �g + 
i + x
0
nig� + �1Iig + unig;

where the individual-level regressors xnig are a quartic in age and three
education dummies. The placebo law binary indicator Iig is generated as
before.

Table 6 reports the results of R = 250 simulations with B = 199

replications used for the bootstrap. These low numbers are chosen as the
individual-level data set is very large.18 We consider cases G = 6 and G = 10
as we are most interested in inference with few clusters.

The �rst row of Table 6 reports high rejection rates of 0:44 when we use
the CRVE but erroneously cluster on state-year combinations. These are
essentially the same as those given in BDM Table 2.

In the second row of Table 6 we see that using the CRVE and correctly
clustering on state only considerably reduces the rejection rate. But at 0:15
for G = 6 and 0:10 for G = 10, the rejection rate is still much too high.
(Because BDM only present corrections for clustering using aggregate data,
we cannot directly compare these results to any of theirs).

The third row of Table 6 shows that the bootstrap-t procedure using wild
cluster resampling (with clustering on the state) leads to rejection rates not
statistically signi�cantly di¤erent from 0:05. Because the individual level
data are unbalanced we cannot use the residual cluster bootstrap. We did
not pursue a pairs cluster bootstrap-t as it may encounter similar problems
to those for aggregate data, albeit to a lesser extent.

In summary, using both aggregate and micro data, the wild cluster
bootstrap-t leads to rejection rates of 0:05. The pairs cluster bootstrap-
t works �ne for G � 20, but for G � 10 can fail due to problems posed by
the binary regressor.

6 Gruber and Poterba (1994) Application

Gruber and Poterba (1994, henceforth GP) examine the impact of tax incen-
tives on the decision to purchase health insurance. They analyze di¤erential
changes for self-employed and business-employed in the after-tax price of

18The sample sizes vary from one replication to another due to drawing di¤erently sized
states. They average about 66,000 observations for G = 6 and 108,000 for G = 10.
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health insurance due to the Tax Reform Act of 1986 (TRA86). The TRA86
extended the tax subsidy for health insurance to self-employed individuals;
individuals employed by a business had a tax subsidy both before and after
TRA86, and so can serve as a comparison group.

The dependent variable y is whether or not an employed person has
private health insurance. Like GP we focus on individuals 25-54 years of
age. The policy variable I is whether an employed person is eligible to
receive tax subsidy for the insurance. This depends on the type of employer.
Those employed by a business were eligible throughout 1982-89, while those
self-employed were ineligible from 1982-86 and eligible from 1987-89.

While BDM include a full set of year e¤ects that allows the intercept to
vary by year, GP use a pre-post design that restricts the intercept to take
the same value within the sets of pre-reform and post-reform years. Given
the structure of the binary policy variable the model can be rewritten as

yijt = �1 + �2SELFijt + �3POSTijt + �1SELFijt � POSTijt + ujt;

where i denotes individual, j denotes employer type, t denotes year, SELFijt =
1 if individual i is self-employed at time t, and POSTijt = 1 if the year is
1987, 1988 or 1999.

We perform di¤erence-in-di¤erence analysis, controlling for potential
clustering of errors of a form considered by Donald and Lang (2004). Like
Donald and Lang, we ignore additional regressors (the bulk of Gruber and
Poterba�s paper examines subtle interactions between pre-tax income, em-
ployment status, and the TRA86). Unlike Donald and Lang we constructed
our own data set from the March CPS, one that closely matches Table IV
of GP, permitting analysis using both aggregated data and individual-level
data.

6.1 Aggregated Employment-Year Data

In their preliminary analysis, GP report in Table IV average insurance rates
by year and employer-type for March CPS data on eight years (�ve before
the TRA86 and three after), leading to an aggregated data set with sixteen
observations. Our simple di¤erence-in-di¤erence estimate is 0:055, with a
standard error of 0:0044. This is more precise than and di¤ers a little from
the GP Table VI estimate of 0:067, with a standard error of 0:008, as GP
compared only the two years 1985-86 with the two years 1988-89.
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We now consider possible clustering. The analog of the type of clustering
considered by BDM (2004) and in our Section 4 is to cluster by employer-
type. But then there are just two clusters and no real chance to control
for clustering. We instead follow Donald and Lang (2004), and treat years
as clusters, so that there G = 8 clusters in our analysis. When we clus-
ter on year, the cluster-robust standard error obtained using (8) is 0:0074,
compared to 0:0044 without control for clustering. The regressor is highly
statistically signi�cant, with b�1=sb�1 = 7:46 and very low p-value.

To enable more meaningful analysis we test H0 : �1 = 0:040 against H0 :
�1 6= 0:040. Then w = (0:055 � 0:040)=0:0074 = 2:02 with p-value of 0:043
using standard normal critical values and 0:090 using the T distribution with
G� 2 = 6 degrees of freedom.

If we instead bootstrap this Wald statistic with B = 999 replications, the
pairs cluster bootstrap-t yields p = 0:209, the residual cluster bootstrap-t
gives p = 0:112, and the wild cluster bootstrap-t gives a p-value of 0:070. We
believe that the p-value for the pairs cluster bootstrap is implausibly large,
for reasons discussed in the BDM replication, while the other two bootstraps
lead to plausible p-values that, as expected, are larger than those obtained
by using asymptotic normal critical values.

6.2 Individual-Level Data

We then apply our methods to the micro-level data that we extracted, with
estimation of the binary outcome by a linear probability model. Then b�1 =
0:055 with cluster-robust standard error obtained using (8) of 0:0066, and
w = (0:055� 0:040)=0:0066 = 2:27. The p-value is 0:023 if we use standard
normal critical values and 0:064 if we use the T(6) distribution.

Because the year-de�ned groups are not equally sized, we are unable
to do the residual bootstrap with the micro data. For a bootstrap with
B = 999 replications, the pairs cluster bootstrap-t yields p = 0:212 and the
wild cluster bootstrap-t gives a p-value of 0:071.

These bootstrap results are essentially the same as those using aggre-
gated data. The pairs cluster bootstrap-t runs into problems due to binary
regressors that are invariant within cluster. Eight years are drawn with re-
placement and the model is inestimable if, for example, only data from the
�ve initial years 1982-86 is drawn. The wild cluster bootstrap-t uses a dif-
ferent resampling method that will not encounter this problem, and appears
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to do well.

7 Conclusion

Many microeconometrics studies use clustered data, with regression errors
correlated within cluster and regressors correlated within cluster. Then it
is essential that one control for clustering. A good starting point is to use
Wald tests (or �t� tests) that use cluster-robust standard errors, provided
the appropriate level of clustering is chosen. As made clear in section 2 of
BDM (2004), too many studies fail to do even this much.

In this paper we are concerned with the additional complication of hav-
ing few clusters. Then the use of appropriate cluster-robust standard errors
still leads to nontrivial over-rejection by Wald tests. Our Monte Carlo sim-
ulations reveal that at the very least one should provide some small sample
correction of standard errors, such as magnifying the residuals in (8) by a
factor

p
G=(G� 1) and using a T distribution with G or fewer degrees of

freedom (we arbitrarily used G� 2 in Table 3).
The primary contribution of this paper is to use bootstrap procedures to

obtain more accurate cluster-robust inference when there are few clusters.
Our discussion and implementations of the bootstrap make it clear that
there are many possible variations on a bootstrap. Section 3 presented a
range of bootstrap procedures and resampling methods that may be used.
And for replicable results it can be necessary to precisely de�ne the way the
bootstrap is implemented, as done in the Appendix.

The usual way that the bootstrap is used, to obtain an estimate of the
standard error, does not lead to improved inference with few clusters as it
does not provide an asymptotic re�nement.

The BCA method is a method that in theory should do better, as it does
provide an asymptotic re�nement. But we �nd in our simulations that it
provides very modest improvement.

We focus on the bootstrap-t procedure, the method most emphasized
by theoretical econometricians and statisticians. This provides asymptotic
re�nement because it bootstraps the Wald statistic, rather than the para-
meter estimates, and the Wald statistic is asymptotically pivotal provided
it is calculated using standard errors corrected for clustering. We �nd that
the bootstrap-t procedure can lead to considerable improvement. And its
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performance is little a¤ected by what method is used to obtain standard
errors (such as CRVE or CR3) provided the method is asymptotically valid
and the same method is used in calculating the Wald statistic in the original
sample and in the bootstrap resamples.

But these improvements depend on the resampling method used and
on the discreteness of the data being resampled. The standard method for
resampling that preserves the within-cluster features of the error is a pairs
cluster bootstrap that resamples at the cluster level, so that if the gth cluster
is selected then all data (dependent and regressor variables) in that cluster
appear in the resample. This bootstrap can lead to inestimable models or
nearly inestimable models in some bootstrap pseudo-samples when there are
few clusters and regressors take a very limited range of values. While not all
applications will encounter this problem, it does arise when interest lies in a
binary policy variable that is invariant or relatively invariant within cluster.

We �nd that an alternative cluster bootstrap, the wild cluster bootstrap
does especially well. This bootstrap is a cluster generalization of the wild
bootstrap for heteroskedastic models. Even when analysis is restricted to a
wild cluster bootstrap, several di¤erent variations are possible. The varia-
tion we use is one that uses equal weights and probability, and uses residuals
from OLS estimation that imposes the null hypothesis. This bootstrap works
well in our own simulation exercise and when applied to the data of BDM
(2004).

The BDM (2004) study is one of the highest pro�le papers highlighting
the importance of cluster robust inference. One important conclusion of
BDM (2004) is that for few (six) clusters the cluster-robust estimator per-
forms poorly, and for moderate (ten and twenty) number of clusters their
bootstrap based method also does poorly. We perform a re-analysis of their
exercise, and come to much more optimistic conclusions. Using the wild
cluster bootstrap-t method our empirical rejection rates are extremely close
to the theoretical values, even with as few as six clusters, and there is no
noticeable loss of power after accounting for size. Our results o¤er not only
theoretical improvements, but practical ones as well. We hope researchers
will take advantage of these improvements in the plentiful cases when clus-
tering among a relatively small number of groups is a real concern.
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A Appendix

Appendix A.1 presents a general discussion of the bootstrap and why it
is asymptotically better to bootstrap an asymptotically pivotal statistic
(bootstrap-t method). Appendix A.2 details the various bootstraps sum-
marized in Table 1.

A.1 Asymptotic Re�nement for Bootstrap-t

The theory draws heavily on Hall (1982) and Horowitz (2001). Cameron
and Trivedi (2005) provide a more introductory discussion.

A.1.1 General Bootstrap Procedure

We use the generic notation TN = TN (SN ) to denote the statistic of interest,
calculated on the basis of a sample SN of size N .19 We focus on inference
for a single regression coe¢ cient �1 from multivariate OLS regression. Then
leading examples are TN = b�1, and TN = (b�1 � �01)=sb�1 , where we recall
that �01 is given by the null hypothesis.

We wish to approximate the �nite sample cdf of TN , HN (t) = Pr[TN � t].
The bootstrap does this by obtaining B resamples of the original sample
SN , using methods given in the subsequent subsection. The bth resample is
denoted S�Nb and is used to form a statistic T �Nb = T

�
N (S�Nb). The empirical

distribution of T �Nb, b = 1; ::; B, is used to estimate the distribution of TN , so
Pr[TN � t] is estimated by the fraction of the realized values of T �N1; :::; T �Nb
that are less than t, denoted

bHN (t) = B�1 BX
b=1

1(T �Nb � t): (17)

This distribution can be used to compute moments such as variance, and
also to compute test critical values and p-values.

General Bootstrap Procedure for a Statistic TN

1. Do B iterations of this step. On the bth iteration:

19 In the cluster setting N =
PG

g=1Ng, and N !1 because G!1.
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(a) Re-sample the data from SN using one of the procedures pre-
sented in Appendix A.2. Call the resulting re-sample S�Nb.

(b) Use the bootstrap re-sample form T �Nb = T
�
N (S�Nb), where in some

but not all cases T �N (�) = TN (�).

2. Conduct inference using bHN (t) = B�1
PB
b=1 1(T

�
Nb � t) to �nd crit-

ical values for the test statistic TN based on the original data. See
Appendix A.2 for further details.

The bootstrap-t method directly approximates the distribution of TN =
(b�1 � �01)=sb�1 . If the bootstrap resampling method imposes H0 then T �Nb =
(b��1b��01)=sb��1b , where b��1b is the estimator of �1 and sb��1b is the standard error
from re-sample S�Nb. Note that we center T �Nb on �

0
1 since the resampling

dgp has �1 = �01. If instead the bootstrap resampling method does not
impose H0, the case necessarily for pairs cluster, then T �Nb = (b��1b�b�1)=sb��1b .
The centering is on b�1 and the bootstrap views the original sample as the
population. That is, implicitly we impose �1 = b�1, and the bootstrap
resamples are viewed as B samples from the implied population.

By contrast the bootstrap-se, percentile and BCA methods bootstrap
TN = b�1. Then T �Nb = b��1b, where b��1b is the estimator of �1 from re-sample
S�Nb.

A.1.2 Asymptotic Re�nement

For notational simplicity drop the subscript N , so TN (SN ) = T has small-
sample cdf denoted H(tjF ) = Pr[T � tjF ] where F is the true cdf generating
the underlying data in sample SN . The distributionH usually is analytically
intractable. The usual �rst-order asymptotic theory replaces it with the
asymptotic distribution of the test-statistic. The bootstrap instead replaces
H with bH(tj bF ) = Pr[T � � tj bF ] where bF denotes the cdf used to obtain
bootstrap resamples. We are concerned with how good an estimate bH(tj bF )
is of H(tjF ).

The bootstrap leads to consistent estimates and hypothesis tests under
relatively weak assumptions. Because the bootstrap should be based on a
distribution bF that is consistent for F , one must take care to choose the
resampling method so as to mimic the properties of F . For consistency,
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the bootstrap requires smoothness and continuity in F and in bH. These
assumptions are satis�ed for our application for the OLS estimator with
clustered errors.

A consistent bootstrap need not have asymptotic re�nement, however.
A key requirement is that we work with an asymptotically pivotal statistic,
as now explained.

To begin with assume that T is standardized to have mean 0 and variance
1. The usual asymptotic approximation T a� N [0; 1] is

Pr[T � tjF ] = �(t) +O(N�1=2);

where �(�) is the standard normal cdf and N is sample size. When one
uses the standard normal critical values with a "t" statistic, this is the
approximation on which one relies. The Edgeworth expansion gives a better
asymptotic approximation

Pr[T � tjF ] = �(t) +N�1=2a(t)�(t) +O(N�1);

where �(�) is the standard normal density and a(�) is an even quadratic
polynomial with coe¢ cients that depend on the low-order cumulants (or
moments) of the underlying data. One can directly use the preceding re-
sult, but computation of the polynomial coe¢ cients in a(t) is theoretically
demanding. The bootstrap provides an alternative.

The bootstrap version of T is the statistic T �, which has Edgeworth
expansion

Pr[T � � tj bF ] = �(t) +N�1=2ba(t)�(t) +Op(N�1);

where bF is the empirical distribution function of the sample. If ba(t) =
a(t) +Op(N

�1=2), which is often the case, then

Pr[T � tjF ] = Pr[T � � tj bF ] +Op(N�1): (18)

This statement means that the bootstrap cdf Pr[T � � tj bF ] is withinOp(N�1)

of the unknown true cdf Pr[T � tjF ], which is a better approximation than
one gets using �(t), since the standard normal cdf is within O(N�1=2) and
Pr[O(N�1=2)�Op(N�1) > 0] gets arbitrarily close to 1 for su¢ ciently large
N .
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What if we use a nonpivotal statistic T? Suppose T a� N [0; �2] so that
T=s

a� N [0; 1] where s is a consistent estimate of the standard error. Then
Edgeworth expansions still apply, but now

Pr[T � tjF ] = �(t=�) +N�1=2b(t=�)�(t=�) +O(N�1);

for some quadratic function b(�) 6= a(�), and similarly for the bootstrap
estimates

Pr[T � � tj bF ] = �(t=s) +N�1=2bb(t=s)�(t=s) +Op(N�1):

Now, even if bb(�) = b(�) + Op(N�1=2), these functions are evaluated at t=s
where usually s = � +Op(N�1=2). It follows for nonpivotal T that

Pr[T � tjF ] = Pr[T � � tj bF ] +Op(N�1=2); (19)

so there is no asymptotic re�nement. Thus nonpivotal statistics bring no
improvement in the convergence rate relative to using �rst-order asymptotic
theory.

The main requirement for the asymptotic re�nement (18) is that an as-
ymptotically pivotal statistic is the object being bootstrapped. The bootstrap-
t procedure does this.

The preceding analysis shows that for tests of nominal size � the true
size is � + O(N�j=2) where j = 2 using the bootstrap-t procedure, while
j = 1 using the usual asymptotic normal approximation and the percentile
and bootstrap-se procedures. These results for are for a one-sided test or a
nonsymmetric two-sided test. For a two-sided symmetric test, cancellation
occurs because a(t) is an even function, so one further term in the Edgeworth
expansion can be used. Then j = 3 using the bootstrap-t procedure and
j = 2 using the other procedures.

A.2 Bootstrap Procedures

A.2.1 Bootstrap-T Procedures

We begin with the preferred bootstrap-t procedures using three bootstrap
sampling schemes - pairs cluster, residual cluster and wild cluster - that are
generalizations of pairs, clusters and wild resampling for nonclustered data.

Pairs Cluster Bootstrap-t
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1. From the original sample form w = (b�1��0)=sb�1 , where sb�1 is obtained
using the CRVE in (8) with eug = (G=(G� 1))bug:

2. Do B iterations of this step. On the bth iteration:

(a) Form a sample of G clusters f(y�1;X�1); :::; (y�G;X�G)g by resam-
pling with replacement G times from the original sample of clus-
ters.

(b) Calculate the Wald test statistic w�b = (b��1;b�b�1)=sb��1;b , where b��1;b
and its standard error sb��1;b are obtained from OLS estimation

using the bth pseudo-sample, sb��1;b is obtained using the same
method as that in step 1, and b�1 is the original OLS estimate.

3. Reject H0 at level � if and only if w < w�[�=2] or w > w
�
[1��=2], where

w�[q] denotes the q
th quantile of w�1; :::; w

�
B.

This procedure is a straightforward generalization of the pairs bootstrap
that assumes (yig;xig) are iid across g and within i for given g. Here we
instead assume only that (yg;Xg) are iid.

We consider two variations of this procedure that use alternative esti-
mators of sb� in both step 1 and in step 2b. First, the pairs cluster CR3
bootstrap-T uses the CRVE in (8) with eug calculated using the CR3 correc-
tion in (10). Second, the pairs cluster BDM bootstrap-T uses default OLS
standard errors and is a symmetric version of the Wald test, following BDM
(2004).

The remaining bootstrap-t procedures use residual cluster and wild clus-
ter resampling schemes that take advantage of the ability to resample with
the null hypothesis �1 = �

0
1 imposed.

Cluster Residual Bootstrap-t with H0 imposed

1. From OLS estimation on the original sample form w = (b�1 � �0)=sb�1 ,
where sb�1 is obtained using the CRVE in (8) with eug = (G=(G�1))bug.
Also obtain the restricted OLS estimator b�R that imposes H0 : �1 =
�01, and the associated restricted OLS residuals fbuR1 ; :::; buRGg.20

20The restricted estimator can be obtained by regressing yig��01x1;ig on a constant and
all regressors other than x1;ig.
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2. Do B iterations of this step. On the bth iteration:

(a) Form a sample of G clusters f(by�1;X1); :::; (by�G;XG)g by resam-
pling with replacementG times from fbuR1 ; :::; buRGg to give fbuR�1 ; :::; buR�G g
and then forming by�g = X0gb�R + buR�g , g = 1; :::; G.

(b) Calculate the Wald test statistic w�b = (b��1;b � �01)=sb��1;b , whereb��1;b and its standard error sb��1;b are obtained from unrestricted

OLS estimation using the bth pseudo-sample, with sb��1;b computed
using the same method as that in step 1.

3. Reject H0 at level � if and only if w < w�[�=2] or w > w
�
[1��=2], where

w�[q] denotes the q
th quantile of w�1; :::; w

�
B.

Hall (1992, pp.184-191) provides theoretical justi�cation for the residual
bootstrap for clustered errors. This bootstrap is used as a benchmark in
Monte Carlo simulations for the other bootstraps. In practice it is too
restrictive as it assumes that ug are iid, ruling out heteroskedasticity across
clusters, and that clusters are balanced.

Wild Cluster bootstrap with H0 imposed

1. From OLS estimation on the original sample form w = (b�1 � �0)=sb� ,
where sb� is obtained using the CRVE in (8) with eug = (G=(G�1))bug.
Also obtain the restricted OLS estimator b�R that imposes H0 : �1 =
�01, and the associated restricted OLS residuals fbuR1 ; :::; buRGg.21

2. Do B iterations of this step. On the bth iteration:

(a) Form a sample of G clusters f(by�1;X1); :::; (by�G;XG)g by the fol-
lowing method. For each cluster g = 1; :::; G, form either buR�g =buRg with probability 0:5 or buR�g = �buRg with probability 0:5 and
then form by�g = X0gb�R + buR�g , g = 1; :::; G.

21The restricted estimator can be obtained by regressing yig��01x1;ig on a constant and
all regressors other than x1;ig.
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(b) Calculate the Wald test statistic w�b = (b��1;b � �01)=sb��1;b , whereb��1;b and its standard error sb��1;b are obtained from unrestricted

OLS estimation using the bth pseudo-sample, with sb��1;b computed
using the same method as that in step 1.

3. Reject H0 at level � if and only if w < w�[�=2] or w > w
�
[1��=2], where

w�[q] denotes the q
th quantile of w�1; :::; w

�
B.

The wild bootstrap has the bene�t that it imposes the constraint that the
bootstrap error bu�g has conditional mean zero, a constraint not imposed by
a pairs bootstrap. Speci�cally, consider the more general bootstrap residual

bu�g = agbug; (20)

where ag are drawings independent over g (and not dependent on the data)
that satisfy E[ag] = 0 and E[a2g] = 1. Then E[bu�g] = E[agbug] = E[bugE[agjbug]] =
0. Additionally E[bu�gbu�0g ] = E[bugbu0g] so the variance is preserved.

A variety of weights ag have been proposed. The ones we use, with ag = 1
with probability 0:5 and ag = �1 with probability 0:5 are called Rademacher
weights. Mammen (1993) actually proposed an alternative set of weights:
ag = (1 �

p
5)=2 ' �0:6180 with probability (1 +

p
5)=2

p
5 ' 0:7236 and

ag = 1� (1�
p
5)=2 with probability 1� (1 +

p
5)=2

p
5. These weights are

the only two-point distribution that satisfy the constraints E[ag] = 0 and
E[a2g] = 1 and the additional constraint E[a3g] = 1, which is necessary to

achieve asymptotic re�nement if b� is asymmetrically distributed.
Our implementation of the Wild bootstrap follows results of Davidson

and Flachaire (2001) for the nonclustered case. They provide theoretical
reasons and Monte Carlo evidence that favor using the simpler Rademacher
variables as weights, even if b� is asymmetrically distributed. And they favor
using restricted OLS residuals.

We do not consider yet another residual bootstrap, a parametric boot-
strap that makes draws of errors from an assumed error distribution.

A.2.2 BCA Bootstrap

We consider the BCA method for pairs cluster resampling only, though it
can be applied to other resampling methods (that do not impose H0).
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Pairs Cluster Bias-corrected Accelerated (BCA) Bootstrap

1. From the original sample form b�1:
2. Do B iterations of this step. On the bth iteration:

(a) Form a sample of G clusters f(y�1;X�1); :::; (y�G;X�G)g by resam-
pling with replacement G times from the original sample.

(b) Calculate the OLS estimate b��1b.
3. De�ne the q-quantile b��1;[q] to be the smallest of the B estimates b��1b
such that at least a fraction q of the B estimates b��1b are less thanb��1;[q]. Reject H0 if and only if �01 < b��1;[�1] or �01 > b��1;[�2] where

�1 = �

�bz0 + bz0 � z�=2
1� ba(bz0 + z�=2)

�
�2 = �

�bz0 + bz0 + z�=2
1� ba(bz0 + z�=2)

�
;

where �(�) is the standard normal cdf, z�=2 is the �=2 quantile of the
standard normal, bz0 = ��1(B�1PB

b=1 1(
b��1b < b�1)), and for clustered

bootstraps

a =

PG
g=1(� � b�1;(g))3

[
PG
g=1(� � b�1;(g))2]3=2 ;

where b�1;(g) is the estimator of �1 obtained from the original sample

if the gth cluster is excluded and � =
PG
g=1

b�1;(g)=G.
Note that this testing procedure does not require estimation of the stan-

dard error of the estimator, either using the original sample or any bootstrap
resample, though the computation of a does use jackknife estimates of the
variance and third moment of b�1. The BCA method, unlike bootstrap-t, is
transformation respecting so that, for example, if it yields con�dence inter-
val (c1; c2) for b�1, then it yields con�dence interval (c21; c22) for b�21. Efron
(1987) and Hall (1992, pp. 128-141) provide details and discussion in the
nonclustered case.
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A.2.3 Bootstrap-se Methods

We present the bootstrap-se for pairs cluster resampling.

Pairs Cluster Bootstrap-se

1. From the original sample form w = (b�1��0)=sb�, where sb� is obtained
using the CRVE in (8) with eug = (G=(G� 1))bug:

2. Do B iterations of this step. On the bth iteration:

(a) Form a sample of G clusters f(y�1;X�1); :::; (y�G;X�G)g by resam-
pling with replacement G times from the original sample.

(b) Calculate the OLS estimate b��1;b.
3. Reject H0 at level � if and only if jwBSEj > z�=2, where

wBSE =
b�1 � �01
sb�1;B ;

sb�1;B is the bootstrap estimate of the standard error

sb�1;B =
 

1

B � 1

BX
b=1

(b��1b � b��1)2
!1=2

;

and b��1 = 1
B

PB
b=1
b��1b.

This method is easily adapted to the other resampling schemes by ap-
propriately amending steps 1 and 2(a).
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Table 1: Di¤erent Methods for Wald Test

Method Bootstrap? Re�nement? H0 imposed?
Conventional Wald
1. Default (iid errors) No - -
2. Moulton type No - -
3. Cluster-robust No - -
4. Cluster-robust CR3 No - -
Wald bootstrap-se
5. Pairs cluster Yes No -
6. Residuals cluster H0 Yes No -
7. Wild cluster H0 Yes No -
BCA test
8. Pairs cluster Yes Yes
Wald bootstrap-t
9. BDM Yes No No
10. Pairs cluster Yes Yes No
11. Pairs CR3 cluster Yes Yes No
12. Residuals cluster H0 Yes Yes Yes
13. Wild cluster H0 Yes Yes Yes
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Table 2: 1,000 simulations from dgp with group level random errors.
Rejection rates for tests of nominal size  0.05 with simulation se's in parentheses.

Number of Groups (G)
Estimator 5 10 15 20 25 30

# Method

1 Assume iid 0.426 0.479 0.489 0.490 0.504 0.472

(0.016) (0.016) (0.016) (0.016) (0.016) (0.016)

2 Moulton­type estimator 0.130 0.084 0.086 0.074 0.080 0.052

(0.011) (0.009) (0.009) (0.008) (0.009) (0.007)

3 Cluster Robust 0.195 0.132 0.096 0.093 0.095 0.069

(0.013) (0.011) (0.009) (0.009) (0.009) (0.008)

4 CR3 Residual Correction 0.088 0.084 0.065 0.072 0.067 0.057

(0.009) (0.009) (0.008) (0.008) (0.008) (0.007)

5 Pairs Cluster Bootstrap ­ se 0.152 0.122 0.095 0.096 0.100 0.072

(0.011) (0.010) (0.009) (0.009) (0.009) (0.008)

6 Residual Cluster  Bootstrap ­ se 0.047 0.049 0.063 0.062 0.066 0.043

(0.007) (0.007) (0.008) (0.008) (0.008) (0.006)

7 Wild Cluster Bootstrap ­ se 0.012 0.031 0.039 0.041 0.056 0.040

(0.003) (0.005) (0.006) (0.006) (0.007) (0.006)

8 Pairs Cluster Bootstrap ­ BCA 0.161 0.106 0.101 0.087 0.094 0.068

(0.012) (0.010) (0.010) (0.009) (0.009) (0.008)

9 BDM Bootstrap ­ t 0.117 0.109 0.094 0.094 0.095 0.068

(0.010) (0.010) (0.009) (0.009) (0.009) (0.008)

10 Pairs Cluster Bootstrap ­ t 0.081 0.082 0.075 0.073 0.070 0.054

(0.009) (0.009) (0.008) (0.008) (0.008) (0.007)

11 Pairs CR3 Bootstrap ­ t 0.081 0.085 0.070 0.072 0.069 0.051

(0.009) (0.009) (0.008) (0.008) (0.008) (0.007)

12 Residual Cluster Bootstrap ­ t 0.034 0.052 0.049 0.044 0.056 0.050

(0.006) (0.007) (0.007) (0.006) (0.007) (0.007)

13 Wild Cluster Bootstrap ­ t 0.054 0.062 0.056 0.045 0.060 0.045

(0.007) (0.008) (0.007) (0.007) (0.008) (0.007)
T_distribution(G­k) 0.145 0.086 0.072 0.066 0.062 0.060
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Table 3: 1,000 simulations from dgp with group level random errors and heteroskedasticity.
Rejection rates for tests of nominal size  0.05 with simulation se's in parentheses.

Number of Groups (G)
Estimator 5 10 15 20 25 30

# Method

1 Assume iid 0.302 0.288 0.307 0.295 0.287 0.297

(0.015) (0.014) (0.015) (0.014) (0.014) (0.014)

2 Moulton­type estimator 0.261 0.214 0.206 0.175 0.174 0.180

(0.014) (0.013) (0.013) (0.012) (0.012) (0.012)

3 Cluster Robust 0.208 0.118 0.110 0.081 0.072 0.068

(0.013) (0.010) (0.010) (0.009) (0.008) (0.008)

4 CR3 Residual Correction 0.138 0.092 0.086 0.070 0.062 0.062

(0.011) (0.009) (0.009) (0.008) (0.008) (0.008)

5 Pairs Cluster Bootstrap ­ se 0.174 0.111 0.109 0.085 0.074 0.070

(0.012) (0.010) (0.010) (0.009) (0.008) (0.008)

6 Residual Cluster  Bootstrap ­ se 0.181 0.169 0.183 0.157 0.149 0.163

(0.012) (0.012) (0.012) (0.012) (0.011) (0.012)

7 Wild Cluster Bootstrap ­ se 0.019 0.041 0.057 0.040 0.038 0.043

(0.004) (0.006) (0.007) (0.006) (0.006) (0.006)

8 Pairs Cluster Bootstrap ­ BCA 0.183 0.103 0.099 0.082 0.070 0.064

(0.012) (0.010) (0.009) (0.009) (0.008) (0.008)

9 BDM Bootstrap ­ t 0.181 0.108 0.110 0.090 0.070 0.068

(0.012) (0.010) (0.010) (0.009) (0.008) (0.008)

10 Pairs Cluster Bootstrap ­ t 0.079 0.067 0.074 0.058 0.054 0.053

(0.009) (0.008) (0.008) (0.007) (0.007) (0.007)

11 Pairs CR3 Bootstrap ­ t 0.064 0.062 0.072 0.057 0.050 0.048

(0.008) (0.008) (0.008) (0.007) (0.007) (0.007)

12 Residual Cluster Bootstrap ­ t 0.066 0.057 0.066 0.049 0.043 0.047

(0.008) (0.007) (0.008) (0.007) (0.006) (0.007)

13 Wild Cluster Bootstrap ­ t 0.053 0.056 0.058 0.048 0.041 0.044

(0.007) (0.007) (0.007) (0.007) (0.006) (0.006)
T_distribution(G­k) 0.145 0.086 0.072 0.066 0.062 0.060
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Table 4: 1,000 simulations from different dgps (see text) and G = 10 groups.
Rejection rates for tests of nominal size  0.05 with simulation se's in parentheses.

Main ­
from

Table 2

Reject
based
on T (8

dof)

Cluster
size =

2

Cluster
size =

10

Cluster
size =
100

4 RHS
variabl

es

X's are
consta

nt
within
group

X's are
iid

Unbala
nced
group
sizes

(10,50)
Estimator            Column number 1 2 3 4 5 6 7 8 9
# Method

1 Assume iid 0.491 0.106 0.268 0.679 0.687 0.770 0.054 0.524

(0.016) (0.010) (0.014) (0.015) (0.015) (0.013) (0.007) (0.016)

2 Moulton­type estimator 0.092 0.044 0.095 0.098 0.088 0.089 0.125 0.061 0.129

(0.009) (0.006) (0.009) (0.009) (0.009) (0.009) (0.010) (0.008) (0.011)

3 Cluster Robust 0.129 0.082 0.137 0.126 0.115 0.129 0.183 0.103 0.183

(0.010) (0.009) (0.010) (0.010) (0.010) (0.010) (0.013) (0.010) (0.012)

4 CR3 Residual Correction 0.090 0.054 0.094 0.086 0.077 0.080 0.090 0.086 0.091

(0.009) (0.007) (0.009) (0.009) (0.008) (0.009) (0.009) (0.009) (0.009)

5 Pairs Cluster Bootstrap ­ se 0.120 0.071 0.100 0.114 0.120 0.128 0.063 0.122 0.138

(0.010) (0.008) (0.009) (0.010) (0.010) (0.010) (0.008) (0.010) (0.011)

6 Residual Cluster  Bootstrap ­ se 0.058 0.013 0.069 0.068 0.060 0.057 0.054 0.080

(0.007) (0.004) (0.008) (0.008) (0.008) (0.007) (0.007) (0.009)

7 Wild Cluster Bootstrap ­ se 0.028 0.006 0.048 0.044 0.032 0.030 0.036 0.053 0.019

(0.005) (0.002) (0.007) (0.006) (0.006) (0.005) (0.006) (0.007) (0.004)

8 Pairs Cluster Bootstrap ­ BCA 0.111 0.125 0.112 0.109 0.112 0.100 0.134 0.140

(0.010) (0.010) (0.010) (0.010) (0.010) (0.009) (0.011) (0.011)

9 BDM Bootstrap ­ t 0.119 0.086 0.115 0.112 0.119 0.121 0.097 0.128

(0.010) (0.009) (0.010) (0.010) (0.010) (0.010) (0.009) (0.011)

10 Pairs Cluster Bootstrap ­ t 0.096 0.085 0.083 0.086 0.090 0.066 0.079 0.120

(0.009) (0.009) (0.009) (0.009) (0.009) (0.008) (0.009) (0.010)

11 Pairs CR3 Bootstrap ­ t 0.090 0.075 0.077 0.081 0.084 0.050 0.082 0.110

(0.009) (0.008) (0.008) (0.009) (0.009) (0.007) (0.009) (0.010)

12 Residual Cluster Bootstrap ­ t 0.055 0.052 0.056 0.050 0.043 0.043 0.065

(0.007) (0.007) (0.007) (0.007) (0.006) (0.006) (0.008)

13 Wild Cluster Bootstrap ­ t 0.055 0.064 0.056 0.048 0.052 0.045 0.064 0.061

(0.007) (0.008) (0.007) (0.007) (0.007) (0.007) (0.008) (0.008)
T_distribution(8) 0.086
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Table 5: 1,000 simulations from BDM (2004) design.
Rejection rates for tests of nominal size 0.05 with simulation se's in parentheses.
Size column measures size and power column measures power.

Number of States (G)
Estimator 6 10 20 50 6 10 20 50

Size Size Size Size Power Power Power Power
# Method

1 Assume iid 0.459 0.438 0.461 0.439 0.515 0.506 0.574 0.692

(0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.015)

2 Moulton­type estimator 0.449 0.428 0.454 0.429 0.510 0.490 0.565 0.686

(0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.015)

3 Cluster Robust 0.109 0.088 0.049 0.048 0.165 0.110 0.142 0.254

(0.010) (0.009) (0.007) (0.007) (0.012) (0.010) (0.011) (0.014)

4 Pairs Cluster Bootstrap ­ se 0.001 0.087 0.060 0.058 0.001 0.103 0.161 0.275

(0.001) (0.009) (0.008) (0.007) (0.001) (0.010) (0.012) (0.014)

5 Residual Cluster Bootstrap ­ se 0.043 0.055 0.045 0.048 0.079 0.069 0.127 0.260

(0.006) (0.007) (0.007) (0.007) (0.009) (0.008) (0.011) (0.014)

6 Wild Cluster Bootstrap ­ se 0.043 0.056 0.046 0.047 0.076 0.075 0.134 0.262

(0.006) (0.007) (0.007) (0.007) (0.008) (0.008) (0.011) (0.014)

7 Pairs Cluster Bootstrap ­ BCA 0.087 0.111 0.067 0.061 0.147 0.134 0.166 0.276

(0.009) (0.010) (0.008) (0.008) (0.011) (0.011) (0.012) (0.014)

8 BDM Bootstrap ­ t 0.111 0.086 0.053 0.054 0.161 0.113 0.153 0.270

(0.010) (0.009) (0.007) (0.007) (0.012) (0.010) (0.011) (0.014)

9 Pairs Cluster Bootstrap ­ t 0.006 0.022 0.043 0.061 0.007 0.033 0.112 0.255

(0.002) (0.005) (0.006) (0.008) (0.003) (0.006) (0.010) (0.014)

10 Residual Cluster Bootstrap ­ t 0.046 0.051 0.039 0.044 0.081 0.065 0.118 0.256

(0.007) (0.007) (0.006) (0.006) (0.009) (0.008) (0.010) (0.014)

11 Wild Cluster Bootstrap ­ t 0.067 0.053 0.041 0.045 0.110 0.078 0.124 0.247
(0.008) (0.007) (0.006) (0.007) (0.010) (0.008) (0.010) (0.014)
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Table 6: 250 simulations from BDM (2004) design using micro data.
Rejection rates for tests of nominal size 0.05 with simulation se's in parentheses.

Number of States (G)
Estimator 6 10

Size Size
# Method

1 Pairs cluster on state­year 0.440 0.444

(0.031) (0.031)

3 Pairs cluster on state 0.148 0.100

(0.023) (0.019)

11 Cluster on state, Wild Bootstrap­t 0.080 0.048
(0.017) (0.014)

Note:  Micro regressions control for a quartic in age, three education
dummies, and state and year fixed effects.  Number of Monte Carlo
replications R=250.  Nummber of boostrap replications B=199.
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