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Abstract

This paper contains three useful contributions: (1) it collects a new data-set of electronic

transaction data on soybean futures from the Dalian Futures Exchange in China that

records, not only the usual elements of each transaction (such as price and size) but also

identifies broker and customer identities, variables not usually obtainable; (2) it presents

new econometric methods for the analysis of dynamic multivariate count data based on

the autoregressive conditional intensity model of Jordà and Marcellino (2000); and (3)

together, the new data and econometric methods allow us to investigate, in a manner not

available before, the determinants and effects of non-institutional market making (or

scalping).
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1scalp·er \’ skalpǽ (r), -kaůp -\ n –s [‘scalp+er]: …c(1): a speculator who seeks

to make small profits on quick transactions…

– Webster’s Third New International Dictionary Unabridged.

1. Introduction

In futures exchanges, a scalper is a non-institutional agent who makes frequent purchases

and sales yet ends each day without any outstanding position. Collectively, scalpers

voluntarily approximate the role of institutional market makers by providing essential

liquidity services. This paper investigates this type of voluntary market making behavior

and examines its effects on market performance in a competitive, continuous-auction

environment in which there is no formal institutional market making. Specifically, we

analyze two central issues: (1) the determinants of scalper participation in the market, and

(2) the effects that scalping has on market liquidity and price volatility.

The earliest work on scalpers is by Working (1954, 1967, 1977), who studied two

months of trading records for “Mr. C”, a leading floor trader on the New York Cotton

Exchange in 1952. Working presented descriptive statistics and discussions on scalping

behavior in his papers, and in particular suggested that scalping contributes to market

“fluidity”, and that scalpers “derive income from hedgers through temporarily absorbing

hedging orders that are not immediately absorbed otherwise”. Working (1967) also

touched on the issue that scalping profit is positively related to trading frequency and

negatively related to trade size. Silber (1984) analyzed six weeks of trading records from

“Mr. X”, a “representative scalper” on the New York Futures Exchange during 1982-

1983, and derived similar conclusions regarding scalping strategy and profit. By studying

the Computerized Trade Reconstruction (CTR) records of twelve active futures from the
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Chicago Mercantile Exchange (CME) from July to September 1990, Kuserk and Locke

(1993) identified scalpers for each contract, and found that scalping revenue varies across

commodities and that scalpers tend to specialize in a particular commodity.

Both Working (1967, 1977) and Silber (1984) base their discussion on only one or

two scalpers, and the CTR data analyzed by Kuserk and Locke (1993) are compiled from

paper records at the end of a trading day and time-stamped to an accuracy of a 15-minute

bracket. By contrast, thanks to the implementation of electronic trading systems, we have

obtained all the transaction records of soybean futures from the Dalian Futures Exchange

in China for the period June to December, 1999. These data are time-stamped to the

second and each transaction record is marked with each trader’s identity, the price and

the volume of the transaction. The code for the trades reveals not just the broker but also

the individual customer. While previous studies of scalpers are mostly descriptive, the

richness of these data allows us to present more formal econometric evidence than has

been possible before.

Modern analysis of financial, high-frequency, tick-by-tick data (such as the data in

this study) relies on new econometric techniques based on the random arrival in time of

transactions (for a survey see Engle, 2000). As a result, this literature has favored the

approach of setting the problem in event time – that is, extracting the information

contained in the random durations elapsing between transactions. In this paper, because

scalping is likely to depend on cross-contract characteristics (such as scalping profit

opportunities, price volatility, trading volume and intensity), multivariate extensions of

existing econometric methods in event time quickly become impractical. The explanation

resides in these models’ inability to condition on information other than that available at
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each event node. Since trades on different contracts are unlikely to arrive at exactly the

same time, this constitutes a substantial shortcoming for the purposes of our research.

Instead, this paper presents an alternative strategy for analyzing multivariate, high-

frequency, financial data based on the dual of any duration problem: the count process

associated to it. Specifically, we will aggregate the data into five-minute intervals. During

these short intervals over which scalping matters, the number of scalpers and the number

of their trades are both small integers or counts. Thus, in order to analyze the effect of

past information and other determinants of scalper presence in a dynamic context, we

experiment with a new class of dynamic count data models: the autoregressive

conditional intensity model (ACI) introduced in Jordà and Marcellino (2000).

Bivariate ACI estimates suggest that, all else equal, volatility and high levels of

transaction activity, strongly determine a scalper’s incentives to enter the market. In

particular, Working’s (1967) observations that scalping is negatively related to trading

size and positively related to trading frequency are sustained by our findings. Moreover,

there are important complementarities to scalping across contracts that seem to be

assiduously exploited by scalpers. However, with regard to the effects that scalping has

on price volatility and “fluidity” (to paraphrase Working’s terminology) we are unable to

detect anything of significance although this may be partly due to the fact that scalping

represents a relatively small portion of overall trading.

The paper is organized as follows. Section 2 describes the main features of the data

that we collected for this study and explains how we identify scalpers. The next section

discusses candidate determinants of scalper presence in the market. Section 4 presents the

econometric aspects of the ACI model and implements it to examine scalper



April, 2002 5

participation. Section 5 analyzes the effects of scalping on volatility while the last section

concludes and presents directions for further research.

2. Data Description

The data that we use in this study was collected at the source from the Dalian Futures

Exchange in China. We were able to obtain seven months worth of electronic transaction

records of soybean futures for the period spanning June to December, 1999. Each

transaction record is marked with broker and customer identities, transaction price and

volume, a buy or sell indicator, an indicator of opening or closing positions, as well as a

time stamp.

There are six soybean futures contracts with expiration dates in January, March,

May, July, September and November. A contract expires in its delivery month midway

through which, trading tends to wind down almost completely. For example, trading on

the July 2000 futures contract started in mid July 1999 and ended in mid July 2000. Thus,

the trading of a contract gains considerable momentum usually two months after its

trading date and remains active for another two months before the volume declines

dramatically. However, the level of overall trading activity also depends on the season as

well as on trading in the spot market. Figure 1 illustrates these patterns by displaying the

average trading volumes of the two most actively traded contracts in our sample. In the

Dalian Futures Exchange, soybean futures are most actively traded during September to

the following January of each year, during which price volatility is high. The futures

prices determined during this period tend to set the tone for the rest of the season (Dalian

Futures Exchange, 2000).



April, 2002 6

A preliminary analysis of these transaction data reveals several key

characteristics. There are 140 member firms in total of which 125 are brokerage firms

with 6213 distinct customers in all. The remaining 15 member firms only trade for their

own accounts and each has a seat in the exchange. A member firm can have several seats

on the exchange floor, and it can also apply for a distance-trading seat to trade directly

off the exchange. However, regulations of the Dalian Futures Exchange prevent

brokerage firms from trading on their own accounts and similarly, prevent member firms

trading on their own accounts from conducting brokerage business. Table 1 presents a

summary of the relevant demographics for all these member firms.

2.1 Identifying Scalpers

The central topic of this paper consists on explaining non-institutional market making

behavior by scalpers. Consequently, we first need to identify which traders act as scalpers

from a universe of over six thousand market participants. Scalpers are characterized by

trading frequently during the day but rarely holding significant overnight positions. Using

these two criteria, we define “frequent” trading to mean making at least one trade every

15 minutes on average. Since trading sessions last for two and one half hours (from 9:00

am to 11:30 am) this is equivalent to placing at least 10 orders a day. In addition, there

are approximately 20 trading days in any given month. We will further require that for a

trader to be considered a candidate scalper, they must follow the trading pattern described

above for at least six days in a month.

These two criteria discriminate approximately 10 scalper candidates each month

for the period June to December, 1999. In addition, we complement our selection criteria
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to rule out “day traders.” Specifically, day traders are characterized by placing numerous

one-sided orders and then liquidating these positions with reverse orders a half hour to an

hour later. Traders that exhibit this trading pattern are excluded from the candidate

scalper pool. To complete our selection, we expanded the scalper pool to include traders

that have been consistently selected as scalpers in previous months but in a given month

only trade actively for four or five days. The resulting number of scalpers each month in

the sample is reported in Table 2 whereas the intra-day pattern of scalper presence in the

two most actively traded contracts is displayed in the top panel of Figure 2.

3. The Determinants of Scalping Activity

Given the scalpers identified by the procedures described in the previous section, this

section investigates what determines a scalper’s decision to enter the market. As we shall

see shortly, we will explore several candidate factors that include scalping profit

opportunities, price volatility, transaction intensity, transaction volume and scalping

competition. However, because we are using high-frequency, electronic transaction data,

it is worth discussing more fundamental methodological issues first.

The availability of ultra-high frequency, tick-by-tick data (such as the one we

study in this paper) has revolutionized the area of financial econometrics (for a survey see

Engle, 2000). These data inherently arrive at random times and thus require of new

econometric modeling techniques that deal with the random durations that elapse

between transactions in a dynamic manner. One way to approach this problem is given by

the autoregressive conditional duration (ACD) model proposed by Engle and Russell
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(1998). The ACD model is a dynamic duration model in which the conditioning on past

and exogenous or predetermined variables takes place in event time.

This last consideration constitutes a significant disadvantage for our study: often

times we will want to condition on variables whose realizations do not coincide precisely

with the event-arrival times of the dependent variables. Consequently, we have decided to

work instead with the dual of any duration problem – the count process associated to it.

We choose to aggregate the data into 5-minute intervals so that each trading day will

contain 30 such intervals. Because scalpers close their positions usually within a few

minutes, a five-minute interval is long enough to measure relevant statistics, but short

enough to preserve the microstructure of trading. For instance, as the top left panel of

Figure 2 reveals, the trading-day average number of scalpers present organized into five-

minute intervals ranges from a high of 3 to a low of 1 with an average value of about 2.

It is well known that when the count variable associated to a duration process

attains the value of one over the interval of observation, then there is no loss of

information in estimating the count model instead of the duration model. In Section 4 we

will estimate a dynamic count data model for the number of scalpers present which, as we

have just seen, is a count variable whose mean is close to 2. This suggests that by

aggregating the data into five-minute intervals, the loss of information due to this

aggregation can be regarded as trivial, particularly when compared to the gains resulting

from conducting the analysis in calendar time instead of in event time. Section 4 will

therefore present in detail the econometric methods we have designed to attack the

problem in this fashion. Before then however, we discuss the variables we will use to

describe scalper’s entry decisions.
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3.1 Scalper’s Spread

Market-makers on NASDAQ, specialists on NYSE, and scalpers in futures markets can

all be considered as providers of a matching service between buyers and sellers who need

immediate execution of their orders. The “price of immediacy” (Demsetz, 1968;

Grossman and Miller, 1988) thus becomes the mechanism by which scalpers derive their

profit. A natural way to determine this implicit cost of trading traditionally relies on

measures of the bid-ask spread: the price difference paid by urgent buyers and urgent

sellers. Unfortunately, our data do not provide bid-ask quotes (however, O’Hara, 1995

suggests that the bid-ask spread may be sensitive trade size, thus making across market

comparisons difficult).

Instead, we construct a measure of scalping profit opportunities, which we denote

scalper’s spread, as follows. Let vτ
k(j) and pτ

k(j) denote the volume and price of a given

transaction respectively, where ],1( tt −∈τ indicates that the transaction belongs to the

five-minute interval t; Kk ∈ denotes that k belongs to the set of scalpers K, and

},{ SBj ∈ denotes that the transaction was a buy if j = B (from the point of buy of the

scalper), and a sale if j = S. Therefore, we define scalper’s spread as the difference

between the volume weighted average of buy and sale prices, that is,
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The bigger the spread SSt the bigger the profit opportunities are for scalping, which may

be taken as an indicator of market liquidity conditions (see Grossman and Miller, 1988).

3.2 Volatility

Intimately related to a scalper’s profit opportunities measured by SSt, is the notion of

price volatility. Price changes typically represent shocks to order imbalance and

therefore, the larger these imbalances, the more plentiful scalping profit opportunities are.

Working (1967) noted that there is “price jiggling” in futures markets by which he meant

small price changes in one direction immediately followed by a price change in the

opposite direction. Working (1967) attributes this price pattern to the imbalance of

market orders at a point in time and suggests that scalping tends to restrict the size of

price jiggling. Garbade and Silber (1979) also suggest that scalper participation in a

continuous-auction market reduces the volatility of transaction prices around the

equilibrium price. Daigler and Wiley (1999) find that clearing members in futures

markets, who observe order flow, reduce the volatility of their own trades.

These views suggest that price volatility will be an important predictor of scalper

presence while also suggesting that scalping has positive externalities on price volatility.

We will investigate the latter issue in more detail below when we investigate the response

of volatility to scalping and trading volumes across the two most actively traded contracts

in our sample (the May 2000 and July 2000 contracts). Here, however, our first concern

is that of measuring price volatility itself.

The traditional approach to measuring volatility in financial markets typically

relies on some GARCH based measure since it is infeasible to compute price volatility
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from single price observations for each period. However, because we are analyzing the

data in five-minute intervals, it is straightforward to compute a volume-weighted sample

estimate of price volatility. In particular and following the notation in subsection 3.1, let

vτ denote the volume associated with the τth transaction in the interval (t-1, t] (note that

here we do not distinguish whether or not the transaction involves a scalper), and let pτ be

the associated price. Similarly, let Vt denote the total transaction volume in interval t and

define the volume-weighted price average during the tth interval as τ
τ

τ p
V

v
P

tt t
t ∑

−∈

=
],1(

.

Therefore, we can measure volatility as

( )∑
−∈

−=
],1(

2

tt
t

t
t Pp

V

v

τ
τ

τσ (2)

The top right panel of Figure 2 displays the intra-day seasonal patterns for this measure

of volatility. These exhibit the usual “volatility smile” patterns common to many

financial price time series: volatility tends to be highest at the opening and close of the

market.

3.3 Other determinants

In addition to a scalper’s spread and price volatility, we will investigate two groups of

variables that relate to the level of transaction activity in the market: transaction volume

and transaction intensity. For each group, we will classify the variable into scalper and

non-scalper transactions. Specifically, Vt
j will denote total volume transacted in the tth

five-minute interval, where j = k will denote scalper transactions and j = n will denote
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non-scalper transactions. Similarly, It
j will denote the transaction intensity (number of

transactions) during the tth interval for j = k, n. Although the joint inclusion of volume

and intensity variables may appear redundant (they both measure the level of market

activity), a small number of high volume transactions may present different scalping

incentives than a high number of small volume of transactions (this was Working’s, 1967

observation). The distinction between scalper and non-scalper transaction activity owes

to the fact that while the first is associated with scalping opportunities, the latter reflects

scalping competition. With regard to the intra-day patterns of transaction activity, the

bottom panels in Figure 2 display the average variation in the total number of transactions

throughout the trading day along with the total number of scalper transactions.

4. Predicting Scalper Presence

This section investigates which are the best predictors of scalper’s presence. Although

our dataset contains six soybean active futures contracts with differing maturing dates,

we find that scalpers tend to limit their participation to the two most actively traded

contracts during any given day. Because of the maturity structure of these contracts, we

refer to the most actively traded contract as the dominant contract and similarly, denote

the second most actively traded contract as the subsidiary contract. In particular, the May

2000 contract will be the dominant contract in our sample, with July 2000 as the

subsidiary. The sample that we investigate includes 100 days of trading that took place

between August to December 1999, in other words, 3000, 5-minute interval observations.
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4.1 The Autoregressive Conditional Intensity Model

The number of scalpers present in any given 5-minute interval is a count variable that

shares many characteristics with variables such as the number of customers that arrive at

a service facility, the arrival of phone calls at a switchboard, and other analogous

variables that describe rather infrequent events that occur at random times within the

interval of observation. Therefore, it is natural to treat the number of scalpers as a count

variable that we denote as yt, where the subscript t refers to the five-minute interval

associated to it. The benchmark for count data is the Poisson distribution (see Cameron

and Trivedi, 1998 for an excellent survey on count data models), with density

,...2,1,0
!

)|( ==
−

t
t

y
t

tt y
y

e
yf

tt λλ

x (3)

and conditional expectation

)'exp()|( γλ ttttyE xx == (4)

so that logλ t depends linearly on xt, a vector of explanatory variables which will primarily

include the variables discussed in section 3, along with lags of the dependent variable y.

Expression (4) is called the exponential mean function and together with expression (3)

they form the Poisson regression model, the workhorse of count data models. The model

can be easily estimated by maximum likelihood and conventional numerical techniques

since the likelihood is globally concave.
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However, unlike most applications of the Poisson regression model, the variable

yt is a time series that exhibits remarkable persistence. For example, the Ljung-Box

statistic for the May 2000 contract attains a value of Q5 = 1228 at five lags and Q10 =

7409 at ten lags, well above the conventional 5% critical value (in fact, the first five

values of the autocorrelation function are above 0.5 for both the May 2000 and the July

2000 contracts). One solution to this problem is offered in Jordà and Marcellino (2000) in

which the intensity of the Poisson process described in expression (4) is formulated to

have a time series representation similar to that of an ACD or GARCH models. In

particular, Jordà and Marcellino (2000) replace expression (4) with

γβλαλ '
11 )log()log( tttt y x++= −− (5)

Thus, the model given by expressions (3) and (5) is referred to as the autoregressive

conditional intensity model of order (1,1) or ACI(1,1). Extensions of expression (5) to

general lags ACI(p, q) are trivial but to focus the discussion consider the simple (1,1)

case. Expression (5) ensures that the intensity parameter λ t remains strictly positive for

all values of the parameters α, β, γ while allowing the dependence of logλ t to be linear in

its past values. The process described in (5) will be stationary as long as α + β < 1. Note

that the ACI(1,1) endows the original expression in (4) with rather rich dynamics in a

parsimonious manner: the process logλ t depends on lags of yt-1 and xt at a geometrically

decaying rate α. Estimation of the ACI(1,1) can be done by conditional maximum

likelihood techniques by setting λ0 to the unconditional mean of y (alternatively, λ0 can

be estimated as an additional parameter if the model is nonstationary, for example) and is
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disarmingly simple. For example, one can specify the following three lines of code in the

LogL object in EViews, version 4.0 (see EViews manual, chapter 18):

@log ll

log(lambda) = c(1) + c(2)*log(lambda(-1)) + c(3)*y(-1) + c(4)*x

ll = log(@dpoisson(y, lambda))

The empirical analysis that we report below involves scalper presence in the May 2000

and July 2000 contracts, which we will denote by yt
M and yt

J respectively. It is common

practice for scalpers to concentrate their trading on the dominant contract (May 2000) for

one or two hours, and then switch to the subsidiary contract (July 2000). Consequently, in

order to determine scalper participation in the market, it is important to model the joint

behavior of yt
M and yt

J conditional on past information so that we take into account in

complementarity/substitutability between contracts.

Specifically, yt
M and yt

J are both count variables and let xt now be a vector of

explanatory variables that includes the scalping opportunities in both contracts. The

object of interest is now the joint density for yt
M and yt

J, which can be decomposed,

without loss of generality, as
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t
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for i = M, J; g(.) is the marginal density of yt
M and h(.) is the

conditional density of yt
J given yt

M. Fully parametric approaches based on the joint
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distribution of non-Gaussian random variables given a set of covariates are difficult to

apply because analytically and computationally tractable expressions for such joint

distributions are available for special cases only, and in fact, applications of multivariate

count models are relatively uncommon (see chapter 8, Cameron and Trivedi, 1988).

However, because of the nature of the contracts that we are investigating, it is

straightforward to assign a hierarchical structure to the dominant and subsidiary contracts

to the decomposition in expression (6). In particular, we will assume that g(.) and h(.) are

univariate Poisson densities whose conditional means follow the bivariate version of the

ACI(1,1) process in (5),
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Note that expression (7) imposes a similar semi-structural restriction to that in the

analysis of the structural-VAR literature: namely, that of imposing a Wold-causal order

which in this case consists on having the contemporaneous values of the dominant

contract’s dependent variables appear in the expression of the conditional mean for the

subsidiary contract. The bivariate ACI(1,1) model expanded by expression (7) can be

easily estimated by maximizing the joint conditional likelihood expression in (6) by

numerical techniques.
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4.2 ACI Estimates

This section presents estimates obtained with the bivariate ACI model in expressions (3),

(6) and (7) but it complements the analysis with univariate ACI and simple Poisson

regression estimates to provide a benchmark with which to compare the benefits of the

ACI methodology. To reiterate the main elements of the analysis, the data is organized in

five-minute intervals, each trading day containing 30 such intervals (9:00am to 11:30am)

and there are 100 such days in our sample (which correspond to the period August to

December 1999). However, since there is no trading during the morning break (10:15am

to 11:00am) we drop observations 16 through 18 in each trading day (all the variables

attain zero values during these periods). The dependent variables yt
i for i = M, J denote

the number of scalpers present in trading for the May 2000 (denoted by i = M) and the

July 2000 (denoted by i =J) contracts.

The vector of explanatory variables xt will contain the following variables. The

intra-day seasonal pattern will be captured with a set of 27 dummy variables (one for

each five-minute interval in a trading day) denoted Dt’ = (d1t, …, d15t, d19t, …, d30t) with

dit = 1 if t ∈ ith interval, 0 otherwise. In addition, the vector zit’ = (SSt, σt, Vt
k, Vt

n, It
k, It

n)

for i =M, J will contain the variables described in section 3 for each contract, (we abuse

notation in favor of simplifying the presentation by forgoing the indicator subscript for

the type of contract in each individual element of zit).

We begin by discussing univariate estimates of the Poisson and ACI regression

models (expressions (3)-(5)). These are reported in Table 3. The Poisson regression

model contains up to four lags of the explanatory variables so that xt’= (Dt’, zt-1’, …, zt-4’,

yt-1, …, yt-4). On the other hand, the ACI only contains one lag so that xt’= (Dt’, zt-1’),
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(note that yt-1 appears explicitly in expression (5) and is therefore omitted from x).

Because we are estimating univariate models, note that we have dropped the subscript

that indicates to what contract do the covariates belong to since the model for each

contract will only contain regressors specific to that contract. The parameter estimates for

the Poisson regression model are omitted and only the basic regression statistics are

reported at the bottom of Table 3.

The first result worth remarking is the substantial efficiency with which the ACI

model deals with the dynamics. Note that, although the Poisson regression model

contains 20 additional regressors, it attains a lower likelihood value than the ACI

estimates (note that the likelihood values are directly comparable). The reason for this

result is made evident by the parameter estimates for the variables yt-1 and log(λ t-1) (α and

β in expression (5)): their sum is approximately 0.85 for both contracts suggesting a

substantial amount of persistence (although this value is well below the canonical value

of one, suggesting that the model is stationary). With regard to estimates for particular

variables, we prefer to discuss the results in the context of the bivariate estimates. Here

we simply remark that, contrary to our expectations, the scalper spread variable, SSt-1, did

not appear to explain scalper presence. Generally speaking, volatility and transaction

activity levels of non-scalpers appear to increase the likelihood of additional scalper

presence while scalper activity has the opposite effect.

Table 4 contains the estimates for the bivariate ACI specification in expression

(7). Note that now xt’ = (Dt’, zM,t-1’, zJ,t-1’), that is, the explanatory variables for each of

the contracts appear in the regression of each contract (this was not the case with the

univariate counterparts). As before, note that the amount of persistence detected is quite



April, 2002 19

substantial: for the May 2000 contract, α + β = 0.95; and for the July 2000 contract, α +

β = 0.89. The scalper-spread variable is not significant overall except in the May 2000

equation, where a significant and negative coefficient on the July 2000 scalper spread

suggests that when profit opportunities are good in this contract, they decrease the

likelihood of additional scalpers entering the May 2000 contract, as one would expect. As

before, volatility is perhaps the most consistent predictor of scalper presence, always

entering positively and significantly.

With respect to the interaction between the May 2000 and the July 2000 contracts,

the former appears to be more sensitive to characteristics of the latter than vice versa (in

terms of the overall significance level of the cross-contract covariates). In what follows,

self-contract variables denote regressors that belong to the contract whose dependent

variable is being explained, while cross-contract variables will denote regressors that

belong to the alternative contract being explained. Hence, with respect to the volume

variables, self-contract scalper and non-scalper volume enter negatively but only

significantly in the July 2000 contract equation. The self-contract intensity variables also

enter with the correct signs, so that together with the volume variable estimates, we are

able to replicate Working’s (1967) findings on the negative effects of trading size and the

positive effects of transaction frequency on scalping. The cross-contract effects of the

volume variables and the scalper intensity variables suggest that there is significant

substitution of scalping across contracts. However, the signs on the cross-contract, non-

scalper intensity variables suggest complementarity rather than substitution.

The overall fit of the bivariate ACI is substantially better than the fit of the

individual univariate ACI models (the log-likelihood increases from –7932.062 to –
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7664.709 but with 18 additional regressors). The p-value of the likelihood ratio statistic

for the additional regressors in the bivariate model is essentially zero, suggesting the

bivariate ACI is a substantial improvement.

We conclude this section by summarizing the main findings. First, between the

two liquidity proxy variables, scalper spread and volatility, the latter is an important and

more significant determinant of scalper presence. Second, the interaction between volume

and trading intensity suggests that they contain specific information regarding trading

activity levels and that they should be jointly included when determining scalper

presence. Third, methodologically speaking we demonstrate conclusively the virtues of

the ACI model relative to classical Poisson regression when the dependent variable is an

autocorrelated time series.

4.3. Robustness: The Tale of Mr. D

The empirical investigation in the previous subsection is based on the aggregate behavior

of those traders that, in a given month, belong to the class of scalpers we have defined in

Section 2.1. However, one could ask how well does this aggregative approach represent

individual scalper behavior. To answer this question, we recorded the transaction activity

of an anonymous trader – whom we called Mr. D – who belonged to the class of scalpers

during most of the months in our sample.

Mr. D is a rather active trader, having engaged in transactions about 20% of the

time in the May 2000 contract and one-third of the time in the July 2000 contract. In the

5-minute intervals in which he is active, he engages in two transactions on average

although sometimes it can be as many as 21. His pattern of trades corresponds rather
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closely to any conventional notion of scalping: any position he holds is typically reversed

within the same or one 5-minute interval after it is acquired and he rarely finishes the day

with any significant positions.

We investigate Mr. D’s trading patterns using the same approach (the ACI model)

and the same explanatory variables as in the previous subsection with the exception of the

dependent variable – the variable i
ty , i =M, J, although a still a count variable, now

records Mr. D’s transactions in a given 5-minute interval instead. Table 5 directly reports

the bivariate ACI(1,1) estimates of this model, which is based on the specification in

expression (7) and is estimated over the same sample as in Table 4 to make the results

between these tables easily comparable.

Several results deserve comment. Overall, there is a remarkable qualitative

similitude between the aggregate results in Table 4 and the results for Mr. D in Table 5:

the coefficient estimates are different in magnitude because the dependent variables are

different but the sign and the significance levels are very similar. Once again, the

ACI(1,1) specification captures a significant amount of persistence with α + β = 0.77 for

the May 2000 contract and α + β = 0.73 for the July 2000 contract.

However, there are some differences between models in that Mr. D

appears to be more preoccupied with the May 2000 contract variables than with the July

2000 contract. Thus, for example, when volatility is high in the May 2000 contract, Mr. D

reduces his engagement in July 2000 trading and conversely, when the volume of

transactions and the transaction intensity of scalpers in the May 2000 contract increases,

Mr. D becomes more engaged in July 2000 contract trading. But other than the different

hierarchy between the contracts, as these results show, they confirm the essential findings
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of the aggregative model and provide a robustness check to our conclusions. The next

section investigates some of the interactions between volatility, scalper transacted volume

and non-scalper volume that will complement the results in this section.

5. Volatility Responses to Scalper and Non-Scalper Transaction Activity

The previous section allowed us to investigate the determinants of scalper presence in the

market for soybean futures in the Dalian Futures Exchange. However, while we were

able to ascertain that, among other factors, volatility is an important determinant of

scalper presence, our discussion in Subsection 3.2 suggests that scalping may have

important positive externalities on volatility. Scalping activity and competition are likely

to reduce the magnitude of order imbalances (the main source of scalping profit),

therefore mitigating price volatility. On the other hand, the overall level of volatility is

mostly correlated with the general level of transaction activity: thin markets tend to

display higher levels of volatility. Finally, the interaction between the dominant and

subsidiary contracts is likely to contribute to fluctuations in the relative levels of

volatility experienced in each of these markets.

Evaluating how volatility responds to scalping therefore requires that we consider

all of these issues simultaneously in the context of a general dynamic model. In essence,

the type of question we want to answer is: What is the dynamic response volatility to

scalping, conditional on past information and, on transaction activity levels and cross-

contract interactions? To answer this question we follow a two-pronged approach based

on a structural vector autoregression (VAR). The first prong consists on analyzing the

dynamic response of volatility to structural shocks of the variables in the system (which
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will be defined shortly) while the second prong consists on counter-factual

experimentation. Specifically, we will analyze the response of volatility to transaction

activity shocks under two scenarios: the first allows for the usual response of scalping

activity to such a shock while the second shuts down scalping responses instead. The

difference in the dynamic response of volatility to these two scenarios will reflect scalper

externalities.

We turn now to the specific implementation of these experiments. Consider the

vector of variables, wt’ = (xMt’, xJt’) where xit’ = (σt, It
n, It

k) for i = M, J (once more, we

abuse notation slightly by omitting subscripts on the component variables of xit for the

sake of clarity). All of the component variables in x have been defined previously in

Section 3 and they are respectively: volatility, non-scalper transaction intensity, and

scalper transaction intensity.

Consequently, the vector w will be modeled as a finite order VAR. To endow the

model with a structural interpretation, we follow the conventional assumptions in the

extensive VAR literature (see chapter 11, Hamilton 1994) based on the Cholesky

decomposition and the specification of a Wold-causal ordering of the vector of

contemporaneous variables, wt. The configuration of our problem confers a natural

hierarchy that is based on the maturity of the contracts. Recall that the May 2000 contract

is the dominant contract with the July 2000 contract as the subsidiary. Subsequently, the

block of variables xMt will be ordered Wold-causally prior to the block xJt. Furthermore,

within each block, we will assume that scalper transaction intensity depends on the

contemporaneous values of the level of volatility and non-scalper transaction intensity.
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Therefore, within each of the blocks xit the Wold-causal order will place volatility ahead

of non-scalper transaction intensity and ahead of scalper transaction intensity.

5.1 The Dynamic Responses of Volatility

Based on the VAR described in the previous section, Figure 3 reports a selection of the

impulse response functions to a one standard deviation shock to each of the variables in

the system, along with the associated asymptotic two standard error bands. These

responses are traced for up to one hour after the shock (12 five-minute intervals) and

constitute the first of the two prongs described in our research strategy. The next section

will discuss the results for the counterfactual experiments. Figure 3 is organized as

follows. Each row displays impulse responses of different variables to the shocks

specified at the beginning of each row (in order displayed: non-scalper transaction

intensity, scalper transaction intensity and volatility). The two headers at the top of the

different panels subdivide the display into two groups of columns according to whether

the shock was to a May 2000 contract variable or to a July 2000 variable instead. All the

shocks considered are positive by design.

We begin by examining the responses of scalper transaction activity to shocks in

volatility, which are displayed in the last row of Figure 3. These responses offer

confirmatory evidence of the results found in Section 4: an increase in volatility generates

increased scalping activity, both in the self-contract responses but also in the cross-

contract responses. The congruence of these results with those in Section 4 increase our

confidence both on the findings themselves and on the merits of the bivariate ACI

specification. Next, consider the responses displayed in the first row, which correspond to
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shocks in non-scalper transaction intensity. As one would expect, an increase in this type

of activity generates higher self-contract volatility and scalper transaction intensity.

Finally, the second row of figures displays the more interesting albeit less

intuitive results. In response to a positive shock in scalper transaction intensity, we would

expect two effects: (1) cross-contract increases in scalper transaction intensity due to the

reduction of scalper competition, and (2) reductions in price volatility due to increases in

scalping services. However, the reaction in cross-contract scalping is clearly nil and while

volatility does not appear to be very sensitive to scalping transaction intensity levels,

there is some evidence that the initial response is significantly positive rather than

negative. Because of this last result, we examined how robust this finding is to alternative

measurements of scalping activity on volatility through the counterfactual experiment

reported in the next subsection.

5.2 Scalping Effects on Volatility: A Counterfactual Experiment

This section asks the question: How would have volatility responded to increased levels

of non-scalper transaction intensity if scalper activity were constrained to remain fixed

rather than respond by also increasing? If the hypothesis that scalping makes the market

more fluid is true, we should expect that volatility increase by a larger extent when

scalping is constrained than otherwise. Due to the apparent complementarity between the

May and July 2000 contracts found in both the ACI and VAR estimates reported in

subsections 4.2 and 5.1, we decided to implement our counterfactual experiment by

restricting the responses of the scalping intensity variables in both contracts to be

simultaneously constant in response to a shock in non-scalping trading intensity.
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Figure 4 therefore displays the results of this experiment and is organized as

follows. Each row corresponds to the responses of volatility due to a shock in non-

scalping transaction in the May 2000 contract (top row) and the July 2000 contract

(bottom row). Each column in turn displays the May 2000 volatility response (left

column) and the July 2000 response (right column). The panels on the diagonal of Figure

4 contain the same responses displayed in Figure 3 and essentially coincide with our

expectation that increased self-contract transaction activity generates more volatility.

However, note that when the scalping response is shut down, there is no statistical and

discernible difference in the response of volatility. This suggests that, at best, scalping is

not contributing positively to reducing volatility and, at worst, it is inducing higher

volatility a half hour after the shock in both contracts. The off-diagonal panels of Figure 4

contain the cross-contract responses of volatility. These are positive, further confirming

the complementarity that exists between contracts discussed in Subsection 5.1, but here

too, scalping has no effect on volatility.

6. Conclusion

This paper contains three main contributions. The main focus of the paper has been that

of studying non-institutional market making but to do an effective job we have obtained

an exclusive electronic transaction data set with customer and broker identities and we

have developed the appropriate econometric methods to deal with the challenges that

these data presented. Our results support earlier conclusions made by Working (1967)

regarding the effects of trade volume and trade size on scalper participation, but perhaps

more importantly, we have provided new light on the interaction of competing scalping
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opportunities in determining scalper presence in a particular contract. However, because

scalping represents a small fraction of total trading, we have been unable to establish that

scalping reduces price volatility. We suspect this result reflects the idiosyncrasies of our

data rather than more fundamental scalping externalities (or lack thereof).

In future work, the detailed nature of the data will allow us to investigate whom

are scalpers trading with and how scalper’s profit opportunities are affected by the

heterogeneous nature of other traders. In preliminary results, we have reason to believe

that there exist substantial information asymmetries among different groups of traders,

which affect their overall market performance. Nevertheless, although scalpers appear to

belong to the class of uninformed traders, they tend to perform substantially better than

other uninformed but non-scalping traders.

Finally, it is worth highlighting the advantages of modeling high frequency data

by aggregating the data into short intervals rather than by using the random arrival times

in which it is reported. By examining the count process associated with these dynamic

duration processes, we have been able to simplify the analysis in several dimensions. The

fixed-interval aggregation process allows the problem to be recast back into calendar time

rather than in event time. This allows for seasonal effects to be filtered in an effective,

general and straightforward manner by means of appropriate sets of seasonal dummies.

By contrast, dynamic duration models require of more sophisticated, non-parametric

smoothers. More fundamentally however, studying electronic transaction data in their

native state makes the conditioning on variables whose inter-arrival times do not coincide

with that of the endogenous variables a prohibitively complicated problem. We argue

that, as long as the interval of aggregation is sufficiently small, there is little loss of the
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micro-structure effects financial economists may wish to study while the payoff in

simplicity is quite substantial. The ACI model demonstrates one effective way of taking

advantage of knowledge on the varying rates of transaction activity levels that have

characterized the newest family of dynamic duration models.
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Table 1. Demographics of Member Firms in the Dalian Futures Exchange.

Non-Brokerage:

15 Firms

Brokerage:

125 Firms

Customers 15 6213

Year-end zero net position 3 5357

Year-end non-zero net position 12 856

Scalpers 0 20

Table 2. Trader Statistics in the Dalian Futures Exchange.

Number of
Traders

Number of
Scalpers

Jun-99 2545 8
Jul-99 2420 7

Aug-99 3053 8
Sep-99 4119 8
Oct-99 4122 8
Nov-99 5390 9
Dec-99 4371 5
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Table 3. Predicting Scalper Presence: Estimates from Univariate ACI Models

Contract
May 2000 July 2000

Parameter Estimate p-value Estimate p-value
yt-1 0.14

(0.01)
0.000

0.12
(0.01)

0.000

log(λ t-1) 0.71
(0.01)

0.000
0.72

(0.01)
0.000

SSt-1/100 3.41
(6.57)

0.605
-8.47
(6.63)

0.201

σt-1/100 5.00
(1.03)

0.000
4.91

(0.95)
0.000

vt-1
k/100 -5.83

(16.74)
0.728

-113.90
(15.76)

0.000

vt-1
n/100 -3.62

(0.95)
0.000

6.12
(1.73)

0.000

It-1
k/1000 -8.97

(2.51)
0.000

2.46
(1.80)

0.171

It-1
n/1000 0.85

(0.16)
0.000

1.44
(0.26)

0.000

Log-likelihood -4164.212 -3767.850
No. Coeffs. 35 35

Avg. LL -1.545 -1.398

Poisson Regression Estimates
Log-Likelihood -4185.788 -3795.074

No. Coeffs. 55 55
Avg. LL -1.553 -1.408

Observations 2700
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Table 4. Predicting Scalper Presence: Estimates from the Bivariate ACI Model

Contract
May 2000 July 2000

Parameter Estimate p-value Estimate p-value
yt - - 0.10

(0.01)
0.000

log(λ t) - - -0.11
(0.04)

0.001

yt-1 0.09
(0.01)

0.000 -0.01
(0.01)

0.431

log(λ t-1) 0.86
(0.01)

0.000 -0.02
(0.04)

0.589

SSt-1/100 -0.94
(0.61)

0.120 0.33
(0.55)

0.552

σt-1/100 2.44
(1.27)

0.054 3.86
(1.13)

0.001

vt-1
k/100 -27.46

(17.81)
0.123 -23.97

(16.84)
0.155

vt-1
n/100 -1.76

(0.98)
0.073 -1.84

(0.91)
0.042

It-1
k/1000 -5.02

(2.64)
0.058 -6.28

(2.47)
0.011

MAY 2000
Regressors

It-1
n/1000 0.36

(0.17)
0.035 0.30

(0.16)
0.058

yt-1 0.10
(0.01)

0.000 0.09
(0.05)

0.000

log(λ t-1) -0.22
(0.03)

0.000 0.80
(0.00)

0.000

SSt-1/100 -1.58
(0.58)

0.006 -0.32
(0.52)

0.536

σt-1/100 4.97
(0.93)

0.000 4.88
(0.85)

0.000

vt-1
k/100 -91.74

(16.67)
0.000 -82.43

(15.20)
0.000

vt-1
n/100 -73.24

(17.13)
0.000 -57.78

(15.25)
0.000

It-1
k/1000 -1.12

(2.01)
0.576 -3.39

(1.79)
0.059

JULY 2000
Regressors

It-1
n/1000 1.73

(0.25)
0.000 1.45

(0.22)
0.000

Log-Likelihood -7664.709
Number of Coefficients 88
Average Log-Likelihood -2.843
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Table 5. Predicting Mr. D’s Transactions: Estimates from the Bivariate ACI Model

Contract
May 2000 July 2000

Parameter Estimate p-value Estimate p-value
yt - - 0.04

(0.02)
0.116

log(λ t) - - 0.16
(0.07)

0.018

yt-1 0.17
(0.02)

0.000 -0.06
(0.03)

0.062

log(λ t-1) 0.60
(0.04)

0.000 - -

SSt-1/1000 -0.007
(0.028)

0.800 0.03
(0.03)

0.202

σt-1/100 0.13
(0.03)

0.000 -0.06
(0.03)

0.024

vt-1
k/100 -0.91

(0.43)
0.036 1.10

(0.36)
0.002

vt-1
n/100 -0.05

(0.03)
0.048 -0.04

(0.02)
0.113

It-1
k/1000 0.006

(0.006)
0.317 -0.02

(0.00)
0.000

MAY 2000
Regressors

It-1
n/1000 0.001

(0.000)
0.018 0.001

(0.000)
0.008

yt-1 0.02
(0.02)

0.408 0.08
(0.01)

0.000

log(λ t-1) 0.06
(0.05)

0.167 0.65
(0.04)

0.000

SSt-1/1000 0.04
(0.02)

0.0963 -0.07
(0.02)

0.000

σt-1/100 -0.00
(0.03)

0.975 0.10
(0.02)

0.000

vt-1
k/100 -0.42

(0.42)
0.314 -0.34

(0.28)
0.230

vt-1
n/100 -0.08

(0.04)
0.031 -0.18

(0.03)
0.000

It-1
k/1000 -0.007

(0.005)
0.182 0.01

(0.00)
0.000

JULY 2000
Regressors

It-1
n/1000 0.0003

(0.001)
0.000 0.002

(0.000)
0.000

Log-Likelihood -4610.234
Number of Coefficients 87
Average Log-Likelihood -1.710
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Figure 1. Trading Volumes for Soybean Futures Contracts
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Figure 2. Seasonal Intra-Day Patterns
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Figure 3. Impulse Responses from the Structural VAR
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July 2000 contract variables. Dotted lines represent the associated asymptotic two
standard error bands. These responses are traced for up to one hour after the shock (12
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Figure 4. Counterfactual Experiment: Responses of Volatility to a Shock in Non-

Scalper Transaction Intensity.
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