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Abstract

In this paper we estimate the dynamic relationship between employment in R&D and gen-

eration of knowledge as measured by patent applications across OECD countries. In several

recently developed models, known as ‘idea-based’ models of growth, the afore mentioned "idea-

generating" process is the engine of productivity growth. Moreover, in real business cycle models

technological shocks are an important source of fluctuations. Our empirical strategy is able to

test whether knowledge spillovers are strong enough to generate sustained endogenous growth

and to estimate the quantitative impact of international knowledge on technological innovation

of a country in the short and in the long run. We find that a country’s stock of knowledge,

its R&D resources and the stock of international knowledge move together in the long run.

International knowledge has a very significant impact on innovation. As a consequence, a pos-

itive shock to R&D in the US (the largest world innovator) has a significant positive effect on

the innovation of all other countries. Such a shock produces its largest effect on domestic and

international innovation after five to ten years from its occurrence.
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1 Introduction

The process of creation of scientific/technological knowledge is extremely important from an eco-

nomic perspective. In the long run it underlies the phenomenon of technological growth (e.g. in

Romer, 1990; Jones, 1995). In the short run randomness in the discovery of new technologies

underlies the occurrence of periods of fast productivity growth and other periods of technological

slowdown. These may be the cause (together with other shocks) of economic fluctuations of the

kind analyzed by the Real Business Cycle literature (e.g. Prescott, 1986; Kydland and Prescott,

1982; Christiano and Eichenbaum, 1992). The process of innovation and what determines it, how-

ever, are not very well known and understood. Only during the recent decades have economists

made progress in analyzing it from a theoretical and empirical point of view. Models based on

endogenous technological innovation (such as Aghion and Howitt, 1992; Grossman and Helpman,

1991) have been developed to explain productivity growth in the aggregate economy. These models

helped economists to focus on the central role of innovation as engine of growth for world produc-

tivity. At the same time better and more comprehensive data on research and development (R&D)

across countries and on patents and their characteristics (especially for Europe and the US), have

become available and have encouraged a large revival in the microeconomic studies of patenting as

a window on the process of technological change (see, for an overview, the book by Jaffe and Tra-

jtenberg, 2002). Our contribution in this article is to propose an aggregate dynamic analysis of the

knowledge-generating sector that uses state of the art econometric techniques, considers the long

and short run behavior of innovation (and its determinants) across countries and uses R&D and

patent data to capture technological innovation. Innovation is treated as the output of a process

that uses R&D resources and existing ideas as inputs. New ideas are measured using international

patents originating from OECD countries and we estimate the production of these ideas for the

period 1973-1999, allowing for international diffusion of past ideas across countries.

In this article we take a macro approach by aggregating the idea-generating activities across

sectors at the country level. We focus, however, on the idea-generating sector only, rather than

also looking at the production sector. The importance of the idea-generating sector should grant

it special attention, and we focus this study specifically on the R&D sector for three reasons.

First, very little is known on the origin, timing and delays of technological shocks. Our goal is to
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begin opening the black box of Total Factor Productivity (TFP) by understanding the underlying

innovation process and its dynamics. The existing empirical studies on R&D and growth are mostly

focussed on the long run analysis and capture a reduced-form relationship between R&D and TFP.

For instance the initial contribution of Coe and Helpman (1995) tested the idea that productivity

of a country depends on the stock of past accumulated R&D of the country as well as on that

of its trading partners. Since these three variables are non stationary, this implies a long run

cointegration relationship between them. As techniques for testing panel cointegration improved in

the late 1990s, several papers, after Coe and Helpman (1995), applied tests of panel cointegration

and re-estimated the cointegration vector between productivity (measured indirectly as the Solow

residual1), domestic R&D and international R&D. Keller (1998), Kao et al. (1999), Funk (2000)

and Edmond (2001) all produced estimates of this cointegration relation using OECD countries for

the period 1970-1991. They used recently developed tests of panel unit-root (Im et al., 2003) and

of panel cointegration (Pedroni, 1999) to analyze the long run relation between R&D spending and

productivity. While ultimately the behavior of TFP is crucial, the novelty of this paper is that it

focuses on innovation in order to better understand this one key source of productivity growth.

The second reason to focus on the knowledge-generating sector is that a very important aggre-

gate property of the so called "idea-based" models of growth depends on the dynamic behavior of

this sector. Specifically, a key distinction between the first generation of models (the endogenous

growth models exemplified in Romer 1990 or Aghion and Howitt 1992) and the second generation

of models (the semi-endogenous growth models such as Jones 1995; Kortum 1997 and Segerstrom

1998) is based on the effect of the "scale" of a country’s R&D sector on its creation of technological

knowledge. If the level of total R&D resources in a country is positively related to the growth

rate of its technological knowledge, once we control for the access to international accumulated

knowledge, then such an economy exhibits strong scale effects. Such evidence would be in favor

of the endogenous models of growth. On the other hand, if the level of total R&D resources in

a country is positively related to the level of its technological knowledge, still controlling for the

access to international accumulated knowledge, then we would be in the presence of weak scale

effects. Such relation, in turn, would be corroborating evidence in favor of the semi-endogenous

models of growth. Importantly, this property depends only on the effect of R&D on the creation

1Using the method pioneered by Solow (1957).
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of technological knowledge and can, therefore, be tested by looking at the long run dynamic be-

havior of R&D and accumulated knowledge. As both variables turn out to have a non-stationary

behavior the above proposition has implications on the cointegration between R&D resources and

the stock of accumulated knowledge. While a previous test to distinguish between endogenous

and semi-endogenous models of growth exists (Jones, 1995), it relies on the relationship between

R&D resources and TFP and only uses time-series data for a small number of countries. Our

test is based on the impact of a country’s R&D on ideas generated in that country, accounting

for the international diffusion of knowledge. Our test, confirming the previous evidence, does not

support strong scale effects (and endogenous growth) but only weak effects (and semi-endogenous

growth). Even considering, as we do, the production of pure ideas (measured as patents), rather

than their embodiment into TFP, knowledge externalities are not strong enough to feed a process in

which countries with larger R&D resources produce ideas at a faster rate. However, the spillovers

are strong enough to guarantee a net positive effect of the international stock of knowledge on

innovation.

The third reason to focus on the knowledge-generating sector is that in this sector international

knowledge spillovers are likely to be the strongest and most pervasive. While the activity of

production involves several country-specific factors, the activity of generating new ideas is largely

cross-national. Scientists communicate intensely across countries, ideas are diffused promptly and

technological innovations cross country borders. While we still allow for the existence of tacit

(country-specific) knowledge, our specific interest is to identify the importance of international

ideas in the development of new ideas. Existing studies on international diffusion of ideas based

on patent citations (such as Jaffe et al., 1993; Branstetter, 2001; Peri 2005) have found that,

while there is a large component of knowledge that remains localized in the country a significant

portion diffuses internationally. Our study confirms that international knowledge is an important

determinant of a country’s innovation and even more so if the country is not a technological leader.

Finally, our paper is a step in a new, hardly explored, direction. Macroconomists have been all

too fast in identifying technological progress with measured changes of total factor productivity. It

is well known that this residual measure captures (together with technological progress) changes

in efficiency in the use of factors, reallocation of factors across sectors, changes in (unmeasured)

capacity utilization and so on. It is important to complement the TFP approach and consider
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seriously alternative measures of technological progress. Patented innovation is one of the most

promising and measurable indices. Total factor productivity is an important construct, but econo-

mists should make an effort to understand the determinants of technological progress and measure

directly its components.

The first part of our article explores the long run relationship between R&D resources and

knowledge creation. We show that a panel of data for twenty-eight years and fifteen countries

rejects the implication of strong scale effects of R&D while it does not reject weak scale effects

implying a positive long run relationship between R&D resources and the stock of knowledge. We

apply recent techniques of panel cointegration in order to test the long run relationship between

R&D employment and the stock of national and international scientific/technological knowledge.

Once we have identified this long run relation, we estimate the short run dynamics of the innovation

process by means of an Error Correction Mechanism panel VAR (VECM). The impulse responses

of this model allow us to evaluate the effect of an increase in R&D resources on knowledge created

in the source country and any other country. By including a variable that captures the accessible

international stock of knowledge we analyze the “external” impact of a country’s R&D on other

countries’ innovation both in the long and in the short run. In spite of the success of real business

cycle theories, the short run behavior of innovation has been largely neglected by the dynamic em-

pirical literature. Business cycle analysis has taken shocks to total factor productivity as exogenous

and has analyzed their impact. Our paper, to the contrary, analyzes one important mechanism at

the source of short-term fluctuations of productivity. In order to characterize correctly the short

run behavior of a set of non-stationary variables, however, we need to account properly for their

long run behavior. This is why we estimate an error correction mechanism that allows us to identify

a response of R&D and innovation to shocks in the short and medium run, while accounting for

long-run cointegration. This, to the best of our knowledge, has never been done in the literature2.

The rest of the paper is organized as follows. Section 2 presents a simple "idea-based" model

of growth in which the idea-generating sector plays a key role. Within the context of these models

we can test, using the dynamic properties of the knowledge generating sector, whether the data

2A partial and interesting exception is Shea (1999). Emphasizing the role of R&D spending and patenting as
sources of technological shocks, that article estimated the effects of those shocks on short run fluctuations for U.S.
sectors. The study did not find a large effect of technological shocks on short run productivity fluctuations. However,
the study did not apply the modern techniques for estimating cointegration and the Error Correction Mechanism
panel VAR.
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support a model of endogenous or of semi-endogenous growth. We describe the idea-generating

function and how we construct variables to measure R&D resources, new ideas, existing knowledge

and their relationship. Section 3 describes the data for the panel of fifteen countries over the period

1973-1999. We show and test some of the basic time-series properties of the data before pursuing

our estimation strategy. Section 4 studies the long run behavior of R&D and innovation, testing

the stationarity of knowledge growth rates and then estimating the panel cointegration between

R&D employment, domestic knowledge and international knowledge. Section 5 analyzes short run

behavior using the VECM and shows some representative impulse response functions. Section 6

concludes the paper.

2 Idea-Based growth Models and the R&D sector

2.1 A Simple Framework

The mechanism through which resources devoted to research and development (R&D) are trans-

formed into new knowledge is the centerpiece of several recent models of growth. These models,

indeed, are referred to as "idea-based" models of growth3. More specifically, in these models the

R&D sector is the ultimate engine of economic growth. Both the first generation of "idea-based"

models (such as Romer, 1990; Aghion and Howitt, 1992; Grossman and Helpman, 1991) and the

second generation (Jones, 1995, Kortum 1997 and Segerstrom 1998) build on the analysis of the

R&D sector to determine the long run behavior of productivity growth. For a given amount of

resources allocated to R&D, the parameters of the knowledge-producing function are the only ones

responsible for the long run growth of knowledge which, in turn, determines productivity. In this

sense the R&D sector is crucial for long run growth. At the same time, the transitional fluctuations

of the R&D sector together with those of the production sector (and of consumption-investment

decisions) are responsible for transitional fluctuations of productivity due to the adjustments of the

capital stock and knowledge stock (per worker) around their long run trajectories. Using a simple

framework (similar to Jones, 2004) to illustrate this point let us consider an economy for which the

production of output per worker, yt, is given by:

3See Jones (2004) for a survey.
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yt = (BA
σ
t )k

α
t (1)

where we assume a log-linear production function to simplify our discourse. BAσ
t is total factor

productivity (TFP). It depends on a factor B that captures efficiency in production and is mainly

determined by institutions, geography and the legal structure of a country. These characteristics

are slow to change so are assumed to be constant. TFP also depends (with an elasticity σ > 0)

on technological knowledge represented by the stock of total available scientific and technological

ideas At
4. kt is physical capital per worker and α < 1 is the elasticity of output with respect to

physical capital, so that kαt satisfies the usual assumptions of decreasing marginal returns to capital

and the Inada conditions. Taking derivatives of the logged variables with respect to time on both

sides of equation (1) and denoting with gx the growth rate of variable x, we can write the growth

rate of output per worker in period t as:

gyt = σgAt + αgkt. (2)

At any given time the growth rate of output per worker (gyt) is a linear combination of the

growth rate of the stock of ideas (gAt) and capital per worker (gkt). In the long run, however, due to

decreasing returns of physical capital, any growth model characterized by an aggregate production

function as in (1) converges to a balanced growth path (BGP) in which g∗y = g∗k (the stars denote

BGP values)5 The growth rate of output per worker in BGP is given by:

g∗y =
σ

1− α
g∗A (3)

On one hand, according to (2), the dynamics of knowledge growth, gAt, affect the dynamics

of income per capita as an important source of fluctuations and transitional dynamics. On the

other hand, according to (3), the long run growth rate of ideas (g∗A), is the only determinant of

long run GDP per capita growth for given parameters of the production function. The analysis of

4See Weil (2005), chapter 10, for a similar decomposition of total factor productivity.
5This result can easily be derived in a model with exogenous saving rate (as in Solow, 1956) or in a model with

optimizing agents (as in Ramsey, 1928). See Barro and Sala i Martin (2004), Chapter 1 and 2, for details.
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the dynamics of At in the short and long run is therefore an extremely informative and interesting

empirical question for macroeconomists. Moreover, the distinction between models that deliver

endogenous growth and models that deliver semi-endogenous growth depends exclusively on the

dynamics of the idea-generating sector. We will return on this issue in section 2.4 below. From

this point onwards we concentrate our attention on the knowledge-generating (R&D) sector and

its dynamics .

2.2 The Knowledge-Generating (R&D) Sector

For its crucial role in determining the growth rate of productivity, the knowledge-generating sector

is the focus of this paper. New ideas are produced by people working in R&D who use their

creativity and the existing stock of knowledge (made of non-obsolete ideas produced in the past).

In the aggregate, the uncertainty in the rate of arrival of ideas can be reduced to a random noise

so that new ideas, existing knowledge, and R&D resources can be represented as linked by a stable

relationship (up to an error term) which can be viewed as a production function of new ideas.

Omitting the error term (that we will re-introduce in the empirical section) the function can be

expressed as:

Ii,t = F (R&Di,t, Ai,t, AROWi,t) (4)

Ii,t (for "Ideas") is the measure of new knowledge generated in country i during year t. We

assume that resources devoted to research during year t affect the generation of ideas during that

year6. R&Di,t is the employment in the private R&D sector for country i during year t. Ai,t is

the stock of usable domestic knowledge measured as accumulated past ideas that were generated

in country i up to year t − 1 and available at the beginning of year t. Similarly AROWi,t is the

stock of international knowledge measured as accumulated past ideas generated by countries in the

rest of the world (ROW ) up to year t− 1 and hence available at the beginning of year t. Existing
ideas are a very important input in the creation of new ideas, this is why we include Ai,t and

AROWi,t in the function F . The quantitative impact of existing knowledge on the generation of

new ideas, however, can be positive, negative or zero due to the existence of two opposite effects.

6Early empirical studies, such as Hall et al. (1986) show the strong effect of R&D on innovation within the same
year. Past R&D is captured, in this specification, by the accumulated stock of idea Ai,t and AROWi,t.
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As illustrated by Caballero and Jaffe (1993) or Jones (2002), existing ideas widen the basis of

knowledge usable to generate further innovation and may therefore have a positive impact on it

(such effect has been named "standing on shoulders"). In particular, this effect could be so strong

as to increase the rate of innovation as more knowledge becomes available. Alternatively, as ideas

are discovered it may become harder to find new ones so that the effect of existing knowledge on

innovation may be negative (this effect has been christened "fishing-out"). Our approach allows us

to use the data to test whether the impact of existing knowledge on innovation is positive and large

enough to generate accelerating innovation, positive but incompatible with accelerating innovation,

or negative. Finally, in a world of closed economies with no exchange of knowledge across countries

only Ai,t would be available to researchers of country i. In contrast, in a world of exchange of

knowledge across countries, each country benefits from ideas discovered in the rest of the world.

Several studies (Branstetter, 2001; Jaffe et al., 1993; Peri, 2005) show that the international diffusion

of ideas is less than perfect and, in particular, less efficient than their diffusion within a country.

For this reason we include knowledge created outside of a country as a separate input so that we

are able to estimate the (external) impact of this factor on the generation of new ideas.

2.3 Construction of Variables and Measurement Issues

In the equations sketched above we have been rather vague in defining our variables. In particular

we have not specified how to measure new knowledge (Ii,t) and existing knowledge (Ai,t) generated

in country i or the international stock of knowledge AROWi,t . In this section we describe in detail

how to make equation (4) operational for the empirical analysis by constructing variables using

the available data. Our main identifying assumption is that the number of new ideas produced in

country i during year t, Ii,t, is proportional to the number of inventions for which an international

patent application is filed during year t by an inventor residing in that country. Following an

established tradition we utilize patent statistics to proxy the generation of innovative ideas. While

not perfect, the correspondence between patents and new ideas has been extensively employed in

economic analysis, and does seem reasonable both from a theoretical and an empirical point of

view. According to the standards of patentability defined by the U.S. patent office, a patentable

idea should be original, non-obvious and exploitable for economic profit. Moreover, many applied
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economists have drawn from the large pool of patent data, and used it to measure new ideas7.

Similarly, theoretical economists (such as Romer, 1990 and Grossman and Helpman, 1991) have

equated one idea to one patent in their models. In practice, however, there are two main sources

of “noise" which prevent a perfect correspondence between patents and ideas. The first is that

the propensity to patent a new idea may vary across countries. This is easily accounted for by

introducing a country fixed effect. The second is that patents may have dissimilar “contents of

ideas”, with some patents containing many (or big) ideas and other relatively few (or less relevant)

ideas8. Since in our case, each unit of observation (country-year) includes the sum of a large number

of patents, differences in the content of ideas for individual patents are likely to be averaged out.

Moreover, we include a correction for the importance of a patent by weighting each of them by the

number of citations received during the first 3 years. This correction, however, does not change

much the results relative to the use of a simple patent count.

Our choices of selecting only international patents (filed in the U.S.) and of adopting the

residence of the inventor as country of origin of the idea, have several advantages that make our

dataset particularly appealing. First, by selecting patents taken in the United States we are likely

to select only the most important (and potentially profitable) innovations originating from each

country. As the U.S. is the most important world market any relevant innovation will be patented

there. Only if an innovation is marginal or of very limited use will it not be worth the patenting

cost in the U.S. Such choice, therefore, would tend to select "high-quality" ideas, which should be

the most important for their effects on productivity. These ideas are also the ones that are most

likely to benefit from international diffusion of knowledge. Second, the U.S. patent data allow us to

locate the residence of the inventor and use it as the idea’s country of origin. Aggregate statistics

from the world industrial property office (WIPO) identify only the location of the headquarters of

the applying company. The literature agrees that the first is a better way of identifying where the

idea was developed as the location of the headquarters of a company is often different from that

where R&D was performed 9. Third, the NBER patents and citations data report the citations

between patents and allows us to construct a measure of the importance of a patent (based on the

received citations) that in turn can be used to weight each of them in a more accurate measure of

7See Griliches (1990) for a survey.
8See, for instance, Jaffe and Trajtenberg (2002), Chapter 2.
9See Jaffe et al.(1992) and Jaffe and Trajtenberg (2002) for an accurate discussions of this issue.
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innovation.

We can summarize the relationship between patents and ideas, allowing for country-specific

propensity to patent, as: Pati,t = κiIit where Pati,t is the number of patent applications filed with

the US patent office by inventors living in country i during year t and κi is the country-specific

propensity to patent. The choice of the application year to capture the generation of an idea is

appropriate because the process of obtaining a patent is slow. While an application is filed very

early after the discovery took place, the patent may be granted several years later (see Jaffe and

Trajtenberg, 2002, Chapter 13).

In order to study the relationship defined by (4) we assume that the mapping F (., ., .) can be

approximated by a log-linear function as follows:

ln(Pati,t) = ln(κi) + λ ln(R&Di,t) + φ ln(Ai,t) + ξ ln(AROWi,t) (5)

Equation (5) states that the (log) number of patent applications originating in country i during

year t is a function of a country fixed effect (ln(κi)), the (log) level of R&D (personnel employed

in R&D in full time equivalents) of country i during year t (R&Di,t), the stock of knowledge

generated in country i (Ai,t), as well as in the rest of the world (AROWi,t) and available at the

beginning of year t10. The coefficient λ captures the impact of R&D resources on patenting, while

φ and ξ capture, respectively, the effects of domestically-generated and internationally-generated

knowledge on patenting . The stock variable Ai,t captures the accumulated, non-obsolete knowledge

originating from country i. We assume that the stock of knowledge is continually increased by the

addition of new ideas and, at the same time, it is continually decreased by a constant depreciation

(obsolescence) rate δ that captures the fact that new ideas may displace (or improve on) old

ideas11. Therefore, using the correspondence between patents and ideas and omitting the country

fixed factors (that could be factored out and bundled with the country fixed effects κi) the variable
10To understand how patents (measured as a flow) are produced using R&D (also a flow of resources) and knowledge

(measured as a stock), it is useful to think of a standard aggregate production function. GDP at the aggregate level
(measured as a yearly flow) is produced using labor inputs (a flow of worked hours) and Capital stock. Knowledge
plays the role of a stock variable in (5) and we would like to measure its services but we can only measure its total
amount.
11We choose a depreciation rate to be within the range estimated using data on patent-citations (Caballero and

Jaffe, 1992) and close to what is chosen as depreciation for the R&D stock (Keller, 2002 ). Such rate is set to δ = 0.1.
We conduct robustness checks for the case of δ = 0.15, and δ = 0.08 and we do not find any significant variation in
the results.
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Ai,t is defined by the following recursive formula:

Ai,t+1 = Pati,t + (1− δ)Ai,t (6)

Assuming that the accumulation of knowledge in the past has been compatible with a balanced

growth path, we construct the initial value Ait0 , (following the perpetual inventory method
12) as:

Ait0

∞
=
X

t=0

=
Patit0

(1 + gi)t+1
(1− δ)t =

Pati,t0
(gi + δ)

(7)

where gi, is the growth rate of patenting in country i in the five years between t0 and t0 + 5,

and δ is equal to 0.1. The value obtained from (7) is, at best, a rough estimate of the initial stock

of knowledge in country i. However, we use t0 = 1963 as the first year in which patent data are

available while we begin our analysis of cross-country innovation in 1973. This allows us to reduce

the effect of any mistake due to an imprecise estimate of the initial stock of knowledge. The impact

of Ai,1963 on Ai,1973 is, in fact, diluted by the accumulation over ten years and is rather small.

Most of the existing literature on knowledge spillovers (Coe and Helpman, 1995; Funk, 2000) used

the stock of accumulated past R&D, rather than of patents, to measure the international stock

of knowledge. There are several reasons, however, to prefer the choice of accumulated patents in

our context. First, R&D resources (such as scientists and labs) are excludable while the ideas

generated with them (patents) are not. The external effect on innovation comes from knowledge

generated abroad (rather than directly from R&D) and accumulated patents measure it more

accurately. Second, as data on patents are available beginning in 1963, but data on R&D only

since 1973, using the perpetual inventory method and equation (7) to initialize the stock would

imply higher imprecision when using accumulated R&D rather than accumulated patents. Third,

R&D resources take some time (one year according to specification 5), to become available as

domestic and international knowledge so that only Ai,t+1 and AROWi,t+1 contain ideas generated

using R&Di,t.The timing of R&D, therefore, may be leading (one or more periods) its impact on

innovation in a foreign country. Constructing the lagged stock of knowledge would imply that we

lose further initial observations for each country. Ultimately, however, as R&D in a country is the

most important determinant of patenting, the two measures (stock of R&D and of stock of patents)

12See Young (1995), footnote 16 pp. 652.
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are highly correlated in the long run. Studies limited to the long run analysis (such as Coe and

Helpman, 1995; Funk, 2000) could use either measure to obtain similar results (see section 4). The

reasons to prefer the stock of patents are more relevant in the short run analysis which is a specific

contribution of this paper.

We construct AROWi,t as the simple sum of the stock of ideas generated in countries other than

i by year t − 1, and available at the beginning of year t. Namely, AROWi,t =
X
j 6=i

Aj,t. The choice

of a simple sum is driven by three considerations. First, Keller (1998) showed that an unweighted

sum of external R&D works just as well as a trade-weighted sum when measuring the external

effect of research. Second, Edmond (2001) has shown that the specification with unweighted sum

is more robust to different specifications and estimation methods than the weighted one. Finally

Peri (2005) finds that international flows of ideas are much less localized than trade flows and

most of the attrition takes place within a country. Ideas that flow beyond the country border

(internationally) are likely to diffuse very broadly. Weighting the contribution of foreign ideas by

trade shares would, therefore, incorrectly reduce their impact so that it is better to take simply

their unweighted sum.

2.4 Long run Implications of Strong and Weak Scale Effects

We divide both sides of equation (6) by Ai,t and take natural logs. Substituting for Pati,t its

expression from (5), and for AROWi,t its definition given above, we obtain the following relation,

which is the basis of our long run econometric analysis:

ln(gAi,t + δ)− ln(κi) = λ ln(R&Di,t) + (φ− 1) ln(Ai,t) + ξ ln(
X
j 6=i

Aj,t) (8)

where gAi,t = (Ai,t+1−Ai,t)/Ai,t is the growth rate of the stock of ideas generated in country i in

year t. This equation holds in each period and can be used to study the dynamics of the knowledge

stock which, according to (2) and (3), has direct bearings on the dynamics of output per worker. If

the stock of ideas converges to a (stochastic) balanced growth path then the term ln(gAi,t+δ)−ln(κi)
on the left hand side of (8) converges to a country-specific stationary stochastic process. In this

case equation (8) implies a stable (stationary) long run relation between the variables ln(R&Di,t),

ln(Ai,t) and ln(AROWi,t) on the right hand side. In particular, if each of the three variables is
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non-stationary (as is the case), convergence to a stochastic balanced growth path implies that

there must be a cointegration relation among them, (i.e. a linear combination that is stationary).

The cointegration vector, standardizing by the coefficient of ln(Ai,t), would be (−1, µ, γ) where
µ = λ/(1− φ) and γ = ξ/(1− φ). It can be estimated using the following regression

ln(Ai,t) = µ ln(R&Di,t) + γ ln(
X
j 6=i

Aj,t) + si,t, (9)

where we have collected all the stationary variables (deterministic and stochastic) in the term

si,t. From the estimates of this cointegration vector we are also able to establish whether ξ is larger,

smaller, or equal to 0 (as its sign will be the same as the sign of γ). Alternatively, if the stock of

ideas does not converge to a balanced growth path so that gAi,t is not stationary in the long run

but increases with the levels of ln(R&Di,t), ln(Ai,t) and ln(AROWi,t) then no cointegration exists

between those variables and the system would experience stocks of ideas diverging across countries

and experiencing explosive growth over time.

The tests of stationarity of gAi,t and of cointegration between the variables ln(R&Di,t), ln(Ai,t)

and ln(AROWi,t) allow us to discriminate between the two alternative idea-based models of growth

(endogenous vs. semi-endogenous). If gAi,t is stationary then, in the long run, the levels of R&D

resources and world knowledge determine (are cointegrated with) the level of knowledge of a country

(and therefore the level of its productivity). This is a typical property of the semi-endogenous

models of growth such as Jones (1995) and Segerstrom (1998) in which the size of the R&D sector

affects the level of domestic knowledge through a weak scale effect. Moreover, within this case a

positive sign of the coefficient γ, would be evidence of a net "standing on shoulders" effect, while

a negative sign of γ would imply that the "fishing-out" effect prevails. Alternatively, if gAi,t is

non-stationary then levels of R&D resources and stocks of knowledge (on the right hand side of 8)

determine the growth rate of knowledge of a country (gAi,t) and, as a consequence, the growth rate of

its total factor productivity. In turn, this is a typical property of the endogenous models of growth

such as Romer (1990), Aghion and Howitt (1992) and Grossman and Helpman (1991). In this case

R&D would have a strong scale effect, implying that its level affects the growth rate of the stock of

ideas. The novelty of our approach, relative to a previous test performed by Jones (1995), is our

cross-country specification and our direct measure of scientific/technological knowledge, based on
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patents, rather than its indirect measure, based on total factor productivity. Testing the scale effect

of R&D on knowledge generation (rather than on TFP) gives endogenous growth models the best

chance at succeeding over semi-endogenous models. In fact the non-rival nature of knowledge should

be strongest when it is used by international researchers to generate new knowledge (rather than

goods). The rejection of endogenous growth models in favor of semi-endogenous ones, even using

this empirical setting, is very strong evidence for preferring the second type of models as empirical

tools. At the same time we find strong evidence of a net "standing on shoulders" effect (γ > 0), i.e.

that existing international knowledge increases the innovation of countries. We then use equation

(5) in order to identify and estimate the effect of R&D and innovation shocks on creation of ideas

in the short run. Equation (5) implies that patent applications in period t (Pati,t) are affected by

R&D resources employed in the same year, and by knowledge generated within the country, Ai,t,

or outside of it, AROWi,t, up to the beginning of the year. In turn, innovation generated during

year t (Pati,t) only becomes available as national and international knowledge beginning with the

following year (Ai,t+1, AROWi,t+1). These assumptions on the timing of innovation relative to R&D

provide the identifying restrictions needed to order equations and to estimate our Error Correction

Mechanism (see section 5.2).

3 Data: Description and Time-Series Properties

3.1 Data Description

Our empirical analysis is performed on data from fifteen OECD Countries during the period 1973-

1999. These fifteen countries, taken together, account for about 90% of the world R&D and for

97-98% of the total U.S. granted patents. R&D resources are measured by personnel working in

the R&D sector in full-time equivalents. The data on R&D are from the ANBERD, OECD-STAN

data set. The patent data, grouped by country of residence of the first inventor and by year of

application are obtained by aggregating individual patents from the NBER Patent and Citations

Data set described in detail in the book by Jaffe and Trajtenberg (2002) and publicly available at

http://www.nber.org/patents/. The dataset includes over 3 million patents granted by the United

States patent office between the years 1963 and 1999. We measure of Pati,t by the total number

of patent applications by residents of country i during year t, and we weight each patent by the
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factor (1 + µ3) where µ3 is the average number of yearly citations received by the patent during

the first three years after it has been granted. This accounts for the importance of the innovation

embedded in the patent. As argued in several articles13 citations are, on average, an indicator of

the importance of a patent and of its market value. For robustness we also conduct our analysis

using simple patent counts and the results are very similar.

Table 1 shows the average values of the variables of interest, by country, for the whole period

1973-1999. The first column shows the average full-time equivalent units of personnel in R&D, the

second shows the average number of patent applications per year, the third and fourth report the

average values of the constructed stocks of knowledge ln(Ai,t) and ln(AROWi,t). Large variations in

total R&D resources and total patenting exist across these countries. The US is the technological

leader by a large margin employing and average of almost 1.7 million full-time equivalent persons

in its R&D sector and filing more than 70,000 patent applications every year. Japan, Germany and

the United Kingdom are distant second, third and fourth in terms of R&D and patents. Ireland is

the smallest innovator in our sample, filing an average of merely 57 patent applications each year.

The averages over the whole time-period mask the interesting time-evolution of the variables in

each country. Before performing formal tests on the time-series properties of these variables, we

illustrate their behavior for a subset of G7 countries in Figure 1 to 3. Figure 1 shows the behavior

of the variable ln(R&Di,t) for the seven largest economies over the 1973-1999 period. In spite of

different average growth rates (from 0% of the UK to a positive 6% per year for Canada) the picture

confirms a common upward trend (except for the UK) as well as high persistence of year to year

movements. Also, some countries exhibit detectable differences over different periods. Japan, for

instance, increased its R&D employment largely up to year 1990, and later experienced very slow

growth or possible stagnation. Similarly, Italy experienced growth in R&D resources only up to the

early nineties. The countries with fastest growing R&D employment for our sample were Spain and

Finland (not among the G7) with annual growth of 10 and 11% respectively. Figure 2 illustrates

the time behavior of (log) patent applications per year for the G7 countries in the 1993-1999 period.

This variable, which measures new knowledge generated in the seven countries, also shows a general

upward trend. Some fluctuations especially during the 1990’s are also visible. When we consider the

whole sample, the country that experienced the fastest growth in patent application was Ireland

13See for instance Jaffe and Trajtenberg (2002), Chapter 2 and Hall et al. (2005).
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with 12% annual increase, while Great Britain was the one with slowest growth (annual 0.1%).

Finally, Figure 3 shows the behavior of the constructed variable ln(Ai,t) for each one of the G7

countries during the usual period. The variables are trending up and Japan exhibits a particularly

fast-growing stock of knowledge. The persistent upward movements in the variables ln(R&Di,t) and

ln(Ai,t) suggest that they could be non-stationary and have a stable relationship (cointegration)

over time. We move, therefore, to perform formal tests of non-stationarity and cointegration of the

variables of interest.

3.2 Test of Unit Root of R&D and Stocks of Knowledge

The process of knowledge accumulation, captured by the increase over time of the variable ln(Ai,t),

suggests the variable is non-stationary. Previous studies (e.g. Jones 1995) found that employment

in R&D was steadily and persistently growing in technologically leading countries during the last

decades. Therefore, we have reasons to believe that the variable ln(R&Di,t) is non-stationary as

well. In a short time series of yearly data (26 observations), it is particularly hard to discern non-

stationarity. To formally test this property we rely on panel unit roots tests that exploit both the

cross section and the time series dimension of the data.

There are several statistics that can be used to test for a unit root in panel data. Specifically,

we want to test for non stationarity against the alternative of trend stationarity, allowing for a

different intercept for each country. We employ the test proposed by Im et al. (2003) as it allows

each panel member to have different autoregressive parameters and short time dynamics under the

alternative hypothesis of trend stationarity. As the test procedure requires that the observations

are not correlated across countries in each period, we first remove a time specific common effect

by differencing out the common period average. We then perform a test based on the average of

the adjusted Dickey-Fuller (ADF) test statistics calculated independently for each member of the

panel, with one lag to adjust for auto-correlation. The test statistics, (adjusted using the tables

in Im et al.,2003) are distributed as N(0,1) under the null of a unit root. Large negative values

lead to rejection of a unit root in favor of stationarity. We do not require all the series for all

countries to be non-stationary since the value of the test is the average of the ADF for individual

countries. Table 2, Columns one to three, report the Im et al. (2003) test statistics for the

variables ln(Ai,t), ln(AROWi,t) and ln(R&Di,t). In no case can we reject the null of non-stationarity
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at standard levels of significance. Furthermore, no country exhibits ADF statistics relative to

ln(R&Di,t), ln(Ai,t) and ln(AROWi,t) that are larger (in absolute value) than the threshold for

rejecting the unit-root hypothesis.

The test proposed by Im et al. (2003), however, is not robust to mispecification of time trends

or short run dynamics if the effect of the common component varies across countries. Therefore we

also perform a panel unit-root test which is robust to the presence of cross-sectional dependence.

This test follows Pesaran (2003) and is reported, for each variable and country, in the fourth through

sixth column of Table 2. Instead of basing the unit root tests on deviations from the estimated

factors, we augment the standard DF (or ADF) regressions with the cross section averages of lagged

levels. Standard panel unit root tests can now be based on the simple averages of the individual

cross sectionally augmented ADF statistics (denoted by CADF in Table 2). The individual CADF

statistics facilitate a modified version of the t-bar test proposed by Im et al. (2003). Even in this

case the test never rejects the null of non-stationarity for any of the three variables. Overall, the

formal tests do not reject our priors, which were also supported by the direct visual inspection of the

data: shocks to R&D and to the domestic or international stock of knowledge are very persistent

and these variables can be represented by non-stationary processes.

3.3 Stationarity of Growth Rates: Test of Strong Scale Effects

Next, we test for a unit root in the first time-differences of the variable ln(Ai,t), gAi,t, the growth

rate of locally generated knowledge. In this case the alternative hypothesis is stationarity without

a trend, since any time trend in levels is removed by differencing. We use the same tests that we

used in section 3.2 above. A rejection of the null of non-stationarity would be evidence in favor of

convergence of the stock of knowledge to a balance growth path. Table 3 reports the unit-root tests

(Im et al., 2003; and Pesaran, 2003) applied to the variables gAi,t as well as to the growth rates of

R&Di,t (∆ ln(R&Di,t)) and of the international stock of knowledge AROWi,t (∆ ln(AROWi,t)). The

test statistic is negative and large in each case. For every one of these growth rates we are able to

reject the null hypothesis of non-stationarity at the 1% significance level. Hence, this test provides

a clear rejection of the existence of a strong scale effect in the production of knowledge. As gAi,t is

stationary, the variable ln(Ai,t) converges to a stochastic balanced growth path. This implies that

there is a long run relationship between the variables ln(Ai,t), ln(AROWi,t) and ln(R&Di,t), (which
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are all integrated processes of order one, I(1)) so that their linear combination expressed by (8)

is stationary. In the long run the three variables move together so that the level of R&Di,t of a

country and the international stock of knowledge AROWi,t determine the stock of knowledge created

in country i, ln(Ai,t). The remainder of our analysis proceeds on the assumption, supported by the

tests performed above, that all log level variables follow non-stationary, I(1), processes while all

log differenced variables follow stationary, I(0), processes.

4 The long run Dynamics: Estimating the Cointegration Relation

Thus far the results point to the possible existence of a cointegration relation between the vari-

ables ln(Ai,t), ln(AROWi,t) and ln(R&Di,t).We estimate this relationship by dynamic ordinary least

squares (DOLS) using the whole panel of 15 countries and 26 years. The environment that we study

imposes homogeneity on the cointegration vector across countries but allows for country-specific

effects and time trends as well as a common time effect. As in Phillips and Moon (1999), Kao

(1999) and Pedroni (1999) , the errors are assumed to be independent across countries. Therefore,

as in the single-equation environment, this estimator sacrifices asymptotic efficiency because it does

not take into account the cross-equation dependence in the equilibrium errors14.

This method of exploiting the cross-sectional dimension of the data while respecting the time

series properties, without aggregating or pooling, allows us to address the problem of inconsistent

estimates in dynamic heterogeneous panels identified by Pesaran et al. (1999). Finally, the use of

DOLS as opposed to other cointegration estimators is justified by recent work by Kao et al. (1999),

which shows that it performs better than other single-equation cointegration estimators in panels

of up to size N=20. In practical terms, the estimation of the equation by DOLS involves adding

leads and lags of the first differences of the I(1) regressors in equation (9). Thus, all nuisance

parameters, which represent short run dynamics, are I(0) and uncorrelated with the error term (by

construction). This procedure corrects for the possible endogeneity of the non-stationary regressors

and gives estimates of the cointegration vector which are asymptotically efficient when the error

14 In contrast to previous analyses of panel cointegration vector estimators, the asymptotic distribution of panel
DOLS under cross-sectional dependence is easy to obtain. Mark et al. (2003) and Kao et al. (1999 ) studied the
properties of panel dynamic OLS under the assumption of independence across cross-sectional units. Pedroni (1999)
and Phillips and Moon (1999) study a panel fully modified OLS estimator also under cross-sectional independence.
Moreover, the asymptotic theory employed in these papers allows both T and N to go to infinity.
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terms are independent across countries. All variables and nuisance parameters corresponding to

the dynamic terms are allowed to vary across countries.

In order to estimate the cointegration relation between R&D and stock of ideas we re-write

expression (9) adding two lags of the differenced variables as follows15:

ln(Ait) = ci + λi t+ µ log(R&Di,t) +
2P

j=1
µi∆ ln(R&Di,t−j) + (10)

+γ log(AROWi,t) +
2P

j=1
γi∆ ln(AROWi,t−j) + �i,t

The first two rows of Table 4 report the estimates of µ and γ which capture the long run elasticity

of knowledge generated in a country to R&D employment and to knowledge created in the rest of

the world. The variance-covariance matrix of the coefficients is consistently estimated by applying

the dynamic panel variance estimator proposed by Mark et al. (2003)16. As different countries

may exhibit permanent differences in their innovation generating (or patenting) process we allow

for country-specific fixed effects, ci, in each specification. We include a country specific time-trend

in most of the specifications (Specification II, III, V and VI) to control for time-effects. Finally

specification IV includes a common time fixed effect as a way of capturing common movements

over time.

The regression identifies the long run relationship between the variables in a way that is robust

to the presence of short run dynamics. Transitional dynamics have a second order effect on the

estimated long run relationship and they can be treated as a nuisance parameter in the estimation

and testing procedure. We can relax the exogeneity assumptions that have been required in earlier

approaches without the need for external instruments due to the superconsistency properties of the

panel cointegration regression, which identifies the long run relationship even in the presence of

endogeneity.

Column I of Table 4 reports the estimates when we only control for country fixed effects.

15The lag length can be determined by Campbell and Perron (1991) top-down t-test approach.
16To control for potential serial correlation in �i,t we have computed the Newey-West estimates of the long run

variance.
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Both coefficients are estimated very precisely. A 1% increase of a country’s R&D employment is

associated with a 0.79% increase in the domestically generated stock of scientific and technological

knowledge (the standard error is 0.06%). At the same time a 1% increase of the international

stock of knowledge is associated, in the long run, with a 0.56% increase in domestically generated

knowledge (with a standard error of 0.06%). These point estimates are very reasonable. First,

micro studies of the effect of R&D on innovation find similar elasticities. For instance Branstetter

(2001) uses firm-level data and finds an elasticity of 0.72. Pakes and Griliches (1980) found a value

of 0.61. Peri (2005), using data on sub-national regions, found values between 0.6 and 0.8. At the

same time, the existing estimates of the elasticity of domestic innovation to international accessible

knowledge are between 50% and 80% of the elasticities to own R&D (see Griliches, 1992). Moreover

these estimates are qualitatively consistent with the macroeconomic finding of a positive long run

relation between R&D and Total Factor Productivity (e.g. Coe and Helpman, 1995; Kao et al.,

1999)17.

Introducing a country-specific time trend (Specification II, III and V) cuts the point-estimates

of the two elasticities in half. However, both coefficients remain positive and very significant. The

elasticity of R&D employment is close to 0.30 in specification II, and the effect of international

knowledge reduces to 0.168. Specification III shows that using the simple count of patents (rather

than their count weighted by average number of citations within 3 years) as measure of innovation

does not entail any major change in results. The impact of international knowledge on domestic

knowledge increases somewhat (to 0.385), while the impact of R&D on domestic knowledge is

unchanged. Specification IV introduces year fixed effects in place of (country specific) trends.

As much of the variation of the international stock of knowledge is from year to year we are

worried that common fluctuations may be mistaken for the effect of international knowledge. The

most demanding specification (IV) of Table 4 requires that the effects of international knowledge

on domestic knowledge be identified only by variations specific to each country over time. The

estimates reveal that the effect of international knowledge remains very strong and significantly

positive at 0.276. The effect of R&D is 0.74, close to the estimate in the basic specification. The

estimate of the series of time effects t in specification IV (not reported) reveals the common cyclical

17 If we use the sum of the contemporaneous flow of R&D resources in the rest of the world as measure of inter-
national knowledge the coefficient on this variable equals 0.76 (s.e. 0.077). However, the coefficient on own R&D
spending would be estimated more imprecisely due to strong collinearity.

21



behavior of knowledge variables in the panel. However that series also demonstrate stationary

behavior 18. Altogether, the consistently positive and significant estimates of the coefficient γ

reported in Table 4 contribute strong evidence in favor of the existence of a "standing on shoulders"

effect that implies a positive effect of knowledge on innovation. However, they also prove decreasing

returns to innovation as there is no evidence of a strong scale effect in the R&D sector.

Finally, specifications V and VI inquire into the relative impact of international knowledge on

innovation in countries at the technological frontier vis-a-vis other countries. Due to concentration

of R&D activity, the United States, which is the largest innovator, generates more than half of the

world innovation. The seven largest economies combined (G7 countries) perform the large part of

R&D and produce the vast majority of innovation in the OECD group. Moreover, we can think

that the ideas generated in countries at the technological frontier have higher quality and more vis-

ibility than those generated in other countries. This would imply that the impact of international

knowledge on innovation of a country will be asymmetric. While the technological leaders benefit

mostly from their own R&D the technological followers heavily depend on the international flow of

knowledge to "feed" their innovative activity. Coe and Helpman (1995) and Peri (2005) show that

the stock of knowledge generated among the technological leaders has a particularly strong effect

on productivity growth and innovation of the followers, but not vice-versa. In specification V we

simply consider the U.S. as the world technological leader and omit it from the sample. An early

paper by Eaton and Kortum (1996) estimated that the U.S. is the only country in the world in

which more than half of the technological progress stems from domestically generated ideas (rather

then from international knowledge). By estimating the cointegration relation among technological

followers (non-US) we expect to find that the relevance of international knowledge for innovation is

larger than for the whole sample (including the U.S.). The estimates confirm that this is true. The

effect of international knowledge in specification V is almost twice as large as the estimate in the

corresponding specification II (that includes the US). Similarly, specification VI splits the sample

between G7 countries and the rest and estimates the cointegration relation separately for each sam-

ple. We construct the stock of international knowledge for each country (within or outside the G7)

adding knowledge generated in the "complementary" country group only. That is, in specification

VI(a) the coefficient on the variable ln(AROWi,t) estimates the importance of ideas generated in

18The series of estimated θt is available from the authors upon request.
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the G7 on knowledge created in non-G7 countries, while the coefficient on the same variable in

specification VI(b) represents the importance of knowledge generated outside the G7 on knowledge

created in G7 countries. Consistently with previous findings the stock of international knowledge is

extremely relevant in affecting domestic creation of knowledge for technological followers, with an

elasticity close to 0.75 (recall that the average elasticity of innovation to international knowledge

was 0.168, while for non-US was 0.366). We also find that for non-G7 countries the effect of own

R&D does not seem particularly significant. In contrast, G7 countries rely mostly upon their own

R&D to generate knowledge while international knowledge has no positive impact (in fact we esti-

mate a somewhat puzzling negative effect). The existence of international knowledge flows seem,

therefore, more relevant for the innovative activity of countries behind the technological frontier.

4.1 Panel Cointegration Test

Under the assumption of cointegration between ln(Ai,t), ln(AROWi,t) and ln(R&Di,t), the estimated

residual from regression (10), should be stationary. As a final test of the hypothesis of weak scale

effects (against strong scale effects), we employ an Augmented Dickey Fuller panel cointegration

test. This test is analogous to the Im et al. (2003) ADF test that we used in Section 3. These panel

cointegration tests are essentially univariate extensions of the original panel unit root tests based

on the residuals from a first-step cointegration regression in the spirit of the two-step cointegration

test approach by Engle and Granger (1987)19.

Table 5 reports several tests of cointegration based on different statistics20. The first two test

statistics, PC1 and PC2, apply to the case in which the cointegration vector is assumed to be the

same across all countries (Pedroni,1995). The other seven tests are developed in Pedroni (1999)

and do not impose this homogeneity restriction. Using the cross-section dimension of the data set

while respecting the time series properties of the data (without aggregating or pooling) addresses

the problem of inconsistent estimates in dynamic heterogeneous panels identified by Pesaran et al.

(1999). Pedroni (1999) derives seven different statistics for testing the null of no cointegration; four

are based on pooling along the within-dimension and the remaining three are obtained by pooling

along the between-dimension. The null hypothesis is that the first autoregressive coefficient of the

19For an overview and further references to recent literature on the subject, see Banerjee (1999).
20The lag lengths for the ADF tests are chosen to ensure that the error terms are white noise.
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residual series is equal to unity (i.e. no cointegration between variables). Under the alternative hy-

pothesis, in the case of the within-dimension tests the same coefficient is strictly less than one and

equal for all members of the panel. In the case of the between dimension test, the autoregressive

coefficient is less than unity but may differ across countries. The within-dimension based statistics

is referred to as panel cointegration tests, while the between-dimension one as group mean panel

statistics. All tests, after an appropriate standardization, follow a normal distribution. In particu-

lar, Pedroni (1999) shows that under the alternative hypothesis (cointegration) the panel variance

statistics diverge to positive infinity and the right tail of the normal distribution is used to reject

the null hypothesis (no cointegration). For the other six test statistics, which diverge to negative

infinity under the alternative hypothesis (of cointegration) , large negative values reject the null

of no cointegration21. Seven of the nine tests presented in Table 5 reject the null hypothesis of no

cointegration at the 1% significance level. The two statistics that fail to reject the no cointegration

hypothesis are the group-rho statistic and the variance test statistic. As shown in Pedroni (2004),

the group-rho statistic is undersized in small panel and it is the most conservative test. The panel-v

statistics tend to have the best power relative to the other statistics when the panel is fairly large,

which is not our case.

Table 6 presents an alternative approach to testing for cointegration and the number of coin-

tegration relations in heterogeneous panel data based on the likelihood ratio inference for vector

autoregressive models developed in Johansen (1988, 1991, 1995). The LR-bar test statistics pro-

posed by Larsson et al. (2001) is given by the average of the individual likelihood ratio cointegration

rank trace test statistics over the panel individuals. As for the individual likelihood-ratio rank test,

used to determine the number of cointegration relations “r”, we can proceed sequentially from r = 0

to r = 3 until we fail to reject the null hypothesis. The trace statistic tests the null hypothesis of

r cointegration relations against the alternative of j cointegration relations, where j is the number

of endogenous variables (j = 3 in our case) , for r = 0, 1, 2. The alternative of j cointegration

relations corresponds to the case where none of the series has a unit root and a stationary VAR

may be specified in terms of the levels of all of the series. Table 6 presents the individual country-

by-country and panel test results. Due to the short time dimension of our panel only one lag

(k = 1) is considered. The results show that the most commonly selected rank is one. The panel

21For a more technical and detailed description of how to construct the tests we refer to Pedroni (1999)
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test results, presented at the bottom of Table 6, suggest that r = 1 is the largest order. Hence this

test supports the assumption that there is one cointegration relation in the panel.

5 The short run Impulse Response Function

5.1 The Error Correction Mechanism Panel VAR

While departures from the cointegration relation between R&D resources and stock of knowledge

cannot last in the long run, the innovation process is subject to shocks in the short run. There could

be shocks to the amount of resources allocated to research or to the productivity of researchers in

generating new ideas. In order to analyze the propagation and impulse response to such shocks

in the short run, we adopt an error correction representation of our dynamic relationship between

ln(R&Di,t) and ln(Ai,t). In particular, we consider the change of each variable as depending on

the past changes of the other variables (a VAR in differences) but we include a term that captures

the deviation from the estimated long run relationship. This disequilibrium term ensures that we

account properly for the convergence to the estimated long run stochastic balanced growth path

when tracking the short-run dynamics. We represent the dynamic behavior of ∆ ln(Ai,t) and

∆ ln(R&Di,t) as follows:

∆ ln(Ai,t) = (11)

= d1b�it−1 + 2P
z=1

η1z∆ ln(R&Di,t−z) +
2P

z=1
η2z∆ ln(Ai,t−z) +

2P
z=1

η3z∆ ln(AROWi,t−z) + eAit

∆ ln(R&Di,t) = (12)

= d2b�it−1 + 2P
z=1

υ1z∆ ln(R&Di,t−z) +
2P

z=1
υ2z∆ ln(Ai,t−z) +

2P
z=1

υ3z∆ ln(AROWi,t−z) + eRDit

Equations (11) and (12) are sufficient to characterize the dynamics of the idea-generating system

in the world, as the international stock of knowledge, AROWi,t, is simply given by the sum of Aj,t

for all countries other than i. The term
∧
�i,t is the disequilibrium term and is equal to ln(Ait)− bci−cλi t−bµ ln(R&Dit)−bγ ln(AROWi,t).We construct it using the cointegration relation estimated in the

previous section. It represents the deviation from the equilibrium relationship and the coefficients
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d1 and d2 measure how the disequilibrium generates adjustment in order to preserve the long run

equilibrium. The Granger representation theorem implies that at least one of the di coefficients

must be non-zero if a long run relationship between the variables is to hold. The estimates of d1

and d2 in our system are equal to -0.070 (s.e 0.020 ) and 0.022 (s.e.0.08 ) respectively. The first

coefficient estimate is negative, significant and it guarantees that the system does actually converge

to its stochastic long run relation. The second coefficient is positive but not statistically significant,

implying that in the long run the variable R&D is weakly exogenous. Rather than presenting the

estimates of the other dynamic coefficients, we show the impulse responses (IR) of knowledge and

R&D resources to eAit and eRDit respectively. These responses provide a description of the short

and medium run effects of shocks.

5.2 Impulse Response and Discussion

Given our flexible specification that allows for country specific effects and spillover effects through

the term AROWi,t the impulse response of country i to an innovation of one of the two equations

in country j could be different for each i and j. However, due to the short dimensions of our panel

we impose that the sets of coefficients η1z, η2z, η3z and υ1z, υ2z, υ3z are equal across countries. The

VECM identification is Choleski-type with ∆ ln(Ai,t) ordered first and ∆ ln(R&Dit) ordered last.

A shock to a country that provides a relevant contribution to the international stock of knowledge,

AROWi,t, has, through this channel, a relevant impact on innovation and on the choice of R&D

resources for all other countries. To the contrary an innovation shock to a country that contributes

only minimally to AROWi,t mainly affects its own innovation and R&D only. In order to illustrate

this comparison in its most extreme form, we choose to report the impulse response of ln(R&Di,t),

and ln(Ai,t) for a representative country22, to shocks eAjtand eRDjt originating in the U.S. (the

largest country in the sample) and in Ireland (the smallest country in the sample)23. Panels 1

through 4 present the complete set of estimated impulse response functions (along with the 99%

confidence intervals) for each variable in the originating country and the representative foreign

22Since we impose that the coefficients in the VAR are all equal among countries the IR functions are all similar.
The representative country is obtained by averageing the impulse responses in all countries other than the one where
the shock originates.
23 Impulse response functions for single countries to the same shocks are available from the authors.
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country24. Panel 1 tracks the 23 year response in the US and in the representative foreign country

to a shock to US innovation, eA,USt. Panel 2 does the same for a shock to US R&D employment,

eRD,US,t. Panel 3 tracks the effect of a shock to Ireland’s innovation, eA,IEt, and Panel 4 shows the

effect of a shock to Ireland’s R&D employment, eRD,IE,t.The remainder of this section describes

each panel, in turn.

Figures 1.1 and 1.2 of Panel 1 represent the dynamic response of the US and representative

country’s stock of knowledge (denoted with an r) to a 1% (0.13) unexpected increase in US inno-

vation at the beginning of the period. Both the US and country r stocks of knowledge increase

significantly during the first ten to thirteen years after the shock, and then revert to a smaller,

still positive effect exhibiting an overall hump-shape. The impact of the US shock on the stock

of knowledge of the representative foreign country (r) reaches +0.02 at the end of the period

considered, which corresponds to an increase of 0.17-0.30% of the average stock of its knowledge.

This effect is due to two components. First, higher US knowledge increases the stock of world

knowledge and this benefits innovation in all countries. Second, in the medium-long run, higher

world knowledge drives higher investment in R&D resources of both the US (figure 1.3) and of the

representative country (figure 1.4), which in turn contributes to innovation. The effect of this shock

on US innovation itself (fig.1.1) and on US R&D employment (fig. 1.3) is large and builds up in

the short run, reaching a peak after 5-10 years and declining afterwards. After twenty years the

impact on the US stock of knowledge is roughly equal to 0.13, which is a value close to the initial

shock. Interestingly, these impulse responses reveal that both US and foreign R&D employment

react positively to an innovation shock in the US, and that such a reaction takes a long time to

reach its peak (5-10 years). This implies that the strongest effect of the positive shock to innovation

is felt in the US and international scientific community with a significant delay.

Panel 2 reports the dynamic effects of a shock to US R&D employment on its stock of knowledge

and subsequent R&D employment, as well as on those of the representative country. As expected, it

takes few periods for the R&D shock (represented in figure 2.3 as the initial jump of the variable) to

build its full effect on the stock of knowledge generated in the US (figure 2.1). Moreover, the positive

feedback of R&D employment to increases in knowledge (illustrated in panel 1) is also at work so

24The confidence intervals are calculated using the Monte Carlo method and the updating algorithm due to Jain
and Chlamtac (1985) provided by Eviews 5.1. The algorithm provides a reasonable estimate of the tails of the
underlying distribution when the number of repetitions is not too small.
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that R&D employment further increases after the initial positive shock. After 23 years, the increase

in ln(AUS,t) reaches a level equal to 0.6% (+0.08) of the average stock of US knowledge. The

increase in ln(R&DUS) resources stabilizes earlier (after 10-12 years) at +0.25, which represents

a 1.9% increase over the average stock of knowledge in the sample. Consistent with the behavior

shown in Panel 1, the impact of eRD,US,t on the stock of knowledge of the representative foreign

country is positive (an average increase of 0.18-0.35% ) and is somewhat delayed (as shown in figure

2.3). Finally, the R&D of the representative country responds positively and with a delay to the

increased US R&D employment (figure 2.4). Overall, the strongest effect of an increase in R&D

employment on innovation takes place with a five to ten year lag. In the long run, an increase in

the stock of world knowledge is consistent (due to the cointegration relation) with higher R&D and

higher stock of national knowledge for all countries.

Panels 3-4 show the impulse response of knowledge and R&D resources to shocks taking place in

Ireland, the smallest country in our sample (in terms of number of patents and R&D employment).

The general shape and timing of these impulse responses are similar to those of Panels 1 and

2. A notable difference exists, however. Given that the US is the major contributor to world

knowledge, while Ireland is a marginal one, shocks to the Irish R&D sector have quantitatively

smaller effects on the innovation sector of the representative foreign country. The impulse response

of Irish knowledge and R&D to its own shocks (eA,IEt, eRD,IE,t), reported in Panels 3 and 4, are

similar to the own responses found for US variables to US shocks. The response of ln(Ait) to eA,IEt

(figure 3.1) is hump shaped with maximum effect after five years: the initial 1% increase in the

stock of Irish knowledge is almost unchanged after twenty years. The increase in R&D resources

after the shock (portrayed in figure 3.3) is smaller (in absolute value) for the simple reason that

the spillover effect generated by other countries’ increased stock of knowledge and R&D (reported

respectively in figure 3.2 and 3.4) is now much smaller (notice the scale). Similar patterns emerge

when we look at a response to the shock eR&D,IEt (figures 4.1 and 4.3). IR’s functions show a

progressive increase and by the twentieth year they have reached a plateau. To the contrary, the

responses of other countries to these shocks are very small and, even in the long run, typically

less than a hundredth of a percentage point of the initial shock (as seen in figures 4.2 and 4.4).

As the impact is so small, some nuisances (such as country effects or lagged effects) cause the

IR’s to have somewhat different shapes from those generated by US shocks on the representative
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foreign economy. Altogether, however, the external effect of a small country such as Ireland on the

dynamics of other country’s innovation and R&D is negligible both in the short and in the long

run.

6 Conclusions

Positive shocks to the innovative activity of a country are the source of booms in the short run

and of sustained productivity growth in the long run. Analyzing them in a coherent framework

that tracks their consequences at different time horizons is a way of reconciling the short and the

long run. Recent economic analysis has largely neglected such research. This paper takes a first

step to fill the gap by analyzing one phase of the innovation process: namely, the interaction of

R&D resources and technological knowledge in the generation of new ideas. We apply some recent

methods to estimate the cointegration (long run) relationship between these variables. Moreover we

use an error correction mechanism to estimate short and medium run responses. We find that, in

the long run, internationally generated knowledge is an important contributor to the innovation of

a country. The stock of knowledge of a country responds to international knowledge with elasticity

between 0.2 and 0.5. We then estimate the impulse dynamic response to an innovation shock in

the short and medium run. A large country as the US would have a non-negligible impact on other

countries’ knowledge creation even in the short run. A 1% positive shock to the log of R&D in

US increases the knowledge creation in other countries by an average of 0.35% within ten years.

The same shock generates a maximum 6% effect on the US stock of knowledge after five to ten

years and then declines slightly. By analyzing the impact of a similar shock originating in a small

country, however, we see that while the qualitative features of the impulse responses to innovation

shocks are similar, the quantitative effects on knowledge creation of other countries are negligible.
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Tables and Figures 

 
 
 
 
 
 

Table 1  
Summary Statistics for R&D, Patents and the constructed Stocks of Knowledge 

 
 
 

Country Average R&D 
Personnel, Full-
time Equivalents 

Average 
Number of 
Patent 
Applications 
per year 

Average value 
of ln(A), Stock 
of domestically 
generated 
knowledge 

Average value of 
ln(AROW), Stock of 
International 
knowledge 

Australia 63390 551 8.18 13.66 
Canada 103418 2245 9.64 13.65 
Germany 401850 8738 11.11 13.59 
Denmark 21871 253 7.49 13.66 
Spain 53537 148 6.85 13.67 
Finland 25369 326 7.39 13.67 
France 271446 3559 10.16 13.64 
Great Britain 289102 3491 10.33 13.63 
Ireland 6774 57 5.69 13.67 
Italy 120927 1339 9.13 13.66 
Japan 764375 23215 11.66 13.50 
The Netherlands 65264 1094 9.01 13.66 
Norway 18510 140 6.90 13.67 
Sweden 49587 1073 9.06 13.66 
USA 1687929 70600 13.23 12.59 

 
Notes: The averages are taken for each country over the years 1973-1999.  
The variables ln(A) and ln(AROW) are constructed as described in the main text, by accumulating 
patents using the perpetual inventory method.  
 
 
 
 
 
 
 
 
 
 



 36

 
 
 
 
 
 

 
Table 2  

Tests of Unit Roots for R&D and Stocks of Knowledge  
 
 

Test 
 

Im, Pesaran and Shin (2003) Pesaran (2003) 

Variable: 
 

ln(A) ln(AROW) ln(R&D) ln(A) ln(AROW) ln(R&D) 

Australia -2.709 -0.768 -0.338 -0.294 -0.200 -4.060 
Canada -0.096 -0.792 -1.370 0.816 -0.108 -1.661 
Germany -1.531 -0.590 -1.314 -0.199 -1.098 -2.604 
Denmark -0.527 -0.780 0.015 -1.787 -0.268 -1.572 
Spain -0.309 -0.781 -0.252 0.502 -0.214 -2.004 
Finland -2.480 -0.778 0.760 -0.871 -0.151 -0.502 
France -0.873 -0.777 -1.577 -1.915 -0.761 -0.379 
UK -1.355 -0.773 -0.711 0.009 -1.084 -2.101 
Ireland -1.512 -0.779 0.481 -2.775 -0.182 0.441 
Italy -1.983 -0.755 -1.919 -1.760 -0.188 -2.083 
Japan -1.403 -0.125 -1.098 1.902 6.396 -0.349 
Nether. -1.858 -0.767 0.813 0.408 -0.242 -2.268 
Norway -1.711 -0.778 -1.035 -3.942 -0.258 -1.885 
Sweden -0.897 -0.773 -0.611 -2.115 -0.629 -1.580 
USA 0.293 -1.546 -1.655 -0.332 1.856 -0.521 

Average 
ADF 

 
-1.269 

 
-0,770 

 
-0,654 

   

Test 
Statistic 

4.117 6.404 6.939    

Average 
CADF 

   -0.823 0.191 -1.550 

 
Notes: The test statistics are distributed as N(0, 1) under the null hypothesis of non-stationarity. 
The statistics in the first three columns are constructed using small sample adjustment factors 
from Im, Pesaran, and Shin (2003). Test statistics in column three to six follow the method 
described in Pesaran (2003).  
The symbols *, **, *** denote rejection of the null hypothesis of non-stationariety (against the 
alternative of stationarity) at the 10%, 5%, 1% significance levels. 
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Table 3 
Tests of Unit Roots for the Growth Rates of R&D and Stocks of Knowledge  

 
 

Test Im, Pesaran and Shin (2003) Pesaran (2003) 
Variable 

 
∆ln(A) ∆ln (AROW) ∆ln(R&D) ∆ln(A) ∆ln (AROW) ∆ln(R&D) 

Australia -2.647 -3.623 -2.824 -5.016 -2.522 -2.640 
Canada -2.008 -3.651 -3.222 -2.744 -4.257 -4.586 
Germany -2.284 -3.595 -3.411 -1.213 -2.634 -4.864 
Denmark -3.783 -3.625 -3.723 -6.824 -3.449 -4.482 
Spain -2.702 -3.627 -3.050 -5.227 -2.714 -4.191 
Finland -2.611 -3.628 -1.150 -3.643 -2.714 -2.376 
France -3.032 -3.608 -2.702 -1.020 -4.422 -3.684 
UK -2.777 -3.611 -2.933 -1.240 -4.325 -6.359 
Ireland -2.042 -3.624 -2.626 -6.637 -2.538 -3.527 
Italy -2.354 -3.642 -2.986 -2.367 -3.167 -5.318 
Japan -1.860 -4.128 -2.191 -1.607 0.635 -3.367 
Nether. -2.016 -3.626 -4.440 -1.427 -2.514 -5.452 
Norway -2.910 -3.624 -3.563 -3.646 -3.035 -3.790 
Sweden -3.119 -3.579 -3.677 -2.528 -6.524 -2.614 
USA -3.425 -1.433 -1.968 -3.368 -1.281 -5.729 

Average 
ADF 

 
-2,638 

 
-3,508 

 
-2,964 

   

Test 
Statistic 

-2,160*** -6,152*** -3,657***    

Average 
CADF 

   -3.234*** -3.044*** -4.198*** 

 
Notes: The test statistics are distributed as N(0, 1) under the null hypothesis of non-stationarity. 
The statistics  in the first three columns are constructed using small sample adjustment factors 
from Im, Pesaran, and Shin (2003). Test statistics in column three to six follow the method 
described in Pesaran (2003).  
The symbols *, **, *** denote rejection of the null hypothesis of non-stationariety (against the 
alternative of stationarity) at the 10%, 5%, 1% significance levels. 
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Table 4  
Estimates of the Long-Run Cointegration Relation 

 
 
 

Dependent 
Variable: 
Ln(A) 
 

I:  
Basic 

II:  
Allowing 
Heterogeneous 
Time Trends 

III:  
Using Un-
weighted 
Patents to 
Construct A 

IV: 
Allowing 
Year  
Effects 

V:  
Omitting 
the U.S. 

VI:  
Splitting the Sample 
Non-G7          G7 
(a)                       (b) 
 

Ln(R&D) 0.786*** 
(12.075) 

0.304*** 
       (4.671) 

0.317*** 
(6.46) 

0.746*** 
(11.162) 

0.401*** 
(5.98) 

0.030 
(0.379) 

0.699*** 
(6.498) 

Ln(AROW) 0.557***   
( 9.319)     

0.168** 
(1.719) 

0.385*** 
(6.525) 

0.276*** 
(3.004) 

0.366*** 
(3.388) 

0.749*** 
(4.989) 

-0.300*** 
(-2.280) 

Country Fixed 
Effects 

Yes Yes Yes Yes Yes Yes Yes 

Country- 
Specific  
Time Trends 

No 
 

Yes 
 

Yes 
 

No 
 

Yes 
 

Yes Yes 

Time Fixed 
Effects 

No 
 

No 
 

No 
 

Yes 
 

No 
 

No 
 

No 
 

N.Obs 390 390 390 390 364 208 182 

 
Note: Panel Data using 15 countries for the period 1972-1999.  
Method of Estimation: Dynamic Ordinary Least Squares (DOLS) 
Variance-covariance matrix of the coefficients is estimated using the dynamic panel variance estimator 
proposed by Mark et al. (2003). 
t- statistics in parenthesis. *, **, *** = significant at the 10, 5 and 1% level. 
Dependent variable: log of A, the stock of accumulated patents invented by residents of the country. The 
patents considered are those registered at the U.S. patent office. Each patent is weighted by the average number 
of yearly citations during the first three years (except in specification III). The construction of A is described in 
detail in the main text.  

 
 
 
 
 
 
 
 
 
 
 
 



 39

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 5  

Tests of Cointegration  
 

 
Pedroni (1995) Test  

 

 

PC2 -5.76*** 
PC1 -5.03*** 

 
Pedroni (1999) Test  

 
 

Panel v-statistic 2.687 
Panel Ro-statistic -1.926** 
Panel t-statistic -4.051*** 

Group Ro-statistics 0.487 
Group t-statistics -2.628*** 

Panel t-statistic (parametric) -3.056*** 
Group t-statistic (parametric) -4.221*** 

 
***: reject the null hypothesis of no effect or no cointegration 
at 1% significance level, **  at 5% significance level, *  at 10% 
significance level 
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Table 6 
Rank-Test on the Number of Cointegration Relationships 

 
 
Country 
 

 
Lag (Ki) 

 
r = 0 r = 1

 
r = 2 

 
Rank (ri) 

Australia 1 80.90 27.00 9.53 3 
Canada 1 12.32 6.06 2.74 0 
Germany 1 78.66 14.39 1.79 1 
Denmark 1 22.56 5.15 0.00 0 
Spain 1 24.91 7.30 0.17 1 
Finland 1 37.01 4.05 1.53 1 
France 1 60.62 14.42 3.97 1 
Great Britain 1 42.95 11.71 2.77 1 
Ireland 1 51.63 17.72 2.23 1 
Italy 1 64.23 18.22 3.34 1 
Japan 1 92.21 10.18 1.78 1 
Netherlands 1 70.79 16.01 2.39 1 
Norway 1 42.64 6.27 0.33 1 
Sweden 1 40.33 4.60 0.30 1 
Usa 1 75.39 5.33 1.39 1 

 
 
Panel Tests 
γLR (H(r ) /H(3)) 
 

 
r = 0
30.19

 
r = 1
1.40

 
r = 2 
0.68 

 

 
Empirical results of the trace test . All tests are performed at the 1% level. For the country-by country tests 
the critical values are 24.08, 12.21, and 4.14 for testing r = 0, 1, and 2 respectively. The panel rank test has a 
critical value 1.645. 
The test follows  Larsson et al. (2001).  
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Figure 1 

R&D personnel in the G7 countries, ln(R&D)
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Figure 2 

Annual Patent Applications in the G7 countries, ln(Pat)

5

6

7

8

9

10

11

12

19
73

19
74

19
75

19
76

19
77

19
78

19
79

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

Year

Ln
(P

at
en

ts
)

CANADA GERMANY
FRANCE GREAT BRITAIN
ITALY JAPAN
USA

 
 



 42

 
Figure 3 

Stock of Knowledge generated in the G7 countries
as measured by Accumulated Patents, ln(A) 
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Panel 1: IR to εA,US,t (Shock to Innovation in the US) 
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Panel 2: IR to εR&D,US,t (Shock to R&D Employment  in the US) 
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Panel 3: IR to εA,IE,t (Shock to Innovation in Ireland) 
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Panel 4: IR to εR&D,IE,t (Shock to R&D Employment in Ireland) 
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