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Abstract

In this paper we propose a general component-driven model to analyze economic
data with different characteristics (or regimes) in different time periods. Motivated by
empirical data characteristics, our discussion focuses on a simple model driven by a
random walk component and a stationary ARMA component that are governed by a
Markovian state variable. The proposed model is capable of describing both stationary
and non-stationary behaviors of data and allows its random innovations to have both
permanent and transitory effects. This model also permits a deterministic trend with
or without breaks and hence constitutes intermediate cases between the trend-stationary
model and a random walk with drift. We investigate properties of the proposed model and
derive an estimation algorithm. A simulation-based test is also proposed to distinguish
between the proposed model and an ARIMA model. In empirical application, we apply
this model to U.S. quarterly real GDP and find that unit-root nonstationarity is likely
to be the prevailing dynamic pattern in more than 80 percent of the sample periods. As
nonstationarity (stationarity) periods match the NBER dating of expansions (recessions)
closely, our result suggests that the innovations in expansions (recessions) are more likely
to have a permanent (transitory) effect.
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1 Introduction

It has been well documented in the literature that many economic and financial data
exhibit different characteristics (or regimes) over time. The econometric models that
are able to accommodate multiple regimes include structure-change models, threshold
models, and Markov switching models. In these models, it is typical to postulate one
function for the data and characterize different regimes by distinct parameter values of the
function. While this modeling strategy is convenient and useful in various applications, it
is rather restrictive because it only permits similar dynamic patterns in different regimes.
An alternative approach is to model data regimes using different functions. Although
there are some models constructed along this line (e.g., Evans and Wachtel, 1993, and
Engle and Smith, 1999), this approach did not receive much attention in the literature.

In this paper, we follow the latter approach and propose a general component-driven
model to characterize data in different regimes. The model consists of two (or more) un-
observed components and a state variable linked specifically to innovations. Depending
on the value of the state variable, each innovation excites only one of the components,
and the prevailing component in turn determines the new data dynamics. By assigning
distinct functions to different components, the proposed model is able to characterize
completely different dynamic structures in different regimes. Our choice of functions
in the paper is motivated by two leading models in time series econometrics, viz., the
unit-root model and the trend-stationary model. Since the seminal work of Nelson and
Plosser (1982), unit-root nonstationarity has been widely accepted as a stylized fact
of many macroeconomic time series; see also Campbell and Mankiw (1987). Yet some
researchers believe that trend-stationary models with or without breaks are better mod-
eling tools; see, e.g., Blanchard (1981), Clark (1987), Perron (1989), and Rappoport and
Richelin (1989). It is therefore natural to consider a model that can accommodate both
dynamic patterns.

For simplicity, we specialize on the model driven by a random walk component and
a stationary ARMA (autoregressive and moving average) component that are governed
by a Markovian state variable. This model also permits a deterministic trend with or
without breaks and hence constitutes intermediate cases between the trend-stationary
model and a random walk with drift; otherwise, it is between the ARMA model and a
random walk without drift. If the components are state independent, the model reduces
to one of the two extreme cases. The proposed model is in sharp contrast with the
commonly used time series models and the regime-switching model of Hamilton (1989)
in that it is capable of describing both stationary and non-stationary dynamics and allows
its random innovations to have both permanent and transitory effects. Moreover, trend
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breaks are endogenous in the sense that the trend function shifts when permanent shocks
are present. Comparing to the model of Evans and Wachtel (1993) and McCulloch and
Tsay (1994), the Markovian state variable here is attached to innovations and entails
different dynamic behaviors. This model also results in an ARMA representation with
random MA coefficients and hence is quite different from the more familiar, random
AR-coefficient models, such as those of McCabe and Tremayne (1995) and Granger and
Swanson (1997).

In this paper, we derive an estimation algorithm for the proposed model and propose
a simulation-based test to distinguish between the model and an ARIMA process. As
an application, we apply the proposed model to U.S. quarterly real GDP. We find that
unit-root nonstationarity is likely to be the prevailing dynamic pattern for more than
80 percent of the sample periods, whereas the remaining periods are likely to be in the
stationarity regime. This finding is quite different from the inferences drawn from unit-
root and trend-break models. It is also observed that the nonstationarity (stationarity)
periods match the NBER dating of expansions (recessions) very closely. These results
suggest that the innovations in expansions (recessions) are more likely to have a perma-
nent (transitory) effect. That the shocks in expansions are more persistent than those in
recessions is compatible with the conclusion of Beaudry and Koop (1993). Our empirical
results thus provide an alternative view of the characteristics of U.S. real GDP.

This paper is organized as follows. Section 2 introduces the proposed component-
driven model and compares it with some existing models. Section 3 derives some statisti-
cal properties of the proposed model. We discuss the estimation algorithm and hypothesis
testing in Section 4 and Section 5, respectively. The empirical analysis of U.S. real GDP
based on the proposed model is presented in Section 6, and Section 7 concludes the paper.

2 The Proposed Component-Driven Model

Suppose that the process yt can be modeled as the sum of two components — namely,
yt = y1,t + y0,t, with

y1,t = g(y1,t−1, . . . , y1,t−p;θ1) + stυt,

y0,t = h(y0,t−1, . . . , y0,t−q;θ0) + (1 − st)υt,
(1)

where g and h are two possibly different functions, p and q are positive integers, θ1 and
θ0 are parameter vectors, st is the state variable at time t that assumes the value one or
zero, and υt are random variables. This model is readily generalized to allow for more
than two components. To ease exposition, we shall focus on the two-component model.
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For the model in Eq. (1), each innovation excites only one component rather than
the entire observation, and the state variable st determines the prevailing component
and hence the effect of υt. When st = 1, the first component y1,t is activated and the
effect of υt is propagated through g, while the second component y0,t evolves according
to h without any innovation. When st = 0, υt excites y0,t but does not enter the first
component y1t. As both stυt and (1−st)υt are present in Eq. (1), st does not affect yt but
determines how υt affects subsequent yt. The dynamics of this process is thus driven by
the prevailing component and may change over time when st switches. When g and h are
distinct functions, the dynamics described by these components may be very different.
By contrast, standard regime-switching models, such as those of Hamilton (1989, 1994)
and Tong (1990), contain one component with the state-dependent parameter vector θst

:

yt = g(yt−1, . . . , yt−p;θst
) + υt.

As there is only one function g in the model, the dynamic structures in different regimes
are similar in essence. While the effect of υt on future yt is controlled by the concurrent
state st of the model in Eq. (1), it is st+j that determines how υt affects yt+j in the model
of Hamilton (1989, 1994).

2.1 The Proposed Model

Clearly, the model (1) is not operational unless the functions g and h are specified.
Our choice of functions is motivated by two important data characteristics observed
empirically, namely, unit-root nonstationarity and (trend) stationarity. There has been
a long history of debate regarding whether an economic time series should be modeled
using a unit-root model or a (trend-)stationary model. Distinguishing between these two
behaviors is important in economics because their interpretations are different. When a
time series contains a unit root, its innovations all have a permanent effect, and its time
path exhibits large swings. When a time series is (trend) stationary, its innovations have
a transitory effect and induce only short-run fluctuations around the trend. It is, however,
conceivable that the random shocks in the periods of no significance are fundamentally
different from those in turbulent periods. Restricting all the innovations of a model to
have the same effect is convenient but may not always be appropriate. For example,
Beaudry and Koop (1993) show that positive shocks to U.S. GDP are more persistent
than negative shocks; see also Bradley and Jansen (1997) and Hess and Iwata (1997). A
flexible model that allows for distinct dynamic patterns and innovations is thus desired.

Let υt = α1+εt, where {εt} is a white noise with mean zero. In view of the motivation
above and model (1), the proposed component-driven model consists of a random walk
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component and a stationary ARMA component. That is, yt = y1,t + y0,t with

(1 −B)y1,t = α0 + stυt = (α0 + stα1) + stεt,

Ψ(B)y0,t = Φ(B)(1 − st)υt = Φ(B)(1 − st)α1 + Φ(B)(1 − st)εt,
(2)

where Ψ(B) = 1−ψ1B− · · · −ψmB
m and Φ(B) = 1−ϕ1B− · · · −ϕnB

n are finite-order
polynomials of the back-shift operator B such that they have no common factors and
their roots are all outside the unit circle. As in Clark (1987) and Cochrane (1988), yt in
the proposed model is also the sum of a random walk and a stationary component, yet
its dynamic structures alternate from time to time, owing to the presence of st with the
innovations. This model is able to accommodate both unit-root and stationary dynamics.
When st = 1, the first component evolves like a random walk, and the corresponding
innovation εt has a permanent effect on future yt. When st = 0, εt excites the stationary
ARMA component and has only a transitory effect. To avoid identification problem, we
do not include a state-independent constant term in the second component. Note also
that allowing υt to have a non-zero mean adds more flexibility to this model, as can be
seen in the following paragraph. In what follows, we shall postulate that st follows a
first-order Markov chain, as in Hamilton (1989); other switching mechanisms, such as a
threshold mechanism, may also be adopted.

Setting y0 = 0 and εi = 0 for i ≤ 0, we have the following representation:

yt = α0t+ α1

t∑
i=1

si + α1Ψ(B)−1Φ(B)(1 − st) +
t∑

i=1

siεi

+ Ψ(B)−1Φ(B)(1 − st)εt.

(3)

The first component of this representation, α0t, is a “fundamental” trend because it does
not depend on the state variable. This trend function may be altered by the second com-
ponent α1

∑t
i=1 si if α1 �= 0. In particular, the fundamental trend has a level shift when

there is a one-time permanent shock, and its slope changes to α0 + α1 when permanent
shocks are present consecutively. When there are trend breaks, the third component
involves a weighted sum of 1 − st−j and induces smooth transitions between trend seg-
ments. It can also be seen that the fourth component,

∑t
i=1 siεi, admits only those εi

with si = 1 (permanent shocks) and can be interpreted as a flexible stochastic trend.
The last component, Ψ(B)−1Φ(B)(1− st)εt, is a weakly stationary process generated by
transitory innovations and gives rise to short-run fluctuations. The features of this model
are now clear. First, it admits both deterministic and stochastic trends. Second, apart
from the deterministic trend, it exhibits both stationary and nonstationary patterns over
different time periods. Third, it allows for endogenous trend breaks, in the sense that
breaks are due to the presence of permanent shocks.
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Note that when st = 1 with probability one for all t,

yt = (α0 + α1)t+
t∑

i=1

εi,= (α0 + α1) + yt−1 + εt,

which is a random walk with the drift term α0 + α1. When st = 0 with probability one
for all t, yt is a trend-stationary process without break:

yt = α1Ψ(1)−1Φ(1) + α0t+ Ψ(B)−1Φ(B)εt.

The model (2) thus constitutes intermediate cases between the trend-stationary model
and a random walk with drift. When st follows the first-order Markov chain, the first
two components of Eq. (3) are the “Markov trend” of Hamilton (1989). Although the
Markov trend is kinked, the trend function here is smooth due to the third component of
(3). If α1 = 0, there will be no trend break. In what follows, the model in Eq. (2) with
α1 �= 0 (α1 = 0) will be referred to as a component-driven model of order 1 and (m,n),
i.e. CD(1;m,n), with a smooth Markov (linear) trend. When both α0 = α1 = 0, this is
simply a CD(1;m,n) model without trend.

It is also straightforward to show that the model (2) has an ARMA representation
with random MA coefficients:

Ψ(B)(1 −B)yt = α0Ψ(1) +
r+1∑
i=1

ξi,st−i
(α1 + εt−i) + (α1 + εt), (4)

where r = max{m,n},

ξ1,st−1
=

{
−ψ1, if st−1 = 1,
−1 − ϕ1, otherwise,

ξi,st−i
=

{
−ψi, if st−i = 1,
ϕi−1 − ϕi, otherwise,

for i = 2, . . . , r, and the last coefficient is

ξr+1,st−r−1
=

{
0, if st−r−1 = 1,
ϕr, otherwise;

ψi = 0 for i > m and ϕi = 0 for i > n. From (4) we can see that only the past state
variables st−1, . . . , st−r−1 can affect yt; the current state st is irrelevant to yt because
stεt and (1 − st)εt are both present at time t. In fact, the effect of a state variable can
only be revealed in subsequent periods.

We stress that (2) is just one possibility of modeling economic time series based on
(1). Many other interesting models may also be constructed as special cases of (1). For
example, one may set yt as the sum of a fractionally integrated component and an ARMA
component, so that yt may exhibit both long- and short-range dependence. It is also
possible to specify a different switching mechanism for st, cf. the threshold-disturbance
moving-average model of Elwood (1998).
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Table 1: Moving-average representation of the component-driven model (5).

y1,t y0,t

t = 1 0 ε1

t = 2 0 ψ1ε1 + ε2

t = 3 ε3 ψ2
1ε1 + ψ1ε2

t = 4 ε3 + ε4 ψ3
1ε1 + ψ2

1ε2

t = 5 ε3 + ε4 + ε5 ψ4
1ε1 + ψ3

1ε2

t = 6 ε3 + ε4 + ε5 ψ5
1ε1 + ψ4

1ε2 + ε6

t = 7 ε3 + ε4 + ε5 ψ6
1ε1 + ψ5

1ε2 + ψ1ε6 + ε7
...

...

t = ∞ ∑∞
i=1 siεi 0

2.2 Comparison with Existing Models

To compare with the existing models that allow for different structures, we consider
the CD(1; 1, 0) model consisting of a random walk component and a stationary AR(1)
component with α0 = α1 = 0:

y1,t = y1,t−1 + stεt,

y0,t = ψ1y0,t−1 + (1 − st)εt, |ψ1| < 1.
(5)

Table 1 gives the moving-average representation of y1,t and y0,t for t = 1, . . . , 7 when
{s1, . . . , s6} = {0, 0, 1, 1, 1, 0} and yi,t=0 for t ≤ 0 and i = 0, 1. Here, yt is a stationary
AR(1) process at the beginning and starts evolving like a random walk when st = 1. It
can be seen that when st switches, the natures of past innovations are not altered. By
letting t tend to infinity, only the random walk component (y1,∞ =

∑∞
i=1 siεi) remains;

see the last row of Table 1.

The model (5) is conceptually different from that of Evans and Wachtel (1993) and
McCulloch and Tsay (1994) which allows for switching between a random walk and an
AR(1) process:

yt = sty1,t + (1 − st)y0,t,

where y1,t = y1,t−1 + vt, y0,t = ψ1y0,t−1 + ut with |ψ1| < 1, and {ut} and {vt} are two
sequences of random variables. A major difference between this model and the proposed
model lies on the switching mechanism. Here, yt switches between processes so that all
the past innovations must change accordingly. Such a switching mechanism affects the
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past but not future dynamics. It also induces drastic changes in the time path of yt,
especially when t is large, given that a random walk wanders off quickly. By contrast,
st in the proposed model determines the effect of εt on future observations but has no
influence whatsoever on past innovations. Thus, yt does not have sudden jumps because
the new dynamics are resulted from new shocks, rather than from the entire history of
past innovations. Note also that, as this model contains two sets of innovations, it is not
easy to explain why one set prevails in some periods but does not play any role in the
others. The proposed model does not have this problem.

By (4), the random MA-coefficient representation of the model (5) is

yt = (1 + ψ1)yt−1 − ψ1yt−2 + ξst−1
εt−1 + εt,

with ξst−1
= −ψ1 if st−1 = 1 and ξst−1

= −1 otherwise. This model is therefore dif-
ferent from the standard random AR-coefficient model, such as that of McCabe and
Tremayne (1995). A simple random AR-coefficient model can be expressed as

yt = atyt−1 + ut,

where at are random variables, typically assumed to be exogenous. The stochastic unit-
root model of Granger and Swanson (1997) is such that at = exp(αt) with αt being a
weakly stationary process with zero mean. Setting the initial value y1 = u1, we can write

yt = ut +
t−1∑
i=1

( i−1∏
j=0

at−j

)
ut−i.

Similar to the Evans-Wachtel model, such a model may not be easy to interpret when
the product

∏i−1
j=0 at−j switches from the stable region to the explosive region.

A similar but fundamentally different model is the STOPBREAK model proposed
by Engle and Smith (1999). The moving-average representation of the simplest STOP-
BREAK model is

yt =
∞∑
i=1

qt−iεt−i + εt, (6)

where qt−i = ε2t−i/(γ + ε2t−i) with the parameter γ ≥ 0. When γ is very small, as in the
empirical example of Engle and Smith (1999), qt ≈ 1 so that the resulting process is not
much different from a pure random walk. When εt has a continuous distribution, qt = 0
occurs only with probability zero. That is, the STOPBREAK model cannot exhibit
stationary behavior. As 0 < qt ≤ 1 with probability one, this process is in effect an I(1)
process with nonlinear moving-average terms.
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Component -Driven Component -Driven

Component -Driven Component -Driven

Figure 1: Simulated random walk, STOPBREAK process, and CD(1; 1, 0) process of
Eq. (5).

To illustrate, we simulate a random walk, the STOPBREAK process (6) with γ = 1,
and the process (5) with ψ1 = 0. In our simulations, these processes are generated from
the same innovations, and the process (5) is such that st = 0 for t ∈ [21, 40], [61, 80],
[101, 120], [140, 160] and [180, 200] and st = 1 otherwise. The simulated paths are plotted
in four panels of Figure 1, where the thick line is the random walk, the line with “+” is
the STOPBREAK process, and the thin line is the process (5). These figures show that
the STOPBREAK process always mimics the random walk, yet the process (5) exhibits
flexible dynamic patterns which may or may not be similar to the random walk.
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3 Properties of the Component-Driven Model

To derive properties of the yt process generated from Eq. (2), we maintain the assumption
that st follows a first-order Markov chain with the transition matrix[

IP(st = 0 | st−1 = 0) IP(st = 1 | st−1 = 0)
IP(st = 0 | st−1 = 1) IP(st = 1 | st−1 = 1)

]
=

[
p00 p01

p10 p11

]
.

Let St = {st, st−1, . . . } denote the collection of all state variables up to time t. We also
assume that {εt} is a sequence of random variables such that IE(εt | St) = 0, var(εt | St) =
σ2

ε , and IE(εtεt−i | St) = 0 for all i > 0. By invoking the law of iterated expectations, it
is easy to verify that {εt} is a white noise. Also, IE(stεt) = IE[st IE(εt | St)] = 0,

var(stεt) = IE[s2t IE(ε2t | St)] = σ2
ε IP(st = 1),

and cov(stεt, st−iεt−i) = IE[stst−i IE(εtεt−i|St)] = 0. Similarly, (1 − st)εt also has mean
zero and variance [1 − IP(st = 1)]σ2

ε and are serially uncorrelated. These two series are
white noise when IP(st = 1) is a constant π0. Moreover,

cov(stεt, (1 − st−i)εt−i) = IE[st(1 − st−i) IE(εtεt−i|St)] = 0,

for i ≥ 0, so that stεt and (1 − st)εt are mutually uncorrelated at all leads and lags.

We first consider the model (2) with α1 = 0. By (3),

yt = α0t+
t∑

i=1

siεi + Ψ(B)−1Φ(B)(1 − st)εt, (7)

which is the sum of uncorrelated components. Then, IE(yt) = α0 t, and

var(yt) = σ2
ε

t∑
i=1

IP(si = 1) + σ2
ε

t∑
i=1

(ψ∗
i )2[1 − IP(si = 1)],

where ψ∗
i are the coefficients of Ψ(B)∗ = Ψ(B)−1Φ(B) = (1−ψ∗

1B−ψ∗
2B

2 − · · · ). When
ψ∗

i are square summable, the second term on the right-hand side converges. Thus, var(yt)
would grow without bound if the partial sum

∑t
i=1 IP(si = 1) diverges. In particular,

when IP(si = 1) is a constant π0 > 0, var(yt) would grow linearly with t as σ2
επ0t, which

is proportional to that of a pure random walk. On the other hand, when
∑t

i=1 IP(si = 1)
converges, the Borel-Cantelli lemma implies IP(si = 1 infinitely often) = 0, i.e., the event
{si = 1} occurs for at most finitely many i with probability one. It follows that yt is
eventually a stationary ARMA process, even though it may be nonstationary during any
finite time period.
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When α1 �= 0, IE(yt) = α0t + α1

∑t
i=1 IP(si = 1) + α1

∑t
i=1 ψ

∗
i [1 − IP(si = 1)]. It

is, however, more cumbersome to calculate var(yt) because the components of (3) are no
longer mutually uncorrelated. To see this, first note that

cov(st, st−j) = IP(st = 1 and st−j = 1) − IP(st = 1) IP(st−j = 1)

= IP(st−j = 1)[IP(st = 1 | st−j = 1) − IP(st = 1)].

By the Markovian property, IP(st = 1 | st−j = 1) is the (2,2) element of the jth power
of the transition matrix for j ≥ 1. Thus, st are serially correlated, and st and (1 − sτ )
are not mutually uncorrelated. Moreover, cov(st, st−jεt−j) are non-zero when j ≥ 1. To
ease our analysis of var(yt), we assume for the time being that IE(εt | Sτ ) = 0 for τ > t.
Then, cov(st, st−jεt−j) = 0 so that

var(yt) = α2
1 var

( t∑
i=1

si

)
+ 2α2

1 cov
( t∑

i=1

si,
t∑

i=1

ψ∗
i (1 − si)

)

+ α2
1 var

( t∑
i=1

ψ∗
i (1 − si)

)
+ σ2

ε

t∑
i=1

IP(si = 1) + σ2
ε

t∑
i=1

(ψ∗
i )

2[1 − IP(si = 1)].

Note that var(
∑t

i=1 si) is bounded when the partial sum
∑t

i=1 IP(si = 1) converges; the
same conclusion also holds for the second and third terms on the right-hand side of the
prior equation. This shows that the stationarity of yt still depends essentially on the
convergence of

∑t
i=1 IP(si = 1), as in the case that α1 = 0.

From Eq. (3), it is clear that the impulse response function of the proposed model
depends on the realization of si. Let F t denote the information set up to time t and

δt ≡ lim
k→∞

∂ IE(yt+k|F t)
∂εt

denote the long-run effect of εt on the optimal forecast of yt+k. Then, δt = st, which is
one or zero and changes from time to time. Recall that the long-run effect δt is one for
a random walk and zero for a weakly stationary process. Note also that for the simplest
STOPBREAK process (6),

δt = qt +
∂qt
∂εt

εt = qt +
2γε2t

(γ + ε2t )2
,

where qt = ε2t /(γ+ε2t ). When εt has a continuous distribution, εt is zero with probability
zero. Thus, δt is positive with probability one, showing that the innovations of the
STOPBREAK process must have a permanent effect.

As for the property of zt = (1 − B)yt, we consider the case that α1 = 0. Write zt as
zt = z1,t + z2,t, where z1,t = α0 + stεt and z2,t = (1 −B)Ψ(B)−1Φ(B)(1 − st)εt. Then zt
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is the sum of two uncorrelated components. Let gz1
and gz2

denote the autocovariance
generating functions of z1 and z2, respectively. When IP(st = 1) is a constant π0, it is
now easy to see that the autocovariance generating function of zt is

g(a) = gz1
(a) + gz2

(a)

= π0 σ
2
ε + (1 − π0)(1 − a)(1 − a−1)Ψ(a)−1Ψ(a−1)−1Φ(a)Φ(a−1)σ2

ε .

For example, for the CD(1; 1, 0) model considered in Section 2.2, zt has mean zero and

var(zt) = σ2
ε + (1 − π0)(1 − ψ2t−2

1 )
1 − ψ1

1 + ψ1

σ2
ε .

The autocovariances are

cov(zt, zt−1) = −(1 − π0)(1 + ψ2t−1
1 )

1 − ψ1

1 + ψ1

σ2
υ,

cov(zt, zt−i) = ψi−1 cov(zt, zt−1), i ≥ 2.

These autocovariances depend only on i as t goes to infinity, showing that zt is asymp-
totically a covariance stationary process. When π0 = 1, zt is simply a white noise. Note
also that these autocovariances agree with those of a non-invertible ARMA(1,1) process
if and only if π0 = 0. Thus, zt would be invertible provided that π0 > 0.

4 Model Estimation

The CD(1;m,n) model can be estimated either by the maximum likelihood method or
Markov chain Monte Carlo method. We adopt the former in this paper. The derivation
below is similar, but not identical, to those of Hamilton (1989, 1994) and Kim (1994)
because yt depends only on the past (but not the current) state variables.

From Eq. (4) we see that the past r+ 1 state variables affect yt. Following Hamilton
(1994), we define the new state variable s∗t−1 = 1, 2, . . . , 2r+1 such that each of these
values represents a particular combination of the realizations of (st−1, . . . , st−r−1). For
example, when r = 2,

s∗t−1 = 1 if st−1 = st−2 = st−3 = 0,

s∗t−1 = 2 if st−1 = 0, st−2 = 0, and st−3 = 1,

s∗t−1 = 3 if st−1 = 0, st−2 = 1, and st−3 = 0,

...

s∗t−1 = 8 if st−1 = st−2 = st−3 = 1.

11



It is easy to show that s∗t also forms a first-order Markov chain with the transition matrix
P ∗. This transition matrix can be expressed as

P ∗ =




P 00 0

0 P 10

P 01 0

0 P 11


 ,

with P ji (j, i = 0, 1) being a 2r−1 × 2r block diagonal matrix given by

P ji =



pji pji 0 0 · · · 0 0
0 0 pji pji · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · pji pji


 .

Also let εt−1 = (εt−1, . . . , εt−r−1)
′ and for s∗t−1 = 
, 
 = 1, 2, . . . , 2r+1, let

ξt−1,� = (ξ1,st−1
, ξ2,st−2

, . . . , ξr+1,st−r−1
)′,

where the realizations of st−1, . . . , st−r−1 are such that s∗t−1 = 
. Then,

ξ′t−1,�εt−1 =
r+1∑
j=1

ξj,st−j
εt−j .

When r = 2 and 
 = 3, for example, the realization of (st−1, st−2, st−3) is (0, 1, 0) so that

ξ′t−1,3εt−1 = −(1 + ϕ1)εt−1 − ψ2εt−2 + ϕ3εt−3.

We first discuss the optimal forecasts of the state variable st based on the information
up to time t: Zt = {zt, zt−1, . . . , z1}, where zt = (1 −B)yt. This amounts to calculating
the filtering probabilities IP(st | Zt). Under the normality assumption, the density of zt
conditional on s∗t−1 = 
 and Zt−1 is

f(zt | s∗t−1 = 
,Zt−1;θ)

=
1√
2πσ2

ε

exp

{
−[zt −

∑m
j=1 ψj(α0 + zt−j) − ξ′t−1,�(α11 + εt−1)]2

2σ2
ε

}
,

(8)

where 1 is the vector of ones, 
 = 1, 2, · · · , 2r+1 and

θ = (α0, α1, ψ1, . . . , ψm, ϕ1, . . . , ϕn, σε, p00, p11)
′.

12



Although the innovations εt depend on s∗t−1, t = m + 1, . . . , T , we, in accordance with
Gray (1996), compute εt (t = m+ 1, . . . , T ) as

εt = zt − IE(zt | Zt−1)

= zt −
m∑

j=1

ψj(α0 + zt−j) −
2r+1∑
�=1

IP(s∗t−1 = 
 | Zt−1;θ) ξ′t−1,�(α11 + εt−1),
(9)

with the initial values εm, . . . , ε1 being zero, where IP(s∗t−1 = 
 | Zt−1;θ) is the filtering
probability of s∗t−1 = 
 based on the information up to time t− 1.

Given IP(s∗t−1 = 
 | Zt−1;θ), the density of zt conditional on Zt−1 alone can be
obtained via (8) as

f(zt | Zt−1;θ) =
2r+1∑
�=1

IP(s∗t−1 = 
 | Zt−1;θ) f(zt | s∗t−1 = 
,Zt−1;θ). (10)

To compute IP(s∗t = 
 | Zt;θ), note that

IP(s∗t−1 = 
 | Zt;θ) =
IP(s∗t−1 = 
 | Zt−1;θ) f(zt | s∗t−1 = 
,Zt−1;θ)

f(zt | Zt−1;θ)
. (11)

We also assume that the (j, i)th element of P ∗ is such that

p∗ji = IP(s∗t = i | s∗t−1 = j) = IP(s∗t = i | s∗t−1 = j,Zt);

the second equality would hold if {st} and {εt} are independent. These in turn yield

IP(s∗t = 
 | Zt;θ) =
2r+1∑
j=1

IP(s∗t−1 = j | Zt;θ) IP(s∗t = 
 | s∗t−1 = j,Zt;θ)

=
2r+1∑
j=1

p∗j� IP(s∗t−1 = j | Zt;θ).

(12)

Thus, with the initial value IP(s∗m | Zm;θ), we can iterate the equations (8)–(12) to
obtain IP(s∗t = 
 | Zt;θ) for t = m + 1, . . . , T . Then for each t, the desired filtering
probability is

IP(st = 1 | Zt;θ) =
∑

IP(s∗t = 
 | Zt;θ),

and IP(st = 0 | Zt;θ) = 1 − IP(st = 1 | Zt;θ), where the summation is taken over all 

that associated with st = 1.

From the recursions above we also obtain the quasi-log-likelihood function

lnL(θ) =
T∑

t=1

ln f(zt | Zt−1;θ),
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from which the quasi-maximum likelihood estimator θ̂T may be found via a numerical-
search algorithm. The estimation program is written in GAUSS which employs the BFGS
(Broyden-Fletcher-Goldfarb-Shanno) algorithm. Following Hamilton (1989, 1994), we set
the initial value IP(s∗m | Zm;θ) to its limiting unconditional counterpart: the (2r+1+1)th
column of the matrix (A′A)−1A′, where

A =

[
I − P ∗

1′

]
,

I is the identity matrix and 1 is the 2r+1-dimensional vector of ones; see Hamilton (1994,
p. 684) for details.

We also follow the approach of Kim (1994) to calculate the smoothing probabilities
IP(st | ZT ) for t ≤ T , which are the optimal forecasts of st based on all the information
in the sample. Observe that

IP(s∗t = 
 | s∗t+1 = j,ZT )

=
IP(s∗t = 
 | s∗t+1 = j,Zt+1) IP(zT , . . . , zt+2 | s∗t = 
, s∗t+1 = j,Zt+1)

IP(zT , . . . , zt+2 | s∗t+1 = j,Zt+1)
.

In the current context,

IP(zT , · · · , zt+2 | s∗t = 
, s∗t+1 = j,Zt+1) = IP(zT , · · · , zt+2 | s∗t+1 = j,Zt+1),

so that IP(s∗t = 
 | s∗t+1 = j,ZT ) = IP(s∗t = 
 | s∗t+1 = j,Zt+1). Note, however, that the
condition above does not hold in Kim (1994). It follows that

IP(s∗t = 
 | ZT )

=
2r+1∑
j=1

IP(s∗t+1 = j | ZT ) IP(s∗t = 
 | s∗t+1 = j,Zt+1)

=
2r+1∑
j=1

IP(s∗t+1 = j | ZT )
IP(s∗t+1 = j | s∗t = 
,Zt+1) IP(s∗t = 
 | Zt+1)

IP(s∗t+1 = j | Zt+1)

= IP(s∗t = 
 | Zt+1)
2r+1∑
j=1

p∗�j IP(s∗t+1 = j | ZT )
IP(s∗t+1 = j | Zt+1)

.

(13)

Using the filtering probability IP(s∗T = 
 | ZT ) as the initial value we can iterate the
equations (11), (12) and (13) backward for t = T − 1, · · · , p+ 1. Consequently, for each
t, the desired smoothing probability is

IP(st = 1 | ZT ) =
∑

IP(s∗t = 
 | ZT ),
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and IP(st = 0 | ZT ) = 1 − IP(st = 1 | ZT ), where the summation is taken over all 

that associated with st = 1. Similar to the filtering probabilities derived earlier, the
smoothing probabilities are also functions of θ. Plugging the quasi-maximum likelihood
estimate θ̂ into these probabilities we obtain the estimated values for the filtering and
smoothing probabilities.

5 Hypothesis Testing

As it is widely accepted that many economic and financial time series contain a unit
root, an interesting hypothesis is whether the data follow a random walk. This amounts
to testing p11 = 1. Under this null hypothesis, the stationary component does not
enter the model so that its parameters (those of Ψ(B) and Φ(B)) are not identified. In
this case, standard likelihood-based tests, such as the Wald, LM, and likelihood ratio
tests, are not applicable; see Davies (1977, 1987) and Hansen (1996). The problem
that certain parameters are not identified under the null hypothesis also arises in other
regime switching models. In contrast with Hamilton’s model, whether α1 = 0 is not of
primary concern here. Once we exclude the possibility that the process is a random walk,
hypothesis testing on other parameters is standard and can be done using likelihood-based
tests. Therefore, we focus on the null hypothesis of p11 = 1.

Since the data are a random walk when p11 = 1, it is of interest to study the per-
formance of the Dickey-Fuller (DF) test of Dickey and Fuller (1979). We simulate yt

according to Eq. (3) with α0 = α1 = 0, σ2
ε = 1, Ψ(B) = 1− 0.5B, Φ(B) = 1, and various

combinations of the transition probabilities p11 and p00. In the simulations, the nominal
size is 5%, sample size is 120, and the number of replications is 5000. The resulting
rejection frequencies of the DF test are plotted in the left panel of Figure 2. We see that
the DF test is not powerful against the alternative (3), except when p11 is small and p00

is large. For example, given p11 = 0.9, when p00 = 0.8 and 0.2, the powers are 14.9% and
7.6%, respectively; given p11 = 0.1, when p00 = 0.8 and 0.2, the powers are 55.8% and
23.7%, respectively. A detailed table of rejection frequencies is available upon request.

As shown in the right panel of Figure 2, the KPSS test of Kwiatkowski et al. (1992)
is more powerful against (3), except when p00 is close to one. The rejection frequencies
are typically around 70% when p11 and p00 are between 0.1 and 0.9. When the KPSS
test rejects the null of stationarity, it is still difficult to judge whether the series being
tested is a random walk or a process generated from the proposed model. More testing
results are needed to support the proposed model.

In this paper, we propose using a simulation-based test of an ARIMA model against
the proposed model. We first estimate an array of ARIMA(p, 1, q) models and choose

15



p00p
11

p00p
11

Figure 2: Empirical powers of the Dickey-Fuller test (left) and KPSS test (right).

an appropriate specification based on an information criterion (e.g., AIC or SIC). The
selected model is denoted as ARIMA(p∗, 1, q∗). Similarly, we also estimate an array of
CD(1;m,n) models and denote the selected model as CD(1;m∗, n∗) and the estimated
transition probability as p̂∗11. The selected ARIMA(p∗, 1, q∗) model is then taken as
the data generating process to generate simulated samples. For each simulated sample,
we re-estimate the CD(1;m∗, n∗) model and obtain an estimate of p11, denoted by p̂11.
Replicating this procedure many times yields a simulated distribution of p̂11. We reject
the null hypothesis that the series follows the ARIMA(p∗, 1, q∗) model if the p-value of
p̂∗11 is small, say, less than 5%.

6 Empirical Study

To assess the empirical relevance of the proposed model, we apply the model (2) with a
smooth Markov trend to U.S. real GDP. Leading models for GDP or GNP include the
trend-stationary models, unit-root models, and regime switching models. For example,
Blanchard (1981), Kydland and Prescott (1980) and Clark (1987) suggest that the loga-
rithm of real GNP is trend stationary, whereas Nelson and Plosser (1982) and Campbell
and Mankiw (1987) argue that real GNP contains a unit root. On the other hand, Hamil-
ton (1989), Lam (1990), and Kim and Nelson (1999) adopt a Markov switching model to
describe GNP or GDP. As the proposed model constitutes intermediate cases between
these two models, it would be interesting to know if it is capable of accounting for the
fluctuations of U.S. real GDP.

Our data are seasonally adjusted, quarterly U.S. real GDP from 1947:I through 1999:II
with 210 observations. The data set is taken from the AREMOS databank of the Ministry
of Education in Taiwan. We take log GDP as yt and estimate an array of CD(1;m,n)
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Table 2: Quasi-maximum likelihood estimates of the proposed model.

Parameter Estimate Standard error t-statistic

α0 −0.01166 0.00118 −9.88135∗

α1 0.02247 0.00153 14.68627∗

ψ1 0.39963 0.07597 5.26036∗

ψ2 −0.63773 0.08396 −7.59564∗

ϕ1 0.05715 0.07920 0.72159
ϕ2 0.43084 0.08585 5.01852∗

σε 0.00813 0.00141 5.76595∗

p00 0.80601 0.06084
p11 0.95053 0.01682

AR roots: 0.19981± 0.77318i MA roots: −0.02857± 0.65576i
Log-Likelihood=668.99 AIC=−1319.98 SIC=−1289.90

Note: t-statistics with an asterisk are significant at the 5% level.

models with a Markov trend and 0 ≤ m,n ≤ 4. The parameters,

θ = (α0, α1, ψ1, . . . , ψm, ϕ1, . . . , ϕn, σε, p00, p11)
′,

are estimated using the algorithm described in Section 4. This algorithm is initialized by
a broad range of random initial values. The covariance matrix of θ is −H(θ̂)−1, where
H(θ̂) is the Hessian matrix of the log-likelihood function evaluated at the QMLE θ̂.

Among all the models considered, both AIC and SIC select the CD(1; 2, 2) model.
The estimation results are summarized in Table 2; the estimated transition probabilities
are p̂∗11 ≈ 0.95 and p̂∗00 ≈ 0.80. We first apply the simulation approach in Section 5 to
test p11. We estimate an array of ARIMA(p, 1, q) models with p and q no greater than
4; both AIC and SIC select the ARIMA(1, 1, 0) model:

∆yt = 0.008 + 0.341∆yt−1 + ut, (14)

with σu = 0.0098, where ∆yt = yt − yt−1. We then re-estimate the CD(1; 2, 2) model
using the data generated from Eq. (14) and obtain p̂11. With 1000 replications we have
a simulated distribution of p̂11. The p-value of p̂∗11 = 0.95 based on this simulated
distribution is 0.037 and hence rejects the model in Eq. (14).

In addition, we also take the random walk model as the null hypothesis and notice
that zt = yt − yt−1 should be uncorrelated with all past zt−i under the null. We then
regress zt on zt−1, . . . , zt−k for k = 1, · · · , 4 with a constant term and check the joint
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significance of the coefficients of zt−i using the Wald test. Note that there will be no
unidentified nuisance parameters under this framework. A similar approach is also taken
by Tsay (1989) to test for threshold autoregressive models. The resulting Wald statistics
are 90.96, 83.45, 93.49 and 114.32, respectively, which are all significant at the 1% level
under χ2(k) distribution. We thus reject the null hypothesis that the data series is a
pure random walk.

Given that the data are neither an ARIMA process nor a pure random walk, we
now proceed to test other hypotheses by the Wald test. In particular, as discussed in
Engel and Hamilton (1990), the proposed model would be a simple mixture model if
the probability that st = 0 or 1 is independent of the previous state. This amounts to
testing the null hypothesis p00 +p11 = 1. The Wald statistic of this hypothesis is 148.794
which is also significant at the 1% level under the χ2(1) distribution. The rejection of
this hypothesis may justify our Markovian specification of the state variable.

In Figure 3 we plot the estimated filtering and smoothing probabilities of st = 0 in
the left and right figures, respectively. The shaded areas denote the recession periods
identified by NBER, where the solid (dashed) lines label the peaks (troughs). We find that
there are 28 periods (about 14% of the sample) with the filtering probability IP(st = 0 |
Zt;θ) > 0.5 and 35 periods (about 17% of the sample) with the smoothing probability
IP(st = 0 | ZT ;θ) > 0.5. This shows that unit-root nonstationarity is more likely to
prevail in more than 80 percent of the sample periods, yet stationarity dominates in
the remaining periods. We also observe that the nonstationarity (stationarity) periods
match the NBER dating of expansions (recessions) very closely. Hence, the innovations
in expansion (recession) are more likely to have a permanent (transitory) effect. These
results suggest the following features of real GDP. First, the nonstationary characteristic
and permanent shocks do not appear all the time, in contrast with the result of unit-root
models. Second, permanent shocks occur more frequently than the assertion of trend-
break models, cf. Perron (1989) and Balke and Fomby (1991). Third, the shocks in the
expansion periods generate nonstationary pattern and hence are more persistent than
those in the recession periods. This is compatible with the conclusion of Beaudry and
Koop (1993) who found that positive shocks to GDP are more persistent than negative
shocks.

From Table 2 we see that the estimated quarterly growth rates of U.S. real GDP
are α0 = −1.16% during the state of transitory shocks (recessions) and (α0 + α1) =
1.08% during the state of permanent shocks (expansions). The expected durations of
recession and expansion can be calculated from the transition probabilities: 1/(1−0.8) =
5 quarters for recession and 1/(1−0.95) = 20 quarters for expansion. According to NBER
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Figure 3: Estimated filtering and smoothing probabilities of st = 0 for U.S. quarterly
real GDP from 1947.I to 1999.II.

dating, the average growth rates for recession and expansion are, respectively, −0.38%
and 0.93%, and the average durations are, respectively, 3.6 and 19.3 quarters. Comparing
with Hamilton (1989), our results lead to a longer expected duration for expansion and
“deeper” recessions. We also apply the model of Hamilton (1989) to this data set. The
estimation Gauss program used is taken from C. R. Nelson’s web site and is initialized
by 100 initial values.1 Unfortunately, the estimation results fail to provide reasonable
parameter estimates for the data; Kim and Nelson (1999, p. 78) also reported a similar
problem when a different data set was used. This may not be very surprising because
Boldin (1996) noticed that Hamilton’s result is sensitive to the sample period.

We compute the expected trend line (smooth Markov trend) as

α̂0 t+ α̂1

t∑
i=1

IP(si = 1 | ZT ; θ̂) + α̂1Ψ̂(B)−1Φ̂(B)(1 − IP(st = 1 | ZT ; θ̂)),

where the stochastic trend component is weighted by the estimated smoothing probabil-
ities. This trend line captures the trend behavior of log(GDP) quite well, as can be seen
from Figure 4.

Examining the filtering and smoothing probabilities more carefully, we find that there
are 14 periods with IP(st = 0 | Zt;θ) < 0.5 but IP(st = 0 | ZT ;θ) > 0.5. That is, the

1C. R. Nelson’s web site is www.econ.washington.edu/user/cnelson/SSMARKOV.htm; the program

is HMT4 KIM.OPT.
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Figure 4: The expected trend line in U.S. real GDP.

likelihood of st = 0 may differ significantly when a information set changes. This is
not unreasonable. A shock may seem very significant at time t, but its significance
may subsequently diminish when more information is taken into account. To illustrate
this point, we calculate the smoothing probabilities based on the filtration {Zτ , τ ≥ t},
i.e., IP(st = 0 | Zτ ;θ) for τ = t, t + 1, · · · , T . Figure 5 shows the dynamic pattern of
IP(s1990:III = 0 | Zτ ;θ) for τ = 1990:III, 1990:IV, . . . , 1999:II. This figure clearly shows
how 1990:III changes from the state one to the state zero as information set expands.

7 Conclusions

In this paper we propose a class of component-driven models with several interesting
features. First, it admits both deterministic and stochastic trends. Second, it can describe
both stationary and nonstationary characteristics over different time periods. The effects
of corresponding innovations thus may alternate from time to time. Third, it allows
for endogenous breaks in the deterministic trend function such that different trending
patterns are directly linked to the shocks with distinct effects. Fourth, when there are
trend breaks, the transitions between trend segments are smooth. This class of models
can be viewed as intermediate cases between trend-stationary and unit-root models and
is able to accommodate both trend-reverting and trend-perverting behavior.

The empirical application of the proposed model to U.S. real GDP suggests that it is
a useful analytical tool. It is shown that unit-root nonstationarity is more likely to prevail
in more than 80 percent of the sample periods and that these periods match closely the
expansion periods dated by NBER. Thus, the shocks in expansions are more likely to be
permanent. This result differs from that of unit-root (trend-stationary) models in that
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Figure 5: Dynamic path of IP(s1990:III = 0 | Zτ ;θ) for U.S. quarterly real GDP data from
1947.I to 1999.II.

the shocks may not always be permanent (transitory). The fact that permanent shocks
occur quite frequently is also different from the assertion of trend-break models, such as
those of Perron (1989) and Balke and Fomby (1991). The proposed model may therefore
serve as an alternative for modeling economic time series.
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