
中央研究院經濟所學術研討論文 
IEAS Working Paper 

 

 
Climate Change and Crop Yield Distribution: 

    Some New Evidence from Panel Data Models 

 

Chi-Chung Chen and Ching-Cheng Chang 

IEAS Working Paper No. 04-A001 

January, 2004 

 
 
 

Institute of Economics 
Academia Sinica 

Taipei 115, TAIWAN 
http://www.sinica.edu.tw/econ/ 

 
 
 

 

中央研究院  經濟研究所 

INSTITUTE OF ECONOMICS, ACADEMIA SINICA 

TAIWAN 
copyright @ 2004 (Chi-Chung Chen and Ching-Cheng Chang ) 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6827082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Climate Change and Crop Yield Distribution:  

Some New Evidence From Panel Data Models  

 

Abstract 
 

 This study examines the impact of climate on the yields of seven major crops in 

Taiwan based on pooled panel data for 15 prefectures over the 1977-1996 period.  

Unit-root tests and maximum likelihood methods involving a panel data model are 

explored to obtain reliable estimates.  The results suggest that climate has different 

impacts on different crops and a gradual increase in crop yield variation is expected as 

global warming prevails.  Policy measures to counteract yield variability should 

therefore be carefully evaluated to protect farmers from exposure to these long-lasting 

and increasingly climate-related risks. 
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Climate Change and Crop Yield Distribution:  

Some New Evidence from Panel Data Models  

I. Introduction 

Climate change is an important global issue that has been much discussed in recent 

years.  Even if the nature of changes in climatic conditions were known, there would 

remain considerable uncertainty as to the kinds of impacts that these changes would have.  

Agriculture is one of the most vulnerable sectors in the economy as changes in 

atmospheric conditions have implications for water supply and plant growth, as well as 

for pests and diseases.  Thus, many climate simulation-based climate forecasting models 

and crop growth models have been developed to examine the vulnerability of agriculture 

to global warming (Hoogenboom, 2000). 

In Asia, a number of modeling studies of the effect of climate change on rice 

production have emerged since the late 1980s.1  However, wide range of predictions 

have been made, partly due to the assumptions made in both the climate forecasting and 

the crop simulation models, partly from the use of limited sites for which historical 

weather data is available, and partly from the complexity in the management practices to 

cope with these climate effects (Bachelet et al., 1993; Mattews et al., 1997).  The 

                                                 
1 See Matthews et al (1997) for a comprehensive review on the modeling studies of the likely impacts of 
climate change on rice production. 

 2



controlled experiments, which are the core of the crop simulation models, are expensive 

and time-consuming to validate and, as argued by Mendelsohn et al. (1996), “provide 

poor estimates of the actual magnitude of impacts because they fail to account for the 

many adjustments that farmers make to environmental conditions”.  

Little evidence is available for other tropical and semi-tropical crops grown in the 

Asian region as the use of simulation models is still an evolving science in this region.  

In this paper, we propose the use of econometric methods as an alternative to examine the 

changes of yield distributions in response to climate change.  Panel unit-root tests and 

maximum likelihood estimates will be explored in order to obtain reliable estimates using 

a panel regression model.  Seven field crops in Taiwan are under investigation for our 

empirical study.  The results not only illustrate the sensitivity of crop yield distribution 

in response to climate change in this area, but also identify the atmospheric conditions 

which control the yield distributions.  The information can assist us in understanding 

any possible adaptive behavior that may be available to cope with these changes. 

In this study, the yield response to climate variability is also under investigation 

because most studies have concentrated on the effects of mean changes in climate 

variables.  Climate variability influences farming’s management practices, while 

short-term weather episodes affect crop yields by inducing changes in temperature, 
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potential evapotranspiration, and moisture availability.  Katz and Brown (1992) have 

shown that, for a given climate variable, a change in the variance has a larger effect on 

the cropping system than a change in the mean.  Climate variability also influences other 

factors such as any incidences of pests and epidemic diseases that may hamper crop 

growth.  However, the results are very sensitive to the cultivation systems and water 

supply (Luo et al, 1998).   Thus, analyses of the associated effects on cop yields are 

highly speculative and, therefore, deserve additional attention. 

Another motivation stems from the increasing popularity of using crop insurance 

programs as alternative income stabilizing schemes for the post-Uruguay Round 

agricultural policy reforms in many countries.  Our study has implications for crop 

insurance, because the shape of yield distributions is one of the key parameters for 

designing crop insurance programs (Just and Weninger, 1999).  If climate change shows 

great potential to alter the shape of these crop yield distributions, we have to identify or 

estimate the direction and magnitude of these influences.  Ignoring these influences will 

lead to distributional misspecifications, which in turn will bias the calculation of 

insurance premiums and indemnity. 

In the following section, we provide the model structure for constructing the 

relationship between climate variables and yields.  Section III implements the panel unit 
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root tests proposed by Im et al. (1997) based on a sample of 15 prefectures over the 

1977~1996 period.  In Section IV, the methodologies related to testing the panel model 

characteristics are illustrated and the estimation results presented.  The final section 

provides policy implications for crop insurance design. 

II. Crop Yield Response Models 

The results of previous crop response models suggest that changes in crop yields 

must be interpreted as being conditional upon the specific changes in the spatial patterns 

of temperature and rainfall as well as specific changes taking place over time.  Changes 

in climate conditions not only have an effect on the mean yields, but they can also affect 

the higher moments of crop yield distributions.  In this paper, a stochastic production 

function of the Just-Pope type (Just and Pope, 1978) is assumed as follows: 

ε)()( XhXfY += ,                                   (1) 

where Y is the yield, and X is a set of explanatory variables, e.g., climate, location and 

technology.  The function ε)(X

)(Xf

h  for the error term is an explicit form for 

heteroscedastic errors that allows for the estimation of the variance effects.  The 

estimation of the parameter  gives the average effect of the explanatory variables 

on yield, while gives their effect on the variance of yield. )(Xg

Temperature and precipitation are considered to be the major climate variables.  
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Their corresponding variations are also included to reflect the influence of departures 

from normal climatic conditions on crop yields.  For example, Thompson (1986) 

reported that decreasing weather variability was favorable for U.S. corn yields before 

1970.  Using a mechanical crop model and farm-level yields, Park and Sinclair (1993) 

found that variations in temperature and precipitation affected the distribution of U.S. 

corn yields over time and space.  Mendelsohn et al. (1994, 1996) also showed that 

omitting the variation terms biased the effect from global warming.  In this paper, 

climate variability is approximated by the variations of monthly mean temperature and 

precipitation from their 20-year monthly averages, respectively.  

A time-trend variable is also added to represent the effect of technological progress 

during the sample period, which can be attributed to increasing fertilizer application, new 

high-yielding crop varieties, improved cropping practices, etc.  The main purpose 

behind adding this time-trend variable is to capture the contribution from technology and 

management improvements. 

 In this study, pooled time-series cross-sectional data for Taiwan’s seven major field 

crops (rice, corn, soybeans, peanuts, adzuki beans, sweet potatoes, and potatoes) over the 

1977~1996 period are used to measure the sensitivity of their yields in response to 

climate change.  The data on crop yields are drawn from the Agricultural Yearbook.  
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Monthly weather data on temperature and precipitation are obtained from Taiwan’s 

Central Weather Bureau.  The summary statistics are presented in Table 1, which shows 

that higher means are correlated with higher standard deviations.  As for the climate 

variables, the variations in precipitation are more dramatic than the variations in 

temperature. 

The subtropical weather in Taiwan permits the growing of a great variety of crops.  

According to a recent study by Hsu and Chen (2002), over the past 100 years Taiwan has 

experienced an island-wide warming trend of up to 1.4℃.  Both the annual and daily 

temperature ranges have also increased.  The precipitation has exhibited a more 

complicated spatial variation with a tendency to increase in the northern part of the island 

and to decrease in the south.  This phenomenon occurs mainly in either the dry or the 

rainy season and thus results in an enhanced seasonal cycle.  Other tropical climatic 

phenomena such as typhoons are also critical to agricultural production in Taiwan.  

According to the Agricultural Yearbook of 1999, climate-related disasters have caused 

US$ 1.8 billion in crop losses2 during 1990-1999, which amounted to about 4 percent of 

the total crop values produced during the 10-year period.  Therefore, like most of her 

Asian neighbors, climate variability is a constant threat to Taiwan’s crop production. 

                                                 
2 This estimate excludes the losses due to soil erosion and damaged farm facilities, but includes the 

damages from diseases and pests. 
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By using a price-endogenous mathematical-programming model, Chang (2002) has 

simulated the potential effect of climate change on regional production and welfare 

distribution in Taiwan.  Sixty crop yield response functions were regressed using panel 

data and simple least square methods to extrapolate the climate impact on yields.  Some 

discrepancies were found between this study and previous ones from the crop simulation 

models.  For example, in the case of rice, Chang’s results showed that warmer 

temperatures were yield-decreasing.  However, Matthews et al. (1997) found that while 

China, Thailand, Bangladesh and Japan would experience a decline in rice production, 

Taiwan as well as Indonesia, Malaysia, and parts of India and China were predicted to 

benefit from global warming.  Therefore, the magnitudes and the directions of these 

extrapolated yield changes are highly speculative.  In the analysis that follows, we will 

strengthen our estimation results by adopting up-to-date panel data testing techniques and 

maximum likelihood methods.   

III. Testing for Unit Roots 

This study utilizes pooled time-series and cross-sectional data for 15 regions over 

the 1977-1996 period.  Pooled panel data possess several advantages over conventional 

single time-series or cross-sectional data, especially when the time series for the data may 
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not be very long but may be available across different regions.  However, in panel data, 

if the individual time series are non-stationary, the standard asymptotic properties of the 

regression model are, in general, no longer applicable.  In particular, a non-stationary 

variable may result in an inflated standard t-statistic or an inefficient estimation.  

Therefore, it is necessary to conduct tests for stationarity before conducting the regression 

analysis.  If the tests indicate nonstationarity, a solution has to be developed, e.g., 

estimation in first differences. 

Panel unit root tests have been advanced by Quah (1994), Levin and Lin (1992, 

1993) and Levin et al. (2002).  Levin et al.’s tests are more general than those of Quah 

because their tests can accommodate heterogeneity across cross-sectional units and 

different types of serial correlations in the residuals, while independence across 

cross-sectional units is retained.  Their tests have gained popularity in international 

finance and macroeconomic applications.  However, their tests are written under the null 

hypothesis of non-stationarity against the alternative of non-stationarity but with 

homogeneous serial correlation across units.  Im et al. (1997) propose a relaxation which 

permits the autoregressive parameters to differ across the cross-sectional units under the 

alternative hypothesis.  They develop a group-mean Lagrange multiplier (LM-bar) 

statistic which is distributed as standard normal as long as the number of regions (N) is 

 9



large relative to the number of time periods (T).  Therefore, Im et al.’s approach also 

relaxes the requirement of a particular rate of divergence as N and T move to infinity in 

Levin et al.’s tests. 

The general form used to test for stationarity is as follows: 

  Ttatxx ttt ,...,1,110 =+++= − εφφ ,              (2) 

where  is the variable under consideration, tx a and  , 10 φφ  are the coefficient 

parameters, and tε  is the error term.  If 1φ  is smaller than 1, then  is stationary; 

otherwise, one has to take the first-order difference in relation to .  Equation (3) is 

the general form after the differencing and  will be stationary if 

tx

≠

tx

tx γ 0. 

tjt

p

j
jttt xxtbax εφγ +∆+++=∆ −

−

=
− ∑

1

1
1            (3) 

Equation (3) is the basis for the conventional Dickey-Fuller (1981) test in a 

time-series model where  is the first-order difference operator and p is the lag length.  

Im et al. propose an LM-bar test, which is based on the mean of the individual unit root 

statistics in a dynamic heterogeneous panel.  Now let us consider the following panel 

model of a sample of N regions observed over T time periods:  

∆

 TtNixx ittiiiit ,...,1,,...,11, ==++=∆ − εβα              (4) 

where  is the variable of interests generated by a first-order autoregressive process for itx
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region i and time period t, 1, −−=∆ tiitit xxx , itε  is independently and identically 

distributed both across i and t.  The null hypothesis of a unit root in (4) is then a test of 
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against the alternatives3, 
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                             (6) 

Under the assumption of serially autocorrelated errors with different serial 

correlation across regions, the standardized LM-bar ( LM ) statistic used to test for the 

null hypothesis is derived from the following Augmented Dickey-Fuller (ADF) equation: 

 ,    (7) TtNix itiiit ,...,1,,...,1 ==+=∆ εα

where  is the lag length of , and ip i is the coefficients vector of the augmented 

lagged differences. 

The standardized LM-bar statistic is expressed in equation (8): 

,               (8) 

where NTLM  is the simple average of N individual LM statistics for testing 0=iβ ,  

namely, ∑
=

=
N

i
iiiTNT pLM

N
LM

1

),(1 ρ .  Under the null hypothesis (5) and kTN → , 

LM
Γ converges to a standard normal distribution.  Under the alternative hypothesis (6), 

                                                 
3 This formulation allows for  to differ across regions, and is more general than the homogeneous 

alternative hypothesis, namely 
iβ

i i∀<= 0ββ  which is implicit in both the Levin-Lin and Quah 
approaches. (Im et al., 1997) 
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LM
Γ will diverge to a positive infinity. (See Theorem 4.1 and Appendix A.4 in Im et al.)                  

   In addition, if we consider the case where the disturbances are also correlated across 

the cross-sectional data, the LM-bar test can be extended to a de-meaned regression as 

shown in (4.10) on page 8 of Im et al.’s paper.  The robust unit-root test requires that the 

data have to pass both tests. 

The panels in relation to seven crop yields and four climate variables from 15 

regions over the 1977~1996 period are tested for unit roots before their estimations are 

performed.  The test results are shown in Table 2.  Table 2 shows that the crop yields 

for rice, corn, peanuts, soybeans and sweet potatoes pass all three tests and are thus 

stationary.  However, the null hypothesis of no unit root is not rejected for adzuki bean 

and potato yields.  After a first-order difference in potato yield and a second-order 

difference in adzuki bean yield are taken, both of them are found to pass the test and 

become stationary.  All climate data also pass the panel-based unit-root tests.  

Therefore, they are now ready for use in our panel model estimation. 

IV. Estimation and Results 

Before estimating the crop yield response function, it is important to establish the 

correct panel model form.  While the Hausman test could be applied to test for fixed or 
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random effects, the Hausman test is, however, not valid if there exists either 

heteroscedasticity or serial correlation in the disturbance term.  Arellano (1993) has 

therefore derived an h statistic as an alternative when heteroscedasticity or serial 

correlation is present. 

Let  denote the crop yield for individual i at time t and represent the 

explanatory variables such as technology, temperature, precipitation, etc.  The yield 

response function in a panel model with two-way error components is then written as: 

itY itX

 ititit uXY ++= βα ' ,                                 (9) 

where ittiit vu ++= λµ .  The term iµ denotes the unobserved specific region effects, 

while tλ  stands for the unobserved time effects and is the disturbance term.  Their 

variances are and , respectively.   

itv

22 , λµ σσ 2
vσ

The test in the case of the fixed effects model assumes that there is no correlation 

between the disturbance term ( ) and the independent variables ( ) so that the null 

hypothesis is written as 
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ituE .  The Hausman test can be obtained as a 

Wald statistic with the restriction =γ  from the OLS estimates of the model in (10): 
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where TXxAXXAyy iiiiii /,, '** ι=== , A is the (T-1)*T forward orthogonal deviations 
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operator and ι  is a T*1 vector of ones (Arellano, 1993).  The estimator of  is 
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the  are OLS residuals from equation (10).  The test results for the fixed versus the 

random effects models are listed in the second row of Table 3, which indicates that a 

random effects specification cannot be rejected for all crop models. 

 Next, in order to obtain efficient results, heteroscedasticity will be tested before 

estimating the crop yield response functions.  Bartlett’s test is adopted here as 

recommended by Baltagi (1995) and explained in Judge et al. (1985, p. 448).  The test 

results are shown in the third row of Table 3.  Heteroscedasticity is present in the cases 

of all crops except rice. 

 Our next step is to test for serial correlation under a random effects model.  Baltagi 

and Li (1995) present a series of LM tests for serial correlation that are carried out jointly 

 14



with various assumptions concerning individual effects.  The test results are displayed in 

the last row of Table 3.  Only the yield response function for sweet potato exhibits serial 

correlation. 

 Based on these test results, the heteroscedasticity problem is seen to prevail in the 

random effects panel model.  Therefore, the generalized least squares (GLS) method can 

be used to obtain efficient estimates.  Saha et al. (1997) show by means of Monte Carlo 

experiments that, for small samples, the maximum likelihood estimation (MLE) approach 

is more efficient than GLS.  Therefore, the MLE approach is adopted here, and the 

likelihood function is as follows: 

),(/),(*2/1
))],(),(*/(),(*)),(),(*/(),(

)),(),(*/(),()),(),(*/(),(log[*2/1
))],(),(*/(),(log[*2/
))],(),(*/(),(log[*2/
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where ),( βXf  is the crop yield response function, and ),(),(),( δγα XTXIXh ++  is 

the yield variation function.  The latter has three components: ),( αXh

),(

 represents the 

variation from the disturbance term ( ), while itv  ),,( δγ XTXI  represent, respectively, 

the variations from both the individual and time effects. 

The estimation results are presented in Tables 4 and 5.  Because the log-linear form 

is adopted, the numbers listed in Tables 4 and 5 are the elasticities.  First, Table 4 shows 
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that the time trend coefficients are positive in most cases.  Therefore, the crop 

production technology (except in the case of the adzuki bean) has been yield-improving 

over the last 20 years.  Second, the climate variables are seen to have had diversified 

impacts on crop yields.  The increases in temperature and precipitation have lowered the 

crop yields in relation to rice, corn, and peanuts.  However, the warmer climate has also 

resulted in higher yields in relation to soybeans and potatoes while more rainfall has been 

detrimental.  On the other hand, the increased variation in temperature has reduced the 

crop yields in relation to rice, soybeans and adzuki beans, but the opposite situation has 

occurred in the cases of corn, peanuts, sweet potatoes and potatoes.  This indicates that 

crops harvested from under the ground (or the so-called root crops), such as peanuts or 

potatoes, are more able to withstand variations in temperature while other crops such as 

rice and adzuki beans are more susceptible to changes in temperature.  Similarly, the 

increased variation in precipitation has reduced the crop yield in the case of the adzuki 

bean while it has increased the yields of other crops. 

 Finally, the results show that, as the climate has become warmer, higher yield 

variability has been observed in regard to these selected crops.  In addition, more 

rainfall has increased the yield variability in relation to rice, corn, and potatoes.  The 

increased variation in precipitation is also expected to increase crop yield variability in 

 16



relation to soybeans, peanuts, adzuki beans, and sweet potatoes.  Although it may be too 

early to draw conclusions, a gradual increase in crop yield variation can be expected as 

global warming prevails.  Policy measures to counteract yield variability such as crop 

insurance should therefore be carefully evaluated to protect farmers from exposure to 

these long-lasting and increasingly climate-related risks. 

V. Implications for Adaptation Strategies 

The success of crop insurance as a risk-managing policy tool depends on its 

insurance design being fair to both farmers and the insurance agency, whether for an 

advanced or developing country (Ahsan et al., 1982).  In most countries, the sum 

insured is based on the prospective values of the yield.  If the expected values of yields 

vary over time depending on the risk profile of the climate conditions, additional 

safeguard against this climate-related risk by fixing the sum insured to a certain 

percentage of the yield or by adding a safety loading factor into the premium ratio may be 

necessary.  Therefore, understanding how crop yield distributions is related to the 

climate change as shown in our Tables 4 and 5 have important implications for ensuring 

feasibility of a crop insurance scheme. 

Our results may also have other policy implications besides insurance.  For 

example, if the results show that climate conditions contribute significantly to crop yield 
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risk, then weather insurance/derivatives—an emerging market to hedge against 

production risk instead of price risk—may have a significant role to play (Turvey, 2001).  

For developing countries, farmers could adjust their crop mix (e.g., by substituting 

high-risk crops for low-risk crops or vice versa) according to the crop yield distributions 

under different climatic conditions, simply because our results show that climate change 

tends to impact different crops differently.  Such an adjustment is viewed as a 

self-insurance scheme, and could reduce the size or the probability of a loss caused by a 

change in climate.4  The crop yield response functions can also be applied to other price 

stabilization tools such as storage or stock acquisition.  Farmers could adjust their 

storage activities according to the crop yield distributions in response to the climate 

change. 

Ehrlich and Becker (1972) have shown that, under certain conditions, market 

insurance and self-insurance can be complements in the sense that the availability of the 

former could increase the demand for the latter.  Consequently, it is possible that a fair 

market insurance price could result in an increase in self-insurance activities.  If so, then 

the moral hazard would not limit the development of market insurance.  On the other 

                                                 
4 Ehrlich and Becker (1972) distinguish between self-insurance (a reduction in the size of a loss) and 
self-protection (a reduction in the probability of a loss) as two different alternatives to market insurance.  
However, we think the distinction may be vague in our case and thus ignore it. 
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hand, self-insurance and market insurance could also be substitutes in which moral 

hazard might be an issue.  Therefore, if these self-insurance alternatives do exist, then a 

farmer’s demand for insurance should be viewed within the context of a more 

comprehensive insurance scheme. 

Based on our results, global warming has the potential to increase yield variability 

and to impact different crops differently.  In countries like Taiwan where crop insurance 

policies are not available, many self-insurance activities will be pursued as the chief 

means of redistributing income toward less-favorable climatic conditions.  In the cases 

of many of the small-scale farmers in the East Asian economies, this can be seen from the 

tendency for them to diversify into a greater number of enterprises or to grow larger 

shares of their family food requirements.  This tendency, however, will make their 

agricultural sector increasingly vulnerable as the economy becomes more open to 

large-scale, highly commercialized, and low-price imports.  Thus, adopting crop 

insurance has become a popular option and has received special attention in recent years, 

as the government seeks to strengthen the competitiveness of its farmers while adhering 

to international trade agreements.  Our results suggest that the insurance policies have to 

be carefully designed to recognize the existence of these agro-climatic relationships and 

the self-insured alternatives so that the moral hazard problem can be minimized. 
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Table 1. Sample Statistics on Climate and Yields 

 Unit Mean Standard 
Deviation 

Minimum Maximum 

Rice (kg/ha) 4510 976 2229 6656 

Corn (kg/ha) 3116 912 1117 5632 

Soybean (kg/ha) 1711 434 995 3375 

Peanut (kg/ha) 1677 293 1036 2750 

Adzuki Bean (kg/ha) 1527 433 700 2664 

Sweet Potato (kg/ha) 15748 4908 8941 31489 

Potato (kg/ha) 15591 5687 3889 29202 

Temperature (oC) 22.79 1.87 16.18 25.48 

Precipitation (mm) 189.35 89.41 44 533 

 

 24



Table 2 Unit Root Test Results on Crop Yield and Climate Variables 

 Serial Correlation Correlation across Groups 

Rice 110.46* 82.95* 

Corn 48.65* 20.95* 

Soybean 54.39* 11.86* 

Peanut 65.71* 22.21* 

Adzuki Beana 10.87* 

 

 1.58 

6.32* 

Sweet Potato 73.58* 36.36* 

Potatoa 6.36* 

 

           -1.65 

-1.85* 

Average Temperature 43.02* 17.60* 

Average Precipitation 52.02* -3.83* 

Variation in Temperature 232.96* -8.91* 

Variation in Precipitation 27.89* 7.76* 

Notes: “Serial correlation” statistics are robust to error term serial correlation, while 
“correlation across groups” statistics are robust to serial correlation in the 
cross-section dimension. 

a When there are two statistics in a cell, the top number represents the test results on the 
un-differenced data, and the bottom one is for the data after first-order 
differencing. 

* The null hypothesis of non-stationarity is rejected with 99% confidence. 
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Table 3.  Specification Test Results of the Panel Data Model 

  Fixed vs. Random 
Effects 

Heteroscedasticity Serial Correlation 

Rice 160425* 3.58 0.47

Corn 87897* 70.24* 1.38

Soybean 17345* 244.81* 0.70

Peanut 10436* 73.98* 0.94

Adzuki Bean 72055* 14.49* 0.84

Sweet Potato 36323* 167.32* 2.79*

Potato 729467* 422.84* 0.07

Note: The fixed vs. random effects test is implemented using an h statistic baaed on 
Arellano. The h statistic is a chi-square distribution with k degrees of freedom 
where k is the number of regressors. 

* means rejecting the fixed effect null hypothesis with 99% confidence.  The Bartlett 
test is based on a chi-square distribution with N-1 degrees of freedom where N is the 
sample size.  Serial correlation is a normal distribution with N(0,1). 
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Table 4.  Elasticity Estimates of Crop Yields with Respect to Climate Changes 

 Time 
Trend 

Average 
Temperature

Average 
Precipitation

Variation in 
Temperature 

Variation in 
Precipitation

Rice 

 

Corn 

 

Soybean 

 

Peanut 

 

Adzuki Bean 

 

Sweet Potato 

 

Potato 

0.253* 

(0.0006) 

0.146* 

(0.0009) 

0.118* 

(0.0015) 

0.088* 

(0.0006) 

-0.370* 

(0.0415) 

0.068* 

(0.0008) 

0.188* 

(0.0039) 

-0.787*

(0.0056)

-1.333*

(0.0116)

1.328*

(0.0521)

-0.368*

(0.0076)

-27.946*

(1.316)

0.012

(0.0081)

-0.174

(0.127)

-0.333*

(0.0019)

-0.629*

(0.0040)

-0.125*

(0.0067)

-0.268*

(0.0022)

0.359

(0.219)

-0.485*

(0.0031)

-0.735*

(0.0163)

-0.033* 

(0.0011) 

0.077* 

(0.0024) 

-0.028* 

(0.0052) 

0.003* 

(0.0016) 

-2.025* 

(0.136) 

0.088* 

(0.0046) 

0.621* 

(0.0192) 

0.084*

(0.0008)

0.192*

(0.0015)

0.045*

(0.0025)

0.082*

(0.0010)

-0.813*

(0.0837)

0.153*

(0.0015)

-0.225*

(0.0068)

* significant at 95% confidence level.   
Note: Numbers in parentheses are standard deviations. 
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Table 5.  Elasticity Estimates of Crop Yield Variability with Respect to Climate Changes 

 Time 
Trend 

Average 
Temperature

Average 
Precipitation 

Variation in 
Temperature 

Variation in 
Precipitation 

Rice 
 
Corn 
 
Soybean 
 
Peanut 
 
Adzuki Bean 
 
Sweet Potato 
 
Potato 

-0.015 
 

0.021 
 

-0.002 
 

0.002 
 

-0.011 
 

0.001 
 

0.007 

0.236

0.717

0.045

0.013

-0.500

0.023

-0.375

0.152

0.090

-0.009

-0.016

-0.103

-0.022

0.603

0.042 
 

0.136 
 

0.0001 
 

0.012 
 

0.017 
 

-0.012 
 

-0.010 
 

-0.399

-0.529

0.037

0.075

0.623

0.003

-1.631

Note: The numbers in this table are calculated from the table in the Appendix and the 
elasticity formula is as follows: 

.  )],(),(),(/[*)],(/*),(/*),(/*[
^^^^^^^^^
δγαδδγγαα xTxIxhxxTxxIxxhx ++++
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Appendix. Maximum Likelihood Estimates of Crop Yield Response Functions 

Variation in 
Disturbance 

Time  
Trend 

Average 
Temperature

Average 
Precipitation

Variation in 
Temperature 

Variation in 
Precipitation

Rice 
 
Corn 
 
Soybean 
 
Peanut 
 
Adzuki Bean 
 
Sweet Potato 
 
Potato 

-0.753* 
(0.0067) 

0.220* 
(0.0071) 

0.676* 
(0.0151) 

0.126* 
(0.0062) 
-0.217* 

(0.0215) 
0.291* 

(0.0062) 
 0.042* 
(0.0146) 

5.177*
(0.0893)

4.391*
(0.0784)

5.561*
(0.380)
0.426*

(0.0852)
- 4.410*
(0.895)
1.690*

(0.0703)
-0.972*
(0.446)

1.264*
(0.0239)

0.313*
(0.0246)

0.416*
(0.0546)
-0.188*

(0.0227)
-0.375*

(0.1198)
-0.651*

(0.0217)
0.636*

(0.0727)

0.951* 
(0.0169) 

0.831* 
(0.0185) 

0.498* 
(0.0402) 

0.406* 
(0.0016) 

0.219* 
(0.1031) 
-0.898* 

(0.0238) 
-0.031 

(0.442) 

-0.361*
(0.0104)

0.081*
(0.0107)
-0.163*

(0.0215)
0.216*

(0.0011)
     0.356*
    (0.0492)

0.285*
(0.0095)
-0.404*

(0.0331)
Variation in 
Individual 

Effects 

Time 
Trend 

Average 
Temperature

Average 
Precipitation

Variation in 
Temperature 

Variation in 
Precipitation

Rice 
 
Corn 
 
Soybean 
 
Peanut 
 
Adzuki Bean 
 
Sweet Potato 
 
Potato 

-21.42* 
(0.211) 
0.954* 
(0.410) 

14.245* 
(0.135) 
-92.559 
(2876) 
0.172 

(0.985) 
14.615* 
(0.571) 
-17.658 

(329930) 

-42.86*
(0.830)
9.187*
(0.928)

-54.706*
(0.918)
74.510
(9768)
-0.196

(0.966)
-255.35*

(0.989)
-14.266
(23170)

133.98*
(0.836)

-21.907*
(0.889)
6.040*
(0.896)
-171.18
(9496)
-0.883

(0.915)
-66.959*

(0.917)
1.963

(31113)

5.490* 
(0.824) 

30.623* 
(0.919) 

-11.610* 
(0.483) 
137.73 
(8847) 
0.001 

(0.976) 
186.33* 
(0.962) 
20.062 

(48610) 

-64.538*
(0.417)

-18.781*
(0.497)
9.831*
(0.379)
12.773
(4800)

-2.880*
(0.558)

41.074*
(0.536)
-5.644

(79934)
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Appendix (Continued). 

Variation in 
Time Effects 

Time  
Trend 

Average 
Temperature

Average 
Precipitation

Variation in 
Temperature 

Variation in 
Precipitation

Rice 
 
Corn 
 
Soybean 
 
Peanut 
 
Adzuki Bean 
 
Sweet Potato 
 
Potato 

0.326 
(0.985) 

0.664 
(0.986) 

-118.52* 
(0.288) 
-2.053 
(3943) 
-0.252 

(0.985) 
-2.345* 
(0.985) 
-14.747 

(263030) 

1.591
(0.968)

1.519
(0.969)

-22.443*
(0.966)
13.838
(2589)
-0.880

(0.966)
-2.209*
(0.968)
48.643

(935030)

-1.911*
(0.911)
-1.052

(0.911)
-86.454*

(0.939)
39.687
(4174)

-1.954*
(0.915)
-7.926*
(0.911)
-1.443

(31855)

1.101 
(0.971) 

1.160 
(0.971) 

-49.744* 
(0.969) 
-21.243 
(9834) 
-0.573 

(0.976) 
-2.524* 
(0.971) 
-46.452 

(820700) 

-5.462*
(0.569)
-3.604*
(0.570)

56.339*
(104.22)
-14.656
(3769)

-5.083*
(0.557)

-17.409*
(0.570)
-8.672

(162170)
Note: Numbers in parentheses are the standard-error deviations. 
* significant at 95% confidence level. 
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