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Abstract

This paper analyzes voting on a linear income tax which is re-
distributed lump sum to the taxpayers. Individuals can evade taxes,
which leads to penalties if evasion is detected. Since preferences sat-
isfy neither single peakedness nor single crossing, an equilibrium may
not exist. When it does exist, it may have interesting properties, in
particular, the poor and the rich may form a coalition against the
middle class.
JEL classification: H26, D72.
Keywords: Tax evasion, redistribution, voting.

∗Address for correspondence: DIW Berlin, 14191 Berlin, Germany, Tel. +49-30-89789-
166, Fax +49-30-89789-114, Email rborck@diw.de

1



1 Introduction

Progressive income taxes are generally seen as a device to redistribute income

from the rich to the poor. This idea is at the heart of the optimal taxation

literature (Mirrlees, 1971) as well as most contributions in the political eco-

nomics tradition (Romer, 1975; Roberts, 1977; Meltzer and Richard, 1981).

However, the incidence of the tax depends not on the progressivity of the

tax schedule, but on the progressivity of tax payments. These, however, are

influenced by individual decisions, such as how much to work and save, and

the decision of how much taxes to pay. In this paper, we ask the follow-

ing question: How does tax evasion influence the outcome of a game where

individuals vote on an indirectly progressive income tax?

The paper builds on and combines two distinct strands of literature. On

the one hand, Romer (1975), Roberts (1977) and Meltzer and Richard (1981)

have analyzed voting on indirectly progressive tax schedules. In this type of

model (the “RRMR” model), if voters can be ordered by their income level,

the voting outcome corresponds to the preferred tax rate of the median in-

come earner. For instance, if labor income is monontonically increasing in

the wage rate, the equilibrium corresponds to the optimum of the median

wage earner. In all of these models, taxes are paid for sure. On the other

hand, Allingham and Sandmo (1972), Yitzhaki (1973), and others have an-

alyzed the individual tax evasion decision. In their models, however, taxes

are treated as exogenous.1

A few papers have studied the interrelation of tax evasion and public

spending. The interplay between public goods supply and tax evasion is

studied by Cowell and Gordon (1988) and Falkinger (1991). Cowell and Gor-

don (1988) look at the effect of public goods on tax evasion, while Falkinger

(1991) analyzes how evasion affects the optimal supply of public goods. Slem-

rod (1994) analyzes the impact of avoidance on tax progression in an optimal

taxation framework. He finds that increased possibility of avoidance for the

rich makes the income tax less effective in redistribution and thus reduces

the optimal linear tax rate. Roine (1999)analyzes voting on redistribution

with tax avoidance, which is legal. Hence, enforcement plays no role in his

model. Two experimental studies on tax evasion and voting are presented by

Alm, Sanchez, and de Juan (1995) and Feld and Tyran (2002). Their focus,

1See Cowell (1990), Andreoni, Erard, and Feinstein (1998), and Slemrod and Yitzhaki
(2000) for surveys of the tax evasion literature.
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however, is on the influence of voting on social norms of tax compliance.

Tax evasion has an impact on the voting game which is not trivial. The

RRMR model assumes that pre-tax income is monotonic in the wage rate.

This implies that voters can be ordered such that richer individuals prefer

lower tax rates than poorer voters. The equilibrium corresponds to the pre-

ferred tax rate of the median wage earner. In the present model, the ordering

of preferences depends on taxed income which depends on the evasion deci-

sion. Richer voters may have lower taxed income than poorer ones if they

evade at lower tax rates. Hence, the ordering of preferences may be reversed.

This implies that an equilibrium may not exist. However, when it does, it

may not be of the simple “rich prefer lower taxes than poor” type. In par-

ticular, it may be that the rich and poor prefer higher taxes, at the margin,

while the middle class voters prefer lower taxes.

In models of public provision of private goods, there are also interesting

properties of voting equilibria. In particular, Epple and Romano (1996b)

Epple and Romano (1996a) show that equilibria may have the property that

the rich and poor vote against the middle class, whereas Fernandez and

Rogerson (1995) argue that voting may lead to public provision of education

which benefits the rich and middle class at the expense of the poor.

The paper proceeds as follows. The next section outlines a simple model

where voters are risk neutral. Section 3 describes the voting game. In section

4 we describe the possible outcomes of the game. Section 5 discusses the case

of risk aversion. With the use of an example, it is shown that there may be

equilibria where the tax redistributes from poor to rich. The last section

contains short conclusions. Some of the detail of the analysis is relegated to

the Appendix.

2 The Model

We use a very simple model in order to illustrate the basic idea. The economy

consists of three risk neutral individuals, who differ with respect to their pre-

tax income level, given by y1 > y2 > y3. The assumption of risk neutrality is

not completely innocuous, an issue to which we return in Section 5.

There is a linear income tax with tax rate t ∈ [0, 1]. However, a taxpayer

may wish to hide her income. In the case of evasion, there is a fixed proba-

bility p ∈ [0, 1] that an individual will be audited and her true income will

be known. Let e be the amount evaded. In case of an audit, the individual
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pays tax on the true income, ty, plus a penalty of the form ste + F , where s

is the penalty rate and F a fixed fine.

The fixed cost should literally be interpreted as a fixed fine component.

With a slight reinterpretation, however, one might also think of ore generally,

the monetary equivalent of the costs of going to court, being put in jail, fixed

“moral costs” of evasion, differing cheating opportunities due to employment

situation, etc. Note that if speaking of non-monetary costs, F should be

interpreted as the monetary equivalent of the opportunity cost. In this case,

however, the model would have to be slightly changed in that the government

budget constraint should include the “real” fiscal transfer from the taxpayer,

which may be nil as in the case of moral costs.

Tax proceeds are used to finance a per capita grant of g. Individuals are

assumed to vote on the tax rate and transfer before evasion decisions are

made.

An individual’s expected net of tax income is therefore

yn
i = (1− t)yi + g

if she does not evade, and

ye
i = (1− t)yi − p((1 + s)tei + F ) + (1− p)tei + g

if she evades, where ei is the amount of income evaded. Expected income is

denoted

EYi = max{yn
i , ye

i }.
The assumption of risk neutrality implies that individuals evade either all

or none of their income. In particular, an individual is indifferent between

evading or not when

yn
i = ye

i ⇔ t =
pF

(1− (1 + s)p)yi

≡ ti. (1)

Individuals will not evade any income when t ≤ ti and their entire income

when t > ti. As long as p, F > 0, there is a tax rate where all taxpayers

honestly report their income. Equation (1) implies ∂ti/∂yi < 0 so that

t1 < t2 < t3.

The expected tax payment of an individual is

Ti = min{tyi, p((1 + s)tyi + F )}.
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The assumptions made so far imply that individuals are only able to pay

the fines imposed on them on average, but the actual fines may exceed the

individual income. This is of course due to the assumption of risk neutrality.

Literally, people would evade even if they were hung when caught cheating,

if only the evasion gamble is fair. One might assume a small degree of risk

aversion to make sure individuals would not evade when their entire income

is taxed away in case of detection. This would imply that in equilibrium each

individual will be able to pay her actual tax burden inclusive of the penalty.

Another way to deal with this problem would be to impose an additional

constraint on the level of fines (or impose individuals to evade only that

fraction of income which leaves them enough to pay the fine). An alternative

would be either to assume some tax exempt income high enough to pay the

fine.

Voting takes place before evasion so expenditures must equal expected

revenue. The government budget constraint is then

g =
1

3

∑
i

Ti.

Since all three individuals always evade either all or none of their income,

the budget locus is piecewise linear, with kinks at the tax rates ti where one

individual starts evading. Since individual i is indifferent between evading

or not at ti, Ti is the same whether he evades or not, but the slope dTi/dt is

flatter when the individual evades, which implies a kink but no discontinuous

jump at ti.

3 Voting

Individuals vote for the tax rate which maximises their net income. We

assume that voting is pairwise by simple majority.

Since expected net income is linear in t, attention can be restricted to a

choice between five tax rates: 0, t1, t2, t3 and 1. The following result estab-

lishes some properties of individual utility as a function of the tax rate.

Proposition 1 (i) Voter 1’s utility is linearly decreasing on [0, t1] with marginal

utility ȳ−y1, linear on [t1, t2] with marginal utility −2
3
p(1+s)y1 + 1

3
(y2 +y3),

linear on [t2, t3] with marginal utility −2
3
p(1+s)y1+

1
3
(p(1+s)y2+y3), linearly

decreasing on [t3, 1] with marginal utility p(1 + s)(ȳ − y1).
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(ii) Voter 2’s utility is linear on [0, t1] with marginal utility ȳ− y2, linear

on [t1, t2] with marginal utility −2
3
y2 + 1

3
(p(1 + s)y1 + y3), linear on [t2, t3]

with marginal utility −2
3
p(1 + s)y2 + 1

3
(p(1 + s)y1 + y3), linear on [t3, 1] with

marginal utility p(1 + s)(ȳ − y2).

(iii) Voter 3’s utility is linearly increasing on [0, t1] with marginal utility

ȳ−y3, linear on [t1, t2] with marginal utility −2
3
y3 + 1

3
(p(1+ s)y1 +y2), linear

on [t2, t3] with marginal utility −2
3
y3 + 1

3
p(1 + s)(y1 + y2), linearly increasing

on [t3, 1] with marginal utility p(1 + s)(ȳ − y3) > 0.

Proof. Individual utility can be written

−2

3
Ti +

1

3

∑

j 6=i

Tj. (2)

Using the definition of Ti and examining Ti as function of the tis gives the

result. ¥

Consider voter 2 to illustrate the redistributive nature of the tax system.

For 0 ≤ t ≤ t1, utility is increasing if and only if y2 < ȳ. This is as in

the standard model without evasion. For t1 ≤ t ≤ t2, only voter 1 evades.

Here, voter 2 does not necessarily benefit from higher taxes since these are

paid by the rich only if expected fines are high enough. In fact, if y2 >
1
2
(p(1 + s)y1 + y3), the tax effectively redistributes from the middle class to

the rich and poor. At t2, voter 2 starts evading so marginal utility is higher

than for t1 ≤ t ≤ t2, and it is positive if y2 < 1
2

(
y1 + y3

p(1+s)

)
. This condition

is likely to be satisfied if y2 is small relative to y3, and also if enforcement is

sufficiently lax that redistribution is effectively from the poor to the middle

class and rich. Finally, for t ≥ t3, all voters evade and voter 2 benefits from

higher taxes if and only if y2 < ȳ.

Note that utility may not be single peaked and, hence, a voting equilib-

rium may fail to exist (see below). Figure 1 shows possible preferences for

individual 2, where voter 2 prefers lower taxes for t1 < t < t2 and higher

taxes for t > t2.

4 Outcomes

Since preferences are linear in tax rates, there are five alternative possible

outcomes, namely, t = 0, t = t1, t = t2, t = t3, and t = 1. Hence, each
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Figure 1: Voter 2’s preferences over tax policy

individual has potentially 120 different preference profiles. This makes for

1203 = 1, 728, 000 possible outcomes. However, some of these individual

preferences never occur: Individual 1 never prefers t1 to 0, and conversely,

individual 3 never prefers 0 to t1. We will further restrict the possibilities

by assuming that y2 < ȳ, so that in line with many real world distributions,

median income is below average. Further, suppose that individual 3’s in-

come is such that she never evades at any tax rate less than one for given

enforcement parameters.2 This is also in line with the observation that some

individuals never evade.3 Appendix A lists all possible individual preference

profiles. From these, it is also possible to deduce certain relationships among

these individual preferences (see Appendix B).

We now turn to a description of possible outcomes. First, it may be that

no equilibrium exists. Second, an equilibrium may exist with “conventional”

properties, namely, redistribution from rich to poor. Third, there may be

equilibria which do not have conventional properties. These three possibilities

are described with the help of examples in the next three subsections. The

Appendix lists all possible outcomes.

2This implies y3 ≤ pF/(1− (1+ s)p). For the computations, we assume this holds with
equality.

3This is sometimes offered as a critique of the standard model of tax evasion, since one
observes that individuals do not evade even when the odds are very good (for instance,
typical numbers for the audit rate of 0.015 and penalty rate of 0.2 imply that at observed
tax rates everyone should evade if there were no fixed fine). In terms of our model, we
may interpret F as a fixed moral cost. Thus, for some individuals the moral costs may be
so high that they do not evade even when the probability of getting caught is low.

7



4.1 No Equilibrium

Since individual preferences are not single peaked, the possibility of “voting

cycles” arises. For instance, consider the parameters given by s = 0.2, F =

2, y1 = 3.1, y2 = 2, y3 = 1. This corresponds to Case 1 in Appendix B. Let

x Âi y denote “individual i strictly prefers x to y”, and let x Â y denote “x

is preferred to y by the majority of voters”. The individual preferences are:

Individual 1 : 0 Â1 t2 Â1 t1 Â1 1 (3)

Individual 2 : 1 Â2 t1 Â2 0 Â2 t2 (4)

Individual 3 : t2 Â2 1 Â2 t1 Â2 0. (5)

A voting cycle occurs:

t2 Â 1 Â t1 Â 0 Â t2.

4.2 “Conventional” Equilibria

There are also cases where an equilibrium exists which is “conventional” since

it has the properties of the RRMR model. For instance, let s = 0.1, F =

0.25, y1 = 4, y2 = 2, y3 = 1. This corresponds to Case 14 listed in Appendix

B. Individual preferences are as follows:

Individual 1 : 0 Â1 t1 Â1 t2 Â1 1 (6)

Individual 2 : 1 Â2 t2 Â2 t1 Â2 0 (7)

Individual 3 : 1 Â3 t2 Â3 t1 Â3 0. (8)

Obviously, individuals 2 and 3 have the same preferences and their pre-

ferred tax rate of 1 is the Condorcet winner. This conforms to the equilibrium

without evasion. However, here, all three individuals evade.4 But redistri-

bution is still from rich to poor, since the expected fines are proportional to

income and these are redistributed lump sum.

If y1 is very large, then any gains individual 1 may have by evading are

swamped by the redistributive effect. Likewise, if voters 1 and 2 are poor

enough, they always prefer more redistribution to less.

4Individual 3 has been assumed to be indifferent between evading or not.
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4.3 “Unconventional” Equilibria

Some equilibria have interesting properties. Consider the parameters: s =

0.3, F = 3, y1 = 3.1, y2 = 2.4, y3 = 2. This corresponds to Case 11 listed in

Appendix B. Preferences over the tax rates are as follows:

Individual 1 : 0 Â1 1 Â1 t2 Â1 t1 (9)

Individual 2 : t1 Â2 1 Â2 t2 Â2 0 (10)

Individual 3 : t1 Â3 t2 Â3 1 Â3 0. (11)

Since both individual 1 and 2 have t1 = 0.65 as their preferred tax rate,

this is the Condorcet winner.5 This equilibrium is “conventional” in the sense

that the distributional conflict is between the rich on the one side and the

poor and middle class on the other. However, the rich are not extremely rich,

so they would benefit from taxation in the range where they start to evade.

The poor and middle class would lose. Hence, in this equilibrium, no one

evades, and the possibility of evasion limits redistribution.

Now, suppose that s = 0.4, F = 3, y1 = 3.1, y2 = 1.4, y3 = 1. This

corresponds to Case 7 listed in Appendix B. We then have:

Individual 1 : 0 Â1 t2 Â1 t1 Â1 1 (12)

Individual 2 : 1 Â2 t1 Â2 t2 Â2 0 (13)

Individual 3 : t2 Â3 1 Â3 t1 Â3 0. (14)

It can be checked that t2 = 0.74 is now a Condorcet winner, i.e., beats

any other alternative in a pairwise contest.

Note that over the region t1 ≤ t < t2, both 1 and 3’s utility is increasing,

while 2’s utility is decreasing. The explanation is that p and s are low enough

that the expected tax payment for 1 is lower than the per capita grant, hence,

in this region, he benefits from redistribution. So does 3 whose income is

low enough for him to benefit from the combined certain tax payment of 2

and uncertain tax payment of 1. Voter 2, however, has income which is high

enough that he redistributes both towards 3 who has low income and towards

1 who does not pay taxes.

5Note that the fixed fine exceeds the income of taxpayers 2 and 3, but in equilibrium
only individual 1 evades.
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Locally, the tax system redistributes from the middle class (who pay

taxes) to the poor (who also pay taxes but have lower incomes) and to the

rich (who have high income but do not pay taxes). Stigler (1970) formulated

“Director’s law” of income redistribution: the hypothesis that redistribution

would go from the poor and rich to the middle class.6 The result we pre-

sented here is also of the “ends against the middle” type (Epple and Romano,

1996b), but Director’s law is stood on its head, because redistribution goes

from, not to the middle class.

5 Risk Averse Individuals

I now briefly discuss how relaxing the simplifying assumption of risk neu-

trality affects the basic results. Let individuals have utility functions u(c,

u′ > 0 > u′′, which implies risk aversion. Expected utility is of the form

Eu = pu((1− t)y− (1−a+at)se−δF +g)+(1−p)u((1− t)y+ te+g), (15)

where a ∈ [0, 1]. This encompasses the case originally analyzed by Allingham

and Sandmo (1972), where the fine is proportional to income evaded (a = 0),

and the case considered by Yitzhaki (1973), where fines are proportional to

evaded tax (a = 1). δ is a dummy variable equal to one if the taxpayer evades

and zero otherwise. Let b = 1 − a + at. Define u0 := u((1 − t)y + g) and

∆ := Eu− u0.

The first order condition for an interior solution to (15) is

φ := −pbsu′d + (1− p)tu′n = 0. (16)

The second order condition is

p(bs)2u′′d + (1− p)t2u′′n < 0.

Provided ∆ > 0, e = 0 if φ < 0 and e = y if φ > 0.

With F > 0, risk aversion implies that ∆ < 0 if t = 0. Hence, there is

a tax rate ti where individual yi is just indifferent between evading or not

evading. Formally, ti = min t̂i, where t̂i solves ∆ = 0.

6This property appears in models of public provision of private goods, where redistri-
bution may go from the poor and rich to the middle class (Epple and Romano, 1996b).
However, Fernandez and Rogerson (1995) present an example of education subsidies where
redistribution is from the poor to the middle class and rich.
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From the discussion in the previous sections, we know that with risk

neutrality, ti is decreasing in income. For the general case, this will hold in

certain circumstances, e.g., if the degree of risk aversion is sufficiently low

and individuals evade a large fraction of their income. This possibility will

be used below to examine voting equilibria.

In particular, in the absence of single peakedness it is convenient to check

the single crossing property (Gans and Smart, 1996). Define an individual’s

indifference curve in g, t space as those combinations of tax rate and trans-

fer which give the individual the same utility. From (15), the slope of an

indifference curve is

σ =
dg

dt

∣∣∣∣
Ū

=
y if t < ti
y − (1−a)s

s(1−a(1−t))+t
e if t ≥ ti

, (17)

use having been made of (16). Note that (17) holds for an interior optimum.

In general, the slope of the indifference curve then depends on whether

or not the individual evades. The case analysed so far corresponds to a = 1,

which was the form assumed by Yitzhaki (1973). Examining (17), we find

that in this case the slope of the indifference curve is y if evasion is at

an interior optimum. Since the single crossing property holds in this case,

it is immediately clear that the median income earner is decisive (Gans and

Smart, 1996). Further, richer individuals prefer lower taxes, so the properties

are essentially those of the RRMR model. See Figure 2.

However, the possibility of corner solutions makes the analysis more dif-

ficult. In particular, with a = 1, we get σ = y for e < y. For individuals

who would like to evade more than their entire income, the slope is less than

y. Single crossing may not hold in this case, since the indifference curve of

a rich individual who evades his entire income may be flatter than that of a

poor individual who evades less than the entire income.7

a = 0 corresponds to the original version used by Allingham and Sandmo

(1972). The slope of the indifference curve with evasion then simplifies to

y− s
s+t

e. An equilibrium could be shown to exist if the slope were increasing

in y in this range and if the tax rate at which an individual starts evading

were the same for everyone. The slope, however, may be decreasing in income

if richer individuals evade a larger fraction of their income, which is the case

7This may seem like a theoretical possibility. But occasionally taxpayers do not declare
any income at all. A notable case is that of former German tennis star Steffi Graf who
reportedly did not even file a tax return for four years.
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Figure 2: Single crossing

if relative risk aversion is decreasing in income. Second, for F > 0, if ti is

decreasing in y, single crossing cannot be ensured (see Figure 3). Here single

crossing is assumed to hold in the regions where either both taxpayers pay

taxes or both evade. y1 > y2 implies that y1’s indifference curve is steeper.

However, t1 < t2 implies that indifference curves may cross twice as shown.

This implies that an equilibrium need not exist. Further, it is also possible

that a richer individual prefers a higher tax rate than a poorer one, at the

margin.

We summarize the results as follows.

Proposition 2 Let F > 0 and let individuals be risk averse. If a < 1 or

a = 1 and e = y, single crossing does not hold. If a = 1 and e < y, the median

income earner is decisive and richer individuals prefer less redistribution.

Again, there are many possible outcomes. Instead of a complete charac-

terization, we provide an example with an interesting equilibrium, one which

12
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Figure 3: No single crossing

also differs from those described above.

Example Let utility be given by u = ln(c− c0), where c0 > 0. This func-

tion displays decreasing absolute and relative risk aversion. Let a = 0.5, and

y1 = 10, y2 = 12, y3 = 15. The other parameters are: s = 0.2, p = 0.015, F =

2, c0 = 2. The three voters’ preferences are shown in Figure 4. Individual 1’s

utility is first falling, then concave with a maximum at t̂1 = 0.6. Individual

2’s utility is first concave with a local maximum at t̃2 = 0.004, then concave

with a global maximum at t̂2 = 0.55, and lastly increasing. Individual 3’s

utility is concave with a local maximum at 0.0041, then increasing with a

global maximum at 1. The equilibrium tax rate is t̂2. While voters 1 and 2

evade their entire income, voter 3 evades only 72 percent.

Note that in this example, redistribution is from poor to rich rather than

from the middle class to the rich and poor: the richest individual pays taxes

13



(inclusive of expected fines) of 1.26 percent of her income, the middle income

voter 1.31 and the poorest voter 16.5 percent. For a similar example in the

case of education policy, see Fernandez and Rogerson (1995). There, the rich

and middle class vote for education subsidies, which are financed also by the

poor who do not benefit from them since their income is too low to purchase

education even with the subsidies.

6 Conclusion

In this paper, we have analysed how the possibility of tax evasion affects

voting on redistribution. The model has shown that the implications of

tax evasion are not trivial. Equilibria do not need to exist under standard

assumptions on preferences. When they do exist, they may have properties

which differ from conventional voting models. In particular, redistribution

may not go from rich to poor but instead from the middle class to the rich

and poor.

The model was simplistic in some of its assumptions, for instance, risk

neutrality, linear tax and penalty system. We briefly discussed how risk

aversion affects the analysis. Introducing more complex tax and enforcement

policies would make the analysis more complicated, but there would be a

range where the basic results continue to hold. Another interesting extension

might be to allow individuals to choose work in the black economy. Declared

income then depends on the decision of how much to work in the legal and

illegal sectors. Assuming that there are fixed costs of taking up work in the

black economy, one would find similar conclusions to those discussed here,

although the nature of the work-leisure tradeoff makes the problem more

complicated (see, e.g., Cowell, 1990 for a discussion.)

The model also has some other implications. For instance, empirical

estimates of tax evasion should treat tax rates as endogenous. Second, the

interaction of tax and audit rates with evasion is also more complicated when

voting is taken into account (Borck, 2002). Suppose the tax authority sets

audit rates and voters choose the tax rate. Then increased auditing may

cause voters to vote for higher tax rates, which in turn may lead to more

evasion.
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Appendix

A Individual Preferences

With four alternatives, each individual has 4! = 24 possible preference profiles (see
Table 2). This implies a total of 243 = 13824 possible combinations of the three
individuals preferences. Eliminating those which cannot occur, however, narrows
down the set of potential outcomes.

We first insert the different tax rates into the individuals’ utility functions,
and denote the resulting utility levels ui0, ..., ui3, where i stands for individual i

and 0, ..., 3 for tax rates from 0 to 1 in ascending order. All computations assume
that p = y3

F+(1+s)y3
so individual 3 never evades at any tax rate t < 1. The

corresponding utility levels are shown in Table 1.
From these utility levels, we can find critical income levels, which will be la-

belled yjk
i , such that voter i prefers alternative j to k if and only if y > yjk

i :

u10 > u11 ⇔ y1 > y01
1 :=

y2 + y3

2

u10 > u12 ⇔ y1 > y02
1 :=

F (y3 − y2) + (1 + s)y3(y2 + y3)
2(1 + s)y3

u10 > u13 ⇔ y1 > y03
1 :=

y2 + y3

2

u11 > u12 ⇔ y1 > y12
1 :=

(y2 + y3)(F + (1 + s)y3)
2(1 + s)y3

u11 > u13 ⇔ y1 > y13
1 :=

F + (1 + s)y3

1 + s

u12 > u13 ⇔ y1 > y23
1 :=

F + (1 + s)(y2 + y3)
2(1 + s)

.
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u22 > u21 ⇔ y2 > y01
2 :=

y1 + y3

2

u20 > u22 ⇔ y2 > y02
2 :=

y3(F + (1 + s)(y1 + y3))
F + 2(1 + s)y3

u20 > u23 ⇔ y2 > y03
2 :=

y1 + y3

2

u21 > u22 ⇔ y2 > y12
2 :=

y3(F + (1 + s)(y1 + y3))
2(F + (1 + s)y3)

u21 > u23 ⇔ F > (1 + s)(y1 − y3)

u22 > u23 ⇔ y2 > y23
2 :=

F + (1 + s)(y1 + y3)
2(1 + s)

.

u30 > u31 ⇔ y3 > y01
3 :=

y1 + y2

2

u30 > u32 ⇔ y3 > y02
3 :=

1
2
(p3(1 + s)(y1 − y2) + 2y2)

u30 > u33 ⇔ y3 > y03
3 :=

y1 + y2

2

u31 > u32 ⇔ y3 > y12
3 :=

1
2
(p3(1 + s)y1 + y2)

u31 > u33 ⇔ y3 > y13
3 :=

(1 + s)y1 − F

1 + s)

u32 > u33 ⇔ y3 > y23
3 :=

(1 + s)(y1 + y2)− 2F

2(1 + s)
.

Individual 1 We can rank the critical income levels y02
1 < y03

1 = 1
2(y2 + y3) <

y23
1 < y12

1 , and y13
1 < y12

1 . (1) Since y1 > ȳ, we know that 0 Â1 t1, which excludes
7 − 12, 15, 16, 18, 21, 22, 24. (2) y1 > y03

1 > y02
1 implies 0 Â1 1 and 0 Â1 t2. This

excludes 13 − 24. (3) y12
1 > y23

1 implies t1 Â1 t2 ⇒ t2 Â1 1. This excludes 2 and
5. This leaves 1, 3, 4, and 6 as possible preferences. 1 holds if y1 > y12

1 , 3 if
y23
1 < y1 < y12

1 and y1 > y13
1 , 4 if y23

1 < y1 < y12
1 and y1 < y13

1 , and 6 if y1 < y23
1

and y1 < y13
1 .

Individual 2 For individual 2, we have y12
2 < y02

2 < y03
2 = 1

2(y1 +y3) < y23
2 . (1)

y2 < ȳ implies y2 < y03
2 , which implies 1 Â2 0, and 1 Â2 t2 as well as t1 Â2 0. This

excludes 1−10, 13−18, 19, 20, and 23. This leaves 11, 12, 21, 22, and 24. 11 obtains
if y2 > y02

2 and F > (1+ s)(y1− y3), 12 if y12
2 < y2 < y02

2 and F > (1+ s)(y1− y3),
24 obtains if y2 < y12

2 and F < (1 + s)(y1 − y3), 22 if y12
2 < y2 < y02

2 and
F < (1 + s)(y1 − y3), and 21 if y02

2 < y2 and F < (1 + s)(y1 − y3).
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Individual 3 For individual 3, we obtain y23
3 < y12

3 < y02
3 > y2, y23

3 < y13
3 <

y03
3 = 1

2(y1 + y2) < y302, and y13
3 < y12

3 . (1) From y3 < y2 < ȳ, we have t1 Â3 0,
t2 Â3 0, and 1 Â3 0. This eliminates 1 − 9, 11, 13 − 15, 17, 19 − 21 and 23. (2)
y23
3 < y12

3 implies 1 Â3 t2 ⇒ t2 Â3 t1, and y23
3 < y13

3 implies 1 Â3 t2 ⇒ 1 Â3 t1.
This eliminates 12 and 22. This leaves profiles 10, 16, 18, and 24. 10 obtains if
y3 > y12

3 , 16 if y23
3 < y3 < y12

3 , y3 > y13
3 , 18 if y23

3 < y3 < y13
3 , and finally, 24 if

y3 < y23
3 .

B Aggregation of Preferences

From the individual preferences, we can infer some relationships among the indi-
viduals’ preferences.

(1) y1 ≤ y23
1 implies y2 < y12

2 iff y2 < (3y3(F +(1+s)y3)/(4F +3(1+s)y3) < y3,
so 1 Â1 t2 ⇒ t1 Â2 t2.

(2) y1 > y12
1 implies y3 > y12

3 iff y3 > y2, so t1 Â1 t2 ⇒ t2 Â3 t1.
(3) Since y1 < ȳ > y2 > y3, we have t1 Â1 1 iff y1 > y3 + F/(1 + s), which

implies 1 Â2 t1 and 1 Â3 t1.
(4) y1 < y12

1 implies y12
2 = y3(F+(1+s)(y1+y3))

2(F+(1+s)y3) < 1
4(y2 + 3y3), where the last

inequality follows from substituting y1 = y12
1 into y12

2 , since this expression is
increasing in y1. Solving y2 < 1

4(y2 + 3y3) gives y2 < y3, a contradiction. Hence,
y1 < y12

1 implies y2 > y12
2 .

(5) y1 < y13
1 implies y12

2 < y3. Therefore, y1 < y13
1 implies y2 > y12

2 .
(6) y1 < y13

1 implies y3 > y13
3 and u21 < u23.

All remaining possibilities and the resulting outcomes are shown in Table 3.
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Figure 4: Voter preferences in Example 5
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Table 1: Voter utility at different tax rates

t = 0(0) t = t1(1) t = t2(2) t = 1(3)

u1i y1
3y2

1−2y1y3+y3(y2+y3)

3y1

F (3y1y2+y3(y3−y2))+(1+s)y3(y1(3y2−2y3)+y3(y2+y3))
3y2(F+(1+s)y3)

3Fy1+(1+s)y3(y1+y2+y3)
3(F+(1+s)y3)

u2i y2
3y1y2+y1y3−2y3y2+y2

3
3y1

F (3y2
2+y3(y3−y2))+(1+s)y3(3y2

2−2y2y3+y3(y1+y3))

3y2(F+(1+s)y3)
3Fy2+(1+s)y3(y1+y2+y3)

3(F+(1+s)y3)

u3i y3
4y2

1−y2−2y3
3y1

Fy3(5y2−2y3)+(1+s)y3(y1+4y2−2y3)y3
3y2(F+(1+s)y3)

3Fy3+(1+s)y3(y1+y2+y3)
3(F+(1+s)y3)

Table 2: Possible Individual Preference Profiles
1. 0 Â t1 Â t2 Â 1

2. 0 Â t1 Â 1 Â t2
3. 0 Â t2 Â t1 Â 1

4. 0 Â t2 Â 1 Â t1
5. 0 Â 1 Â t1 Â t2
6. 0 Â 1 Â t2 Â t1
7. t1 Â 0 Â t2 Â 1

8. t1 Â 0 Â 1 Â t2
9. t1 Â t2 Â 0 Â 1

10. t1 Â t2 Â 1 Â 0

11. t1 Â 1 Â 0 Â t2
12. t1 Â 1 Â t2 Â 0

13. t2 Â 0 Â t1 Â 1

14. t2 Â 0 Â 1 Â t1
15. t2 Â t1 Â 0 Â 1

16. t2 Â t1 Â 1 Â 0

17. t2 Â 1 Â 0 Â t1
18. t2 Â 1 Â t1 Â 0

19. 1 Â 0 Â t1 Â t2
20. 1 Â 0 Â t2 Â t1
21. 1 Â t1 Â 0 Â t2
22. 1 Â t1 Â t2 Â 0

23. 1 Â t2 Â 0 Â t1
24. 1 Â t2 Â t1 Â 0
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Table 3: Voting outcomes

Parameter restrictions Individual 1 Individual 2 Individual 3 Equilibrium

A. y2 > y02
2 , F < (1 + s)(y1 − y3)

Case 1. y23
1 < y1 < y12

1 , y23
3 < y3 < y12

3 0 Â t2 Â t1 Â 1 1 Â t1 Â 0 Â t2 t2 Â 1 Â t1 Â 0 Cycle

Case 2. y23
1 < y1 < y12

1 , y3 < y23
3 0 Â t2 Â t1 Â 1 1 Â t1 Â 0 Â t2 1 Â t2 Â t1 Â 0 1

B. y2 > y02
2 , F > (1 + s)(y1 − y3)

Case 3. y23
1 < y1 < y12

1 , y3 > y12
3 0 Â t2 Â 1 Â t1 t1 Â 1 Â 0 Â t2 t1 Â t2 Â 1 Â 0 t1

Case 4. y1 < y23
1 , y3 > y12

3 0 Â 1 Â t2 Â t1 t1 Â 1 Â 0 Â t2 t1 Â t2 Â 1 Â 0 t1
C. y12

2 < y2 < y02
2 , F < (1 + s)(y1 − y3)

Case 5. y1 > y12
1 , y23

3 < y3 < y12
3 0 Â t1 Â t2 Â 1 1 Â t1 Â t2 Â 0 t2 Â 1 Â t1 Â 0 Cycle

Case 6. y1 > y12
1 , y3 < y23

3 0 Â t1 Â t2 Â 1 1 Â t1 Â t2 Â 0 1 Â t2 Â t1 Â 0 1

Case 7. y23
1 < y1 < y12

1 , y23
3 < y3 < y12

3 0 Â t2 Â t1 Â 1 1 Â t1 Â t2 Â 0 t2 Â 1 Â t1 Â 0 t2
Case 8. y23

1 < y1 < y12
1 , y3 < y23

3 0 Â t2 Â t1 Â 1 1 Â t1 Â t2 Â 0 1 Â t2 Â t1 Â 0 1

D. y12
2 < y2 < y02

2 , F > (1 + s)(y1 − y3)

Case 9. y23
1 < y1 < y12

1 , y3 > y12
3 0 Â t2 Â 1 Â t1 t1 Â 1 Â t2 Â 0 t1 Â t2 Â 1 Â 0 t1

Case 10. y23
1 < y1 < y12

1 , y23
3 < y3 < y12

3 0 Â t2 Â 1 Â t1 t1 Â 1 Â t2 Â 0 t2 Â t1 Â 1 Â 0 t2
Case 11. y1 < y23

1 , y3 > y12
3 0 Â 1 Â t2 Â t1 t1 Â 1 Â t2 Â 0 t1 Â t2 Â 1 Â 0 t1

Case 12. y1 < y23
1 , y23

3 < y3 < y12
3 0 Â 1 Â t2 Â t1 t1 Â 1 Â t2 Â 0 t2 Â t1 Â 1 Â 0 Cycle

E. y2 < y12
2 , F < (1 + s)(y1 − y3)

Case 13. y1 > y12
1 , y23

3 < y3 < y12
3 0 Â t1 Â t2 Â 1 1 Â t2 Â t1 Â 0 t2 Â t1 Â 1 Â 0 t2

Case 14. y1 > y12
1 , y3 < y23

3 0 Â t1 Â t2 Â 1 1 Â t2 Â t1 Â 0 1 Â t2 Â t1 Â 0 1
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