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Abstract

This paper refines the “equilibrium under uncertainty” introduced
in Eichberger and Kelsey (2000) and modified in Albers (2000). We
assume that a player’s uncertainty prevents him from choosing certain
beliefs. In particular, frightened players cannot choose (most) additive
beliefs. Therefore, for each player we use a feasible set that specifies
all beliefs that are consistent with his uncertainty. It is possible to
impose such a restriction in a very general way and still guarantee the
existence of an equilibrium in feasible beliefs.

JEL-classification: C72, D81
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1 Introduction

In this paper we talk about noncooperative games in normal form. This part
of game theory analyzes situations, in which the payoff of a player depends on
his own actions as well as on the actions of his opponents—which are unknown
to him. Thus a player has to make a decision, without being completely
informed about the consequences.

So while choosing his strategy a player is going to make assumptions (be-
liefs) about his opponents’ behavior. Since a player will never exactly know
his opponents’ behavior in advance, this situation is similar to a random
experiment—except the probabilities are unknown.
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In traditional game theory there are attempts to model such beliefs in various
ways. All of them have one aspect in common: at one point a player’s
assumptions about his opponents’ behavior are modeled via a probability
distribution. The player then optimizes just as if he knew his opponents to
act according to this distribution.

However there are reasons to doubt, whether random type situations where
the true probabilities are unknown can be modeled by classical probability
distributions at all. Ellsberg (1961) presented a simple experiment in which
subjects had to evaluate lotteries with unknown probability distributions. He
pointed out that preference structures on those lotteries cannot be supported
by classical probability distributions in a coherent way. He concluded that
risk has to be distinguished from uncertainty. Here risk refers to a classical
random experiment with known probabilities, while uncertainty denotes a
situation, in which there is no known probability distribution.

In the late eighties Gilboa (1987) and Schmeidler (1989) described a concept
that used capacities (nonadditive probabilities) to model this uncertainty.
Later Dow and Werlang (1994) applied this model in noncooperative 2-person
games and formulated an equilibrium they called “Nash Equilibrium under
Uncertainty”. Eichberger and Kelsey (2000) generalized the model to the n-
player case and showed some nice properties of the equilibrium in beliefs. In
Albers (2000) we modified the model presented by Dow and Werlang (1994)
and Eichberger and Kelsey (2000).

In this paper we mainly follow the model of Eichberger and Kelsey. However,
we will always talk about an “Equilibrium in Beliefs” while we use the term
“Nash Equilibrium” for the classical equilibrium concept only.

It is the central idea of these equilibrium models that a player might not
be certain enough about his opponents’ behavior to model his beliefs via
(additive) probabilities. In this context Eichberger and Kelsey introduced
the “degree of confidence”, and showed that even if for every player only
beliefs of a certain (low) degree of confidence are feasible there exists an
equilibrium in feasible beliefs. (See Definition 2.2 and Proposition 3.1 in
Eichberger and Kelsey (2000).) Unfortunately the model presented in Albers
(2000) does not fulfill this important property.

In this paper we present a similar theorem: if for every player only beliefs
out of a set with certain properties are feasible, there exists an equilibrium
in feasible beliefs. (See Theorem 4.1.) It was our intention to keep the theo-
retical constraints for feasibility low in order to make the theorem applicable
to a broad class of sets.
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In Section 5.1 we give an example how sets of feasible beliefs could look
like. There we talk about a certain class of capacities: distorted probabilities.
They have been used by Tversky and Kahneman (1992) to explain subjects’
behavior in the evaluation of lotteries. We briefly discuss the relationship be-
tween distorted probabilities and feasible sets. In particular we show that the
set of distorted probabilities related to a subject in Tversky and Kahneman
(1992) form a feasible set of capacities in the sense of our theorem.

Finally in Section 6 we give an example of a game and feasible sets where
the only equilibrium in feasible beliefs is not related to the unique Nash
equilibrium. We thereby establish a counterexample to the objection that
equilibria in feasible beliefs do not really differ from Nash equilibria.

2 Capacities

In this paper we will always use finite probability spaces Ω. Thus probability
measures will be defined on the powerset 2Ω.

First we will define a nonadditive probability measure in a standard way.

Definition 2.1 A capacity (nonadditive probability measure) c on a finite
set Ω is a function

c : 2Ω −→ [0, 1]

for which following axioms hold true:

C1. c(Ω) = 1
C2. c(∅) = 0
C3. A ⊇ B ⇒ c(A) ≥ c(B) (A, B ⊆ Ω) .

The set of capacities on Ω is denoted as C (Ω).

Since we deal with finite probability spaces we may interpret a capacity as
a 2|Ω|-dimensional vector with elements in the unit interval [0, 1]. With this
interpretation the axioms of Definition 2.1 can be interpreted as restrictions
to some closed half spaces. So C (Ω) is a convex, compact polytope in R2|Ω| .
If later we talk about topological properties of capacities (like convergence

or compactness) we always think about capacities as elements of R2|Ω| .
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Verbally we interpret a capacity in the following way:

A player is willing to rely on the event A ⊆ Ω to occur with
probability c(A).

This interpretation of capacities cannot be found in Definition 2.1! Just
using the axioms it is impossible to interpret statements like c(A) = 0.04.
E. g., if we take a given probability measure p, the function c(A) = p(A)2 is a
capacity. In this case the meaning of c(A) = 0.04 is that the true probability
of event A is

√
0.04 = 2%.

From a mathematicians point of view, the interpretation of a capacity is
implemented by the way we compute the expected value. We use the Choquet
integral:

Ec(Z) =

∫
R+

c(Z ≥ x) dx−
∫

R−

c(Ω)− c(Z ≥ x) dx .

For probability measures, the Choquet integral coincides with the classical
expected value. This reflects the close relation between probabilities and
capacities used here.

In this paper we will restrict the scope to nonnegative random variables. This
way we may drop the second summand which greatly simplifies writing. Since
we deal with finite probability spaces only, this restriction has no influence
in the validity of propositions made in this paper.

Definition 2.2 The expected value of a nonnegative random variable Z :
Ω → R+ according to a capacity c is defined by the Choquet integral:

Ec(Z) :=

∫ ∞

0

c(Z ≥ x) dx .

Since we deal with finite probability spaces only, it is possible to write down
the Choquet integral as a sum.

Lemma 2.3 Let c be a capacity on a finite probability space Ω and Z be a
nonnegative random variable. Further denote the values of Z by z1, . . . , zn in
increasing order, i. e.:

Z(Ω) = {z1, . . . , zn}
zi < zi+1 (1 ≤ i < n) .
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Then we can write the Choquet integral as∫
R+

c(Z ≥ x) dx = z1 +
n∑

i=2

(zi − zi−1) c(Z ≥ zi) .

Proof: ∫
R+

c(Z ≥ x) dx =

∫ z1

0

c(Ω) dx +
n∑

i=2

∫ zi

zi−1

c(Z ≥ x) dx

= z1 +
n∑

i=2

(zi − zi−1) c(Z ≥ zi)

From this lemma we can directly conclude:

Lemma 2.4 If (ck)k∈N is a series of capacities on a finite Ω, and ck → c̄,
then Eck

(Z) → Ec̄(Z) for any nonnegative random variable Z on Ω.

In addition to the expected value we will need another, more crude in-
terpretation of a capacity—supplied by the support (carrier). Verbally, the
support of a capacity contains all results ω ∈ Ω that are considered possible
according to c.

Other authors use various definitions of the support and thus use a model
with two concurring interpretations of a capacity—the Choquet expected
value as well as the support. In our opinion, if two random variables Z, Y
coincide on the support of a capacity c, then their expected values ought to be
the same. For the support used in Dow and Werlang (1994) and Eichberger
and Kelsey (2000) this is not the case.

In contrast, we will show that the support (as defined here) and the Choquet
expected value have a close connection.

Definition 2.5 The support of a capacity c is defined by:

supp c :=
{
ω ∈ Ω ∃A ⊆ Ω : c(A) 6= c(A ∪ {ω})

}
.

The connection of the support and the Choquet expected value is described
by following theorem:
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Theorem 2.6 Let c be a capacity on some finite Ω. Then ω is in the support
of c if and only if there exist random variables Y and Z that coincide on
Ω \ {ω} but Ec(Y ) 6= Ec(Z).

Proof: “=⇒”: Let ω̄ ∈ supp c. Then there is A ⊆ Ω such that c(A) <
c(A ∪ {ω̄}). Then let:

Z(ω) :=

{
1 if ω ∈ A

0 otherwise
, Y (ω) :=

{
1 if ω ∈ A ∪ {ω̄}
0 otherwise

.

Then Ec(Z) = c(A) and Ec(Y ) = c(A ∪ {ω̄}), so Ec(Z) 6= Ec(Y ).

“⇐=”: Let Z, Y coincide on supp c. Then

Ec(Z) =

∫
R+

c
(
{ω ∈ Ω | Z(ω) ≥ x}

)
dx

=

∫
R+

c
(
{ω ∈ Ω | Z(ω) ≥ x} ∩ supp c

)
dx

=

∫
R+

c
(
{ω ∈ Ω | Y (ω) ≥ x} ∩ supp c

)
dx

=

∫
R+

c
(
{ω ∈ Ω | Y (ω) ≥ x}

)
dx

= Ec(Y )

3 Equilibrium in Beliefs

By “game” we mean the standard definition of a game in normal form:

Definition 3.1 A game Γ is a tuple (N, S , a) where

N = {1, . . . , n} is the set of players
S = S 1 × · · · ×S n are the finite strategy sets of the players
a = (a1, . . . , an) ,
ai : S → R+ (i ∈ N) are the payoff functions of the players

Now we want to model players’ beliefs about their opponents’ behavior as
capacities. Of course later we want to use these capacities to compute ex-
pected payoffs. But here we stumble across a serious problem. When we take
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some player’s beliefs b and his own mixed strategy a we need to evaluate ex-
pressions like Eb⊗a · · · .

While this is no problem in classical probability theory, for capacities this
does not work. This is because Fubini’s Theorem:∫ ∫

· · · dµ dν =

∫ ∫
· · · dν dµ

does generally not hold for capacities.

This forces us to two important design decisions

First: beliefs are defined as capacities on the strategies of all other players,
i. e., player i’s belief bi is a capacity on

S −i := S 1 × · · · ×S i−1 ×S i+1 × · · · ×S n .

Second: we use the von Neumann-Morgenstern interpretation of an equilib-
rium. I. e., something like: a tuple of beliefs (b1, . . . , bn) is an equilibrium
when the following holds: if player i considers action s̄j of player j as possible,
then s̄j must be best reply to player j’s belief:

s̄j ∈ argmax
sj∈S j

Ebj

[
aj(sj, •)

]
.

To find out which actions player i considers possible, we use the support
(Definition 2.5).

Definition 3.2 Given a game Γ the belief bi of a player i is a capacity on
the strategy sets of all his opponents:

S −i = ×
k∈N\{i}

S k .

The space of all possible beliefs of player i is denoted as Bi.

The best replies of player i to his belief bi are given by:

br bi := argmax
si∈S i

Ebi

[
ai(si, •)

]
.

A tuple of beliefs (b̄1, . . . , b̄n) is called an equilibrium in beliefs if and only
if

supp b̄i ⊆ ×
k∈N\{i}

br b̄k (i ∈ N) .
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The definition of an equilibrium can be interpreted in the following way:
supp b̄i is a subset of S −i, i. e., it contains tuples of pure strategies—one
for each opponent. These are all tuples that player i considers possible.
Every pure strategy sk in every tuple s−i ∈ supp b̄i has to be a best reply for
opponent k.

4 Feasible Beliefs

Our motivation to model beliefs by capacities was to analyze situations, in
which players’ assumptions about their opponents cannot be reflected by
additive probabilities.

It is easy to see that every game has an equilibrium in beliefs: if m is a
(mixed) Nash equilibrium and every player assumes his opponents are playing
their equilibrium strategies, i. e. bi =

⊗
k 6=i m

i, then b is an equilibrium in
beliefs.

However, this result is not satisfying, since it does not take us any further
than the Nash equilibrium did.

Instead, we think about a player being strictly uncertain about what his
opponents are doing. This means, his uncertainty prevents him from choosing
certain beliefs—among them especially additive capacities. Therefore we
assume that for each player i there is an a-priory feasible set of beliefs F i ⊆
Bi that are consistent with his individual uncertainty. (Typically we will
have F i 6= Bi.)

The following theorem shows conditions that sets of feasible beliefs have to
fulfill while we still can guarantee the existence of an equilibrium.

Let 4A denote the set of all probability distributions on the set A. Since we
deal with finite worlds, 4A coincides with the |A|-dimensional unit simplex.

Theorem 4.1 Let Γ be a game and F i ⊆ Bi (i ∈ N) be sets of feasible
beliefs. If for every player i we have a subset F̄ i ⊆ F i and a continuous
function

f i : 4S−i −→ F̄ i

such that
supp f(m−i) ⊆ supp m−i ∀m−i ∈ 4S−i

. (1)

Then Γ has an equilibrium in beliefs b̄ where all b̄i are feasible.
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A function f i generates a membrane shaped subset F̄ i. Indeed, sets like
these have been used to model real peoples behavior—as we will see in the
next section. Still, for the sake of generality we only demand a feasible set
F i to contain F̄ i as a subset.

Furthermore the support-condition (1) ensures that a player i always has the
option to narrow his view to some subset S−i ( S −i. If the player thinks,
some opponent k would be a complete fool to play some strategy sk ∈ S k,
player i should have the option to exclude sk from his further considerations.

Proof (Theorem 4.1): Let M i = 4S i
denote the set of mixed strategies of

player i.

To simplify notation we identify strategies in S i with strategies in M i via
si 7→ δsi . In a similar way we identify tuples of pure strategies s−i ∈ S −i

with beliefs bs−i ∈ Bi via

bs−i(S) =

{
1 if S 3 s−i

0 otherwise
.

Furthermore we write mi
si instead of mi({si}). Finally let

m̄−i :=
⊗

k∈N\i

m̄k .

This way we find natural representations for a pure strategy tuple s−i ∈ S −i

in the space of mixed strategies M−i (all players j 6= i play sj) as well as in
the space of beliefs Bi (player i thinks that his opponents play s−i).

We perform the proof in two steps. First we define a new game Γ̃ and
show that it always has an equilibrium. Then we will show that from any
equilibrium in Γ̃ we can derive an equilibrium in beliefs b in Γ such that all
bi ∈ F̄ i.

Step 1 (The new game):

Let Γ = (N, S , a) be a game and f i as demanded in the theorem. Then
define the game Γ̃ = (N, M , ã) as follows:

• N is the set of players of Γ

• M = M 1 × · · · ×M n is the set of mixed strategies of Γ.

• The payoff is defined by:

ãi(mi, m−i) := Emi

(
Ef i◦m−iai(∗, •)

)
.
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i. e., Γ̃ is a game with continuous strategy sets and it is played in pure
strategies.

In the last formula we see two expected values. The inner one Ef i◦m−i is a
Choquet integral while the outer one Emi is a classical expected value. The
function f i is only applied to the strategies of the opponents—not to the
strategy of player i himself.

Obviously ãi : M i ×M−i → R+ is linear (and thus quasi-concave) on M i.
Furthermore the Choquet integral is continuous in the space of capacities.
(see Lemma 2.4.) Also f i is continuous by definition. Therefore ãi is contin-
uous on M−i.

Therefore we may apply the standard existence theorem. (See e. g. Propo-
sition 20.3 in Osborne and Rubinstein (1994) or Proposition 8.D.3. in Mas-
Colell, Whinston and Green (1995).)

Step 2 (coincidence):

We want to show: if m̄ is an equilibrium in Γ̃, then b̄ = (b̄1, . . . , b̄n) defined
by

b̄i := f i ◦ m̄−i (i ∈ N)

is an equilibrium in feasible beliefs in Γ.

As we mentioned above ãi is linear on M i. So argmaxmi∈M i ã(mi, m−i) is
the convex hull of all pure strategies that maximize ãi(•, m−i). Therefore

m̄i
si > 0 =⇒ si ∈ argmax

ri∈S i

ã(ri, m̄−i) (i ∈ N, si ∈ S i) .

By definition argmax · · · in Γ̃ coincides with the best replies to f i ◦ m̄−i in
Γ:

argmax
ri∈S i

ã(ri, m̄−i) = argmax
ri∈S i

Ef i◦m̄−i

(
ai(ri, •)

)
= br f i ◦ m̄−i (i ∈ N) .

Thus we have

m̄i
si > 0 =⇒ si ∈ br b̄i (i ∈ N, si ∈ S i) .

Suppose player i considers s−i possible, i. e., s−i ∈ supp f i ◦ m̄−i. Adding the
support-condition (1) we can conclude:

s−i ∈ supp m̄−i
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which means that for every player i we have:

s−i ∈ supp b̄i =⇒ s−i ∈ supp m̄−i

=⇒ mk
sk > 0 (k ∈ N \ {i})

=⇒ sk ∈ br b̄i (k ∈ N \ {i}) .

Thus b̄ is an equilibrium in Γ.

5 Distorted Probabilities

One example for such restricted sets are distorted probabilities. They have
been used by Tversky and Kahneman (1992) to explain subjects behavior in
the evaluation of lotteries. Originally they were used to model subjects risk
aversion rather than their uncertainty. So using them here means ripping
them out of their context. Still I think distorted probabilities are a nice
example of how feasible beliefs could look like.

For each subject Tversky and Kahneman determined an individual distortion
function w. Then, for different probability measures µ they used capacities
w ◦ µ to compute the subjects’ expected utility.

Definition 5.1 A distortion function w is a continuous, monotone func-
tion w : [0, 1] → [0, 1] with w(0) = 0, w(1) = 1.

Given an additive probability measure µ on a finite space Ω and a distortion
function w, the function

c = w ◦ µ .

is a capacity. It is called a distorted probability measure.

Given a game Γ and distortion functions w1, . . . , wn we use

F i
wi :=

{
wi ◦ µi µi ∈ 4S−i}

(i ∈ N)

as the sets of feasible beliefs. Obviously, since wi is continuous so is f i :
µi 7−→ wi ◦ µi. Furthermore from the monotony of wi we can conclude

s−i ∈ supp wi ◦ µi =⇒ µi(s−i) > 0 =⇒ s−i ∈ supp µ .

Therefore, every set F i
wi is a feasible set of beliefs in the sense of Theorem 4.1.

Thus we know that for every tuple of distortions functions (wi)i∈N there exists
an equilibrium in beliefs (b̄i)i∈N such that bi ∈ F i

wi(i ∈ N).
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6 The Example

This example shows a game and sets of feasible beliefs with exactly one equi-
librium in feasible beliefs. The equilibrium does not relate to an equilibrium
in mixed strategies.

Definition 6.1 We say, a tuple b of beliefs relates to a tuple m of mixed
strategies if the best replies in pure strategies coincide, i. e., if

br m−i = br bi (i ∈ N) .

where m−i = ⊗k∈N\{i}m
k.

Let

A1 =

(
0 4 9
4 0 10

)
, A2 =

(
4 0 1
0 4 1

)
be the payoff matrices in a bimatrix game. Strategies are S 1 = (u, d)
(up/down) and S 2 = (`, c, r) (left, center, right). It is easy to see that
the game has exactly one equilibrium in mixed strategies: m̄1 = (1

2
, 1

2
) and

m̄2 = (1
2
, 1

2
, 0).

Figure 1 shows the best replies for player 2. Note that at the borders between

0

1

0 1

{r}

b2
u

b2
d

{c}

{`}

{`, c}
{`, r}
{c, r}
{`, c, r}

Figure 1: Best replies for player 2

the shaded areas the best replies take special values—as sketched on the right
of the figure.

Further, let
w2(x) = x3 , w1(x) = x
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be distortion functions. So for player 1, the set feasible beliefs F 1
w1 consists

of all additive probability measures on S 2.

The set of player 2’s feasible beliefs consists of the points

F 2
w2 =

{(
t3, (1− t)3

)
t ∈ [0, 1]

}
.

I. e., F 2
w2 is the graph of the function x 7→ (1 − 3

√
x)3. It is displayed as a

fat curve in Figure 2. For a tuple of beliefs b to relate to the equilibrium in

0

1

0 1b2
u

b2
d

{
b2

∣∣ br b2 = {`, c}
}

F 2

Figure 2: Feasible beliefs of player 2

mixed strategies, the equation

br b2 = {`, c} (2)

has to hold. In Figure 2 the set of all beliefs b2 with br b2 = {`, c} is displayed
as a straight fat line. We see with a glance that there is no distorted belief b2

for which (2) holds, since the two fat lines do not intersect.

But if there is no tuple of feasible beliefs that relates to the mixed equi-
librium, certainly also an equilibrium in feasible beliefs cannot relate to the
equilibrium in mixed strategies!

Since the existence of an equilibrium in feasible beliefs has been proved, we
are done . . . but what is the equilibrium in feasible beliefs?

The expected payoffs for player 1 are:

Eb1
(
a1(u, •)

)
= 4b1

cr + 5b1
r , Eb1

(
a1(d, •)

)
= 4b1

`r + 6b1
r .

Obviously there is no equilibrium in beliefs, in which player 2 only considers
one action of player 1 possible. (This is due to the same reason as there is
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no equilibrium in pure strategies.) Therefore supp b2 will be {u, d}. In case
of an equilibrium we demand Eb1

(
a1(u, •)

)
= Eb1

(
a1(d, •)

)
, i. e.:

4b1
cr + 5b1

r = 4b1
`r + 6b1

r

=⇒ 4b1
cr = 4b1

`r + b1
r . (3)

Now for an equilibrium belief b2 it must either hold:

br b2 = {`, r} or br b2 = {c, r} ,

because beliefs with br b2 being {`, c} or {`, c, r} are not in F 2 (see Figure 2)
and single valued best replies would imply an equilibrium in pure strategies.

Suppose br b2 = {`, r}. Since we assume b to be an equilibrium we have
supp b1 ⊆ {`, r}, or

c /∈ supp b1 .

Then obviously b1
cr = b1

r and because of equation (3):

4b1
r = 4b1

cr = 4b1
`r + b1

r ≥ 5b1
r

—i. e.,
b1
r = b1

cr = b1
`r = 0 . (4)

Lets look at all values of b1 :

S2 b1(S2) explanation

∅ 0 by definition

{`} 0 b1
` ≤ b1

`r

(4)
= 0

{c} 0 c /∈ supp b1

{r} 0 (4)

{`, c} 0 c /∈ supp b1 =⇒ b1
`c = b1

`

{`, r} 0 (4)

{c, r} 0 (4)

{`, c, r} 1 by definition

But this means supp b1 = {`, c, r}! (Because b1(S) = 0 < 1 = b1(Ω) for any
S ⊆ Ω with |S| = 2.) This is a contradiction.

Now we know the supports for the equilibrium beliefs:

supp b1 = {c, r} , supp b2 = {u, d} .
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Now we calculate the precise beliefs.

From the definition of the equilibrium we know that br b2 ⊇ supp b1. The
only feasible belief of player 2 satisfying this criterion is marked with a circle
in Figure 3. It is the point

b2 =

[(
1− 3

√
1
4

)3

, 1
4

]
. (5)

0

1

0 1b2
u

b2
d

Figure 3: Equilibrium belief for player 2

Concerning b1, we fixed F 1 to all additive beliefs. Therefore we can calculate
b1 easily from (3):

4b1
c + 4b1

r = 4b1
`︸︷︷︸

0

+4b1
r + b1

r

=⇒ 4b1
c = b1

r

Therefore
b1 =

(
0, 1

5
, 4

5

)
. (6)

The point defined by (5) and (6) is the unique equilibrium in feasible beliefs.

The properties of this example are not restricted to a null set of games.
I. e., in a neighborhood of the game and the feasible sets it holds, that the
equilibrium in mixed strategies does not relate to the equilibrium in beliefs.
(When we talk about a neighborhood of a feasible set we mean a neighbor-
hood in the sense of the Hausdorff metric.)

Proof: We get an intuition of the proof from Figure 2. Basically in the case
of an equilibrium the two fat lines have to intersect. As all involved functions
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are continuous, if we change the game and the feasible sets just slightly, also
these fat lines will only move by an arbitrary small amount. This way we
can easily prevent them from intersecting.

Take some small ε (say 0.1).

Suppose the game is given by

A1 =

(
0 + ∆1 4 + ∆3 9 + ∆5

4 + ∆2 0 + ∆4 10 + ∆6

)
, A2 =

(
4 + ∆7 0 + ∆9 1 + ∆11

0 + ∆8 4 + ∆10 1 + ∆12

)
with |∆i| < ε, (i = 1, . . . , 12). Concerning the set of feasible beliefs we are
very tolerant and set the new set of feasible beliefs for player 2 (see Figure 4):

F̂ 2 =
{(

b2
u, b

2
d

)
∈ [0, 1]2 min

{
b2
u, b

2
d

}
≤ 1

8
+ ε

}
.
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Figure 4: New feasible beliefs for player 2

Obviously, every set A ⊆ B2 with Hausdorff distance d(A, F 2
w2) < ε is

covered by F̂ 2.

It is easy to see that still there is only one equilibrium in mixed strategies m̄,
and

m̄1(u) > 0, m̄1(d) > 0, m̄2(`) > 0, m̄2(c) > 0, m̄2(r) = 0

hold.

Now assume we do have an equilibrium in feasible beliefs b that is related to
m̄.
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This means:
br b2 ⊇ {`, c} .

What is the expected outcome of player 2 if he played one of the (assumed
optimal) strategies ` or c?

The expected payoffs for player 2 for his actions ` and c have to coincide:

Eb2
(
a2(`, •)

)
= Eb2

(
a2(c, •)

)
.

I. e.:
(4 + ∆7) · b2

u = (4 + ∆10) · b2
d .

Since the payoff must be feasible we know that either b2
u or b2

d must be less
than 1

8
+ ε. Therefore

(4 + ∆7) · b2
u = (4 + ∆10) · b2

d ≤ (4 + ε)
(

1
8

+ ε
)

< 1− ε .

But player 2 can get an expected outcome of at least 1−ε by playing r ! This
contradicts the assumption.

Thus there is still no equilibrium in feasible beliefs which is related to the
equilibrium in mixed strategies.
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