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Abstract

This article provides an exact non-cooperative foundation of the sequential Raiffa
solution for two person bargaining games. Based on an approximate foundation due
to Myerson (1997) for any two-person bargaining game (S, d) an extensive form game
GS,d is defined that has an infinity of weakly subgame perfect equilibria whose payoff
vectors coincide with that of the sequential Raiffa solution of (S, d). Moreover all
those equilibria share the same equilibrium path consisting of proposing the Raiffa
solution and accepting it in the first stage of the game.

By a modification of GS,d the analogous result is provided for subgame perfect
equilibria. Finally, it is indicated how these results can be extended to implemen-
tation of a sequential Raiffa (solution based) social choice rule in subgame perfect
equilibrium.
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1 Introduction

In two versions of a paper on arbitration schemes Raiffa (1951, 1953) almost simultane-
ously with Nash (1950, 1953) proposed and analyzed four different bargaining solutions,
among them the sequential Raiffa solution. Despite attractive features this solution con-
cept, mentioned also in Luce and Raiffa (1957) and Shubik (1985), remained for a long
time unexplored. The first contribution to an analysis of this solution to my knowledge is
a non-cooperative foundation in Myerson (1991, pp. 393, 394). There, the Raiffa solution
is approximated by the payoff vector sequence of unique subgame perfect equilibria of
extensive games with the number of rounds going to infinity.

A recent different approximate support for the discrete Raiffa solution can be found in
Tanimura and Thoron (2009). Axiomatic characterizations have only recently been found
(cf. Anbarci and Sun (2009), Trockel (2009)).

The present paper provides an exact non-cooperative foundation based on Myerson’s
approximate one. Moreover, it is indicated how this support result in the sense of the
Nash program can be extended to mechanism theoretic implementation in subgame perfect
Nash equilibrium.

2 Basic Concepts and notation

We shall use in the following two different types of game, namely 2-person cooperative
bargaining games and 2-person non-cooperative games in extensive form, briefly extensive
games. The definition of the latter ones is quite intricate though their illustration via game
trees is very intuitive. I shall use this notion as treated in Myerson (1991, chapter 2) or
in Mas-Colell at al. (1995, chapter 7).

As to bargaining games I shall use the following

Definition:

A two person bargaining game is a pair (S, d), where d ∈ S ⊂ R
2
+ and S 6= ∅ is compact,

convex and comprehensive (i.e. d ≤ y ≤ x ∈ S =⇒ y ∈ S). The set of two-person
bargaining games is denoted B.

Definition:

A bargaining solution is a mapping

L : B −→ R
2
+ : (S, d) 7→ L(S, d) ∈ S.
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If we can associate with any (S, d) ∈ B some extensive game GS,d whose subgame perfect
equilibrium payoff vectors coincide with L(S, d) we say that the game GS,d supports the

solution L(S, d) of (S, d) by subgame perfect equilibrium. Such a support provides a non-

cooperative foundation for the solution L in the sense of the Nash program (cf. Serrano
(2005)).

In the present paper I want to provide such a non-cooperative foundation for the sequential

Raiffa solution.

The relevant notion of a subgame perfect Nash equilibrium due to Selten (1965) is defined
as a Nash equilibrium on an extensive game that on any subgame (v subtree) induces a
Nash equilibrium.

3 The Myerson Game

Although Myerson (1991) is actually working with a slightly different class of bargaining
games his construction is equally valid for the set B of bargaining games I am going to
consider.

Consider for any (S, d) ∈ B the mapping fS : S −→ R
2 defined by

fS := (x1, x2) := (fS
1 (x2), f

S
2 (x1)) with

fS
1 (x2) := max{x1 | (x1, x2) ∈ S} and

fS
2 (x1) := max{x2 | (x1, x2) ∈ S}.

Next define inductively the following sequence (πk)k∈N of payoff vectors:

·) π1 = (π1
1, π

1
2) := d

·) ∀k ∈ N : πk+1 := 1/2[(fS
1 (πk

2 ), πk
2) + (πk

1 , f
S
2 (πk

1)].

This process due to Myerson describes the procedure by which Raiffa (1951, 1953) had
defined the sequential Raiffa solution (see Figure 1). It converges to R(S, d), the sequen-
tial Raiffa solution of (S, d). This is illustrated in Figure 1.
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Figure 1:

Now I will present Myerson’s (p. 393) extensive games with k rounds, for k ∈ N but with
slightly different notation.

“At each round a player is selected at random to make an offer, which can be any point
in S. After getting this offer, the other player can either accept or reject it. The first
offer that is accepted is the payoff allocation that the players get in the game. If no
offer is accepted at any of the k rounds, then the players get the disagreement payoff
allocated. At each round, each player has probability 1/2 of being the one to make an
offer, independently of the past history of the game.”

According to Myerson (p. 393):

“This game has a unique subgame-perfect equilibrium in which the first round offer is
accepted, and the expected payoff to each player i is πk−1

i . In this equilibrium, at the `-th
round from the end, for any ` ∈ {1, ..., k}, each player i would accept any offer that gives
him at least π`

i because that would be his expected payoff in the subgame consisting of
the last ` − 1 rounds if no offer were accepted before; and so player 1 would make the
offer fS

1 (π`
2), player 2 would make the offer fS

2 (π`
1). Thus, Raiffa’s sequential bargaining

solution is the limit of the expected outcomes of these games in equilibrium, as the number
of possible offers goes to infinity.”

This beautiful game is reminiscent of the Rubinstein game (cf. Binmore et al. (see
References)) but differs in two aspects.

First, there is no “shrinking cake” or discounting in Myerson’s games. In contrast to Ru-
binstein’s game Myerson considers a sequence of games with increasing but finite lengths.

Secondly, in Myerson’s games in each round the proposer is chosen again by random rather
than having alternative offers after a beginner has been determined randomly. By making
a crucial element of the model, namely discounting, more and more negligible the unique
subgame perfect equilibrium of the Rubinstein game approximates the Nash solution.
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The sequence of Myerson games by its construction exhibits convergence of its subgame
perfect equilibria to the Raiffa solution. Both approaches provide only approximate non-
cooperative foundations of the respective bargaining solutions.

4 An exact non-cooperative foundation

Denote the extensive form game with k rounds of Myerson described in the previous
section by Gk and its subgame perfect equilibrium payoff vector by π̂k, k ∈ N.

From Myerson’s analysis we know that

limk−→∞π̂k = π∗ := R(S, d).

On this basis we define now an extensive form G as follows:

At round 0, one of the two players of the bargaining game (S, d) is selected randomly
(again with probability 1/2) to make a proposal x ∈ S. After getting this offer, the other
player can choose an element k ∈ N◦ := N ∪ {0}.

If he chooses 0 the proposal is accepted and the payoff will be realized. If he chooses
k ∈ N the proposal is rejected and the game Gk will be played.

Like the Myerson games Gk, k ∈ N, the game G has an infinity of Nash equilibria, among
them the one where every player chooses always proposal R(S, d) and always accepts this
proposal and rejects any other one. Another one determines the Nash (or any other)
bargaining solution in an analogous way. This is essentially the situation we have in
Nash’s simple demand game.

In our context salvation comes from the use of subgame perfect equilibrium. But in
contrast to Gk, k ∈ N, the game G does not have any subgame perfect equilibrium. But
fortunately a weaker notion of equilibrium will do the job as well, namely a weak subgame
perfect equilibrium.

Definition:

A Nash equilibrium of an extensive game is called weakly subgame perfect when it induces
some Nash equilibrium in every subgame in which a Nash equilibrium exists.

I shall briefly discuss this concept in a separate section following the present one. Here I
will use this concept in order to state and prove the first non-cooperative support result.
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Proposition 1:

For any bargaining game (S, d) ∈ B the extensive game G(= GS,d) as defined above
has an infinity of weakly subgame perfect equilibria with identical equilibrium path and
equilibrium payoff vector R(S, d).

Proof:

Notice first that after proposal x ∈ S, x 6= R(S, d) of some player a one-person subgame of
the other player starts that has no optimal strategy for him, hence no Nash equilibrium.
Therefore no Nash equilibrium of G can be subgame perfect. Notice further that as in
any Gk, k ∈ N, any efficient proposal and its acceptance defines Nash equilibria.

Consider the following strategy profile:

Every player, whenever chosen by random as a proposer chooses R(S, d). And this will
always be accepted by the other player. Any proposal x ∈ S, x 6= R(S, d) of player 3 − i
will be rejected by player i via some k ∈ N such that π̂k

i > xi(i ∈ {1, 2}). In any Gk, k ∈ N

π̂k is played.

First we have to show that this defines a Nash equlibrium Deviation of 3− i from R(S, d)
to some x ∈ S, x 6= R(S, d) is either worse for himself or for both players or for i.

If x is worse only for i then i chooses some k ∈ N hence de facto some π̂k close enough to
R(S, d) such that π̂k

i > xi and π̂k
3−i < R3−i(S, d).

Thus unilateral deviation of a proposer will not yield an improvement. If, however, R(S, d)
is proposed by 3−i player i cannot to his advantage deviate from acceptance. If he rejects
the best that can happen to him is a new accepted proposal R(S, d), otherwise some π̂k

that is worse for him.

So the proposed strategy profile defines a Nash equilibrium. It remains to show that it is
weakly subgame perfect.

So what are the subgames that do have Nash equilibria ?

The game G itself and the games Gk, k ∈ N. In all these games Nash equilibria are
induced. So the considered Nash equilibria are weakly subgame perfect. They differ only
by the various sufficiently large k ∈ N chosen in the one-player games originating after a
proposal x ∈ S, x 6= R(S, d). So the equilibrium path is for all of them the same: propose
R(S, d) and accept. So is the equilibrium payoff vector R(S, d)
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5 Remarks on weakly subgame equilibria

In contrast to the games Gk, k ∈ N, the game G has an infinity of weakly subgame perfect
equilibria. How bad is this ? There is no coordination problem involved as long as both
players stay on the equilibrium path and the equilibrium payoff is uniquely determined.
So the multiplicity of those equilibria appears to be harmless, in particular as subgame
perfect equilibria also may have multiple ways of behavior off the equilibrium path.

So the criticism could better be based on the lack of credible threats to reject, because
there is no optimal way of rejecting! But from a decision theoretical point of view this
criticism is dubious. Almost everywhere in game theory we take participation in the game
at hand as given. If there is a choice between money amounts {−50, 1, 2, ..., 10}, we take
it for granted that −50 is rejected (via accepting 10). If the choice is among {−50} ∪ N,
do we think −50 will be accepted because there is no best better alternative ? In real life
we avoid worst cases even if we are unable to do that in an optimal way.

But obviously this is a controversal point. I will therefore provide a modified non-
cooperative support via subgame perfect equilibria in the next section.

6 Subgame perfect direct support

When attempting to base a direct subgame perfect equilibrium foundation for the sequen-
tial Raiffa solution based on Myerson’s games Gk, k ∈ N, the dilemma is the appearance
of those one-player subgames without Nash equilibrium. There are two potential ways
out:

1. Add a best alternative to the set N◦. This would be adding the possibility of
repeating G! We would end up in an infinity of subgame perfect equilibria, all
of which at some stage have proposal of R(S, d) followed by acceptance. But the
equilibrium paths are different and may have unbounded lengths. I do not find this
an appealing model.

2. Stop those “one player subgames” from being subgames. In order to do so we modify
our original game G in the following way.

In the beginning the proposer is chosen randomly with probability 1/2. But the two
players do not observe that random choice. So each player has probability 1/2 that
he is the chosen proposer and 1/2 that he has to react to his opponent’s proposal.
Accordingly, both players’ strategies have to contain full descriptions of what they
would propose and how they would reject to any possible proposal x ∈ S.
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For both players the strategy sets are the same, namely S × N
S
◦
, and both players

when they have to make their moves do not know which part of their strategy x or
f is relevant for the continuation and the final outcome. So if they choose strategies
(x1, f 1), (x2, f 2) ∈ S × N

S
◦
, depending on the random move choosing 1 or 2 either

f 2(x1) or f 1(x2) dictates the continuation of the play.

This modification of our original game G is illustrated in the equivalent Figures 2 and 3.
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Notice that these are only schematic illustrations rather than extensive game trees because
the infinite sets of possible moves for players 1 and 2 are represented in these figures only
by one typical move, namely (xi, f i), i = 1, 2. Also they only represent the reduced game
where any root of a subgame Gk, k ∈ N, is replaced by the subgame perfect equilibrium
payoff vector of Gk.

The π(i, x1, f 1, x2, f 2), i = 1, 2, is the equilibrium payoff vector on the equilibrium path,
the payoff vector of subgame perfect equilibria of the games Gk, k ∈ N, otherwise.

The construction in Figure 2 is similar to the way Sudhölter et al. (2000, p.302) define the
canonical extensive form for the Battle of Sexes game. It has precisely the intended effect
in the present context. The one-player subgames without optimal moves have vanished
now.

The only remaining subgames of the modified game G̃ are G̃ itself and the Myerson games
Gk, k ∈ N.

In G̃ any subgame perfect equilibrium is a pair (x1, f 1
1 ; x2, f 2

k2) with x1 = x2 = R(S, d)
and f i

ki : S −→ N◦ : x 7→ f i
ki(x), such that

f i
ki(x) =

{

0 for xi ≥ Ri(S, d)
ki for xi < Ri(S, d)

and ki ∈ {k′ ∈ N | π̂i
k′ > xi}, i = 1, 2

After the first moves of both players the game ends in its equilibrium with payoff vector
R(S, d) or in some game Gk, k ∈ N, where the unique subgame equilibrium is induced.

The multiplicity of subgame perfect equilibria comes in via the various k that can be
possibly chosen for f . But the equilibrium path is unique.

I can formulate the modified version of the support result now as

Proposition 2:

For any bargaining game (S, d) ∈ B the extensive game G̃(= G̃S) has an infinity of
subgame perfect equilibria with a unique equilibrium and equilibrium payoff vector in the
first round, namely R(S, d)

Proof:

Having Proposition 1 there is nothing to show as the only change resulting from substi-
tuting G̃ for G is the reduction of subgames to those having Nash equilibria.
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Remark:

It is obvious that on the non-trivial information sets of players 1 and 2 we may introduce
beliefs and deduce an infinity of sequential equilibria that result in the Raiffa solution.

7 Conclusion

We have provided an exact non-cooperative foundation of the sequential Raiffa solution R
of a given bargainig game (S, d) in the sense of the Nash program by supporting R(S, d) as
a (weakly) subgame perfect equilibrium of an extensive game G̃(G). There is an infinity
of such equilibria, but all of them share the same unique equilibrium path that in the first
round of the game leads to the equilibrium payoff vector R(S, d).

As far as the implementation of R in the sense of mechanism theory is concerned one may
derive weak implementation in subgame perfect Nash equilibrium of an R-induced social
choice rule. Applying an embedding principle of Trockel (2002) this can be done in an
similar way as for the Nash solution in Trockel (2000, section 5).
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