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Abstract

We discuss the structure those polytopes in R} that are Minkowski
sums of prisms. A prism is the convex hull of the origin and n
positive multiples of the unit vectors. We characterize the defin-
ing outer surface of such polytopes by describing the shape of all
maximal faces. As this shape resembles the view of a cephalopod,
the polytope obtained is called a “cephoid”. The general geomet-
rical and combinatorial aspects of cephoids are exhibited.
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1 Sums of Prisms

We consider the class of polytopes in R} which are obtained as Minkowski
sums of prisms. It is our aim to exhibit the structure of the surface of these
polyhedra and to present a combinatorial classification. We also suggest a
recursive enumeration and description of the maximal faces.

A well known class of polyhedra which are the sums of line segments are
called the zonoids (see [8]). The fact that each line segment generates a
beltshaped area on the surface refers to the terminology.

In the present paper the generating polyhedra (the “prisms”) generate a more
complicated structure. There appears a shape which resembles an octopus
or a squid or, more generally, a cephalopod. Therefore we call the polytopes
of our family “cephoids”. Recall that a cepheid is a type of a variable star,
the first specimen observed in the Cepheus configuration.

We describe cephoids formally as follows.

Let us denote by I := {1,...,n} the set of coordinates of R" and by &
the " unit vector of R" (i € I). Also write e = (1,...,1). Let a =
(a1,...,a,) > 0 € R:. Put @’ := €' (i € I) and associate with a the

prism I1% which is given by

(1.1) I1* := conv {O,al,...,a"}.

The (outward) face of this prism is the simplex A® which is given by
(1.2) A® := conv{a',...,a"}.

For any J C I we obtain the subprism of I1* given by

(1.3) N5 = {xell®|x;=03Gi¢J)},

a similar notation is used for the simplex, A% we write for the subface gen-
erated by the coordinates ¢ € J

(1.4) A% = {z€ Az, =0(i¢J)}.

Now we consider the Minkowski sum of prisms.
Definition 1.1. Let a*® := (a(k)),f:1 denote a family of positive vectors and
let

K

(1.5) m= 3y m"

k=1
be the (algebraic) sum. Then 11 is called a cephoid.
We start out with a few examples in order to become familiar with cephoidal

polyhedra. First of all, we note that the representation of a cephoid by a
family of prisms is, in general, by no means unique.
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Example 1.2. A prism may be represented as a cephoid in various ways.
E.g., let I = TII¢ be the unit prism and let II be represented as the sum
II = II*¢ +1I1°¢ with a, 8 > 0, o+ = 1. The outer surface, i.e., the unit
simplex A = A® = A% 4 A€ ig the union of the two translates ae! + AP€,
Be? + A€ and a “diamond” A% + AS. (cf. Figure 1.1)

Figure 1.1: The unit simplex is a cephoid

However, the representation is not unique as indicated by Figure 1.2.

Figure 1.2: Another representation of A®

As all prisms involved are homothetic, it turns out that the vector used to
translate a prism is rather arbitrary.

A slight generalization of the above consideration shows that the unit prism
(or for that matter, any prism) may be represented as an arbitrary sum of
homothetic prisms of smaller size. E.g., Figure 1.3 shows A€ decomposed
into four homothetic simplices plus diamonds, this is the result of summing
up four homothetic prisms.

In (Figure 1.4) the unit prism is the sum of seven homothetic prisms each
one % of the size of the original one. The “diamonds” are sums of one—

dimensional subsimplices and the central prism generates a diamond with
each of the other ones. Here the “cephoidal” structure is clearly recognized.
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A

A

Figure 1.3: A€ as the sum of four prisms

Figure 1.4: The unit prism as a sum of 7
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The next example uses two nonhomothetic prisms.

Example 1.3. Again there are the translates of the two prisms involved, i.e.
A%+ b' and A® + a'. The “diamond” is the sum A% + A% The situation is
depicted in Figure 1.3.

Figure 1.5: Adding two prisms

There is a similarity in the surface structure exhibited between Figure 1.3
and Figure 1.3 (the planar version resulting from the decomposition of the
unit simplex). Again the representation of the surface is not unique. E.g.,
each of the two prisms might be decomposed into a sum of two homothetic
smaller prisms. But the representation indicated in Figure 1.3 is unique if
one requires in addition a minimal sum of summands.
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This latter property vanishes again — even for nonhomothetic simplices — if
two of the subsimplices of the surface are homothetic (Figure 1.6).

Figure 1.6: The sum of two prisms — parallel subfaces

Now we consider the sum of three prisms.

Example 1.4. In the example represented by Figure 1.7, the slopes in each
x;xj-plane are ordered in a cyclic way.

The sum shows a translate of each simplex located in the appropriate cor-
ner. Each translate generates exactly one nontrivial “arm” consisting of two
diamonds. Every diamond is the sum of two two subfaces of the simplices
involved. There appears a new central extremal point which is the sum of
three vertices of the simplices involved.

Now we shave off the central vertex and replace it by a further simplex. This
we achieve by adding a further prism having a joint normal with the central
vertex. The result is a polyhedron as indicated in Figure 1.8. It shows certain
symmetries, the new triangle having replaced the central vertex.

Observe the cephoidal structure of this example. The central simplex gen-
erates a “tentacle” in each direction while those located at the boundary
generate just one. If one compares this with Figure 1.3, then clearly the
tentacle structure is the same.

The planar case is in some way “degenerate”. However it serves to represent
the surface structure of a cephoid.

The appropriate version of a nondegenerate family is captured by the follow-
ing definition.
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Figure 1.7: The sum of three prisms

Figure 1.8: Adding a further prism
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Definition 1.5. Let a® = (a(k)),f:1 denote a family of positive vectors and
let

(1.6) (H“(k))K = (m®)*

k=1 k=1

be the corresponding family of prisms. We shall say that the family (of vec-
tors or prisms) is nondegenerate or in general position if the following
conditions hold true:

1. For any system of nonempty index sets J(l), cen JE) C I with

Ua» =r

keK
the system of linear homogeneous equations in the variables
T1yeeey T A, ..., A given by
(1.7) aPz; =N =0 (ieJ®, ke K)
has a space of solutions U of dimension
(1.8) dimU=n+K - ) j
keK
with jp = |J®).
2. For any I C I the restricted system

(1.9) a'l = (aw) )

10 I°/ keK

obtained by restricting the wvectors to I satisfies the condition of
item 1 in the subspace RI.

3. The term nondegenerate is also applied to the cephoid generated by a
nondenerate family a®.

Theorem 1.6. A nondegenerate cephoid is uniquely represented as a sum of
nonhomothetic prisms.

The proof follows from 7] Theorem 3.2.8.

The aim of this paper is to analyze the structure of cephoids generated by
nondegenerate families of prisms. As we shall see, the general structure of
a cephoidal surface is at best represented on (a positive multiple of) the
unit simplex: there is a “canonical” mapping between the two surfaces pre-
serving the partially ordered set of faces. (E.g. Figure 1.3 is the “canonical
representation” of Figure 1.8) This geometric structure is accompanied by a
combinatorial structure we shall exhibit. Eventually, it is seen that in higher
dimensions there is an abundance of types of cephoids. The surfaces exhibit
an ever increasing family of polyedra. Yet, the geometric structure is charac-
terized by its combinatorial counterpart: a set of orderings or permutations
which is genuine to a cephoid.
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2 The Canonical Representation

Recall the similar structure exhibited in Figures 1.3 and 1.7. There is a
mapping of the surface structure of a cephoid on a suitable positive multiple of
the unit simplex such that both structures are “combinatorically equivalent”,
i.e., the posets (partially ordered sets) of subfaces are isomorphic (see [1]).

In order to simplify the notation, we use K := {1,..., K} for the index set
of a family of prisms. We consider a family (a),cx of vectors in general
position; the prism IT := >, . II®) and its surface A = >, . A® are
defined as previously.

We take K copies of e which we denote by a®®, ..., a’*). As in SEcTION 1

we write a®®i := "® e where a’® denotes the i'th coordinate of a®®.

For every k € K let II°®%) := I1® and A%*) := A€ be a copy of the unit prism
and simplex respectively. The (homothetic) sums generated are denoted by

° = > 1" =" = K1
ke K
and
A0 — ZAO(k) — AKe — KA®
ke K

respectively. As all prisms involved are homothetic, the simplex A° has the
(trivial) face poset of the unit simplex. However, we will indicate a simple
way to generate a copy of the face poset of A on A,

A direct way to generate a “grid” on the surface A is provided by the integer
vectors

(2.1) E = (k... k), k€Ng (z’eI),Zki:K'
iel
All these vectors are a sum of vertices in various ways, i.e., we have

(2.2) k= ) a® 4 4 ) a'r

keK, keKn,

with arbitrary pairwise disjoint sets K1, ..., K, the union of which is K.
With the vertices of A this is different: by nondegeneracy every vertex is a
unique sum of certain vertices of the A" involved. More precisely, for every
vertex u of A, there is a unique mapping i* such that w can be written via

i, : K—1TI
(2.3) w—al — Z a P
keK

Now we supply the following definition.
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Definition 2.1. 1. Let u be a vertex on A and let i, be the corresponding
mapping as described by (2.3). Then

(2:4) W o= k(u) = Y a"®i

keK
is the canonical representation of u on A°.

2. Let F be a face of A and let u', ..., u" be its extremal points. Then
the conver hull of the images, i.e.,

(2.5) k(F) == F° = conv{r(u'),...,r(u")},
is the canonical representation of F on A.

3. Let 'V be the poset of faces of A and let
(2.6) V0 = k(V) = {k(F)|F eV}

be the collection of images of faces under the mapping k. Then V° is
the canonical representation of V on A.

Theorem 2.2. V° is a poset which is isomorphic to V. Hence (A, V) and
(A%, V) are combinatorically equivalent.

Proof:

This is a standard procedure in convex geometry (see [4]). The mapping « is
bijective between the vertices of A and the appropriate subset of grid vectors
as described in equations (2.1) and (2.2). The minimum of two faces (when-
ever it exists) is obtained by taking the intersection of the corresponding two
sets of extremal points. Similarly, if the maximum of two faces exists, then
it is obtained via the union of the sets of extremal points. Each represen-
tation of a vertex is one one hand a vector k as described in (2.1). On the
other hand, given the natural ordering on K = {1,..., K}, it is described or
“labelled” via some function i, by (iy,...,ix).

q.e.d.

The canonical representation is the suitable projection of the outer surface
A of a cephoid IT on an (n — 1)-dimensional subset. E.g., the poset of
faces of Figures 1.3 and 1.7 are combinatorically equivalent. Also, we can
visualize the surface of 4-dimensional cephoids on a suitable positive multiple
of the unit simplex of R? (a tetrahedron), which will serve to discuss several
important examples in SECTION 6.
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3 Faces and Normals

Let (a®)icx denote a family of positive vectors in general position and let

m=Ymn" =Y a=>3a"= 3% AW

keK keK ke K keK

denote the sum (the cephoid generated) and its outer surface. If J C I is a
subset of J, then we indicate the intersection of a set F with Ry = R’ by
a subscript j. In case of a prism, this is also the projection.

The following theorem describes the typical maximal face of I1 simultaneously
indicating the nature of its normal.

Theorem 3.1 (The Coincidence Theorem). Let 2 < K < (n— 1) and
let F' be a maximal face of 11 and let n* be its normal. Then the following
holds true.

1. For each k € K there is an indez set J® and a corresponding subface
Aff()k) of A®) satisfying

K
k
(3.1) F=> A% .

k=1

2. There exist a unique index set L = {iy,... i} C I satisfying L =
|L| < K — 1 and such that
(a) 1<| JWNL| <2
(b) With a suitable reordering {ki,...,kx} of the indices of K the
index sets

(3.2) J o glkx)

are arranged in a way such that each one has exactly one common
index with his neighbors and this index 1s an element of L.

(c) The intersection Fy, .y = FNAg, .y of F with theiy, ... i
boundary of A has dimension L — 1.

3. There are positive constants ¢y, (k=1,...,K) (unique up to a positive
multiple) such that the following holds true:

(a) n* is (up to a positive multiple) exactly the (outer) normal of the
prism

(3.3) [I* = conv (U ckH(k)> .

ke K

(b) m* is a normal to each of the prisms A.(Ik()k).
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(c) For each neighboring pair k;, ki1 in the ordering suggested in (3.2)

‘ (k1) (ki141) o o
the prisms Ck[AJ(kl) and Ckl+1AJ(kl+1) have a joint vertex, this is

exactly the one corresponding to the joint index which s a member
of L.

Proof:

15*STEP :

As F'is maximal, we can apply Theorem 1.15 in EWALD [1], see also Theorem
3.1.1 in PALLASCHKE-URBANSKI [4]|. Accordingly, there is, for each k£ € K,

a subface Aff()k) of A®) such that

K
k
(3.4) F=> AN
k=1

holds true.

Let |[J®| := ji (k € K). Then each summand yields a dimension of jj, — 1.
In order to produce the proper dimension (n— 1) of a maximal face, we must
have

j1—1+j2—1+"'+jK—1Zn—1

and by our nondegeneracy assumption we obtain
gh—14+4—-14--+jg—-1=n-1

or

(3.5) fitjet-+ik=K+n—-1>n+1.

As there are n indices available in I, some of them must appear at least twice
within the index sets J® so that a total of K — 1 additional indices occurs.
We list the indices that appear at least twice in a set L = {iy,...,i1}.

Assume, for suitable integers Ki,...K; > 1, that

11 appears K;+1 times
(3.6) 19 appears Ko+ 1 times

1, appears Kp+1 times
such that
(3.7) Ki+ - +K=K-1

holds true.
2rdSTEP :

Note that no index can appear twice in one of the index sets J*) as the
latter ones refer to the vertices of the subprisms A.(Ik()k). Hence, each J*) has
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to contain at least one of the indices i, ...,47. On the other hand, there are
2K — 2 appearances of the indices in L so there are two of these indices in
all of the K sets J® except 2. Therefore, the sets J®) can be rearranged as
indicated by (3.2).

The two extremal cases are that just one index i; appears K times (hence in
all index sets) or that K — 1 indices appear twice (so K — 1 pairs of index
sets have a common index).

3"4STEP :

Consequently, the face F' contains sums of vectors a*)* where i is chosen from
L = {iy,... iy} only. For those J® that contain two of these indices,
we can take two sums, each one using one of the indices, and construct
convex combinations of these two sums. This generates an L. —1-dimensional
subsimplex on the outer surface A of IT such that only coordinates iy, ..., 1y,
appear. Hence, the intersection of F N A has indeed dimension L — 1.

4*BSTEP :

Next consider the linear system of equations in variables c¢q,...,cx and
A1 ... AL given by

cral® = A (for all k with i; € J®),

11

Cka"gf) = Mg (for all k with iy € J(k))7

(3.8)

aal? = Ap (for all k with iy € J®).

ir

The number of variables is K + L. The number of equations is computed as
11 occurs K + 1 times, i5 occurs Ky + 1 time, ... etc.

Ki+14--+K +1=K-1+L.

Some inspections shows that indeed all coefficients can be computed succes-
sively, the solution space has dimension 1. As all vectors a®) (k € K) are
positive, we can choose a positive solution.

5*8STEP :
Given the normal n* of F' denote the tangential hyperplane of F by H™ .

As the faces Af]k()k) (k € K) all admit of the normal n*, so do the faces

c,iA_(Ik()k) (k € K). However, the first K faces as well as the second Ky two
faces, ...etc. have a common extremal point, as we have

cka(k) = )\1 (’Ll € J(k)),

11
etc. in view of 3.8.

Hence, they are all contained in the same hyperplane, say H% parallel to
H™". Moreover, in view the 2"*ST E P it follows that any two of these systems
which have a common index, the tangential hyperplane is the same and so
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(because of connectedness) all the faces A.(Ik()k) (k € K) admit of the common
tangential hyperplane H7 .

From this it follows that the prism II* = \/, _x c;II®)  admits H?" as a
tangential hyperplane. But the normal of a prism is uniquely defined up to
some positive multiple, hence H?%" is the tangential hyperplane of A* and n*
is the normal.

q.e.d.

Definition 3.2. Given a mazximal face F of 11, we shall say that the index
sets J®) (k € K) determine the face. The elements of the set L as given
by Theorem 3.1 are called the boundary indices associated to F'.

The boundary indices determine the smallest boundary of A that the face will
intersect properly. On the other hand they refer to the adjustment process
described by the Concidence Theorem.

If we turn to the canonical representation, then the indices i1,...,7; deter-
mine a subface of the representing multiple K A€ of the unit simplex. Again
this is the smallest subface that F' will intersect properly.

Remark 3.3. For any vertex Y., g a® there is a unique maximal face
containing it. To see this, it is sufficient to consider the case n = 3, K = 2.
If there are two maximal faces containing a’ + b’, then there must be two
maximal faces F' and F' containing a’ + b’ that are adjacent. These faces
have a joint subface of dimension n — 2 = 1 containing a’ + b’, say Fyjy =

Gyt Af{’i} =F = i Af{’ij}. Hence, there exists 0 < ¢ < 1 such that

ta'+(1—-t)a’ +b' =a' + b
holds true. This implies
(1 — t)aj = bj, (1 - t)ai = b;,

which contradicts our nondegeneracy assumption (Definition 1.6). Similarly,
it follows easily that two faces F', F' having the same set of boundary indices
L necessarily do not fully cut into A, more precisely, (FNAL)N(FNApL) has
dimension strictly less than L. On the other face, restricting the generating
family to R generates maximal subfaces, non of which can be in two different
maximal subfaces of A.

Hence the assignment of a maximal face to its L—dimensional subface gener-
ated by its boundary indices is unique.

It will be useful to choose a representation of a face by just mentioning the
index sets J®). Thus, we write conveniently

(3.9)
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whenever we wish to indicate the subface given by 3.4. We may even omit
mentioning @V, ..., @™ when the family of positive vectors and the ordering
cannot be confused. However, if the ordering is given by (3.2), then the
common boundary indices of L appear successively (possibly in multiple
way), indicating the joint vertices of the subprisms involved.

The same considerations as presented for maximal faces can be repeated for
lower dimensional faces. Thus,the concept of boundary indices (as resulting
from the Coincidence Theorem) is well defined for lower dimensional faces.

Theorem 3.4. Let F' be a mazimal face of 11 with a set of boundary indices
L and let F© be an (n-2)-dimensional subface of F. Then, for FO there is
a set of boundary indices L' = {iy,...,ip} C L such that L—1 <L <L
holds true.

Proof: The same considerations presented for a face of dimension (n — 1)
hold true for a face of dimension (n — 2). If the latter one is subset of the
former one, then there is just one index missing from one of the index sets
J®) (k € K) representing F. The missing index may or may not be one of
the specified set of boundary indices determined by F'.

q.e.d.

Theorem 3.5 (The Neighborhood Theorem). Let F and F be mazimal
faces of 11 that are adjacent. Suppose both are given by their index sets as in

3.4. Then

1. K-2 of the index sets are equal.

2. Suppose without loss of generality that these are the last K — 2 index
sets. Then the remaining two index sets (i.e., with the indices 1 and 2)
satisfy

(3.10) JOc g g c g@ |J(1) — J'(1)| — |J'(2) — J(2)|
(or vice versa)

3. The difference in each case is obtained by switching just one index not
wn L or exchanging two indices of L i.e.,

(a) Either there is q ¢ L, q € JW ¢ ¢ J@ satisfying

(3.11) JV = JO—{g}, J? = JP U g},

(b) or else, there are indices i € L, j € L' with i € JY N J® and
j e J'VNJP satisfying

(3.12) JU = g _ i g@ = g&y{j},

holds true.
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That is, given some face F, an adjacent maximal face F' has either
the same boundary indices, in which case there is just a non—boundary
index switched. Or else one of the boundary indices is diminished in
the number of appearances (possibly becoming a non-boundary index
thereby) and another boundary index is created or increased in his num-
ber of appearances.

Proof: The proof follows from Theorems 3.1 and 3.4. Note that the number
of L. of multiple appearances is the same for all maximal faces, hence, if L
is diminished by the passage to a (n — 2)-dimensional subface, it must be
increased again in the next adjacent maximal subface. q.e.d.

Corollary 3.6. If K < n — 1 holds true, then each mazimal face intersects
at least one boundary face of dimension K —1 < n —2. Within the canonical
representation, the image of every maximal subface intersects a boundary
simplex of dimension K — 1.

Remark 3.7. If K = n—1 is the case, then the number of boundary indices
is at most n — 2. This occurs if the index sets that determine the face contain
2 indices each.

If K < n —1 prevails, then, with m := K + 1, the projection on any m—
dimensional subspace of R" reflects the situation K = m — 1. Hence all
maximal faces and the corresponding boundary indices (at most K — 1 =
m — 2) can be found by projecting the family (a®),cx of positive vectors
into RY’. Thus, any face of A has its counterpart in any m-dimensional
projection of A and the geometric (and combinatorial) structure is revealed
already in lower dimensions.

On the other hand, if K > n holds true, a simple count of dimensions reveals
that at least K —n subsimplices involved in the representation (3.4) must be
vertices. Thus, the results of the Coincidence Theorem can be applied to any
group of n — 1 prisms adding suitable vertices from the remaining prisms.
(See also Lemma 5.8 and Corollary 5.9).

Hence, one can say that the case K = n — 1 is the decisive one. The details
will be explained in SECTION 5.

In particular, regarding SECTION 1, the decisive case n = 3 and K = 2
is represented in Figure 1.3 with canonical representation given in Figure
1.1. Each face has one boundary index which corresponds to a vertex of the
canonical representation. For more then two prisms in R?, any two of them
form a “diamond” and there may be two or three boundary indices. That is,
a face may properly cut a subsimplex and not contain a vertex or it may even
be “interior”. Yet, diamonds (i.e., sums of two subsimplices (line segments))
are the most complicated type of maximal face that appears in 3 dimensions.
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Before we proceed to discuss this in more detail, let us discuss the combina-
torial structure that goes together with a maximal face. We will first exhibit
this for arbitrary n and K = 2 in the following section.
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4 Summing Two Prisms: The Tentacle System

We shall treat the sum II = II® + II® of two prisms explicitly within this
section as it provides an essential inside into the nature of maximal faces
and, in addition, supplies the basis for further developments. First of all, we
specify our previous result for K = 2.

Theorem 4.1. Let F be a maximal face of I1. Then there exists uniquely
i € I such that @' + b" € F holds true. On the other hands, each vertex
a' + b’ of A is contained in a unique mazimal face F. Moreover, there are
positive constants cq and ¢y (unique up to a positive multiple) such that the
following holds true

1. caI1® and cpI1® have ezactly one common vertex, this is the one in i—
direction, 1i.e., the vertex

(4.1) Cal' = cpb" .

2. The normal n* of F is (up to a positive multiple) exactly the normal
of the prism

(4.2) A* = ¢,I1%V ¢pl1° .

3. There are two sets J',J* C I and some i € I such that

(4.3) F = A% + AY,
with

T+ | =n+1.
and
(4.4) I'nr1’ = {i}.

Proof: This is clearly Theorem 3.1 and Remark 3.3 specified for K = 2.
q.e.d.

We can now exactly describe the structure of the sum of two polyhedra. To
this end we introduce the following notation. Let < be a total ordering of I.
We denote by

(4.5) T == {iel|i<k}U{k}
the set of predecessors of k € I including k. Similarly, let
(4.6) Sg o= {iel|k=<i}U{k}

denote the set of successors of k£ including k. Clearly

SENTE = {iy (iel)

holds true. Now we have the following
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Theorem 4.2. 1. The sum of two prisms in R™ has exactly n maximal
faces.

2. For any sum of two prisms Il = I1% + II° there exists uniquely an
ordering < of I such that the maximal faces are exactly described by

(4.7) F¥ = A+ AL (ie1).

3. There are exactly n! types of sums of two prisms (in general position)
Each type corresponds to an ordering of I such that the faces are given
by equation (4.7).

Proof: FEach maximal face F' of the surface contains exactly one vertex
a’ +b" of A for some i € I and, the other way around, for every i € I,
there is exactly one face containing a’ + b'. Thus , there is a one-to—one

correspondence between vertices and faces of the shape indicated by (4.3)
and (4.4).

Now the Neighborhood Theorem ( Theorem 3.5) requires the index sets for
a as well as for b to be ordered, there has to be a “tight” sequence of sets
S1,S9,...,8, C I such that S; C Sy C ... C S, and |Si| = k(k € I) holds
true. This defines uniquely an ordering as claimed in our theorem.

q.e.d.

Faces of the type mentioned in formula (4.7) will be subsequently used in this
paper. Therefore, whenever the two vectors involved are a®), a*) instead of
a and b, then formula (4.7) is rewritten as

(4.8) FFet = AW AR (e

Remark 4.3. If the ordering involved is the natural one, we can obviously
generate all maximal faces by listing the system of index sets JO g
cording to formula (4.7) as follows

ac-

1 1234...n
12 234...n

(4.9) 123 34...n
123...n n

Obviously each face is obtained from its neighbor by moving the doubly
appearing index by one step to the right. We refer to this procedure as
to the moving index principle for one index. There is a rather obvious
generalization for more than one index.



* SECTION 4: SUuMMING Two PRISMS: THE TENTACLE SYSTEM % 21

Figure 4.1: The sum of two prisms for n = 2

Example 4.4. For n = 3 the sum of two prisms is seen in Figure 4.1. Note
that the faces F!' = A® + b! and F? = A® + a? determine the third face
uniquely to be F? = Ay + Af{’m}.

F* = A+ Ag:n
(4.10) F3 = A% + AL
F' = A% +Ab.
That is, index 2 appears first, index 3 appears second, ... according to the

ordering which, in the case depicted, is < = (2,3,1). At each face, the de-
cisive index appears twofold, representing the fact that it indicates the basis
vector at which a coincidence is enforced according to Theorem 4.1.

Example 4.5. For n = 4 we can offer a sketch of the canonical representa-
tion, see Figure 4.2.

Assuming that the translate of A® occupies the first vertex of the sum (i.e.,
2e'), and the translate of A the second one, the left hand version of Figure
4.2 corresponds to the ordering 2341. For, the maximal faces are given by

F¥? = Af+ A%,
(4.11) F¥ = A+ A341

F¥ = Ay + Agl

F = Afy, +A7.

The reader may check that the right hand side version of Figure 4.2 corre-
sponds to the ordering 2431.
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We conclude by deriving a few facts regarding an arbitrary sum of K prisms.
This will be a useful preparation for the general discussion of cephoids to
be presented later on. First of all, it is easy to see that the translates of all
prisms will appear on the surface.

Theorem 4.6. Let (a(k))keK be a family of positive vectors in general po-
sition. Then, for any k.l € K, the simplex A®) has a joint normal with
ezactly one vertex of AV (1 # k).

Proof: The normals that belong to all the vertices of A% span the octant
R% . If two of these normals are joint to the one of A% then the normal cone
of a two dimensional subface of A®) equals the corresponding one of A®*)
which we have ruled out by nondegeneracy.

q.e.d.

Corollary 4.7 (The translates of prisms, cylinders, ...etc. on A).

Let (a(k))keK be a family of positive vectors in general position and let
In .= ZkeKH(k) , A = ZkeKA(k).

1. Each I®™ yields a translate of A®) on A. This translate is the sum
of each A®) with K — 1 wvertices, each one from a different simplex
AW 1 £ k. The vertices to each translate of a simplex are uniquely

defined.
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2. For any two prisms II®) TI*) and any mazimal face FF¥=% of the sum
of these two prisms which is constructed according to Theorem 4.2,
formula (4.7) (see the version in (4.8)), there is a translate on A.
This translate is the sum of F*¥=% with K — 2 vertices, each one from
a different simplex A®, 1 # k. k'. The vertices are uniquely defined.

The proof employs obvious generalizations of the one for Theorem 4.6.

A particular case of the above corollary is obtained by considering, for each
pair of prisms, the sum of an edge and an (n — 1)-simplex. We call such
a sum a cylinder. As we will see, each translate of a simplex stretches
a sequence of cylinders from of its (n — 1)—subsimplices not located at the
boundary of A to the corresponding (n — 1)-subsimplex of A. This generates
the appearance of an “cephalopod” and motivates the name “cephoid” we
have chosen. Technically, the following is a consequence of Theorem 4.2 but
can also be seen in the context of Corollary 4.7.

Corollary 4.8. Let (a(k))keK be a family of positive vectors in general po-

sition and let TI == >, L O® A = 3 AW,

1. For every pair k, k' € K,k # k', there exists uniquely i € I such that
for some j # i the simplices

A(Ik_)z and Ag.c,)
admit of a joint normal, this is the normal n* = n*** of the prism

H*k}k’ _ Ckl—[(k) 4 cka’“'
with the constants determined by Theorem 4.1.

2. For every pair k, k' € K,k # k', i € T given as above, and | € K —
{k,k'} there exists a unique i; € I —{i} such that TIY admits of a joint
normal with I = ¢, II® 4+ ¢, II¥ in @V ; this is exactly the one 1,
for which n* is admitted as a normal in a®".

3. Hence, for every pair k, k' € K,k # k', there is (uniquely) i € I and a
sequence (iy)izxkp Such that

(4.12) FFE=iie . — Agkji+A§;f’>+ Z it — pkKi=<i Z a Vi

I#k k' I#k k'
s a mazimal face of P.
Definition 4.9.
1. The face
(413) Fkk)’ — Fk)k’;<i;i.

described by item 3 of Corollary 4.8 is the cylinder generated by k and
k'. In particular, we refer to an t—cylinder whenever i is given by item
1 of Corollary 4.8.
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2. For every k € K the set of i—cylinders

(4.14) {F’“c

KeK—F Zkkzz}

is the tentacle in direction i (the i—tentacle) generated by AW,

3. The system
(4.15) {F* |1 e K - 1}

is the system of tentacles generated by A®).

Corollary 4.10. The surface of any sum of K prisms contains for any prism
1mvolved a system of tentacles consisting of exactly K — 1 cylinders.

1. For n > 3, there are K translates of prisms and K(K — 1) cylinders
on this surface.

2. For n = 3 any pair of prisms generates just one cylinder, hence the

number of cylinders s K(I;_l) = (12()

The cylinders for n = 3 have been called “diamonds” in our introductory
remarks because this is what they look like.
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5 Enumerating the Faces

Let (a)K_ | denote a family of positive vectors in general position. Let II
denote the cephoid generated and let A be its surface. We develop recursive
procedures describing the number and nature of maximal faces of II.

Definition 5.1. We say that a maximal face F has a proper cut with a
subface Ay of A if

(5.1) dim(F N Ay) = |J| -1 = dimAy

holds true. That is, the intersection has the same dimension as the subsimplex
of the boundary. F' is called an l-face if the minimal dimension of a proper
cut 1s | — 1.

Thus, a 1-face contains a vertex, a 2-face cuts properly into a 2 dimensional
subface of A but does not contain a vertex, etc. E.g., we know that for K = 2
every face is 1-face (Theorem 4.2).

Corollary 5.2. Any mazimal face F is an l-face for somel < min{ K—1,n}.
Given the representation of F by means of the index sets J® (k € J), the
boundary Ar of A that yields the minimal mazimal cut is uniquely defined
by the set L of boundary indices (Definition 3.2).

This follows immediately from the Coincidence Theorem 3.1.

Remark 5.3. The projection of a prism A®) onto some subspace yields the
corresponding subsimplex. Restricting the summation to a subspace amounts
to adding prisms within this subspace and generating a cephoid of lower
dimension. In general, (maximal) faces could disappear be the restriction to
lower dimensions. However, if a face intersects an octant of lower dimension,
then the intersection is a face.

Consider a maximal face with boundary index set L. If the restriction to
some lower dimensional Ry respects L (i.e., L C J), then F N Ay is indeed
a maximal face. This is so as the number of indices necessary in order to
generate the correct dimension is preserved. Thus, FFNAy is indeed an [—face
with the same set of boundary indices.

The recursive procedure is essentially based on this property of cephoids:
[faces appear already in lower dimensions, hence can be enumerated and
characterized recursively.

Definition 5.4. The number of mazimal faces of 11 is denoted by f(K,n).
The number of l—faces is denoted by h(K,1).

We note that f(K,1) = h(K,1) = 1 and f(K,2) = K, hW(K,2) = K —2
holds true immediately.
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Lemma 5.5. Forn < K

(5.2) F(K,n) = h(K,n) + < )h(K, n—1)+...+nh(K,1).

n—1

Forn>K —1

(5.3) F(K,n) = (K”_ 1) h(K, K —1)+ ...+ nh(K,1).

Proof: We collect the faces according to the minimal subsimplex they are
sharing a proper cut with. In view of the Coincidence Theorem, each maximal
face is represented uniquely by its minimal proper cut (cf. Remarks 3.3, 5.3).
The (n — 2)—faces of A can be obtained by counting the (n — 2)—faces in each
of the n restrictions of A with dimension (n — 2) etc. This can be seen
more clearly by inspection of the canonical representation: The representing
simplex K'A€ has n subsimplices of dimension (n—2), each maximal (n—2)-
face represented in K A€ appears in exactly one of these subsimplices etc.

The second formula follows in view of Corollary 5.2,
q.e.d.

On the other hand, if we know the total number of faces for some dimension
n, then we can compute the number of “interior” faces by subtracting all faces
that properly cut into some boundary face, formally:

Corollary 5.6. For K > n

n

(54)  h(K,n) = f(K,n) - (( )h(K,n— 1) +...nh(K,1)>

n—1

Definition 5.7. A mazimal face

K
(5.5) F = Al
k=1
18 said to be r— full if
(k] o] =2} ] =
holds true.

Any maximal face F' is r—full with some r, 1 <r < K, and there are K —r
summands in the representation (5.5) which are just vertices.

Lemma 5.8. Let n < K. Then any mazimal face is at most (n — 1)—full.

Proof: Suppose, a maximal face is given as in (5.5) and let, as previously
jr = | J® | denote the number of indices in J® (k € K). A simple
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dimension consideration as in the proof of the Coincidence Theorem shows
that

(5.6) h+t...+jk=K+n-1

holds true. Let F be r—full and suppose w.l.o.g that j;,...,7, > 2 is the
case. The we find

(5.7) h+...+jg=>2r+(K—r)=r+K.
Combining both equations we obtain the inequality claimed.

q.e.d.

E.g., for n = 3 dimensions, we know that each maximal face has dimension
2, we have triangles and diamonds. Accordingly, for K = 2, any such face is
either the sum of two line segments (subsimplices of the simplices involved)
or the sum of a simplex and a vertex. If K exceeds 2, then any maximal
face looks essentially equal to the case K = 2 up to the fact that a number
of vertices is added. Thus, any maximal face is either a sum of two line
segments plus vertices or of a simplex plus vertices.

Corollary 5.9. Let n < K. Then each mazimal face is composed by means
of at least K —n + 1 vertices. Hence, there are at most (n — 1)-subsimplices
of dimension > 2 involved in the representation (5.5).

Corollary 5.10. For K > n we have

K
n—1

(5.8) f(K,n) = ( )f(n—l,n)

Proof: According to Lemma 5.8 we know that each face is at most (n — 1)
full. Each group of (n — 1) prisms chosen among the K prisms involved
generates f(n — 1,n) maximal faces which, together with a vertex from each
of the remaining prisms, appear as maximal faces of A. Now we can choose
(nlfl) such groups.

q.e.d.
Theorem 5.11. The number of mazimal faces f(K,n) can be recursively
computed using the numbers f(K',n) (K' < K).
Proof: According to Corollary 5.10 it suffices to compute the number f(K,n)
for K <n-—1.

In view of Formula (5.3), we can compute the number f(K,n) by means of
the numbers

(5.9) WK 1<I<K-1<n-2.

The number h(K,[) can be computed successively in terms of the number
(K, 1) via Formula (5.4) of Corollary 5.6.
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Now, as [ < K — 1, the numbers f(K, ) in turn can be computed by means
of the numbers f(I — 1,1) via Corollary 5.10, we have

(5.10) FK 1) = (z 5(1)]0(1 ~1).

Now, [ —1 < K — 2 shows that we obtain all necessary data by employing
quantities computed during the recursive procedure,

q.e.d.

Example 5.12. Consider the case K = 4.

First consider the case n = 3; we know already that the total number of faces
is K + (12() = 10. The number of 1-faces is 3 and the number of 2-faces is
(3)(K — 1) = 3-2 = 6, hence we have exactly 1 interior or 3-face in each
triangle. Compare Figure 1.3 for an example.

Next let n = 4. Each maximal face is uniquely a 1-face or a 2—face. There

are 4 vertices each one located in a 1-face. Moreover, the (g) edges each

show two 2-faces (the vertices being covered by the 1-faces). Hence, the
total number of maximal faces is 4 + 6 - 2 = 16.

Essentially, it suffices to compute f(4,n) for n < 4. Indeed, for n > 5 each
maximal face is at most a 3-face. Exactly one 3-face appears on each triangle
(as discussed above for n = 3). Consequently, we have to count the interior
faces for at most the triangles. Thus the number of total faces is computed
as

vertices x number of 1-faces
+ edges x number of 2 faces

+ triangles X number of 3—faces

which is

nx1+<g> ><(K—2)+<Z> x (K — 3)

“rea(y)(5).

This settles the case K = 4 completely.

(5.11)

Actually, the case K = 4 and n = 4 can be computed from the case K =
3, n =4 (Corollary 5.10). We will treat K = 3 in all detail within SECTION
6.
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For small numbers K and n we can come up with the following table.

Number f(K,n) for arbitrary n | Comments

of prisms K

K =2 n The Ordering Theorem 4.2
K 3 n+ (3) The results of SECTION 6
K =4 n+2(3) + (%) See Example 5.12

K =5 n+3(5) +3(3) () Similarly to 5.12

Dimension n | f(K,n) for arbitrary K | Comments

n =3 K+ (12( See Corollary 4.10

n = 4 K+ 2(12() + (13() See Corollary 4.10

We continue by pointing out a similar recursive procedure that provides the
representation of all maximal faces of a cephoid recursively.

To this end we write
° . k
(5.12) a* = (a®) .

for the family involved. The procedure we have in mind is then described by
the mapping
(5.13)

F(K,n;*) : {a' = (a(k))ﬁeK ‘ a’ is nondegenerate } — P ((fP(I))K)

which associates with a set of positive vectors in R”} a finite set F(K, n; a®)
the elements of which are k—tuples (J(l), cen J(K)) which correspond to the

faces of Il via FF = 25:1 Af]k()k). According to Theorem 5.11 we know that
|F(K,n;a*)| = f(K,n) can be recursively computed (independently on a*).
We now show that the same is true for the function itself.

Theorem 5.13. The function F(K,n;*) can be recursively computed using
the functions F(K',n;x) (K' < K).

Proof:

15*STEP : We start out with n = 2. In this case, any (comprehensive)

polyhedron is a sum of line segments (prisms), a fact that has been observed

by MASCHLER-PERLES |2|. For arbitrary K assume that the slopes of line
k

(k)
segments “Ls are strictly decreasing in k. Then the faces of II are given by
aa

(5.14) FO = 3Oy A 43602

I<k >k
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Equivalently, the corresponding index sets are given by

JOW = = Jgkb = {1}
(5.15) J® = 112},
JED — = g® = g9}

This way, all faces are completely described. In this simple situation, the
maximal faces are just the translates of the prisms, the proper vertices follow
from Corollary 4.7.

2MSTEP : Let C C R} be a convex comprehensive polyhedron with di-
mension (n — 1) and positive (outer) normal n and let b be a positive vector.
Assume that none of the 2-dimensional subfaces of C has a normal parallel
to b. Then there is a unique i € I such that the vertex b’ of A® admits of
the normal n. We assume that there is a procedure that computes the index
¢ given C and b.

3'"4STEP : Next we consider the case K = 2 that has already been treated
in SECTION 4.

We know that for any two prisms I1® and II® there is an ordering of I that
completely describes all faces via formula (4.7).

Now, for n = 3, determine i € I = {1,2,3} such that b’ admits the normal
of A®. Next, determine j € I = {1,2,3} such that a’ admits the normal of
AP Let k be the third index. Then the ordering is i < k < j.

For n > 3, suppose the procedure is known for (n —1). Compute the ordering
on I —{n} by projecting all prisms and the sum in R|;_y,. Likewise proceed
in order to obtain an ordering on I — {1}. The orderings are necessarily
consistent and define an ordering on I. This generates all faces and index
sets via (4.7).

4*BSTEP :

Now we proceed by induction in K. As previously, it is sufficient to assume
that n > K 4+ 1 holds true. See Corollary 5.10 which shows that, whenever
K > n holds true, it suffices to compute the faces for any group of (n — 1)
prisms and adding the appropriate vertices for the remaining ones (the latter
procedure involves the one mentioned in the 3"STEP).

5*8STEP : So we assume K < n— 1. The following observation explains the
basic idea.

Let F be a maximal face, we know that F'is an [face withl < K—1 <n—2.
Consider the representation by means of the corresponding index sets, say

K
(5.16) F =Y AW
k=1

and let L € I with |L| = [ be the set of boundary indices (Definition 3.2).
As | < n—2is true, there are at least two indices in I that are not elements
of L. Assume for the sake of simplicity that these indices are 1, n.
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Now, first of all, consider the projection on Ry_y,). We write I —n and Ry_,
for simplicity.

Then we have A ;o) | 1-n = Ajyw_,. As F'| 1, is maximal with respect to
My, = S, A(Ik) we note that

b

K
k
(5.17) Flim = ZA(J&LH-
k=1

Hence, F' | ;_{,) is an [ face with the same set of boundary indices L. Now
F|j_{yy or rather the corresponding index sets can indeed be computed using
the procedures defining the functions F(K', n; ) for K’ < K. This is so as
the dimension has been reduced by one in view of the 4*STEP. Indeed, the
argument is quite the same as for the reduction of the function f or, for that
matter, the one emphasized in Remark (5.3).

The same procedure can now be followed using the projection on Ry ;.

For any k£ we have then computed recursively the index sets
JE o g® 1

and as
J* — (J(k) —n)U (J(k) -1,

In fact it should be clear that all [ faces are uniquely determined by their
projection F' | ;_r, as we can successively eliminate one index i ¢ L after the
other and determine by the above procedure the J (k) containing 7.

6""STEP :

To perform the induction, we may assume that we have computed all systems
of index sets provided by F(K,n,a* | 1—;) which involves the values of F for
K' < K in view of the 4"STEP.

Suppose F'_; is an [ face of II;_; with boundary indices collected in L. denote
the index sets by J(k-), these are obtained by induction. Then, for j # i, j ¢

L, there is an [-face F'_; of II;_; with the same set L of boundary indices
such that

(5.18) F.i|lp = F_|¢

holds true and there are at least 2 such indices ¢ and j. For any k, the index
set J® is then determined via

(5.19) g = | Jg%
i¢L

which defines a face F' of II or an element of F(K, n;a*),
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Remark 5.14. The procedures developed within this section clearly induce
algorithms for computing the number of maximal faces and their nature. In
particular, Theorem 5.11 and Theorem 5.13 call for a corollary to actually
produce this algorithm in a closed form. Within this presentation which is
considered to be of a structural nature, is not our aim to actually produce
this algorithm.

Besides, we will point out a non recursive algorithm which directly produces
the data of the maximal faces from those of the family a(® involved, see [3].
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6 Sums of 3 Prisms: Blocks

Within this section we shall discuss the case K = 3, i.e., the sum of three
prisms in detail as it is the last case that can be visualized and simultaneously
explains the general version for arbitrary K and n. Presently we write Il =
1% 4 1% + I1€ and A is the surface of II.

Let us restate the Coincidence Theorem for this particular case.

Theorem 6.1. Let F be a maximal face of I1. Then

1. Either there exists uniquely i € I such that @'+ b’ + ¢ € F holds true.
That is, F contains a unique vertex of the Il and hence is a 1—face with
L = {i}. Thus, with suitable J® C I (k=1,2,3)

(6.1) F = A + A% + A%

such that i € N}_J® holds true.

2. Or else there is a unique pair 1,7 € I such that F is a 2—face with
L = {i,j}. Thatis, FNAyj is a nondegenerate interval located within

the relative interior of A;j. Thus, with suitable JRB 1 (k=1,2,3)
(6.2) F = Ao+ AS@) + AS

such that {ij} C J® holds true for one k while the other two index
sets contain either i or j and not both.

Moreover, there are positive constants cq,cp and c. (unique up to a positive
multiple) such that the normal w* of F is (up to a positive multiple) exactly
the normal of the prism

(6.3) A* = IV ¢pI1° V ¢ I1¢ .

Example 6.2. If n = K = 3, then we obtain 3 translates of simplices and
3 diamonds on the surface A of II. Each simplex A® has an image on the
surface A. The tentacle system generated by each simplex consists of two
diamonds. Any two simplices share exactly one diamond. As there are no
further maximal faces, the number of faces is always 3 4+ 3 = 6.

Consider the sum of 3 prisms in R? represented by Figure 6.1. This version
is dubbed the circle. As we know, each pair of the prisms yields a sum
the surface of which is represented by an ordering. The orderings are indeed
“cyclic” as they are induced by the cyclic subgroup of permutations of three
elements, we find

the orderings

(6.4) 123 231 312.
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Figure 6.1: The circle

E.g., the sum of @ and b has three maximal faces, these are described by

a b
123 3
(6.5)
12 23
1 123

A similar diagram holds for b vs. ¢ and ¢ vs. a, employing two further
permutations. As there a three prisms involved, we obtain the complete
description of the maximal faces generated by a and b by adding a suitable
vertex of ¢ which yields the following list.

a b c
123 3 3
(6.6)
12 23 1
1 123 1

Listing all three diagrams as induced by the 3 permutations we obtain the
complete structure of A. Noted that the three diagrams list 9 faces, but each
simplex appears twice, so we have indeed 6 maximal faces.

Example 6.3. The next example is called the windmill and represented by
Figure 6.2. This cephoid involves

the three orderings
(6.7) 132, 321, and 213

between the three pairs which refer to the acyclic subgroup of permutations
of three elements. Again a complete description has to involve a suitable
vertex of the third prism.
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Figure 6.2: The windmill

For n = 4, K = 3 we can still represent the sum of three prism canononically,
i.e., by depicting the projection into the subsimplex spanned by 3e!, 3e2, 3e3,
and 3e? of R*. this simplex is 3-dimensional and has the shape of a tetrahe-
dron in R?.

It is clear from Corollary 4.7, that there are three translates of simplices on
A. Each of these generates tentacles consisting of 2 cylinders (Corollary 4.8).
Thus, we find immediately nine maximal faces that are 2—full, hence involve
a vertex.

Now, in addition to these nine faces, there is exactly 1 block, i.e., a maximal
face that is 3—full. Indeed, we have

Lemma 6.4. For n =4 and K = 3. Then A has exactly 10 faces.

Proof: We imitate the general procedure explained in Theorem 5.13, which
is quite simple for K = 3. Indeed, any maximal face containes either a vertex
or cuts the interior of an edge. On the other hand, each edge intersects
exactly 3 maximal faces. The 4-dimensional unit simplex (and its multiples)
has 4 vertices and 6 edges, hence there must be 10 maximal faces. q.e.d.

The situation can be observed using the canonical representation as the lat-
tice of faces is completely preserved. Indeed, we find exactly 3 prisms, 6
cylinders and 1 block in the following examples.

Example 6.5. We start out with a circle of 3 in R*. The canonical repre-
sentation of this polyhedron is presented in Figure 6.3.

The translates of the simplices are located in the corners of A, hence each
one is an F* type. The fourth F* type is a cylinder. All the other cylinders
and the block are F¥ type. In particular, the block is an F?* type, more
precisely

(6.8) Ag + Agz + Agy.
We list the three orderings referring to each sum of two prisms, these are

c a
(6.9) 4312

a b|bc
1234 | 2341
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Figure 6.3: A circle of 3 prisms in 4 dimensions.

Of course this is not sufficient, but the orderings appear again in the full
description of all maximal faces, where a suitable vertex is added to each
of the faces generated. As it turns out, the single block corresponds to a
further ordering, this one is already suggested by (6.8) to be 1234. Thus, a
full description of all maximal faces is given as follows:

a b c b c a c a b

1234 4 412341 1 1 14312 2 2

123 34 41 234 41 1| 431 12 2

(6.10) 12 234 4 23 341 1 43 312 3
1 1234 1 2 2341 2 4 4312 4

a b c
12 23 34

Generally we have:

Theorem 6.6. Let n = 4 and K = 3. Let (a®))i_ | denote a family of
positive vectors in general position and let

1)

1

n= >y " =

K K
k=1 k=

Then the mazimal faces of 11 are given as follows:

1. There are three orderings E, each one referring to a pair of prisms
oo, 1) (1,7 € I), which yield the mazimal faces in the corresponding
sum of these two prisms .

2. To each of these faces there correponds a unique vertex of the third
polyhedron such that the result is a maximal face of T1.

3. There is a further ordering representing exactly one block. This block
18 uniquely defined by either one of the following requirements:
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(a) The block covers exactly the missing vertex or interval in an edge
that is not covered by the above faces constructed from the sums
of two.

(b) The block is adjacent to at least one face generated by each of the
sums of two.

This is an obvious result.

Going back to the table (6.10) in Example 6.5, we can deduce from the upper
set of three matrices (representing the sums of two plus a vertex) that the
interior interval of edge 23 is not covered by a maximal face and that indeed
the edge 23 does not intersect any translate of AP. As the edge 23 intersects
a translate of A%, and of Ag, it is clear that AY, is the missing edge.

As for the second argument, observe that

a b c

(6.11) 12 234 4

is adjacent to the block. This cylinder stems from the sum of A% and A®. It
is, by the way, also adjacent to its predecessor

a b c

(6.12) 123 34 4

which precedes within the same ordering, as the third vertex (i.e. 4) does
not change. Similar, if we look to the second ordering (referring to b and ¢),
then we observe that

a b c

(6.13) 1 23 341

is adjacent to the block as well as to its predecessor in the ordering.

Finally, let us look to the third ordering, the one defined by a and c. Here
indeed the block has two neighbors which are

a b c
(6.14) 21 2 134
213 3 34

These two have been adjacent as far as the sum of 1% and I1¢ was concerned.
But the unique vertex of b that renders these faces to become faces of II
changes from 2 to 3, so they are no longer adjacent but both adjacent to the

block.

In the second sketch two translates of simplices are F' types (actually F'
and F?). The faces F? and F* are cylinders and again the diamond is F**.
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Figure 6.5: The marriage of a windmill and a circle

We can construct a 4-dimensional cephoid such the two 3-dimensional sub-
faces resemble the two examples above. Thus, Figure 6.5 is “the marriage of
a windmill and a circle”.

We are now in the position to describe the case K = 3.

Theorem 6.7. Let K = 3 and K < n — 1. Then Il has n + (g) mazimal
faces.

Proof: Consider the canonical representation.

There are (g) edges of the prism AX€ used for the representation and each
of them has a proper cut with exactly 3 maximal faces. On the other hand,
each maximal face is either a 1-face (hence containes a vertex) or a 2-face
(hence intersects exactly one edge properly and contains no vertex. Thus,
the total number of faces is indeed n + (g), i.e., the number of vertices plus
the number of edges in the canonical representation.

q.e.d.

Theorem 6.8. Let II be a sum of 3 prisms in R} and assume that no block
contains a verter. Then 11 is characterized by 4 orderings. Three orderings
correspond to each pair of prisms. These generate all together (n—3) mazimal
faces according to the moving index principle for 1 index (see Remark 4.3).
A further order which is connecting all three prisms generates (";3) faces
according to the moving index principle.
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According to Theorem 4.2 any two prisms generate an ordering and hence
n maximal faces of their sum according to the moving index principle 4.3.
Each of these generates a maximal face within the sum of three prisms when
combined with a proper vertex of the third prism (Theorem 4.6, Corollary
4.7). Clearly, the three translates of the prisms (each one with a suitable
vertex of the other two) appear twice within this scheme, hence the total
number of faces that correspond to the pairs of two prisms equals 3n — 3.

The number of the remaining faces is now (Theorem 6.7)

n+<z> —3(n—1)= (n;2>

These faces have to be sums involving at least an edge from each simplex,
hence the size of each index set J®) k = 1,2, 3 is at least two. As they have
to be neighbors each of them has to be obtained from another one by the
neighborhood theorem (Theorem 3.5). Thus, the two common indices have
to be moved according to the moving index principle.

Note that the number of sets J&, J@ | J®) to be obtained by the moving in-
dex principle is indeed ("53) To see this, take the natural ordering 1,2, ..., n.
Then, there is one system of index sets of the type

,2,....n—2 x n—2,n—1 x n—1,n,
there are two systems involving the first (n — 3) for the first index set:
1,2,....n—3 * n—-3,n—2,n—1 x n—1,n,
and
1,2,....n—3 *x n—3,n—-2, x n—2,n—1,n,

(two versions obtained by moving the second index), three systems obtained
by fixing the first (n — 4) indices etc.

Thus we have

n—2
1+24+3+...4n—3 = ( 9 )

systems which exactly generate the missing number of maximal faces.

Example 6.9. E.g., for n = 7 the blocks are suggested by the moving index
principle for two indices as follows, assuming that the ordering is the natural
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one:
12345 56 67
1234 456 67
1234 45 567
123 3456 67
123 345 567
123 34 4567
12 23456 67
12 2345 567
12 234 4567
12 23 34567
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