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Abstract

We extend the Ståhl-Rubinstein alternating-o¤er bargaining procedure to allow players,
prior to each bargaining round, to simultaneously and visibly commit to some share of the
pie. If commitment costs are small but increasing in the committed share, then the unique
outcome consistent with common belief in future rationality (Perea, 2009), or more restric-
tively subgame perfect Nash equilibrium, exhibits a second mover advantage. In particular,
as the smallest share of the pie approaches zero, the horizon approaches in�nity, and com-
mitment costs approach zero, the unique bargaining outcome corresponds to the reversed
Rubinstein outcome (�=(1 + �); 1=(1 + �)).
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1. Introduction

The main insight of Rubinstein�s (1982) pioneering work on bargaining is that under complete
information equilibrium strategies are determined by the relative impatience of the bargaining
parties. In equilibrium there is an immediate e¢ cient agreement. The proposer makes an o¤er
so that the responder is indi¤erent between accepting the o¤er and rejecting it given the cost of
waiting. Thus there is a �rst-mover advantage.

Subsequent research has pointed out two main sources of ine¢ ciencies in complete informa-
tion bargaining, non-stationarities (Fershtman and Seidmann, 1993; Compte and Jehiel, 2004;
Li, 2007) and commitment strategies (Ellingsen and Miettinen (2008)). In the latter approach,
negotiators end up with con�ict when attempting to commit themselves to an aggressive bar-
gaining stance and thereby forcing concessions from an uncommitted opponent.1 Ellingsen and
Miettinen (2009) further illustrate how the chance of aggressively committing to stingy o¤ers in a
dynamic Rubinstein-like setting may lead to unavoidable con�ict and/or asymmetries driven not
only by patience, as predicted by Rubinstein, but also by the rate of decay of one�s commitment
power.2

Like Miettinen and Ellingsen, we consider the e¤ect of commitment strategies in a complete
information alternating o¤er setting. We limit attention to the �nite horizon alternating o¤er
game (Ståhl, 1972) although we do study the in�nite horizon limit. We model parties who can
commit not to propose, or not to accept, any share smaller than speci�ed in the commitment.
Strategic commitment is assumed to incur small costs, increasing in the amount to which the
party commits. The main di¤erence to Ellingsen and Miettinen is that players do not commit
directly to proposals, but rather commit to not o¤er, or commit to veto, any deal where their
share is smaller than their commitment. In this sense, commitment resembles endogenous com-
mitment analyzed in Fershtman and Seidmann (1993), Li (2007), and Miettinen (2009).3 Yet,
rather than the smallest acceptable shares being determined by the bargaining history in some
exogenously determined way, players can freely and simultaneously choose their commitments
prior to each round of bargaining.

We show that the availability of such commitment strategies never leads to ine¢ ciencies.
As in Rubinstein (1982), deal is stroke in immediately. However, contrary to Rubinstein�s
outcome, there is now a second-mover advantage rather than a �rst-mover advantage! This is
surprising, as both parties commit simultaneously at the beginning of every round, and there
are no exogenous asymmetries in commitment technology. At the �rst round, the �rst-mover
does best by refraining from committing altogether, whatever share the second-mover commits
to. Knowing this, the second-mover will commit up to the share she would receive if (a) she were

1This point was initially discussed by Schelling (1956). Crawford (1982) showed that commitment strategies
may lead to ine¢ cienies when information is incomplete.

2See also Li (2009) who illustrates that e¢ cient equilibria always exist if parties can update their commitments
frequently enough.

3See also Comple and Jehiel (2004) on a model where endogenous outside options have a similar e¤ect.
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to propose in the �rst round, and (b) there would be no possibility to commit in the �rst round.
Thus, the presence of symmetric commitment strategies entirely reverses the bargaining power
of the parties! In the limit, where the cost of commitment and the smallest indivisible share of
the pie approach zero, and where the number of rounds approaches in�nity, the outcome of the
game approaches the reversed Rubinstein outcome, (�=(1 + �); 1=(1 + �)).

We analyse the game using the concept of common belief in future rationality (Perea, 2009),
meaning that both players always believe that the opponent will choose rationally now and in
the future, that both players always believe that both players always believe that the opponent
will choose rationally now and in the future, and so on. As Perea (2009) has shown, the
strategies that may be chosen under common belief in future rationality can be computed by
the algorithm of backwards dominance. Since every subgame perfect equilibrium of the game
survives the backwards dominance procedure, it follows that the outcome described above is
also the unique subgame perfect equilibrium outcome in the bargaining game.

Myerson (1991) and Abreu and Gul (2000) analyse a context where one party has incomplete
information about the opponent�s stubbornness not to accept anything less than an exogenously
given share of the pie. The opponent can then use commitment tactics that exploit this in-
complete information: However small the degree of uncertainty is, the incomplete information
provides a bargainer with an option of strategically mimicking stubbornness in order to force
concessions from the other party. This induces delay and con�ict and a shift in the �nal sharing.
Sequencing of moves and the implied bargaining power are not central to their analysis whereas
in this paper these constitute a central focus. Moreover, outside options have been shown to
eliminate the e¤ect of stubbornness (Compte and Jehiel, 2002).

Outside options bear a close relation to the current complete information alternating o¤er
bargaining model as well. It has been shown that, when a party, by opting out, gets a payo¤ that
is inferior to the equilibrium payo¤ he would obtain in the game without outside options, then
these latter have no e¤ect on the equilibrium outcomes (Binmore et al. 1989). In our setting
deliberately chosen commitment strategies in�uence bargaining outcomes exactly because they
are chosen to force concessions superior to those in the Rubinstein outcome.

The result closest in spirit to ours is perhaps Dixit�s (1980) extension of the Spence-Dixit
excess capacity model. He shows that an incumbent �rm, who nevertheless is presumed to play
the role of the follower, can use the commitment, provided by an excess capacity investment, in
seizing limited initiative back from the entrant.

The paper is organized as follows. In Section 2, we set up the model and the bargaining
procedure. In Section 3 we present the concept of common belief in future rationality, and the
associated algorithm of backwards dominance. In Section 4 we analyse the model with one round
of bargaining. We will use it as a benchmark for our analysis of more than one round. Section
5 presents the general bargaining model with more than one round. Building upon our analysis
of Section 4, we present the outcome that will result under common belief in future rationality.
We also investigate the limit behavior of this outcome, when the commitment costs go to zero
and the number of rounds goes to in�nity. We conclude in Section 6.
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2. The Bargaining Procedure

There are two players, 1 and 2, who must reach an agreement about the division of one unit
of some good. We assume that the smallest amount is 1=K for some integer number K: Let
X := f0; 1=K; 2=K; :::; 1g: Hence, the set of possible divisions is given by

D := f(x1; x2) : x1; x2 2 X and x1 + x2 = 1g:

Players 1 and 2 use the following bargaining procedure, which can last for at most N rounds.

Round 1: At the beginning, both players simultaneously choose commitment levels c1; c2 2
X: The commitment levels become known to both players, and player 1 proposes a division
(x1; x2) 2 D with x1 � c1: Subsequently, player 2 decides whether to accept or reject the
proposal under the condition that he can only accept o¤ers with x2 � c2: If he accepts, (x1; x2)
is the �nal outcome. If he rejects, the game moves to round 2.

Round 2: At the beginning, both players simultaneously choose new commitment levels c1; c2 2
X: Afterwards, player 2 proposes a division (x1; x2) 2 D with x2 � c2: Subsequently, player 1
decides whether to accept or reject (x1; x2); under the condition that he can only accept o¤ers
with x1 � c1: If he accepts, (x1; x2) is the �nal outcome. If he rejects, the game moves to round
3.

Round 3: This is a repetition of round 1. And so on.

This bargaining procedure goes on until an agreement is reached, or the process enters round
N + 1: In round N + 1; a given division (y1; y2) 2 D with y1; y2 > 0 is realized.

We assume that both players incur a cost for commitment. More precisely, if player i commits
to an amount ci; this will cost him �ci; where � is some small positive number. For convenience,
we assume that � is the same for both players. We �nally assume that both players discount
future payo¤s by a common discount factor �:

So, in view of all the above, the players� utilities are as follows: If the players reach an
agreement on division (x1; x2) in round n; then the utility for player i is

�n�1xi � �
�
c1i + �c

2
i + :::+ �

n�1cni
�
;

where cki is the commitment level chosen at round k: If the game reaches round N +1; his utility
would be

�Nyi � �
�
c1i + �c

2
i + :::+ �

N�1cNi
�
:

In order to avoid uninteresting indi¤erences, we assume that � is such that a player is never
indi¤erent between two outcomes that are realized at two di¤erent rounds. Note that for every
open interval (a; b) in [0; 1]; we can always �nd such a � that lies in (a; b); since there are only
�nitely many rounds, and �nitely many divisions and commitment levels at every round. By
choosing � is this way, we guarantee that a player will never be indi¤erent between accepting
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and rejecting an o¤er. This, eventually, will lead to a unique outcome in the bargaining game,
which makes our analysis more transparent.

Within our bargaining procedure above, the interpretation of the commitment levels is thus
that the proposer commits to never o¤er less than his commitment level for himself, whereas
the responder commits to reject any o¤er that would give him less than his commitment level.

3. Common Belief in Future Rationality

The concept we use to analyse the game is common belief in future rationality (Perea (2009)).
That is, we assume that a player always believes that his opponent will choose rationally now
and in the future, that a player always believes that his opponent always believes that he will
choose rationally now and in the future, and so on. For a formal de�nition of this concept
within an epistemic model the reader is referred to Perea (2009). For �nite dynamic games
with almost perfect information, Perea (2009) has shown that the concept can be characterized
by an elimination procedure called backwards dominance. More precisely, for such games the
procedure selects exactly those strategies that can rationally be chosen under common belief in
future rationality.

Here, by a dynamic game with almost perfect information we mean a game where at every
stage one or more players make a choice simultaneously, and where these choices become known
to everyone before the next stage starts. It is easily seen that our bargaining procedure is a
�nite dynamic game with almost perfect information. Hence, we can use backwards dominance
to select those strategies that can rationally be chosen under common belief in future rationality.

The backwards dominance procedure works as follows: We start at the ultimate subgames,
that is, those subgames after which the game is over. At each of those subgames, we restrict to
strategies that reach this subgame, and apply iterated strict dominance (or, iterated elimination
of strictly dominated strategies) to this restricted game.

We then move to penultimate subgames, that is, subgames after which either the game is
over or an ultimate subgame starts. At each of those subgames, we restrict to strategies that
reach this subgame and that have not been eliminated yet by the procedure. We then apply
iterated strict dominance to these restricted games.

And so on, until we reach the beginning of the game. There, we restrict to strategies that
have not been eliminated yet, and apply iterated strict dominance to this restricted game. The
strategies that survive the �nal round of iterated strict dominance at the beginning of the game
are said to survive the backwards dominance procedure.

For �nite dynamic games with almost perfect information, subgame perfect equilibrium is a
strict re�nement of common belief in future rationality. That is, every strategy that is optimal
in a subgame perfect equilibrium can also be chosen rationally under common belief in future
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rationality, but not vice versa (see Perea (2009)). If we apply common belief in future rationality
to games with perfect information, we obtain the usual backwards induction procedure.

4. The Case of One Round

We start with the easiest case, namely when there is only one round of bargaining. For this
case, we already encounter a surprising result: Under common belief in future rationality (and
hence also under subgame perfect equilibrium) the proposer faces a �rst-mover disadvantage,
rather than a �rst-mover advantage. Actually, we can say a little more, namely the proposer
gets exactly what he would obtain as a responder in the procedure without commitment. So,
introducing the possibility to commit reverses the outcome completely! All this is obtained
under the assumption that the commitment costs are su¢ ciently small. More precisely, we
require � < 1� �:

Theorem 4.1. (Case of one round) Consider the procedure with only one round of bargaining,
and suppose that � < 1� �. Then, under common belief in future rationality, player 1 chooses
commitment level 0, player 2 chooses commitment level 1� �y1; player 1 proposes (�y1; 1� �y1)
and player 2 accepts.

Here, x denotes the smallest number in X larger than, or equal to, x: Remember that (y1; y2)
is the outcome if the proposal is rejected. So, player 1, the proposer, gets the minimal amount
he would still accept, whereas player 2, the responder, gets all the surplus! Notice that in the
classical bargaining procedure without commitment, this would be exactly the outcome when
player 2 would be the proposer and player 1 the responder.

Proof. For every pair (c1; c2) of commitment levels, the subgame that starts after (c1; c2) is a
game with perfect information. Hence, applying backwards dominance to this subgame is the
same as using backwards induction. After every (c1; c2); the backwards induction outcome is as
follows:

1. If c1 + c2 > 1; or c1 > 1� �y2; then player 2 will reject any proposal by player 1. Hence,
the outcome will be (y1; y2); with utility �y1 � �c1 for player 1, and utility �y2 � �c2 for
player 2.

2. If c2 > 1� �y1; then player 1 does not want to make any o¤er that player 2 would accept.
Hence, the outcome will be (y1; y2); with utility �y1��c1 for player 1, and utility �y2��c2
for player 2.

3. Suppose that c1 + c2 � 1 and �y2 < c2 < 1 � �y1: Then, the best that player 1 can do
is to o¤er player 2 precisely c2; which player 2 would accept. So, the outcome would be
(1� c2; c2); with utility 1� c2 � �c1 for player 1, and utility c2 � �c2 for player 2.

6



@
@

@
@

@
@

@@

�y1 � �c1; �y2 � �c2

1� c2 � �c1; c2 � �c2

1� �y2 � �c1; �y2 � �c2

1� �y2

�y2

1� �y1

c1

c2

Figure 1: The case of one round: Backwards induction utilities after every pair (c1; c1)

4. Suppose that c1 < 1 � �y2 and c2 < �y2: Then, the best that player 1 can do is to o¤er
player 2 exactly �y2; which player 2 would accept. So, the outcome would be (1� �y2;
�y2); with utility 1� �y2 � �c1 for player 1, and utility �y2 � �c2 for player 2.

It can easily be seen that this covers all possible cases. In Figure 1 we have depicted the
backwards induction utilities for both players after every possible pair (c1; c2): So, Figure 1
represents exactly the restricted game that the backwards dominance procedure would consider
at the beginning of the game. In order to �nish the backwards dominance procedure, we must
apply iterated strict dominance to the game in Figure 1.

From player 1�s utilities in Figure 1 it is easily veri�ed that, for every c2; player 1�s utility
is decreasing in his commitment level c1: This means, however, that c1 = 0 strictly dominates
every other c1 for player 1. So, we eliminate all c1 > 0 for player 1, which leaves only c1 = 0:
But then, in the reduced game that remains, player 2�s best choice is c2 = 1� �y1: Here, we use
the assumption that � < 1 � �: As we have seen above, the best that player 1 can do in this
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case is to propose (�y1; 1 � �y1); which player 2 would accept. So, by applying the backwards
dominance procedure, we obtain that player 1 chooses commitment level c1 = 0; player 2 chooses
c2 = 1� �y1; player 1 proposes (�y1; 1� �y1) and player 2 accepts. This completes the proof. �

5. The Case of More Rounds

We now turn to the case of more than one round. Also in this case, common belief in future
rationality leads to a unique outcome, where the proposer at round 1 faces a �rst-mover dis-
advantage, rather than a �rst-mover advantage. Actually, when the commitment cost � tends
to zero, then the �rst proposer gets exactly what he would obtain as the �rst responder in the
procedure without commitment, and vice versa. So, again, introducing the possibility to com-
mit completely reverses the outcome as � tends to zero! As every subgame perfect equilibrium
satis�es common belief in future rationality (see Perea (2009)), it follows that this outcome is
also the unique subgame perfect equilibrium outcome in the game.

Theorem 5.1. (Case of more than one round) Suppose that the bargaining procedure consists
of N potential rounds, and that � < 1 � �. Let p denote the proposer at round 1, and r the
responder at round 1. Then, common belief in future rationality leads to a unique outcome,
namely at round 1 proposer p commits to cp = 0, responder r commits to cr = xNr ; proposer p
proposes the division (xNp ; x

N
r ) and responder r accepts, where x

N
p ; x

N
r are recursively given by

x1p = �yp; x
1
r = 1� �yp;

xNp = �(1� �)xN�1r ; and xNr = 1� �(1� �)xN�1r ;

for every N � 2:

If we let � tend to zero, then the recursive equations above would exactly yield the outcomes
for the players in the procedure without commitment, but with the roles of the proposer and
responder reversed! If the size of the smallest slice 1=K is small, then the amounts xNp and xNr
are approximately equal to

xNp �
�(1� �) + (�1)n�n(1� �)n

1 + �(1� �) + (�1)n�1�n(1� �)n�1yp

and

xNr �
1� (�1)n�n(1� �)n

1 + �(1� �) � (�1)n�1�n(1� �)n�1yp:

Recall that yp is the amount that player p would get at the end of the game, when all proposals
have been rejected. These approximations are obtained by setting �x = x in the recursive
equations above, and solving them. If the number of rounds N becomes very large, then

xNp �
�(1� �)

1 + �(1� �) and x
N
r �

1

1 + �(1� �)
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which shows that there is a clear �rst-mover disadvantage. If in addition the commitment cost
� would tend to zero, then in the limit we would obtain the reversed Rubinstein outcome

xNp �
�

1 + �
and xNr �

1

1 + �
:

Proof of Theorem 5.1. We prove the statement by induction on the number of rounds. If
N = 1; then the statement follows immediately from Theorem 4.1.

Now, assume that N � 2; and that the statement holds for the procedure with N�1 rounds.
Let p be the proposer at round 1, and r the responder at round 1. Suppose that the proposal
at round 1 would be rejected. Then, the subgame that starts at round 2 is a procedure with
N � 1 rounds, where r is the �rst proposer and p is the �rst responder. The commitment costs
incurred at round 1 are sunk costs, and therefore do not a¤ect the analysis in this subgame. By
our induction assumption we know that in this subgame, common belief in future rationality (or,
equivalently, the backwards dominance procedure) leads to a unique outcome: player r chooses
commitment level cr = 0; player p chooses commitment level cp = xN�1r ; player r proposes xN�1p

for himself and xN�1r for player p; and player p accepts. The corresponding utilities would be
xN�1r � �xN�1r = (1� �)xN�1r for player p and xN�1p for player r:

Let us now move to round 1, the beginning of the game. If we apply the backwards dominance
procedure, then we restrict to strategies that have not been eliminated yet, and perform iterated
strict dominance within this restricted game. By our induction assumption, the strategies that
have not been eliminated yet are such that, whenever the proposal at round 1 is rejected, then
the discounted utility for p is �(1 � �)xN�1r ; and the discounted utility for r is �xN�1p : By a
similar argument as in the proof of Theorem 4.1, we can then conclude that the restricted game
at round 1 is given by Figure 2. The only change compared to the proof in Theorem 4.1 is that
we substitute (1��)xN�1r for y1; and substitute xN�1p for y2: In Figure 2, the �rst utility always
corresponds to player p; and the second utility to player r:

From Figure 2, it can easily be concluded that proposer p�s utility is strictly decreasing in
his commitment level cp: Hence, all choices but cp = 0 are strictly dominated for player p: So, we
obtain a reduced game in which player p only chooses cp = 0: But then, using the assumption that

� < 1��; we see that player r�s best choice is cr = 1��(1� �)xN�1r : So, the backwards dominance
procedure (and hence also common belief in future rationality) leads to a unique outcome, in

which at round 1 player p commits to cp = 0; player r commits to cr = 1� �(1� �)xN�1r ; player

p proposes �(1� �)xN�1r for himself, player p proposes 1� �(1� �)xN�1r for player r; and player

r accepts. Since xNp = �(1� �)xN�1r and xNr = 1� �(1� �)xN�1r ; the statement of the theorem
follows for N rounds. By induction on N; the statement holds for every N; and hence the proof
is complete. �
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�(1� �)xN�1r � �cp; �xN�1p � �cr

1� cr � �cp; cr � �cr

1� �xN�1p � �cp; �xN�1p � �cr

1� �xN�1p

�xN�1p

1� �(1� �)xN�1r

cp

cr

Figure 2: The restricted game at round 1
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6. Concluding Remarks

6.1. Commitment Costs

In our model we have assumed that the commitment costs for both players are given by �c;
where c is the amount committed to, and � is some �xed number less than 1 � �: In fact, we
do not really need this speci�c functional form for the commitment costs. Instead, we could
assume that the commitment costs are given by a more general function 
(c); where 
(0) = 0;
the function 
 is strictly increasing in the commitment level c; and 
(1) � 1 � �: The reader
may verify that under these assumptions, common belief in future rationality would again lead
to a unique outcome, in which the proposer at round 1 faces a �rst-mover disadvantage. The
outcome can be computed by a recursive formula similar to the one used in Theorem 5.1. Also
under these assumptions we would obtain the reversed Rubinstein outcome (�=(1+�); 1=(1+�))
if we let the number of rounds go to in�nity, let the size of the smallest slice go to zero, and let
the commitment costs go to zero. However, in the paper we have chosen the speci�c functional
form �c for the commitment costs as to keep the presentation and the analysis as simple as
possible.

6.2. Common Belief in Future Rationality

The reader may wonder why we have not chosen the more traditional concept of subgame perfect
equilibrium, instead of common belief in future rationality, to analyse the game. There are two
reasons.

First, common belief in future rationality is a more basic concept than subgame perfect
equilibrium, as it does not impose any equilibrium condition. It only requires that a player
always believes that his opponent will choose rationally now and in the future, that he always
believes that his opponent always believes that he will choose rationally now and in the future,
and so on. The concept of subgame perfect equilibrium also imposes these conditions, but
in addition requires some equilibrium conditions that are harder to justify, and which are not
assumed by common belief in future rationality.

Second, using common belief in future rationality as a concept makes our Theorem 5.1
stronger. Namely, common belief in future rationality is a weaker concept than subgame perfect
equilibrium. In fact, every subgame perfect equilibrium satis�es common belief in future ratio-
nality, but not vice versa. Therefore, our Theorem 5.1 implies that the outcome described there
is also the unique subgame perfect equilibrium outcome. However, the statement is stronger
than this: We do not need the equilibrium condition to arrive at this outcome. Imposing only
common belief in future rationality is already enough.
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